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Abstract: Cellulose acetate (CA) membranes were modified by nano-silicon dioxide (n-SiO2) , and they were exposed

to ultrasonic waves at a frequency of 35 kHz. The effect of sonication on their water sorption tendency and permeation

capability was investigated. The characterization of the membranes was done by FTIR and SEM analysis, and the

hydrophilic character of the membranes was deduced by swelling studies and contact angle (CAn) measurements.

Permeation studies of the membranes were performed by using the diffusion method and theophylline was used as a

model chemical in the permeation studies. The results indicated that beside the high hygroscopic property of n-SiO2 ,

the presence of n-SiO2 in CA membranes did not significantly improve their hydrophilicity; however, when they were

exposed to sonic waves, it was determined that the sonication effectively enhanced their water sorption capacity and

permeability.
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1. Introduction

Cellulose acetate (CA) is one of the best membrane materials in the field of membrane processes such as re-

verse osmosis, ultrafiltration, and gas permeation.1 Among the many polymeric membranes, CA membranes

are widely used and investigated; they have broad applications mainly in the areas of wastewater treatment1,2

and especially in pharmacology.3,4 CA is used in osmotic release systems,5,6 transdermal release systems,7,8

and polymeric matrix systems,9 and as a covering material of drug cores.10,11 However, CA as a rate control-

ling membrane material for transdermal drug delivery systems generally requires plasticizers and needs some

modifications to improve its permeation performances.12,13

Filling fine inorganic particles, such as silica, activated carbon, zeolites, titanium oxide, silicon carbide,

zirconium oxide, and aluminum oxide, in polymeric membranes is one way to improve the diffusive, transport,

surface, and some of the mechanical properties of the membranes as well as their hydrophilicity.14−17 Watanabe

et al.16 studied nafion/SiO2 composite membranes and they indicated that the nafion/SiO2 membranes showed

the best water sorption qualities of SiO2 above the other hygroscopic oxides such as TiO2 . Bi et al.
17 reported

that SiO2 containing nafion membranes showed good water balance.

Sonication is a new applicable modification processes and it appears as a new branch of chemistry.18 It

is commonly preferred in the synthesis and modification of both organic and inorganic materials. The physical
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effects of high-intensity ultrasound have some chemical consequences: enhanced mass transport, emulsification,

bulk thermal heating, modification of particle size of polymer powders, various effects on solids, etc.19 It has

also proved to be a very advantageous method for the depolymerization of macromolecules without a change in

chemical nature, simply reducing the molecular weight by splitting the most susceptible chemical bonds.18,20,21

Most of the ultrasonic studies, however, have been concentrated on polymer solutions,18,20,22−26 but the effect

of sonication on solid polymeric membranes has not been well studied.

In the present study, since nano-silicon dioxide (n-SiO2) is known to be the best hygroscopic oxide,17 it

was used as a filler to increase the hydrophilic character of CA membranes in order to compare and determine

the effect of sonic treatment on the water sorption capacity and permeability of sonically treated CA membranes.

Since CA is frequently used in drug release studies, theophylline was used as a model chemical for the permeation

studies. The characterization of the membranes was done by FTIR and SEM analysis, and the hydrophilic

character of the membranes was deduced by swelling studies and contact angle (CAn) measurements. The

effects of the presence of n-SiO2 and sonic waves on the sorption capacity and the theophylline permeability of

the CA and SiO2/CA membranes were investigated. The amount of n-SiO2 on the permeation of theophylline

through sonically treated SiO2/CA membranes was also investigated.

2. Results and discussion

2.1. Theophylline permeation through CA and SiO2/CA membranes

CA and SiO2/CA membranes were placed into Franz diffusion cells. The permeation of theophylline solution

(5 mg/mL) was performed against the phosphate buffer solution of pH 7.40, at constant temperature (32 ±
1 ◦C, which is the skin’s surface temperature). After a total permeation period of 24 h, the quantity of the

permeated amount of theophylline, Qt , was calculated by using Eq. (1):

Qt =
Mt

A.t
, (1)

whereMt is the mass (kg) of the theophylline permeated across an area of A (m2) at time t (s). Swelling

percentages, S%, of the membranes for water (Sw%) and buffer solutions (SB%) were also calculated by using

Eq. (2):

