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Abstract 

We propose a new lifetime model called the transmuted geometric-Weibull distribution. Some of its 

structural properties including ordinary and incomplete moments, quantile and generating functions, 

probability weighted moments, Rényi and q-entropies and order statistics are derived. The maximum 

likelihood method is discussed to estimate the model parameters by means of Monte Carlo simulation 

study. A new location-scale regression model is introduced based on the proposed distribution. The new 

distribution is applied to two real data sets to illustrate its flexibility. Empirical results indicate that 

proposed distribution can be alternative model to other lifetime models available in the literature for 

modeling real data in many areas. 

Keywords:  Goodness of fit, Lifetime data, Maximum likelihood, Moment, Order 

statistic, Regression model.  

1. Introduction 

The Weibull distribution has an undeniable popularity in probability and statistics due to 

its versatility of modeling real world data. Yet there are many cases where the classical 

Weibull distribution is unable to capture true phenomenon under study. Therefore, 

several of its generalizations have been proposed and studied. A generalized form of 

Weibull distribution is obtained by inducting one or more parameter(s) to the two-

parameter Weibull distribution. It has been proven that several of these generalized 

distribution are more flexible and are capable of modeling real world data better than the 

classical Weibull distribution. A state-of-the-art survey on the class of such generalized 

Weibull distributions can be found in Lai et al. (2001) and Nadarajah (2009). Some 
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generalization of the Weibull distribution studied in the literature includes, but are not 

limited to, exponentiated Weibull (Mudholkar and Srivastava, 1993; Mudholkaret al. 

1995; Mudholkar, Srivastava et al. 1996), additive Weibull (Xie and Lai, 1995), 

Marshall-Olkin extended Weibull (Ghitany et al. 2005), beta Weibull (Famoye et al. 

2005), modified Weibull (Sarhan and Zaindin, 2009), beta modified Weibull (Silva et al. 

2010), transmuted Weibull (Aryal and Tsokos, 2011), extended Weibull (Xie et al. 2002), 

modifiedWeibull (Lai et al. 2003), KumaraswamyWeibull (Cordeiro et al. 2010), 

Kumaraswamy modified Weibull (Cordeiro et al. 2012), Kumaraswamy inverse Weibull 

(Shahbaz et al. 2012), exponentiated generalized Weibull (Cordeiro et al. 2013), 

McDonald modified Weibull (Merovci and Elbatal, 2013), beta inverse Weibull (Hanook 

et al. 2013), transmuted exponentiated generalized Weibull (Yousof et al., 2015), 

McDonald Weibull (Cordeiro et al. 2014), gamma Weibull (Provost et al, 2011), 

transmuted modified Weibull (Khan and King, 2013), beta Weibull (Lee et al. 2007), 

generalized transmuted Weibull (Nofal et al, 2017), transmuted additiveWeibull (Elbatal 

and Aryal, 2013), exponentiated generalized modified Weibull (Aryal and Elbatl, 2015), 

transmuted exponentiated additive Weibull (Nofal et al. 2016), Marshall Olkin additive 

Weibull (Afify et al. 2016), Kumaraswamy transmuted exponentiated additive Weibull 

(Nofal et al, 2016) distributions and the Topp-Leone Generated Weibull distribution 

(Aryal et al, 2016) 

 

Let 𝑝(𝑡) be the probability density function (pdf) of a random variable 𝑇 ∈ 𝑎, 𝑏] for 

−∞ < 𝑎 < 𝑏 < ∞ and let 𝑊[𝐺(𝑥)] be a function of the cumulative distribution function 

(cdf) of a random variable 𝑋 such that 𝑊[𝐺(𝑥)] satisfies the following conditions:  

(

(𝑖) 𝑊[𝐺(𝑥)] ∈ 𝑎, 𝑏],

(𝑖𝑖) 𝑊[𝐺(𝑥)]isdifferentiableandmonotonicallynon − decreasing, and

(𝑖𝑖𝑖) 𝑊[𝐺(𝑥)] → 𝑎   as   𝑥 → −∞ and 𝑊[𝐺(𝑥)] → 𝑏   as   𝑥 → ∞.

