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In this paper, a condition is obtained for the harmonic of the velocity vector field in the curve family passing through the fixed 𝑝
and 𝑞 points in 𝑅𝑛. It shows that the condition can be expressed in terms of the curvature functions. Finally, we give an example
which provides the mentioned condition in this work and illustrates it with figures.

1. Introduction

Differential geometry is applied to other fields of science and
mathematics. In particular, it applied various problems in
mechanics, computer-aided as well as traditional engineering
design, physics, geodesy, geography, space travel, and relativ-
ity theory [1].

The volume of unit vector fields has been studied byGluck
and Ziller [2], Johnson [3], and Higuchi et al. [4], among
other scientists. In [5], the energy of a unit vector field 𝑋
on a Riemannian manifold𝑀 is defined as the energy of the
mapping𝑋 : 𝑀 → 𝑇1𝑀, where the unit tangent bundle𝑇1𝑀
is equipped with the restriction of the Sasaki metric on 𝑇𝑀.

Generally, any geometric problem about curves can be
solved using the curves’ Frenet vectors field.Therefore, in [6],
we focus on the curve 𝐶 instead of the manifold 𝑀. For a
given curve 𝐶, with a pair of parametric unit speeds (𝐼, 𝛼) in
a space 𝑅𝑛 we denote Frenet frames at the points 𝛼(𝑎) and𝛼(𝑠) by {𝑉1(𝑎), 𝑉2(𝑎), . . . , 𝑉𝑟(𝑎)} and {𝑉1(𝑠), 𝑉2(𝑠), . . . , 𝑉𝑟(𝑠)},
respectively, as we take a fixed point 𝑎 ∈ 𝐼. We calculate the
energy of the Frenet vectors fields and the angle between the
vectors 𝑉𝑖(𝑎) and 𝑉𝑖(𝑠), where 1 ≤ 𝑖 ≤ 𝑟. So, we see that both
energy and angle depend on the curvature functions of the
curve 𝐶.

In this paper, we choose two points 𝑝 and 𝑞 in 𝑅𝑛. We
obtain a condition for the harmonic of the velocity vector field
in the curve family of all curves from 𝑝 to 𝑞 points. Thus,

we notice that this condition can be expressed in terms of
the curvature functions. Finally, we give an example which
provides the mentioned condition in this work and illustrate
it with figures.

Definition 1. A curve segment is the portion of a curve
defined in a closed interval [𝑎, 𝑏] [7].
Definition 2. Let (𝐼, 𝛼) be a parametric pair for a curve 𝐶 in a
space 𝑅𝑛 and {𝑉1(𝑠), 𝑉2(𝑠), . . . , 𝑉𝑟(𝑠)} be Frenet frames at the
point 𝛼(𝑠) ∈ 𝐶. Let

𝑘𝑖 (𝑠) = ⟨𝑉󸀠𝑖 (𝑠) , 𝑉𝑖+1 (𝑠)⟩ , ∀𝑠 ∈ 𝐼, 1 ≤ 𝑖 ≤ 𝑟 (1)

be defined as curvature function on 𝐶 and the real number𝑘𝑖(𝑠) be defined as 𝑖th curvature on 𝐶 at the point 𝛼(𝑠).
Theorem 3 (Frenet formulas). Let (𝐼, 𝛼) be a parametric pair
for a curve 𝐶 in a space 𝑅𝑛. If we take 𝑖th curvature 𝑘𝑖(𝑠) and
Frenet frames {𝑉1(𝑠), 𝑉2(𝑠), . . . , 𝑉𝑟(𝑠)} at the point 𝛼(𝑠), then
the following relations are hold:

𝑉󸀠𝑖 (𝑠) = 𝑘1 (𝑠) 𝑉2 (𝑠) ,
𝑉󸀠𝑖 (𝑠) = −𝑘𝑖−1 (𝑠) 𝑉𝑖−1 (𝑠) + 𝑘𝑖 (𝑠) 𝑉𝑖+1 (𝑠) , 1 ≤ 𝑖 ≤ 𝑟
𝑉󸀠𝑟 (𝑠) = −𝑘𝑟−1 (𝑠) 𝑉𝑟−1 (𝑠) .