S% =
W −W0

W0
, (2)

where W and W0 are the wet and dry mass of the membranes, respectively. The results of the permeation are

given in Table 1 together with the swelling percentage values of the membranes and the percentage amount of

theophylline permeated through the membranes at the end of a permeation period of 24 h. As seen from the

table, the presence of n-SiO2 in the CA membranes only increased the permeation from 2.40 × 10−7 kg/m2

s to 6.75 × 10−7 kg/m2 s, and permeation percentage was only increased to 3.50% from 1.25%. Furthermore,

the S% values of CA membranes were slightly changed by the addition of n-SiO2 , although it is known as a

strongly hygroscopic compound.17 This most probably resulted from the strong intermolecular attractive forces

between the CA chains.27 In our previous study27 we tried to modify CA membranes by using a water soluble

plasticizing and pore forming agent poly (ethylene glycol) (PEG), which has also high hydrophilicity. In that

study, it was determined that although the removal of PEG from a polymeric material generally leads to a

porous structure in polymeric membranes, in the case of CA membranes the porosity was not changed. CA
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is one of the esters of cellulose, which is a polysaccharide composed of glucosidic rings linked through oxygen

bridges with repeating units that have three hydroxyl groups and acetal linkages. Strong hydrogen bonding

between the hydroxyl groups makes cellulose a highly crystalline polymer.27,28 Therefore, as stated in Table

1, the swelling of the membranes and the permeation of theophylline were not high as expected, and this led

to the less free volume for diffusion. From these results, it can be said that although n-SiO2 is hygroscopic,

the presence of n-SiO2 in CA membranes is insufficient to improve their sorption and permeation capability

efficiently.

Table 1. Swelling and permeation behaviors of the unsonicated membranes.

Membrane Sw% SB% Q (kg/m2 s) × 10+7 Permeated amount of
theophylline % (m/m)

CA 10 8 2.40 1.25
SiO2/CA 13 11 6.75 3.50

2.2. Theophylline permeation through sonicated CA and SiO2/CA membranes

The theophylline permeation performance of the sonicated membranes was studied against pH 7.4 buffer solution

at constant temperature. The results of the permeation of theophylline through sonically treated CA and

SiO2 /CA (US-CA and US-SiO2 /CA) membranes are given in Figure 1. As seen from the figure, US-SiO2 /CA

membranes have much greater theophylline permeation than US-CA membranes. To compare the permeation

performance of the sonicated membranes with the unsonicated, corresponding Qt values of US-CA and US-

SiO2 /CA membranes were calculated for the total permeation period of 24 h as 401 × 10−7 kg/m2 s and 579

× 10−7 kg/m2 s, respectively. When these values are compared with the Qt value of the CA and SiO2 /CA

membranes (given in Table 1), it can be clearly seen that sonication has a remarkable effect on the increase in

the permeation of theophylline through the membranes and US-SiO2 /CA membranes show greater permeation

than the other membranes. Since porosity percentages (ε%) of the membranes give an idea about the volume

available for permeation, ε% values of the sonicated and unsonicated membranes were calculated by using Eq.

(3):27−29

ε% =
(W 1 −W2) /Dw

(W 1 −W2) /Dw
+ W2 /Dp

, (3)

where W1 and W2 are the wet and dry weight of the membranes, respectively; DW and DP correspond to

the density of water and polymer, respectively. The results of the calculation are given in Table 2, together

with the swelling percentages and water contact angle values of the membranes. As seen from the table, the

sonically treated US-CA and US-SiO2 /CAmembranes have much greater percentage porosity and water swelling

percentage than unsonicated CA and SiO2/CA membranes. This result is also satisfied by the lower water-

contact angle values of US-CA and US-SiO2/CA membranes (as given in Table 2) than both CA and SiO2 /CA

membranes, since the lower CAn indicates the greater interaction between two phases,30 i.e. membrane surface

and water.

To determine the effect of sound waves on the chemical nature of the membranes, FTIR analysis of the

CA and US-SiO2 /CA membranes were studied by using a Mattson 1000 FTIR (Unicam Co.) spectrometer and

the results are given in Figure 2. In the figure, stretching vibration peaks at ∼3487.43 cm−1 , ∼2944.16 cm−1 ,
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Figure 1. Permeation of theophylline through US-CA and US-SiO2 /CA membranes.

Table 2. Percent swelling, contact angle, and free volume percentages of the membranes.