 (1) 

 

Recently, Alzaatreh et al. (2013) defined the T-X family of distributions by  

𝐹(𝑥) = ∫
𝑊[𝐺(𝑥)]

𝑎
 𝑝(𝑡) 𝑑𝑡,       (2) 

where 𝑊[𝐺(𝑥)] satisfies conditions (1). The pdf corresponding to (2) is given by  

𝑓(𝑥) = {
𝑑

𝑑𝑥
 𝑊[𝐺(𝑥)]}  𝑝{ 𝑊[𝐺(𝑥)]}.     (3) 

 

According to Afify et al. (2016) the cdf of the TG-G family is given by  

𝐹𝑇𝐺−𝐺(𝑥) = ∫

𝜃 𝐺(𝑥;ϕ)

1+(𝜃−1)𝐺(𝑥;ϕ)

0

 (1 + 𝜆 − 2 𝜆 𝑡) 𝑑𝑡 

=
𝜃𝐺(𝑥; ϕ)

1 + (𝜃 − 1)𝐺(𝑥; ϕ)
{1 +

𝜆𝐺(𝑥; ϕ)

1 + (𝜃 − 1)𝐺(𝑥; ϕ)
}, 

where 𝐺(𝑥; ϕ) and 𝜃 > 0, |𝜆| ≤ 1 are two additional shape parameters. The TG-G is a 

wider class of continuous distributions. It includes the transmuted-G family of 

distributions and geometric-G. Concider the cdf of the Weibull (W) distribution, 

𝐺(𝑥; 𝛼, 𝛽) = 1 − e−(𝛼𝑥)
𝛽

, Then using 𝐹𝑇𝐺−𝐺(𝑥) we get  

𝐹(𝑥) =
𝜃(1−e−(𝛼𝑥)

𝛽
)

1+(𝜃−1)(1−e−(𝛼𝑥)
𝛽
)
{1 +

𝜆e−(𝛼𝑥)
𝛽

1+(𝜃−1)(1−e−(𝛼𝑥)
𝛽
)
}   (4) 
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The pdf corresponding of (4) is given by  

𝑓(𝑥) =
𝜃𝛽𝛼𝛽𝑥𝛽−1 

e(𝛼𝑥)
𝛽 [1 + (𝜃 − 1) (1 − e−(𝛼𝑥)

𝛽
)]
−2

[1 + 𝜆 −
2𝜆𝜃(1−e−(𝛼𝑥)

𝛽
)

1+(𝜃−1)(1−e−(𝛼𝑥)
𝛽
)
]. (5) 

 

For 𝜆 = 0 we obtain geometric-W (GW) distribution. We denote by 𝑋~TG-W(𝜆, 𝜃, 𝛼, 𝛽) 
a random variable having density function (5). 

 

The rest of the paper is organized as follows: In Section 2, some mathematical properties 

of the TGW are obtained such as mixture representation, quantile function, moments, 

order statistics and reliability estimation. Section 4 is devoted to characterizations of the 

proposed distribution and in Section 5 estimation of model parameters by the maximum 

likelihood method is presented. In Section 5, brief Monte-Carlo simulation study is 

performed to estimate model parameters with maximum likelihood estimators (MLE). 

The log-transmuted geometric-Weibull regression model is defined in Section 6. Section 

7 is devoted to applications to illustrate the flexibility of the proposed distribution in 

many fields such as univariate data fitting and survival analysis. Finally, some concluding 

remarks are given in Section 8. 

2. Mathematical Properties 

In this section some mathematical properties of the TWG distribution is discussed. 

2.1. Survival and Hazard Functions 

Central role is played in the reliability theory by the quotient of the pdf and survival 

function. We obtain the survival function corresponding to (4) as  

𝑆(𝑥) = 1 −
𝜃 (1 − e−(𝛼𝑥)

𝛽
)

1 + (𝜃 − 1)(1 − e−(𝛼𝑥)
𝛽
)
{1 +

𝜆e−(𝛼𝑥)
𝛽

1 + (𝜃 − 1)(1 − e−(𝛼𝑥)
𝛽
)
} 

 

