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Department of Mathematics, Hacettepe University, 06800 Beytepe, Ankara, Turkey

e-mail: paydogdu@hacettepe.edu.tr

NOYAN ER
Department of Mathematics, University of Rio Grande, Rio Grande, OH 45674, USA

e-mail: noyaner@yahoo.com
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Abstract. Dedekind domains, Artinian serial rings and right uniserial rings share
the following property: Every cyclic right module is a direct sum of uniform modules.
We first prove the following improvement of the well-known Osofsky-Smith theorem:
A cyclic module with every cyclic subfactor a direct sum of extending modules has finite
Goldie dimension. So, rings with the above-mentioned property are precisely rings of
the title. Furthermore, a ring R is right q.f.d. (cyclics with finite Goldie dimension) if
proper cyclic (� RR) right R-modules are direct sums of extending modules. R is right
serial with all prime ideals maximal and ∩n∈�Jn = Jm for some m ∈ � if cyclic right
R-modules are direct sums of quasi-injective modules. A right non-singular ring with
the latter property is right Artinian. Thus, hereditary Artinian serial rings are precisely
one-sided non-singular rings whose right and left cyclic modules are direct sums of
quasi-injectives.

2000 Mathematics Subject Classification. Primary 16D10, 16D70, 16P20, 16P40.

1. Introduction. Our rings are associative with identity, and modules are unitary
right modules unless otherwise stated. A module M is called extending if every
submodule of M is essential in a direct summand of M, and M is called quasi-injective
if M is a fully invariant submodule of its injective hull. Quasi-injective modules are
extending.

Non-commutative rings whose cyclic (right) modules satisfy injectivity-like
properties have been studied in the last four decades since the first non-trivial
result in this direction was proved by Osofsky ([16] and [17]): She showed that
a ring is semisimple Artinian if its cyclic right modules are injective. Klatt and
Levy characterised in [12] commutative rings whose factors are self-injective, a non-
commutative analogue of which was studied by Ahsan ([1, 2]) and Koehler ([13]), where
they considered rings whose cyclic right (equivalently left) modules are quasi-injective,
namely qc-rings.
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The main challenge of Osofsky’s result mentioned above is essentially to see that
such a ring has finite Goldie dimension. Osofsky and Smith extended this result in
the much more general context of extending modules, proving the following ([15]): A
cyclic module whose cyclic subfactors are extending has finite Goldie dimension. This
result proved to be a master key for verifying some of the results then known as well
as proving unknown ones (see [3]).

This paper derives its motivation from the following facts: Neither the extending
property, nor quasi-injectivity carries over to finite direct sums (e.g. �

p�
⊕ �

p3�
, where p

is a prime). Also, rings whose cyclic (right) modules are direct sums of extending (resp.
quasi-injective) modules are a proper subclass of rings whose cyclics are extending
(resp. quasi-injective)(see Examples 1 and 6). So, the following questions arise
naturally:

QUESTION 1. Does the conclusion of the Osofsky-Smith theorem still hold if we
assume cyclic subfactors to be direct sums of extending modules?

QUESTION 2. What are the structures of rings with the following properties?

(P)r(l) : Every cyclic right (resp. left) module is a direct sum of extending modules;

(Q)r(l): Every cyclic right (resp. left) module is a direct sum of quasi-injective
modules.

Note that (Q)r implies (P)r. Dedekind domains and right uniserial rings satisfy
(P)r, and Artinian serial rings satisfy (Q)r. Clearly � is a ring with (P)r but not (Q)r.
Also, these properties are not left-right symmetric (Examples 2 and 7).

In [4], it is shown that rings all of whose right modules are direct sums of extending
modules are precisely rings of finite type and right colocal type (indecomposable right
modules have simple socle). That result and its proof constitutes the basis for our
key result in this paper. Modifying the proof of [4, Theorem 1], we first obtain the
affirmative answer to Question 1 (Theorem 1). Consequently, rings with property
(P)r are precisely rings whose cyclic right modules are direct sums of uniform modules
(Theorem 2). Although a ring R with property (P)r is not right Noetherian in general, it
is when R is a right V- ring (Example 3 and Corollary 2), or when it is right hereditary
(see Remark 1). A right hereditary right V-ring is right Noetherian if and only if
every cyclic right module with essential socle is a direct sum of extending modules
(Theorem 3). Note that for a ring R to be right q.f.d., it suffices for only proper cyclic
(� R) right R-modules to be direct sums of extending modules (Corollary 9). However,
in this case, cyclic right R-modules may not be direct sums of uniforms (Example 9).