(2)
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Proposition 4. The connection map 𝐾 : 𝑇(𝑇1𝑀) → 𝑇1𝑀
verifies the following conditions:

(1) 𝜋∘𝐾 = 𝜋∘𝑑𝜋 and 𝜋∘𝐾 = 𝜋∘ 𝜋̃, where 𝜋̃ : 𝑇(𝑇1𝑀) →𝑇1𝑀 is the tangent bundle projection and 𝜋 : 𝑇1𝑀→𝑀 is the bundle projection.
(2) For 𝜔 ∈ 𝑇𝑥𝑀 and a section 𝜉 : 𝑀 → 𝑇1𝑀, we have

𝐾 (𝑑𝜉 (𝜔)) = ∇𝜔𝜉, (3)

where ∇ is the Levi-Civita covariant derivative [8].

Definition 5. For 𝜂1, 𝜂1 ∈ 𝑇𝜉(𝑇1𝑀) we define
𝑔𝑠 (𝜂1, 𝜂1) = ⟨𝑑𝜋 (𝜂1) , 𝑑𝜋 (𝜂2)⟩ + ⟨𝐾 (𝜂1) , 𝐾 (𝜂2)⟩ . (4)

This gives a Riemannian metric on 𝑇𝑀. Recall that 𝑔𝑠 is
called the Sasaki metric. The metric 𝑔𝑠 makes the projection𝜋 : 𝑇1𝑀→𝑀 a Riemannian submersion [8].

Definition 6. The energy of a differentiable map𝑓 : (𝑀, 𝑔) →(𝑁, ℎ) between Riemannian manifolds is given by

E (𝑓) = 1
2 ∫𝑀

𝑛∑
𝑎=1

ℎ (𝑑𝑓 (𝑒𝑎) , 𝑑𝑓 (𝑒𝑎)) V𝑔, (5)

where V𝑔 is the canonical volume form in𝑀 and {𝑒𝑎} is a local
basis of the tangent space [5, 9].

Let 𝐶∞(𝑀;𝑁) denote the space of all smooth maps from𝑀 to𝑁. A map 𝑓 : 𝑀 → 𝑁 is said to be harmonic if it is an
extremal (i.e., critical point) of the energy functionalE(⋅; 𝐷) :𝐶∞(𝑀;𝑁) → 𝑅 for any compact domain𝐷.

By a (smooth) variation of 𝑓 we mean a smooth map :𝑀 × (−𝜀, 𝜀) → 𝑁, (𝑥, 𝑡) → 𝑓𝑡(𝑥) (𝜀 > 0) such that 𝑓0 = 𝑓.
We can think of {𝑓𝑡} as a family of smooth mappings which
depends “smoothly” on a parameter 𝑡 ∈ (−𝜀, 𝜀).
Definition 7. In [10], A smooth map 𝑓 : (𝑀, 𝑔) → (𝑁, ℎ) is
said to be harmonic if

𝑑
𝑑𝑡E (𝑓𝑡; 𝐷)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑡=0 = 0 (6)

for all compact domains 𝐷 and all smooth variations {𝑓𝑡} of𝑓 supported in 𝐷, where E(𝑓;𝐷) = (1/2) ∫
𝐷
∑𝑛𝑎=1 ℎ(𝑑𝑓(𝑒𝑎),𝑑𝑓(𝑒𝑎))V𝑔.