In reliability studies, the hazard rate function (hrf) is an important characteristic and 

fundamental to the design of safe systems in a wide variety of applications. Therefore, we 

discuss these properties of the TGW distribution. The hrf of X takes the form 

ℎ(𝑥)     =     
𝜃𝛽𝛼𝛽𝑥𝛽−1 

e(𝛼𝑥)
𝛽 [1 + (𝜃 − 1) (1 − e−(𝛼𝑥)

𝛽
)]
−2
[1 + 𝜆 −

2𝜆𝜃 (1 − e−(𝛼𝑥)
𝛽
)

1 + (𝜃 − 1)(1 − e−(𝛼𝑥)
𝛽
)
]

    ×    {1 −
𝜃 (1 − e−(𝛼𝑥)

𝛽
)

1 + (𝜃 − 1)(1 − e−(𝛼𝑥)
𝛽
)
{1 +

𝜆e−(𝛼𝑥)
𝛽

1 + (𝜃 − 1)(1 − e−(𝛼𝑥)
𝛽
)
}}

−1

.

 

 

In Figure 1, we display some plots of the pdf and hrf of the TGW distribution for selected 

parameter values. Figure 1 reveals that the TGW density generate various shapes such as 

right-skewed, reversed-J, and unimodal. Figure 1 also shows that the TGW distribution 

can produce hazard rate shapes such as increasing, decreasing, and reversed-J. This fact 

implies that the TGW distribution can be very useful for fitting data sets with various 

shapes. 
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Figure 1. Plots of pdf and hrf of the TGW distribution for the selected parameter values. 

2.2. Asymptotics 

Proposition 2.1 The asymptotics of TGW distribution from cdf, pdf and hrf as 𝑥 → 0 are 

given by  

        𝐹(𝑥): 𝜃(1 + 𝜆)(𝛼 𝑥)𝛽 ,

        𝑓(𝑥): 𝜃 𝛽(1 + 𝜆)𝛼𝛽 𝑥𝛽−1,

        ℎ(𝑥): 𝜃 𝛽(1 + 𝜆)𝛼𝛽 𝑥𝛽−1.
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Proposition 2.2 The asymptotics of TGW distribution from cdf, pdf and hrf as 𝑥 → ∞ are 

given by  

        1 − 𝐹(𝑥): e−(𝛼 𝑥)
𝛽
,

        𝑓(𝑥): 𝛽 𝛼𝛽 𝑥𝛽−1 e−(𝛼 𝑥)
𝛽
,

        ℎ(𝑥): 𝛽 𝛼𝛽 𝑥𝛽−1.
 

These equations show the effect of parameters on tails of TGW distribution. 

2.3. Mixture Representation 

In this section, we provide a very useful representation for the TG-W density. The pdf in 

(5) can be rewritten as  

𝑓(𝑥) =
𝜃(1+𝜆) 𝛽𝛼𝛽𝑥𝛽−1 e−(𝛼𝑥)

𝛽

[1+(𝜃−1)(1−e−(𝛼𝑥)
𝛽
)]
2 −

2𝜆𝜃2 𝛽𝛼𝛽𝑥𝛽−1 e−(𝛼𝑥)
𝛽
 (1−e−(𝛼𝑥)

𝛽
)

[1+(𝜃−1)(1−e−(𝛼𝑥)
𝛽
)]
3   (6) 

 

Then, the pdf in (6) can be rewritten as  

𝑓(𝑥)     =     (1 + 𝜆)𝜃 𝛽𝛼𝛽𝑥𝛽−1 e−(𝛼𝑥)
𝛽
∑∞
𝑘=0 (𝜃 − 1)

𝑘  (
−2
𝑘
) (1 − e−(𝛼𝑥)

𝛽
)
𝑘

        −2 𝜆𝜃2 𝛽𝛼𝛽𝑥𝛽−1 e−(𝛼𝑥)
𝛽
∑∞
𝑘=0 (𝜃 − 1)

𝑘  (
−3
𝑘
) (1 − e−(𝛼𝑥)

𝛽
)
𝑘+1

.
 (7) 

the pdf (7) can be expressed as a mixture of exp-W density 

𝑓(𝑥) = ∑∞
𝑘=0 [𝑎𝑘 𝜋𝑘+1(𝑥) − 𝑏𝑘 𝜋𝑘+2(𝑥)].     (8) 