Next we apply the above-mentioned result to rings satisfying the property (Q)r

and obtain the following results: A ring with the property (Q)r is right serial with all
prime ideals maximal, and ∩n∈�Jn = Jm for some m ∈ �, where J is the Jacobson
radical, which is now nil (see Theorem 4 and its corollaries). A right non-singular ring
with property (Q)r is right hereditary, right Artinian and right serial (Corollary 4).
It follows that hereditary Artinian serial rings are precisely one-sided non-singular
rings satisfying (Q)r and (Q)l (Theorem 5). Here, the assumption (Q)l is not redundant
(Example 2). A ring R satisfying (Q)r does not have to be right Noetherian. However,
besides the non-singularity case mentioned above, such a ring is right Artinian in each
one of the following cases: (i) when R is prime; (ii) when R has the ascending chain
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RINGS WHOSE CYCLIC MODULES ARE DIRECT SUMS 607

condition (a.c.c.) on right annihilators (this also improves [2, Theorem 3.3]); or (iii)
when R is right perfect (Corollaries 5, 6, and 8). In particular, a ring satisfying (Q)r is
right Artinian whenever it is right Noetherian.

In the last section, we study rings whose proper cyclic right modules are direct
sums of extending or quasi-injective modules and prove results classifying such rings
(Theorems 6 and 7).

2. Preliminaries. Let R be an associative ring with identity and M be a right R-
module. M is called an extending module if every submodule of M is essential in a direct
summand of M, equivalently, if every (essentially) closed submodule of M is a direct
summand of M. Uniform modules are precisely indecomposable extending modules.
Extending modules are also known as CS (complements are summands) modules
in the literature and have been extensively studied during the last few decades. An
extending module is called a quasi-continuous module if the direct sum of any two direct
summands is again a direct summand, a continuous module if submodules isomorphic
to direct summands are also direct summands. See [3] for a detailed account of these
modules and their history. M is called quasi-injective ([11]) if for every submodule N of
M, every R-homomorphism N → M can be extended to an R-endomorphism of M.
This is equivalent to M being a fully invariant submodule of its injective hull E(M).
The following hierarchy holds for modules: semisimple or injective ⇒ quasi-injective
⇒ continuous ⇒ quasi-continuous ⇒ extending. Direct summands of extending (resp.
quasi-injective / continuous / quasi-continuous) modules are again extending (resp.
quasi-injective / continuous / quasi-continuous), but none of these properties carries
over to finite direct sums. For example, �

p�
⊕ �

p3�
is not extending.

A subfactor of M is any submodule of a factor of M. M is called a q.f.d. module
if all factors of M have finite Goldie dimension. R is called a right q.f.d. ring if RR is
a q.f.d. module. R is called a right V-ring (after Villamayor) if simple right R-modules
are injective. If M is a submodule of a direct sum

⊕
i∈I Ai of modules Ai and πj :⊕

i∈I Ai → Aj are the canonical projections, then supp⊕
i∈I Ai (M) = {i ∈ I : πi(M) �= 0}

is the support of M in
⊕

i∈I Ai. For a module M, a family of submodules {Ni : i ∈ I}
of M (or their sum) is called a local summand of M if their sum is direct and

⊕
i∈F Ni

is a direct summand of M for every finite subset F of I .
For a module M, rad(M), soc(M), Z(M) stand for the Jacobson radical, the socle,

and the singular submodule of M, respectively. We will denote the Jacobson radical of
a ring R by J.

For definitions and properties of standard concepts used throughout the paper,
the reader is referred to [6] and [14].

3. An extension of the Osofsky-Smith Theorem. In this section, Question 1 is
answered affirmatively. To this end, we modify the proof of [4, Theorem 1]. It is
important to note that this modification is made, and this section is structured, with
a view to also address the situation in Theorem 3 (also see the remark following
Lemma 2).

LEMMA 1. Let A be a cyclic module. If every cyclic subfactor of A is a direct sum of
extending modules, then either A is q.f.d. or there exists a cyclic extending subfactor N
of A with infinite essential socle, which is a local summand of N.
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Proof. Assume A is not q.f.d. Then the result follows by the same argument as in
the first paragraph of the proof of [4, Theorem 1] replacing R with A. �

LEMMA 2. Let C be a module with infinite essential socle, which is a local summand
of C, and π : C → C

soc(C) be the natural projection. Assume that C has an essential
submodule D = ⊕

n∈� Dn where no Dn is semisimple. Then, a cyclic submodule B of C
cannot simultaneously satisfy the conditions
(i) B is a direct sum of extending modules, and

(ii) π (B) ∩ π (D) is essential in π (D) and π (B).

Proof. Assume, contrarily, that C has a cyclic submodule B satisfying the
conditions (i) and (ii) above. Put, for any submodule X of C, X = π (X). Also
let Sn = soc(Dn) for each n ∈ �. Now, for all n ∈ � B ∩ Dn �= 0. This means that
(soc(C) + B) ∩ (Dn + soc(C)) = soc(C) + (B ∩ (Dn + soc(C))) is not semisimple. Put
Zn = B ∩ (Dn + soc(C)). Then Zn is not semisimple. There exists some submodule
K of soc(C) such that Dn + soc(C) = Dn ⊕ K . If we had B ∩ Dn = Zn ∩ Dn = 0, Zn

could be embedded in K , whence it would be semisimple, contradicting the above
observation. Therefore, Zn ∩ Dn = B ∩ Dn �= 0. In particular, B ∩ Sn �= 0. This implies
that supp⊕