2. A Condition for the Curve Where the
Velocity Vector Field Is Harmonic

The following theorem characterizes a critical point of the
energy of the velocity vector field of a curve in 𝑅𝑛.
Theorem 8. Let 𝛼 be unit speed curve in 𝑅𝑛 and 𝛼(𝑎) = 𝑝,𝛼(𝑏) = 𝑞. If the velocity vector field of 𝛼 along from 𝑝 to 𝑞 is
harmonic, then the following equation is satisfied:

∫𝑏
𝑎
𝜆 (𝑠) 𝑘1 (𝑠) 𝑘󸀠1 (𝑠) 𝑑𝑠 = 0, (7)

where 𝑘1 is the 1th curvature function and 𝜆 is the real-valued
function on [𝑎, 𝑏].

Proof. Let 𝛼 : 𝐼 → 𝑅𝑛 be a unit speed curve in 𝑅𝑛 and [𝑎, 𝑏] ⊂𝐼, 𝛼(𝑎) = 𝑝, 𝛼(𝑏) = 𝑞. There exists a real-valued function 𝜆
on [𝑎, 𝑏], 𝜆(𝑠) = (𝑠 − 𝑎)(𝑏 − 𝑠), 𝜆(𝑎) = 𝜆(𝑏) = 0, and 𝜆(𝑠) ̸= 0
for all 𝑠 ∈ (𝑎, 𝑏). Let {𝑉1, 𝑉2, . . . , 𝑉𝑟} be the Frenet frame field
on 𝛼 and

𝜆 (𝑠) 𝑉1 (𝑠) = (V1 (𝑠) , V2 (𝑠) , . . . , V𝑛 (𝑠)) ,
V𝑖 : [𝑎, 𝑏] 󳨀→ 𝑅. (8)

Let the collection of curves be

𝛼𝑘 (𝑠) = (𝛼1 (𝑠) + 𝑘V1 (𝑠) , 𝛼2 (𝑠) + 𝑘V2 (𝑠) , . . . , 𝛼𝑛 (𝑠)
+ 𝑘V𝑛 (𝑠))

(9)

for sufficiently small 𝑘.
For 𝑘 = 0, 𝛼0(𝑠) = 𝛼(𝑠), and 𝜆(𝑎) = 𝜆(𝑏) = 0, we have

V𝑖(𝑎) = V𝑖(𝑏) = 0 1 ≤ 𝑖 ≤ 𝑛 and 𝛼𝑘(𝑎) = 𝑝, 𝛼𝑘(𝑏) = 𝑞.
These results show that 𝛼𝑘 is the curve segment from 𝑝 to

𝑞. Assume this collection 𝛼𝑘(𝑠) = 𝛼(𝑠, 𝑘) for all curves. The
expression for the energy of the vector field 𝑉1𝑘 of 𝛼𝑘 from 𝑝
to 𝑞 becomes E(𝑉1𝑘).

Now, let 𝑇𝐶𝑘 be the tangent bundle. So we have 𝑉1𝑘 :𝐶𝑘 → 𝑇𝐶𝑘, where 𝑇𝐶𝑘 = ∪𝑡∈𝐼𝑇𝛼𝑘(𝑡)𝐶𝑘, 𝐶𝑘 = 𝛼𝑘(𝐼), and𝑇𝛼𝑘(𝑡)𝐶𝑘 denotes straight line generated 𝑉1𝑘. Let 𝜋 : 𝑇𝐶𝑘 →𝐶𝑘 be the bundle projection. By using (5) we calculate the
energy of 𝑉1𝑘 as

E (𝑉1𝑘) = 1
2 ∫
𝑏

𝑎
𝑔𝑆 (𝑑𝑉1𝑘 (𝑉1𝑘 (𝛼 (𝑠, 𝑘))) ,

𝑑𝑉1𝑘 (𝑉1𝑘 (𝛼 (𝑠, 𝑘)))) 𝑑𝑠,
(10)

where 𝑑𝑠 is the differential arc length. From (4) we have

𝑔𝑆 (𝑑𝑉1𝑘 (𝑉1𝑘) , 𝑑𝑉1𝑘 (𝑉1𝑘))
= ⟨𝑑𝜋 (𝑑𝑉1𝑘 (𝑉1𝑘)) , 𝑑𝜋 (𝑑𝑉1𝑘 (𝑉1𝑘))⟩
+ ⟨𝐾 (𝑑𝑉1𝑘 (𝑉1𝑘)) , 𝐾 (𝑑𝑉1𝑘 (𝑉1𝑘))⟩ .