 

But  

(
−2
𝑘
) (= (−1)𝑘 (𝑘 + 1)         and    (

−3
𝑘
) =

(−1)𝑘 (𝑘 + 1)(𝑘 + 2)

2
, 

where  

𝜋𝛿(𝑥) = 𝛿𝛽𝛼
𝛽𝑥𝛽−1 e−(𝛼𝑥)

𝛽
 (1 − e−(𝛼𝑥)

𝛽
)
𝛿−1

 

is the exp-G pdf with power parameter 𝛿 > 0,  

𝑎𝑘 = 𝜃(1 + 𝜆) (1 − 𝜃)
𝑘            and    𝑏𝑘 = 𝜆 𝜃

2 (𝑘 + 1) (1 − 𝜃)𝑘 

 

Thus, several mathematical properties of the TG-W density can be obtained simply from 

those properties of the exp-W density. Equation (8) is the main result of this section. 

 

The cdf of the TG-W distribution can also be expressed as a mixture of exp-W densities. 

By integrating (8), we obtain the same mixture representation  

𝐹(𝑥) =∑

𝑘=0

∞

 [𝑎𝑘 Π𝑘+1(𝑥) − 𝑏𝑘 Π𝑘+2(𝑥)], 

where Π𝛿(𝑥) = (1 − e
−(𝛼𝑥)𝛽)

𝛿

 is the cdf of the exp-W density with power parameter 𝛿. 
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2.4. Quantile Function 

The quantile function (qf ) of 𝑋, where 𝑋:TG-W(𝜆, 𝜃, 𝛼, 𝛽), is obtained by inverting (3) 

to obtain 𝑄(𝑢) = 𝐹−1(𝑢) as  

𝑄(𝑢) =
1

𝛼
[ln [

2𝑢(1 − 𝜃)2 + 2𝜃(1 + 𝜆) − 2𝜃2

2𝑢𝜃(1 − 𝜃) + 𝜃(1 + 𝜆) − 2𝜃2 + 𝜃√(1 + 𝜆)2 − 4𝑢𝜆
]]

1

𝛽

 , for  𝜆 ≠ 0, 𝑢 ∈ (0,1). 

 

For 𝜆 = 0 ,  we have  

𝑄(𝑢) =
1

𝛼
[ln [

𝑢(1 − 𝜃)2 + 𝜃 − 𝜃2

𝑢𝜃(1 − 𝜃) + 𝜃 − 𝜃2
]]

1

𝛽

 

 

Simulating the TG-W random variable is straightforward. If 𝑈 is a uniform variate on the 

unit interval (0,1), then the random variable 𝑋 = 𝑄(𝑈) follows 6. 
 

The effects of the shape parameters on the skewness and kurtosis can be based on 

quantile measures. We obtain skewness and kurtosis measures using the qf. The Bowley's 

skewness measure is given by  

𝑆𝑘𝑒𝑤𝑛𝑒𝑠𝑠 =
𝑄(1/4) + 𝑄(3/4) − 2𝑄(1/2)

𝑄(3/4) − 𝑄(1/4)
 

and the Moors's kurtosis measure is  

𝐾𝑢𝑟𝑡𝑜𝑠𝑖𝑠 =
𝑄(7/8) − 𝑄(5/8) + 𝑄(3/8) − 𝑄(1/8)

𝑄(6/8) − 𝑄(2/8)
. 

 

These measures enjoy the advantage of having less sensitivity to outliers. Moreover, they 

do exist for distribution without moments. Both measures equal zero for the normal 

distribution. Plots of skewness and kurtosis of the TGW distribution are presented in 

Figure 2. These plots indicate that both measures depend very much on the shape 

parameters. Therefore TGW distribution can model various data types in terms of 

skewness and kurtosis. 