n∈� Sn (soc(B)) is infinite.
Now we follow the last part of the proof of [4, Theorem 1] verbatim: By

assumption, B = B1 ⊕ . . . ⊕ Bn for some extending modules Bk. By the preceding
paragraph, there exists some i ∈ {1, . . . , n} such that supp⊕

n∈� Sn soc(Bi) is infinite. In
particular, Bi is not semisimple. Since Bi is extending, without loss of generality, we
can assume Bi has countably generated socle and write soc(Bi) = ⊕

n∈� Tn, where Tn

are simple modules. Now, we can select, inductively, a subsequence of distinct indices
(nk)k∈� such that

max(supp⊕
n∈� Sn (Tnk+1 )) > max(supp⊕

n∈� Sn (Tnk )), for each k ∈ �.

In particular, max(supp⊕
n∈� Sn (Tnk+1 )) > k, for each k ∈ �. Since Bi is extending, we

can find a direct summand U of Bi such that
⊕

k∈� Tnk is essential in U . Since U is
cyclic, U �= ⊕

k∈� Tnk . Now we will see that U ∩ D is semisimple. In order to do that,
it suffices to verify that for each l ∈ � U ∩ ⊕l

i=1 Di is semisimple. First we claim that
U ∩ ⊕l

i=1 Si ⊆ ⊕l+1
k=1 Tnk for each l ∈ �:

Fix l ∈ � and assume the contrary of the above claim. Then there exists some
x = tn1 + · · · + tnm ∈ U ∩ ⊕l

i=1 Si with tnk ∈ Tnk , tnm �= 0, and m > l + 1. tnm generates
Tnm . Thus, we have

max(supp⊕
n∈� Sn (Tnm )) = max(supp⊕

n∈� Sn (tnm )) > max(supp⊕
n∈� Sn (Tnm−1 )) =

max(supp⊕
n∈� Sn (Q)),

where Q = (
⊕l

i=1 Si) + (
⊕m−1

j=1 Tnj ). This is a contradiction, since tnm ∈ Q. This proves

the claim above, implying that soc(U ∩ ⊕l
i=1 Di) = U ∩ ⊕l

i=1 Si is a finitely generated
(and essential) submodule of U ∩ ⊕l

i=1 Di. Hence, soc(U ∩ ⊕l
i=1 Di) = U ∩ ⊕l

i=1 Di.
Therefore, U ∩ D must be semisimple.

Recall that U is a non-semisimple submodule of B, and B ∩ D is essential in both
B and D. Hence, U is a non-zero submodule of B and thus, it must have non-zero
intersection with D. But, this contradicts the semisimplicity of U ∩ D. Now the result
follows.
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RINGS WHOSE CYCLIC MODULES ARE DIRECT SUMS 609

Notice that the module C in Lemma 2 is not assumed to be cyclic, which would
have been sufficient for the purposes of Theorem 1. This makes the lemma useful not
only in this section, but for proving Theorem 3 in the next section as well. �

THEOREM 1. Let A be a cyclic module such that every cyclic subfactor of A is a direct
sum of extending modules. Then A is a q.f.d. module.

Proof. Assume, contrarily, that A is not q.f.d. By Lemma 1, we can find a cyclic
extending subfactor N of A with infinite essential socle, which is also a local summand
of N. Then by our assumption, N

soc(N) has a non-zero extending direct summand N ′
soc(N) .

In particular, N ′ is a non-semisimple submodule of N. We can write N ′ = M + soc(N)
for some cyclic and non-semisimple submodule M of N. Clearly, soc(M) is infinitely
generated and essential in M as well a local summand in M. Furthermore, M

soc(M)
∼=

N ′
soc(N ′) is also extending. Again by assumption we have M = M1 ⊕ . . . ⊕ Mn for some
extending submodules Mn of M. There must be some k0 such that C = Mk0 is not
semisimple. So now, C is a cyclic extending module with infinite essential socle, which
is a local summand, and C

soc(C) , being isomorphic to a direct summand of M
soc(M) , is

also extending. Now we can write soc(C) = ⊕
n∈� Sn, where Sn are infinitely generated

semisimple modules. Since C is cyclic extending, each Sn is essential and proper in a
direct summand Dn of C. Then set D = ⊕

n∈� Dn. Since C
soc(C) is also extending, D

soc(C)

is essential in a direct summand Y
soc(C) of C

soc(C) for some submodule Y of C. There
exists a cyclic submodule B of Y such that Y = B + soc(C). This is a contradiction by
Lemma 2. �

COROLLARY 1. (Ososfky-Smith) A cyclic module with every cyclic subfactor
extending is q.f.d.

4. Rings whose cyclics are direct sums of extending modules. Dedekind domains,
Artinian serial rings and right uniserial rings share the property that cyclic right
modules are direct sums of uniform modules. The next result characterises rings
having this property as those whose cyclic right modules are direct sums of extending
modules, giving an answer to the first part of Question 2 (see Introduction). It follows
immediately from Theorem 1 and the fact that uniform modules are quasi-continuous.