(11)

Since 𝑉1𝑘 is a section, we have 𝑑(𝜋) ∘ 𝑑(𝑉1𝑘) = 𝑑(𝜋 ∘ 𝑉1𝑘) =𝑑(𝑖𝑑𝐶𝑘) = 𝑖𝑑𝑇𝐶𝑘 . By Proposition 4, we also have that

𝐾(𝑑𝑉1𝑘 (𝑉1𝑘)) = ∇𝑉1𝑘𝑉1𝑘 = 𝑉󸀠1 𝑘 = 𝜕𝑉1𝑘𝜕𝑠 , (12)

giving

𝑔𝑆 (𝑑𝑉1𝑘 (𝑉1𝑘) , 𝑑𝑉1𝑘 (𝑉1𝑘))
= ⟨𝑉1𝑘, 𝑉1𝑘⟩ + ⟨𝑉󸀠1 𝑘, 𝑉󸀠1 𝑘⟩ .

(13)

Using these results in (10) we get

E (𝑉1𝑘) = 1
2 ∫
𝑏

𝑎
(⟨𝑉1𝑘, 𝑉1𝑘⟩ + ⟨𝑉󸀠1 𝑘, 𝑉󸀠1 𝑘⟩) 𝑑𝑠, (14)

where 𝑉1𝑘 = (1/𝑤(𝑠, 𝑘))(𝑑𝛼/𝜕𝑠)(𝑠, 𝑘); 𝑤(𝑠, 𝑘) =√⟨(𝑑𝛼/𝜕𝑠)(𝑠, 𝑘), (𝑑𝛼/𝜕𝑠)(𝑠, 𝑘)⟩.
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By Definition 7, if𝑉1𝑘 is a harmonic, then 𝑘 = 0 should be
a critical point ofE(𝑉1𝑘). Suppose that (𝜕E(𝑉1𝑘)/𝜕𝑘)|𝑘=0 = 0.

From (14) we obtain

𝜕E (𝑉1𝑘)𝜕𝑘 = 𝜕
𝜕𝑘 [

1
2 ∫
𝑏

𝑎
(⟨𝑉1𝑘, 𝑉1𝑘⟩ + ⟨𝑉󸀠1 𝑘, 𝑉󸀠1 𝑘⟩) 𝑑𝑠]

= 1
2 ∫
𝑏

𝑎

𝜕
𝜕𝑘 [⟨𝑉1𝑘, 𝑉1𝑘⟩ + ⟨

𝜕𝑉1𝑘𝜕𝑠 , 𝜕𝑉1𝑘𝜕𝑠 ⟩]𝑑𝑠.
(15)

Since ⟨𝑉1𝑘, 𝑉1𝑘⟩ = 1 we have (𝜕/𝜕𝑘)⟨𝑉1𝑘, 𝑉1𝑘⟩ = 0 and we get
𝜕E (𝑉1𝑘)𝜕𝑘 = 1

2 ∫
𝑏

𝑎

𝜕
𝜕𝑘 ⟨

𝜕𝑉1𝑘𝜕𝑠 , 𝜕𝑉1𝑘𝜕𝑠 ⟩𝑑𝑠

= ∫𝑏
𝑎
(⟨𝜕2𝑉1𝑘𝜕𝑠𝜕𝑘 ,

𝜕𝑉1𝑘𝜕𝑠 ⟩)𝑑𝑠.
(16)