  
Figure 2.   Plots of skewness and kurtosis of TGW distribution for 𝛼 = 2 and 𝛽 = 2. 
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2.5. Moments and Generating Function 

The 𝑟th moment of 𝑋, say 𝜇𝑟
′ , follows from (9) as 

𝜇𝑟
′ = 𝐸(𝑋𝑟) =∑

𝑘=0

∞

{𝑎𝑘 𝐸(𝑌𝑘+1
𝑟 ) − 𝑏𝑘 𝐸(𝑌𝑘+2

𝑟 )} = ∑

𝑘,𝑗=0

∞

𝛚𝑘,𝑗Γ (1 +
𝑟

𝛽
). 

Where 

𝛚𝑘,𝑗 =
𝛼−𝑟(−1)𝑗

𝑗! (𝑗 + 1)(𝑟+𝛽)/𝛽
{ 
𝑎𝑘Γ(𝑘 + 2)

Γ(𝑘 + 1 − 𝑗)
 −  

𝑏𝑘Γ(𝑘 + 3)

Γ(𝑘 + 2 − 𝑗)
} 

 

Henceforth, 𝑌𝑘 denotes the exp-G distribution with power parameter 𝑘. The 𝑛th central 

moment of 𝑋, say 𝑀𝑛, is given by  

𝑀𝑛     =     𝐸(𝑋 − 𝜇1
′ )
𝑛
=∑

𝑛

𝑟=0

(
𝑛
𝑟
) (−𝜇1

′ )
𝑛−𝑟
 𝐸(𝑋𝑟)

    =     ∑

𝑛

𝑟=0

∑

𝑘,𝑗=0

∞

(−1)𝑛−𝑟  (
𝑛
𝑟
) 𝜇𝑟

′(𝑛−𝑟)
𝛚𝑘,𝑗Γ (1 +

𝑟

𝛽
) .

 

 

The cumulants (𝜅𝑛) of 𝑋 follow recursively from  

𝜅𝑛 = 𝜇𝑛
′ −∑

𝑛−1

𝑟=0

(
𝑛 − 1
𝑟 − 1

) 𝜅𝑟 𝜇𝑛−𝑟
′ , 

where 𝜅1 = 𝜇1
′ , 𝜅2 = 𝜇2

′ − 𝜇1
′2, 𝜅3 = 𝜇3

′ − 3𝜇2
′ 𝜇1

′ + 𝜇1
′3, etc. The skewness 𝛾1 = 𝜅3/𝜅2

3/2
 

and kurtosis 𝛾2 = 𝜅4/𝜅2
2 are obtained from the third and fourth standardized cumulants. 

The 𝑛th descending factorial moment of 𝑋 (for 𝑛 = 1,2, …) is  

𝜇(𝑛)
′ = 𝐸[𝑋(𝑛)] = 𝐸[𝑋(𝑋 − 1) × …× (𝑋 − 𝑛 + 1)] = ∑

𝑛

𝑘=0

𝑠(𝑛, 𝑘)𝜇𝑘
′ , 

where 𝑠(𝑛, 𝑘) = (𝑘!)−1[𝑑𝑘𝑘(𝑛)/𝑑𝑥𝑘]
𝑥=0

 is the Stirling number of the first kind. The mgf 

𝑀𝑋(𝑡) = 𝐸(𝑒
𝑡 𝑋) of 𝑋 can be derived from equation (8) as  

𝑀𝑋(𝑡) =∑

𝑘=0

∞

 [𝑎𝑘 𝑀𝑘+1(𝑡) − 𝑏𝑘 𝑀𝑘+2(𝑡)], 

where 𝑀𝑘(𝑡) is the mgf of 𝑌𝑘. Hence, 𝑀𝑋(𝑡) can be determined from the exp-G 

generating function. Then 

𝑀𝑋(𝑡) = ∑

𝑘,𝑗,𝑟=0

∞

 𝑚𝑘,𝑗,𝑟Γ (1 +
𝑟

𝛽
), 

where 𝑚𝑘,𝑗,𝑟 = 𝛚𝑘,𝑗
𝑡𝑟

𝑟!
. 