THEOREM 2. The following are equivalent for a ring R:
(i) R satisfies (P)r,

(ii) Every cyclic right R-module is a direct sum of quasi-continuous modules,
(iii) Every cyclic right R-module is a direct sum of uniform modules.
In particular, a ring satisfying (P)r is a right q.f.d. ring.

In Theorem 2 (ii), the assumption quasi-continuous cannot be replaced by
continuous since, for example, the ring � satisfies the conditions of Theorem 2, but it
is not a continuous module over itself.

The following example distinguishes rings satisfying the property (P)r from those
whose cyclic right modules are extending.

EXAMPLE 1. Let R be any Artinian serial ring such that RR = ⊕n
i=1 eiR, where

n > 1, eiR are uniserial, e1R ∼= e2R, and cl(e1R) = 3 (see [18, 8.32]). Then e1R has
a composition series 0 ⊂ V ⊂ U ⊂ e1R. Then, by [3, Lemma 7.4], the module M =
e1R ⊕ U

V is not extending. Now U
V is isomorphic to either e2R

e2J or eiR
eiJ

for some i �= 1, 2,
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say i = 3. So, M ∼= e1R ⊕ e2R
e2J or M ∼= e1R ⊕ e3R

e3J . In either case, M is a cyclic module.
This shows that R has a cyclic module which is not extending. However, R satisfies (P)r

and (P)l since it is Artinian serial.

The property of a ring that its cyclic modules are direct sums of extending modules
is not left-right symmetric:

EXAMPLE 2. Let � and � denote the sets of rational numbers and real numbers,

respectively. Let R =
(

� �

0 �

)
. It is not difficult to verify that this ring satisfies (P)r.

However, Re22 has infinite Goldie dimension. So, R does not satisfy (P)l.

For a ring with (P)r to be right Noetherian, an additional condition is necessary.

EXAMPLE 3. A right uniserial ring obviously satisfies (P)r, but it does not have to
be right Noetherian.

COROLLARY 2. A right V-ring R with property (P)r is right Noetherian.

Proof. Suppose that S is a semisimple module, which is not injective. Then, pick
some x ∈ E(S) − S. xR must have infinite socle. But this is not possible because of
Theorem 1. Thus, all semisimple right modules over R are injective, proving that R is
right Noetherian. �

REMARK 1. One can see, either from Theorem 2 or from [3, Theorem 10.5] that
a right hereditary ring with property (P)r is right Noetherian as well. No other pair
of the properties right hereditary, right Noetherian, and (P)r imply the third one, as is
shown by the next two examples.

EXAMPLE 4. Let R be any Artinian serial ring which is not right (equivalently
left) non-singular. Then R satisfies (P)r and (P)l, but it is neither right hereditary, nor
right V.

EXAMPLE 5. Let R =
(

K K2

0 K

)
. Then, R is Artinian and right hereditary. However,

the first row is not an extending right R-module. Thus, R does not satisfy (P)r.

THEOREM 3. Let R be a right hereditary and right V-ring. The following are
equivalent:
(i) R is right Noetherian,

(ii) Every cyclic right R-module with essential socle is a direct sum of extending modules.

Proof. One direction is clear. Now assume the condition (ii) and, contrarily, that
R is not right Noetherian. Then there exists a non-injective semisimple module S.
So, we can pick some x ∈ E(S) − S. Clearly, xR has infinite socle. By assumption
xR has an extending direct summand A with infinite socle. As in Theorem 1, we
can write soc(A) = ⊕

n∈� Sn, where Sn are infinitely generated semisimple modules,
and since A is extending, each Sn is essential and proper in some direct summand
Dn of A. Call D = ⊕

n∈� Dn. Now let π : E(A) → E(A)
soc(A) be the obvious projection.

For any submodule P of E(A) containing soc(A), put P = P
soc(A) . Since R is right

hereditary E is injective. A is essential in a direct summand X of E. Then, there
is a decomposition X = Y ⊕ Y ′, where D is essential in Y . Consider the obvious
projection πY : Y ⊕ Y ′ → Y . Since A ∩ Y ⊆ πY (A) and A ∩ Y is essential in Y , then
so is πY (A). Thus, Y essentially contains a cyclic module. So, let L be any cyclic essential
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RINGS WHOSE CYCLIC MODULES ARE DIRECT SUMS 611

submodule of Y . There exists some cyclic submodule B of E(A) such that π (B) = L.
Taking C = E(A) in Lemma 2, this yields a contradiction. �

5. Rings whose cyclics are direct sums of quasi-injectives. Ahsan ([1, 2]) and
Koehler ([13]) studied qc-rings, namely rings with every cyclic right module quasi-
injective. In [13], Koehler characterised such rings as (finite) direct sums of rings which
are either semisimple Artinian, or rank 0 maximal valuation duo. Since the direct sum
of two quasi-injective modules is not necessarily quasi-injective (see Introduction), it
is interesting to study rings satisfying the property (Q)r.