Membrane Sw% ε% CAn (◦)
CA 10* 9 54.14 ± 0.61
SiO2/CA 13* 11 41.61 ± 1.41
US-CA 66 41 36.30 ± 1.21
US-SiO2/CA 91 54 32.10 ± 1.31

*values (as given in Table 1) used again here for the integrity of the data comparison

and ∼1737.27 cm−1 correspond to O–H, C–H, and C=O groups present in CA. As seen from comparison of the

spectra of CA and US-SiO2 /CA, the intensity of the C–H and C=O peak in the spectrum of the US-SiO2 /CA

membranes is lower than that of CA membranes. Such an intensity decrease most probably results from the

removal of some polymeric material from the membrane by sonication, which probably should lead to a greater

free volume, i.e. greater porosity and greater permeation. Ultrasound represents a high-frequency pressure

wave. As this pressure wave passes through the medium, regions of high and low pressure are created. This

pressure is known as acoustic pressure and it is directly proportional to the energy applied to the system. It

causes cavitation and bubbling in viscous systems, e.g., aqueous systems. During the collapse of a bubble

or repetitive transient cavitation, extremely high pressures can be generated (∼70–100 MPa), which result

in outward propagating shockwaves. Contrary to all chemical or thermal decomposition reactions, ultrasonic

depolymerization is a random process that produces fragments of definite molecular size.31 In aqueous systems,

it is known that the chain cleavage occurs preferentially near the mid-point, at the end point, or in any bond in

the chain.32 However, details of the degradation process, which is commonly observed for polymer solutions,33

are still obscure and little information has been published on polydispersity, which is a useful quantity to show

the degradation mechanism.

Similar results related to the effect of ultrasonic waves were reported in the literature; Julian and

Zentner34 studied the ultrasonically mediated solute permeation through cellulose and poly (dimethyl siloxane)

films by using hydrocortisone and benzoic acid as permeants. They observed that ultrasonic irradiation increased

the permeability coefficients of the films. Grönroos et al.35 studied the effect of ultrasonic input power
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and ultrasonic frequency on the degradation of PVA solutions and they confirmed that the most extensive

degradation took place at an ultrasonic frequency of 23 Hz without causing any changes in the chemical nature

of the polymer. Price et al.36 subjected powders of polyethylene, polypropylene, poly (vinyl chloride), and poly

(methyl methacrylate) polymers, which were suspended in water, to the irradiation of high intensity ultrasound.

They reported that ultrasound changes the particle sizes and surface morphology of the materials. They also

reported that the sonication deforms the polymer and removes some of the material in the case of polyethylene

film.

Figure 2. FTIR spectrum of CA and US-SiO2 /CA membranes.

To get an idea about the morphologies of the membranes, they were placed into an electron microscope

and their surface and interior images were recorded (Figure 3a) and the SEM image of the swollen US-CA

membrane is given in Figure 3b. As reflected in Figure 3a, the inner part of the US-SiO2 /CA membranes has

randomly distributed large pores, in addition to smaller pores, and as seen from Figure 3b, a micro-sized porous

structure was obtained after ultrasonic treatment of CA membranes.

These results also explain the higher permeation tendency of US-SiO2 /CA membranes than CA, US-CA,

and SiO2/CA membranes.

2.3. Effect of the amount of n-SiO2 on the permeation of theophylline through US-SiO2/CA

membranes

Since US-SiO2 /CA membranes showed greater permeation among the others, in this part of the study, to

determine the amount of SiO2 on the permeation of theophylline through US-SiO2 /CA membranes, casting

solution was prepared by an increment of 5% from 10% to 35% by mass of the dry polymer content of 6% CA

(m/v) solution. The results of the permeation are shown in Figure 4. It is explicitly seen that theophylline

permeation is not significantly affected by the change in the n-SiO2 used in the membrane material.
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Figure 3. a) SEM images of CA, US-CA, SiO2 /CA, and US-SiO2 /CA membranes. b) SEM image of US-CA membrane

swollen in buffer solution.

Figure 4. Effect of the amount of n-SiO2 on the permeation of theophylline through US-SiO2 /CA membranes.
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3. Experimental

3.1. Materials

CA (50,000 g/mol, 39.7% acetyl content) and anhydrous theophylline (180.16 g/mol) were supplied by Sigma-

Aldrich Co. LLC (Germany). n-SiO2 (10 nm) was purchased from Aldrich, and it was used without any further

process. Acetone (C3H6O) (58.08 g/mol; d = 0.79 kg/L), disodium hydrogen phosphate (Na2HPO4 .2H2O)

(141.96 g/mol), and sodium dihydrogen phosphate (NaH2PO4 .2H2O) (119.98 g/mol) were supplied by Merck

Chemicals Ltd.