2.6. Incomplete Moments and Mean Deviations 

The main applications of the first incomplete moment refer to the mean deviations and 

the Bonferroni and Lorenz curves. These curves are very useful in economics, reliability, 
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demography, insurance and medicine. The 𝑠th incomplete moment, say 𝜑𝑟(𝑡), of 𝑋 can 

be expressed from (8) as  

𝜑𝑟(𝑡)     =     ∫
𝑡

−∞
𝑥𝑟𝑓(𝑥)𝑑𝑥 = ∑

𝑘=0

∞

[𝑎𝑘  ∫
𝑡

−∞
𝑥𝑟 𝜋𝑘+1(𝑥)𝑑𝑥 − 𝑏𝑘  ∫

𝑡

−∞
𝑥𝑟 𝜋𝑘+2(𝑥)𝑑𝑥] .

    =     ∑
𝑘,𝑗=0

∞

𝛚𝑘,𝑗𝛾 (1 +
𝑟

𝛽
, (
𝛼

𝑡
)
𝛽
) .

 (9) 

 

The mean deviations about the mean [𝜃1 = 𝐸(|𝑋 − 𝜇1
′ |)] and about the median [𝜃2 =

𝐸(|𝑋 −𝑀|)] of 𝑋 are given by 𝜃1 = 2𝜇1
′ 𝐹(𝜇1

′ ) − 2𝜑1(𝜇1
′ ) and 𝜃2 = 𝜇1

′ − 2𝜑1(𝑀), 
respectively, where 𝜇1

′ = 𝐸(𝑋), 𝑀 = 𝑀𝑒𝑑𝑖𝑎𝑛(𝑋) = 𝑄(0.5) is the median, 𝐹(𝜇1
′ ) is 

easily calculated from (4) and 𝜑1(𝑡) is the first incomplete moment given by (9) with 𝑠 =
1. 

 

The general equation for 𝜑1(𝑡) can be derived from (9) as  

𝜑1(𝑡) =∑

𝑘=0

∞

 [𝑎𝑘 𝐽𝑘+1(𝑥) − 𝑏𝑘 𝐽𝑘+2(𝑥)] = ∑

𝑘,𝑗=0

∞

𝛚𝑘,𝑗
∗ 𝛾 (1 +

1

𝛽
, (
𝛼

𝑡
)
𝛽

), 

where  

𝛚𝑘,𝑗
∗ =

𝛼−1(−1)𝑗

𝑗! (𝑗 + 1)(1+𝛽)/𝛽
{ 
𝑎𝑘Γ(𝑘 + 2)

Γ(𝑘 + 1 − 𝑗)
 −  

𝑏𝑘Γ(𝑘 + 3)

Γ(𝑘 + 2 − 𝑗)
} 

 

These equations for 𝜑1(𝑡) can be applied to construct Bonferroni and Lorenz curves 

defined for a given probability 𝜋 by 𝐵(𝜋) = 𝜑1(𝑞)/(𝜋𝜇1
′ ) and 𝐿(𝜋) = 𝜑1(𝑞)/𝜇1

′ , 

respectively, where 𝜇1
′ = 𝐸(𝑋) and 𝑞 = 𝑄(𝜋) is the qf of 𝑋 at 𝜋. 

2.7. Order Statistics 

Order statistics make their appearance in many areas of statistical theory and practice. Let 

𝑋1, … , 𝑋𝑛 be a random sample from the TG-W distributions. The pdf of 𝑖th order statistic, 

say 𝑋𝑖:𝑛, can be written as  

𝑓𝑖:𝑛(𝑥) =
𝑓(𝑥)

B(𝑖,𝑛−𝑖+1)
 ∑𝑛−𝑖𝑗=0  (−1)

𝑗  (
𝑛 − 𝑖
𝑗

)  𝐹(𝑥)𝑗+𝑖−1.   (10) 

 

Then 

𝐹(𝑥)𝑗+𝑖−1 = ∑
𝑤=0

∞

(𝑗 + 𝑖 − 1)𝑤
𝜆𝑤𝜃𝑗+𝑖−1e−𝑤(𝛼𝑥)

𝛽
(1−e−(𝛼𝑥)

𝛽
)
𝑗+𝑖−1

𝑤![1+(𝜃−1)(1−e−(𝛼𝑥)
𝛽
)]
𝑗+𝑖+𝑤−1 .  (11) 

 