Any Artinian serial ring clearly satisfies both (Q)r and (Q)l. The qc condition is
left-right symmetric (see [13]). Rings satisfying (Q)r form a larger class than qc-rings
(Example 6 below), and (Q)r does not imply (Q)l (Example 7):

EXAMPLE 6. Let R be a hereditary Artinian serial ring which is not semisimple.
Then R is not a qc-ring: Let R = ⊕n

i=1 eiR, where ei form a complete set of orthogonal
primitive idempotents. By assumption, there is some i ∈ {1, . . . , n} such that eiR is not
a simple right ideal. Now let S = soc(eiR). S is a homomorphic image of ejR for some
j ∈ {1, . . . , n}. Since R is right non-singular and ejR is uniserial, this forces ejR to be
simple. In particular, i �= j. Hence, eiR ⊕ ejR is a direct summand of RR, and it cannot
be quasi-injective. So, R satisfies the properties (Q)r and (Q)l, but it is not a qc-ring.

The next theorem describes rings with property (Q)r. In [9], rings whose right
ideals are finite direct sums of quasi-injective right ideals are called right � − q rings.

THEOREM 4. Let R be a ring with property (Q)r. Then R is a right serial ring in the
form R = ( f R f f Re

0 eRe
), where eRe and f Rf are rings with (Q)r, eRe is a right hereditary,

right Artinian, right � − q ring, and Z(f R) is essential in f R.

Proof. Assume that R satisfies the property (Q)r. Then, by Theorem 2,
RR is a direct sum of uniform right ideals. Thus, we can write RR =
e1R ⊕ . . . ⊕ enR ⊕ f1R ⊕ . . . ⊕ fmR, where {ei : i = 1, . . . , n} ∪ {ft : t = 1, . . . , m}
is a complete set of orthogonal primitive idempotents, eiR are non-singular and
Z(ftR) �= 0. Now let g ∈ {ei : i = 1, . . . , n} ∪ {ft : t = 1, . . . , m}. Since gR is uniform
quasi-injective, End(gR) ∼= gRg is a local ring and gR is a local module. By assumption
of the (Q)r condition, all non-zero factors of gR must be local modules which are
direct sums of quasi-injectives. But this means that all non-zero factors of gR are
uniform, which implies that gR must be uniserial. Therefore, R is a right serial ring.

CLAIM. For the above choice of g, gR contains no infinite properly ascending or
descending chains of cyclic right ideals which are not singular.

Let (Ak)k∈� be such a chain. Then each Ak is isomorphic to one of eiR or ftR,
which are only finitely many. Since eiR and ftR are quasi-injective and our chain is
properly ascending or descending, we get a contradiction, proving our claim.

Let A be any right ideal in gR which is not singular. Then we can inductively
pick elements ak(k ∈ �) such that a1 ∈ A − Z(A), and ak+1 ∈ A − akR. By the above
arguments, the process will stop when akR = A. So A is cyclic. Furthermore, since
there are no singular right ideals between gR and A, gR

A has finite length. Hence,
A = gR or A = gJm for some m. Moreover, the above claim still holds without the
cyclic assumption.

The above arguments imply that each eiR has finite length.
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Now put e = �n
i=1ei and f = �m

t=1ft. Since f R has essential singular submodule
and eR is non-singular, 0 = HomR(f R, eR) ∼= eRf . Since R

f Re
∼= eRe × f Rf and (Q)r

is inherited by factor rings, eRe and f Rf satisfy (Q)r. Clearly, eRe is now a right
Artinian, right serial and right non-singular ring. Then, by [5, Theorem 5.16], eRe
is right semihereditary, whence right hereditary since it is right Artinian. Now, any
right ideal I of this ring is a direct sum of right ideals which can be embedded in the
principle indecomposable right ideals. Hence, I is a finite direct sum of quasi-injective
right ideals. So, eRe is a right � − q ring. This concludes the proof. �

COROLLARY 3. If R satisfies (Q)r, then R
Z(RR) is a right Artinian ring.

Proof. Let e be a primitive idempotent of R. By the proof of Theorem 4, eR does
not contain an infinite properly descending chain of (cyclic) right ideals, which are not
singular. This immediately yields that eR

Z(eR) is an Artinian right R-module. Now the
result follows.

The qc-rings are serial (see [13]). However, as the next example shows, rings with
property (Q)r do not have to be left serial, and for this reason and by Theorem 4, they
do not have to satisfy (Q)l either. In [7], Fuller investigated rings of finite type with
every indecomposable right (resp. left) module quasi-injective and called them rings of
right (resp. left) invariant module type. �

EXAMPLE 7. Let R be a ring with right but not left invariant module type. R is
a right serial ring satisfying (Q)r, but it is not left serial, and does not satisfy (Q)l.
Otherwise, it would then be Artinian serial, in which case all right modules and left
modules would be direct sums of quasi-injective modules.

Also note that since qc-rings are not necessarily (right) Noetherian (see [13]),
neither are rings satisfying the property (Q)r.

COROLLARY 4. A right non-singular ring R satisfying (Q)r is right hereditary, right
Artinian and right serial. In particular, R is a right � − q ring.