A contact angle micrometer (Surface Electro Optics PHX 150) was used to determine the interaction of

the outer layer of the membrane surface with water. The measured contact angles were the average values of

at least five CAn measurements. Surface micrographs of the membranes were obtained by Quanta 200 FEG

SEM-FEI Instrument. In order to prepare the samples for the SEM analysis, firstly, they were swollen in a

buffer solution of pH 7.4 for 48 h, and then quickly frozen below their freezing point using liquid nitrogen. The

sample container was then transferred to a freeze dryer (Labconco, Freezone 6 Stopperin Tray Dryer model)

and freeze-dried until the samples were completely dried; then the samples were sputtered with Au/Pd and

placed into a microscope.

3.2. Procedure

3.2.1. Preparation of the membranes

CA and SiO2 /CA membranes were prepared by dry-casting method. CA solution was prepared at a con-

centration of 6% CA (m/v) and acetone was used as a solvent. In order to prepare SiO2 /CA membranes,

a homogeneous solution of 6% CA (m/v) in acetone, containing 10% n-SiO2 by mass, was used as casting

solution. A predetermined amount of casting solution was poured into petri dishes and the solvent was allowed

to evaporate until complete dryness at constant temperature (40 ◦C) was obtained. Dried membranes were

removed and preserved in a buffer solution of pH 7.4. The thickness of the membranes ( l) was determined

using a precision micrometer (Aldrich, Germany) by taking the average of at least ten point measurements. For

the sonication process, dry-cast CA and SiO2/CA membranes were immersed in 6 M HCl solution and were

placed in a sonicator (Elmasonic X-tra 50 H model). Then the membranes were subjected to sonic waves at a

frequency of 35 kHz for definite time intervals. After the sonication process, the membranes were removed and

rinsed with water until neutral pH was obtained, and preserved in buffer solutions at pH 7.4. They were called

US-CA and US-SiO2 /CA membranes, respectively, after the sonication process. Since sonication affected the

physical resistance of the membranes, membrane thickness was optimized in the first part of the study37 and

the suitable thickness for the membranes was determined as 70 µm.

3.2.2. Permeation studies

Permeation studies were carried out in a thermostated water bath, by using a Franz diffusion cell,38 which

consists of a donor compartment and an acceptor compartment separated by the membrane. The donor

compartment holds theophylline solution (5 mg/mL) and acceptor compartment was filled with buffer solution

at a pH of 7.4. pH adjustments of the solutions were done using a Hanna pH211 model pH meter. The

receiver part of the diffusion cell was stirred by a magnetic stirrer operating at constant rotation rate (200

rpm) to obtain uniform composition during the permeation. The receiver solution was sampled periodically and

samples were replaced with equal volumes of fresh buffer solution. The concentrations of theophylline solution

were determined spectrophotometrically at 272 nm by using a Unicam 4802 UV/VIS double beam spectrometer.
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4. Conclusion

The hydrophilicity of CA membranes could only be improved very slightly by using n-SiO2 as a hygroscopic

additive. However, the application of sonic waves to CA and SiO2 /CA membranes enhanced their water

sorption tendency and permeation capacity. Therefore, it is confirmed that sonic treatment was an effective,

useful method to obtain permeable CA-based membranes.
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38. Şanlı, O.; Asman, G. J. Appl. Polym. Sci. 2004, 91, 72–77.

305

http://dx.doi.org/10.1016/j.memsci.2004.02.007
http://dx.doi.org/10.1080/01496390902729148
http://dx.doi.org/10.1007/3-540-07942-4_6
http://dx.doi.org/10.1111/j.2042-7158.1986.tb03374.x
http://dx.doi.org/10.1016/S1350-4177(01)00086-4
http://dx.doi.org/10.1016/S1350-4177(01)00086-4
http://dx.doi.org/10.1016/j.ultsonch.2010.02.003
http://dx.doi.org/10.1002/app.13102

	Introduction
	Results and discussion
	Theophylline permeation through CA and SiO2/CA membranes
	Theophylline permeation through sonicated CA and SiO2/CA membranes
	Effect of the amount of n-SiO2 on the permeation of theophylline through US-SiO2/CA membranes

	Experimental
	Materials
	Procedure 
	Preparation of the membranes 
	Permeation studies


	Conclusion