Using (5) and (11) we get 

𝑓(𝑥)𝐹(𝑥)𝑗+𝑖−1     =     ∑

𝑤=0

∞ (1 + 𝜆)𝜆𝑤𝜃𝑗+𝑖𝛽𝛼𝛽(𝑗 + 𝑖 − 1)𝑤𝑥
𝛽−1  (1 − e−(𝛼𝑥)

𝛽

)
𝑗+𝑖−1

𝑤! e(𝑤+1)(𝛼𝑥)
𝛽
[1 + (𝜃 − 1)(1 − e−(𝛼𝑥)

𝛽
)]
𝑗+𝑖+𝑤+1

        −∑

𝑤=0

∞ 2𝜆𝑤+1𝜃𝑗+𝑖+1𝛽𝛼𝛽(𝑗 + 𝑖 − 1)𝑤𝑥
𝛽−1  (1 − e−(𝛼𝑥)

𝛽
)
𝑗+𝑖

𝑤! e(𝑤+1)(𝛼𝑥)
𝛽
[1 + (𝜃 − 1)(1 − e−(𝛼𝑥)

𝛽
)]
𝑗+𝑖+𝑤+2

,

 

 



The Transmuted Geometric-Weibull distribution: Properties, Characterizations and Regression Models 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp395-416 403 

Then 

𝑓(𝑥)𝐹(𝑥)𝑗+𝑖−1 = ∑
𝑘=0

∞

[Υ𝑘𝜋𝑘+𝑗+𝑖+𝑚(𝑥) − Ψ𝑘𝜋𝑘+𝑗+𝑖+𝑚+1(𝑥)].  (12) 

 

Substituting (12) in Equation (10), the pdf of 𝑋𝑖:𝑛 can be expressed as  

𝑓𝑖:𝑛(𝑥) =  
∑𝑛−𝑖𝑗=0  (−1)

𝑗  (
𝑛 − 𝑖
𝑗

)

B(𝑖, 𝑛 − 𝑖 + 1)
 ∑

𝑘=0

∞

[Υ𝑘𝜋𝑘+𝑗+𝑖+𝑚(𝑥) − Ψ𝑘𝜋𝑘+𝑗+𝑖+𝑚+1(𝑥)], 

where  

Υ𝑘 = ∑

𝑚,𝑤=0

∞

(𝑗 + 𝑖 − 1)𝑤
(−1)𝑘(1 + 𝜆)λw𝜃𝑗+𝑖(1 − 𝜃)𝑚Γ(𝑤 + 1)Γ(𝑗 + 𝑖 + 𝑤 +𝑚 + 1)

𝑤!𝑚! 𝑘! Γ(𝑤 − 𝑘 + 1)Γ(𝑗 + 𝑖 + 𝑤 + 2)[𝑘 + 𝑗 + 𝑖 + 𝑚 + 1]
, 

Ψ𝑘 = ∑

𝑚,𝑤=0

∞

(𝑗 + 𝑖 − 1)𝑤
(−1)𝑘2λw+1𝜃𝑗+𝑖+1(1 − 𝜃)𝑚Γ(𝑤 + 1)Γ(𝑗 + 𝑖 + 𝑤 +𝑚 + 2)

𝑤!𝑚! 𝑘! Γ(𝑤 − 𝑘 + 1)Γ(𝑗 + 𝑖 + 𝑤 + 1)[𝑘 + 𝑗 + 𝑖 +𝑚]
 

and 𝜋𝑘(𝑥) is the exp-W density with power parameter 𝑘. Then, the density function of 

the TG-G order statistics is a mixture of exp-G densities. Based on the last equation, we 

note that the properties of 𝑋𝑖:𝑛 follow from those properties of 𝑌𝑎+𝑘. For example, the 

moments of 𝑋𝑖:𝑛 can be expressed as  

 

𝐸(𝑋𝑖:𝑛
𝑞 )     =      

∑𝑛−𝑖𝑗=0  (−1)
𝑗 (
𝑛−𝑖
𝑗

)

B(𝑖,𝑛−𝑖+1)
∑
𝑘=0

∞

[Υ𝑘𝐸(𝑌𝑘+𝑗+𝑖+𝑚
𝑞 ) − Ψ𝑘𝐸(𝑌𝐾+𝑗+𝑖+𝑚+1

𝑞 )]

    =     
∑𝑛−𝑖𝑗=0  (−1)

𝑗 (
𝑛−𝑖
𝑗

)

B(𝑖,𝑛−𝑖+1)
∑

𝑘,ℎ=0

∞

𝑠𝑘,ℎΓ (1 +
𝑞

𝛽
) .