Such a ring as in Corollary 4 is furthermore isomorphic to a finite product of
certain upper triangular matrix rings shown in [9, Theorem 23].

COROLLARY 5. The following conditions hold for a ring R satisfying (Q)r:
(i) If R is prime then it is Artinian.

(ii) Prime ideals of R are maximal. In particular, J is nil.

Proof. (i) It can be seen, by using the same argument as in [8, Theorem 2.2], that
R is right non-singular. Then, it follows by Corollary 4 that R is Artinian.

(ii) Any prime factor of R also satisfies the property (Q)r, hence it is simple
Artinian by part (i). Thus, prime ideals of R are maximal, whence primitive. In
particular, the prime radical of R coincides with J. So, J is nil.

Ahsan proved in [2, Theorem 3.3] that if R is a qc-ring with a.c.c. on right
annihilators then J is nilpotent. The next corollary improves this result. �

COROLLARY 6. A ring R with (Q)r and a.c.c on right annihilators is right Artinian.
In particular, a right Noetherian ring with (Q)r is right Artinian.

Proof. In this case, Z(RR) is nilpotent. Now let {ei : i = 1, . . . , s} be a complete
set of primitive orthogonal idempotents of R. Fix ei. By Corollary 3, eiR

Z(eiR) has finite
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length. This implies that Z(eiR) = eiJti for some ti. Let t = max{ti : i = 1, .., s}. Then,
each eiJt is nilpotent. Then Jt = ⊕s

i=1 eiJt is nilpotent, whence so is J. So, R is a
semiprimary ring with all cyclic right R-modules having finite Goldie dimension. This
means that every cyclic right module has finitely generated essential socle. Hence, R is
right Artinian. �

COROLLARY 7. If R satisfies property (Q)r, then
⋂

n∈� Jn = Jm for some m.

Proof. Let e be a primitive idempotent of R. Now, one can use the same argument
as in the paragraph preceding [5, Lemma 5.18] for a right serial ring (instead of a serial
one) to see that eR⋂

n∈� eJn = eR
e(

⋂
n∈� Jn) is a Noetherian right R-module . Then R⋂

n∈� Jn is
right Noetherian with (Q)r, whence it is right Artinian by Corollary 6. Now the result
follows. �

COROLLARY 8. A right perfect ring R satisfying (Q)r is right Artinian.

Proof. By Corollary 7, Jm = Jm+1 = . . . for some m. Recall that since R is semilocal,
rad(M) = MJ for any module M. Also by right perfect assumption every non-zero
module has proper radical. This means that Jm = 0. R is right Artinian by the same
argument as in the proof of Corollary 7 (or by the one at the end of Corollary 6). �

THEOREM 5. The following conditions are equivalent for any ring R:
(i) R is hereditary Artinian serial,

(ii) R is a right or left non-singular ring satisfying (Q)r and (Q)l.
(iii) R is a right serial, right or left non-singular ring satisfying (Q)l.
(iv) R is a left serial, right or left non-singular ring satisfying (Q)r.

Proof. (i) ⇒ (ii) − (iv) are obvious.
(ii) ⇒ (i) Let R be right non-singular ring satisfying (Q)r and (Q)l. Then R is serial

and right Artinian by Theorem 4 and Corollary 4, whence it is Artinian. Since by [5,
Corollary 5.12] R is right and left non-singular, now the result follows by Corollary 4.
The proof for left non-singular case is symmetric.

(iii) ⇒ (i) R is serial by assumption and Theorem 4. As in the proof of (ii) ⇒ (i), R
is both right and left non-singular, whence left hereditary and left Artinian by Corollary
4. Now R is Artinian, and the result follows by seriality of R and [5, Theorem 5.16].
And the proof of (iv) ⇒ (i) is symmetric. Now the theorem follows. �

The following example shows that, in Theorem 5, the assumptions of (Q)l to get
(ii) ⇒ (i), and of left serial to get (iv) ⇒ (i), are not redundant:

EXAMPLE 8. Let

R =

⎛
⎜⎜⎝

�
2�

0 �
2�

0 �
2�

�
2�

0 0 �
2�

⎞
⎟⎟⎠ .

R is right but not left serial, right hereditary with J2 = 0, and indecomposable right
R-modules are uniform (see [19, Example 2]). Now [19, Theorem 3.6] applies to yield
that every right R-module is a direct sum of uniform modules. It is easy to see that
every factor of each eiiR (i ∈ {1, 2, 3}) is quasi-injective. Moreover, since a uniform
right R-module is a sum of factors of eiiR, uniforms are quasi-injective as well. So, R
satisfies (Q)r, but not (Q)l.
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We will conclude this section with a sufficient condition for a ring to satisfy (Q)r. A
module M is said to be completely quasi-injective if every factor of M is quasi-injective.
We need the following lemma, which may be known.

LEMMA 3. Let R be a right hereditary ring. Then any projective quasi-injective module
is completely quasi-injective.