We can write

𝜕
𝜕𝑠 ⟨

𝜕𝑉1𝑘𝜕𝑘 , 𝜕𝑉1𝑘𝜕𝑠 ⟩ = ⟨𝜕2𝑉1𝑘𝜕𝑠𝜕𝑘 ,
𝜕𝑉1𝑘𝜕𝑠 ⟩

+⟨𝜕𝑉1𝑘𝜕𝑘 , 𝜕2𝑉1𝑘𝜕𝑠2 ⟩.
(17)

Thus, we can deduce

⟨𝜕2𝑉1𝑘𝜕𝑠𝜕𝑘 ,
𝜕𝑉1𝑘𝜕𝑠 ⟩ = 𝜕

𝜕𝑠 ⟨
𝜕𝑉1𝑘𝜕𝑘 , 𝜕𝑉1𝑘𝜕𝑠 ⟩

−⟨𝜕𝑉1𝑘𝜕𝑘 , 𝜕2𝑉1𝑘𝜕𝑠2 ⟩.
(18)

Substituting (18) in (16), for 𝑘 = 0,
𝜕E (𝑉1𝑘)𝜕𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘=0 = ∫
𝑏

𝑎
[ 𝜕𝜕𝑠 ⟨

𝜕𝑉1𝑘𝜕𝑘 (𝑠, 0) , 𝜕𝑉1𝑘𝜕𝑠 (𝑠, 0)⟩

− ⟨𝜕𝑉1𝑘𝜕𝑘 (𝑠, 0) , 𝜕2𝑉1𝑘𝜕𝑠2 (𝑠, 0)⟩]𝑑𝑠,
(19)

𝜕E (𝑉1𝑘)𝜕𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘=0 = ⟨𝜕𝑉1𝑘𝜕𝑘 (𝑠, 0) , 𝜕𝑉1𝑘𝜕𝑠 (𝑠, 0)⟩󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏

𝑎

− ∫𝑏
𝑎
⟨𝜕𝑉1𝑘𝜕𝑘 (𝑠, 0) , 𝜕2𝑉1𝑘𝜕𝑠2 (𝑠, 0)⟩𝑑𝑠.

(20)

From (8) and (9), we obtain

𝑑𝛼
𝜕𝑘 (𝑠, 𝑘) = 𝜆 (𝑠) 𝑉1 (𝑠) , (21)

𝑑𝛼
𝜕𝑠 (𝑠, 0) = 𝛼󸀠 (𝑠) = 𝑉1 (𝑠, 0) . (22)

Now we calculate the partial derivatives of (22) with respect
to 𝑠 and 𝑘; using Frenet formulas, we get

𝜕𝑉1𝑘𝜕𝑠 (𝑠, 0) = 𝜕2𝛼
𝜕𝑠2 (𝑠, 0) = 𝛼

󸀠󸀠 (𝑠) = 𝑉󸀠1 𝑘
= 𝑘1 (𝑠) 𝑉2 (𝑠) ,

(23)

𝜕𝑉1𝑘𝜕𝑘 (𝑠, 𝑘) = 𝜕2𝛼
𝜕𝑠𝜕𝑘 (𝑠, 𝑘) =

𝜕2𝛼
𝜕𝑘𝜕𝑠 (𝑠, 𝑘) . (24)

From (21), we have
𝜕𝑉1𝑘𝜕𝑘 (𝑠, 𝑘)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘=0 =

𝜕𝑉1𝑘𝜕𝑘 (𝑠, 0)
= 𝜆󸀠 (𝑠) 𝑉1 (𝑠) + 𝜆 (𝑠) 𝑘1 (𝑠) 𝑉2 (𝑠) .