Proof. Let B be a quasi-injective and projective module over a right hereditary ring
R. Let X be any submodule of B. �

CLAIM. B
X is a fully invariant submodule of E(B)

X .
Let F ∈ End( E(B)

X ) be any endomorphism. Put f = F| B
X

. Let π : B → B
X and π ′ :

E(B) → E(B)
X be the obvious projections. Since B is projective, there is a map h : B →

E(B) such that π ′h = f π . Since B is a quasi-injective module, it is fully invariant in
E(B), so that h(B) is contained in B. But then, f ( B

X ) = π ′h(B) is contained in B
X . This

proves our claim.
Now, since R is right hereditary, E(B)

X is injective, and thus it contains an injective
hull T of B

X containing B
X . It is now clear that B

X is a fully invariant submodule of T .
Therefore, B

X is quasi-injective, proving the lemma.

PROPOSITION 1. Let R be a right hereditary and (2-sided) serial ring such that
R = ⊕n

i=1 eiR, where eiR are quasi-injective and uniserial right ideals. Then, R satisfies
the property (Q)r. In fact, all finitely generated right modules are direct sums of quasi-
injectives. In particular, R is a right �-q ring.

Proof. First note that, in this case, R is right Noetherian. Let A be a finitely
generated right R-module. It is well-known that over a serial ring every finitely presented
module is serial. Hence, A = A1 ⊕ . . . ⊕ An, where Ai are cyclic uniserial modules.
Then, each Ai is an epimorphic image of some ejR. ejR is completely quasi-injective
by Lemma 3. Therefore, Ai is quasi-injective for i = 1, . . . , n. This concludes the
proof. �

We end this section with an observation: We have seen that (P)r is a weaker
condition than (Q)r. Consider the following condition:

(C)r: Every cyclic (right) module is a direct sum of continuous modules.
So, we now have the hierarchy (Q)r ⇒ (C)r ⇒ (P)r, and by the remark following

Theorem 2, the class of rings satisfying (P)r is larger than the class of rings with (C)r.
We do not know whether (Q)r is equivalent to (C)r or not. However, one can easily
verify that Theorems 4 and 5, and Corollaries 3, 4, 6, 7 and 8 still hold, with the
exception of statements about �-q rings, if (Q)r is replaced by (C)r.

6. Rings whose proper cyclics are direct sums of extending or quasi-injective
modules. In [10], Jain, Singh and Symonds considered rings R whose proper cyclic
right modules (that is, cyclic right modules not isomorphic to RR) are quasi-injective,
and called such rings right PCQI. Dedekind domains are PCQI-rings not satisfying
(Q)r in general. On the other hand, Artinian serial rings are not necessarily PCQI,
but they satisfy (Q)r. So, these two types of rings both belong to the larger class
of rings whose proper cyclic (right) modules are direct sums of quasi-injective
(hence extending) modules. Also, there exist rings which do not satisfy (P)r and over
which proper cyclic modules are direct sums of extending modules (see Example 9).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089512000183
Downloaded from https://www.cambridge.org/core. IP address: 78.175.62.122, on 09 May 2020 at 19:13:27, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089512000183
https://www.cambridge.org/core


RINGS WHOSE CYCLIC MODULES ARE DIRECT SUMS 615

Motivated by these arguments, in this section, we will consider the following conditions:

(P′)r: Every proper cyclic right R-module is a direct sum of extending modules.

(Q′)r: Every proper cyclic right R-module is a direct sum of quasi-injective modules.

We will show that, similar to a ring with property (P)r, a ring with property (P′)r

is also right q.f.d. However, rings with (P′)r do not have to satisfy the property (P)r

(Example 9). In other words, in view of Theorem 2, over a ring with (P′)r, it is not
necessarily true that every cyclic right module is a direct sum of uniform modules.

THEOREM 6. Let R be a ring satisfying the property (P′)r. Then, either
(i) R satisfies the property (P)r, or

(ii) RR is indecomposable and R is a right q.f.d. ring with udim(RR) > 1. Hence, in this
case, R

I is a right uniform ring for any non-zero nil ideal I. In particular, either R is
semiprime (resp. soc(RR) = 0) or R

N (resp. R
soc(RR) ) is a right uniform ring, where N

is the prime radical of R.

Proof. Suppose R has property (P′)r. Then for every essential right ideal I of R, ( R
I )R

has the property that every cyclic subfactor is a direct sum of extending modules. Then
by Theorem 1, ( R

I )R has finite uniform dimension. This implies by [3, Lemma 5.14]
that R

soc(RR) has finite (right) uniform dimension as well. Now we will see that soc(RR)
is finitely generated: Assume the contrary. Then we can write soc(RR) = ⊕

i∈� Vi,
where Vi are infinitely generated semisimple right ideals and |�| = ∞. If, for infinitely
many i ∈ �, Vi were right ideals having proper essential extensions in RR, this would
contradict the fact that R

soc(RR) has finite uniform dimension. Thus, Vi are closed right
ideals of R for all but finitely many i ∈ �.

Now pick any i ∈ � such that Vi is closed in RR. Then Vi is not a direct summand
of RR, whence R

Vi
= ⊕n

k=1
Ak
Vi

, where Ak
Vi

are extending modules by assumption.

Let X
Vi

be a simple submodule of R
Vi

. Since Vi is closed in RR, X is not an essential
extension of Vi, yielding that X = Vi ⊕ T for some simple submodule T of X . This
implies that X is contained in soc(RR). Now it is immediate that soc( R

Vi
) = soc(RR)

Vi
.

There is some k such that soc( Ak
Vi

) is infinitely generated. Also,
Ak
Vi

soc(
Ak
Vi

)
is isomorphic

to a direct summand of
R
Vi

soc( R
Vi

)
, which, by the preceding paragraph, is isomorphic to

R
soc(RR) . Then,

Ak
Vi

soc(
Ak
Vi

)
is finite dimensional. Also since Ak

Vi
is a finitely generated extending

module, this implies, by a standard argument, that soc( Ak
Vi

) is finitely generated, a
contradiction. Therefore, soc(RR) is finitely generated. Along with the fact that R

soc(RR)
is finite uniform dimensional, this implies that RR has finite uniform dimension. In
particular, R = e1R ⊕ . . . ⊕ emR, where {et : t = 1, . . . m} is a complete set of primitive
idempotents.

If m > 1, then eiR are uniform and R clearly satisfies the property (P)r, yielding
the first part of the theorem.

Now assume that m = 1. Then RR is indecomposable. If udim(RR) = 1, then once
again R satisfies (P)r. So we can assume udim(RR) > 1. Then, for every non-zero right
ideal I of R, the right R-module R

I , and all its factors are proper cyclic modules.
Invoking Theorem 1 again, R

I has finite uniform dimension. Thus, R is right q.f.d. in
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any case. Now let L be any non-zero nil ideal of R. R
L is a proper cyclic right R-module.

Since idempotents lift modulo L, and RR is indecomposable, R
L must be (right) uniform.

Taking L = N, the prime radical, we obtain the first part of the last statement. Now
assume that soc(RR) �= 0. Since RR is indecomposable, every simple right ideal of R is
a singular right R-module. This implies that [soc(RR)]2 = 0. By the same argument as
above, R

soc(RR) must be a right uniform ring. This concludes the proof. �
COROLLARY 9. A ring satisfying the property (P′)r is right q.f.d.

Proof. By Theorems 2 and 6. �
Since an extending module with finite Goldie dimension is a direct sum of uniform

modules, the next corollary now follows immediately.

COROLLARY 10. The following statements are equivalent for a ring R:
(i) R has the property (P′)r,

(ii) Every proper cyclic right R-module is a direct sum of quasi-continuous modules,
(iii) Every proper cyclic right R-module is a direct sum of uniform modules.

The next example shows that case (ii) of Theorem 6 is indeed possible.

EXAMPLE 9. Let K be a field, R be as in Example 5, and S be the subring of R

consisting of all elements of the form
(

a b
0 a

)
, where a ∈ K and b ∈ K2. Then S is a

local ring with property (P′)r. Clearly, S does not have the property (P)r.

Also note that (P′)r (even (P)r) does not imply (P′)l: In Example 2, Re22 is a proper
cyclic left R-module which is local but not uniform.

THEOREM 7. Let R be a ring with the property (Q′)r. Then, R satisfies one of the
following conditions:

(i) R has the property (Q)r,
(ii) R is a local right PCQI-ring, or

(iii) R is a semiprime right q.f.d. ring such that RR is indecomposable. In this case, if R
is not prime then J = 0.

In all cases, non-zero prime ideals are maximal.

Proof. We will show the last statement first: Let P be a non-zero prime ideal of R.
Then R

P is a ring satisfying (Q)r. Then by Corollary 5, R
P is simple Artinian. Thus, P is

a maximal ideal.
By assumption and Theorem 6, we have the following possible cases: R has (P)r,

or RR is indecomposable and udim(RR) > 1.
If R has (P)r and udim(RR) > 1, then R obviously satisfies (Q)r. In all other cases,

RR is indecomposable (including when R has (P)r and udim(RR) = 1) and q.f.d. So,
assume that RR is indecomposable. If the prime radical N �= 0, then R

N is a right self-
injective and right uniform ring. Therefore, it is a local ring, whence so is R. It is now
clear that R is a right PCQI-ring.

Else, assume that R is semiprime and non-prime. Then, by the first paragraph of
this proof, all prime ideals of R are maximal. This implies, as in the proof of Corollary 5
(ii), that N = J = 0. Now the proof is complete. �

One may consider, as in the remark at the end of Section 5, what would happen if the
assumption quasi-injective in the condition (Q′)r were replaced by continuous, whether
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the new condition would be equivalent to (Q′)r, etc. Such questions ultimately lead to
the following general question, which we have been unable to establish in this paper:
How to completely characterise the classes of rings satisfying the respective conditions
that every (proper) cyclic right module is a direct sum of extending (equivalently quasi-
continuous), continuous and quasi-injective modules.
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