(25)

It follows from (23) and (25) that

⟨𝜕𝑉1𝑘𝜕𝑘 (𝑠, 0) , 𝜕𝑉1𝑘𝜕𝑠 (𝑠, 0)⟩ = 𝜆 (𝑠) 𝑘21 (𝑠) . (26)

Considering the candidate function 𝜆(𝑎) = 𝜆(𝑏) = 0, we get
⟨𝜕𝑉1𝑘𝜕𝑘 (𝑠, 0) , 𝜕𝑉1𝑘𝜕𝑠 (𝑠, 0)⟩󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑏

𝑎

= 𝜆 (𝑏) 𝑘21 (𝑏) − 𝜆 (𝑎) 𝑘21 (𝑎) = 0.
(27)

From (23), we get

𝜕2𝑉1𝑘
𝜕𝑠2 (𝑠, 0) = −𝑘21 (𝑠) 𝑉1 (𝑠) + 𝑘󸀠1 (𝑠) 𝑉2 (𝑠)

+ 𝑘1 (𝑠) 𝑘2 (𝑠) 𝑉3 (𝑠) .
(28)

Therefore, (25) and (28) give

⟨𝜕𝑉1𝑘𝜕𝑘 (𝑠, 0) , 𝜕2𝑉1𝑘𝜕𝑠2 (𝑠, 0)⟩
= [−𝜆 (𝑠) 𝑘21 (𝑠)]󸀠 + 3𝜆 (𝑠) 𝑘1 (𝑠) 𝑘󸀠1 (𝑠) .

(29)

Substituting (27) and (29) in (20) yields

𝜕E (𝑉1𝑘)𝜕𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘=0

= −∫𝑏
𝑎
([−𝜆 (𝑠) 𝑘21 (𝑠)]󸀠 + 3𝜆 (𝑠) 𝑘1 (𝑠) 𝑘󸀠1 (𝑠)) 𝑑𝑠,

𝜕E (𝑉1𝑘)𝜕𝑘
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘=0

= [−𝜆 (𝑠) 𝑘21 (𝑠)]󵄨󵄨󵄨󵄨󵄨𝑏𝑎 − 3∫
𝑏

𝑎
𝜆 (𝑠) 𝑘1 (𝑠) 𝑘󸀠1 (𝑠) 𝑑𝑠 = 0.

(30)

Since 𝜆(𝑎) = 𝜆(𝑏) = 0, it gives [−𝜆(𝑠)𝑘21(𝑠)]|𝑏𝑎 = 0 and
𝜕E (𝑉1𝑘)𝜕𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑘=0 = −3∫
𝑏

𝑎
𝜆 (𝑠) 𝑘1 (𝑠) 𝑘󸀠1 (𝑠) 𝑑𝑠 = 0. (31)

This completes the proof of the theorem. Also, it is trivial
that geodesics and curves with constant curvature satisfy the
theorem.
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(a) (b)

Figure 1: (a) 𝜅1(𝑠) = 5𝑠2 + 3, 𝜅2(𝑠) = 0 (b) 𝜅1(𝑠) = 𝑠2 + 1, 𝜅2(𝑠) = 0.

(a) (b)

Figure 2: (a) 𝜅1(𝑠) = 5𝑠, 𝜅2(𝑠) = 0, (b) 𝜅1(𝑠) = 5𝑠5, 𝜅2(𝑠) = 0.

We give an example that provides the condition (7) in the
theorem below. Using different curvatures, we illustrate the
example with Figures 1 and 2.

Example 9. Let 𝛼 : 𝐼 → 𝑅3, [−1, 1] ⊂ 𝐼, 𝛼(−1) = 𝑝, 𝛼(1) = 𝑞.
If we can choose 𝜆 : [−1, 1] → 𝑅, 𝜆(𝑠) = 1 − 𝑠2, 𝜆(−1) = 0,𝜆(1) = 0, and 𝜆(𝑠) ̸= 0 for all 𝑠 ∈ (−1, 1) then the curves
which have 𝜅(𝑠) = 𝑐𝑠2𝑛 +𝑑, 𝜅(𝑠) = 𝑐𝑠2𝑛+1 (𝑐, 𝑑 ∈ 𝑅 and 𝑛 ∈ 𝑁)
provide condition (7).

Figures 1 and 2 are shown in 3-dimensional space as
sample to 𝑛-dimensional space.
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