 (13) 

where 

             𝑠𝑘,ℎ =
𝛼−𝑞(−1)ℎ

ℎ! (ℎ + 1)(𝑞+𝛽)/𝛽
[
Γ(𝐾 + 𝑗 + 𝑖 + 𝑚 + 1)Υ𝑘
Γ(𝐾 + 𝑗 + 𝑖 + 𝑚 − ℎ)

−
Γ(𝐾 + 𝑗 + 𝑖 + 𝑚 + 2)Ψ𝑘
Γ(𝐾 + 𝑗 + 𝑖 + 𝑚 + 1 − ℎ)

]. 

 

The L-moments are analogous to the ordinary moments but can be estimated by linear 

combinations of order statistics. They exist whenever the mean of the distribution exists, 

even though some higher moments may not exist, and are relatively robust to the effects 

of outliers. Based upon the moments in equation (13), we can derive explicit expressions 

for the L-moments of 𝑋 as infinite weighted linear combinations of the means of suitable 

TG-W order statistics. They are linear functions of expected order statistics defined by  

𝜆𝑟 =
1

𝑟
∑

𝑟−1

𝑑=0

(−1)𝑑  (
𝑟 − 1
𝑑

)  𝐸(𝑋𝑟−𝑑:𝑟), 𝑟 ≥ 1. 

2.8. Probability Weighted Moments 

Generally, the PWM method can be used for estimating parameters of a distribution 

whose inverse form cannot be expressed explicitly. The PWMs are expectations of 

certain functions of a random variable and they can be defined for any random variable 

whose ordinary moments exist. They have low variance and no severe bias and can 
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compare favorably with estimators obtained by the maximum likelihood method. The 

(𝑠, 𝑟)th PWM of 𝑋 following the TG-W distribution, say 𝜌𝑠,𝑟, is formally defined by 

𝜌𝑠,𝑟 = 𝐸{𝑋
𝑠𝐹(𝑋)𝑟} = ∫

∞

−∞

𝑥𝑠  𝐹(𝑋)𝑟 𝑓(𝑥)𝑑𝑥. 

𝐹(𝑋)𝑟     =     
𝜃𝑟(1−e−(𝛼𝑥)

𝛽
)
𝑟

[1+(𝜃−1)(1−e−(𝛼𝑥)
𝛽
)]
𝑟 [1 +

𝜆[1−(1−e−(𝛼𝑥)
𝛽
)]

1+(𝜃−1)(1−e−(𝛼𝑥)
𝛽
)
]

𝑟

    =     ∑
𝑤=0

∞

(𝑟)𝑤
𝜆𝑤𝜃𝑟[1−(1−e−(𝛼𝑥)

𝛽
)]
𝑤

(1−e−(𝛼𝑥)
𝛽
)
𝑟

𝑤![1+(𝜃−1)(1−e−(𝛼𝑥)
𝛽
)]
𝑟+𝑤 .

   (14) 

 

From Equation (5) and the last equation , we can write 

𝑓(𝑥)𝐹(𝑥)𝑟  = 𝑓(𝑥)𝐹(𝑥)𝑗+𝑖−1 =∑

𝑘=0

∞

[Υ𝑘
∗𝜋𝑘+𝑟+𝑚+1(𝑥) − Ψ𝑘

∗𝜋𝑘+𝑟+𝑚+2(𝑥)], 

where  

Υ𝑘
∗ = ∑

𝑚,𝑤=0

∞

(𝑟)𝑤
(−1)𝑘(1+𝜆)𝜆𝑤𝜃𝑟+1(1−𝜃)𝑚Γ(𝑤+1)Γ(𝑟+𝑤+𝑚+2)

𝑤!𝑚!𝑘!Γ(𝑤−𝑘+1)Γ(𝑟+𝑤+2)[𝑘+𝑟+𝑚+1]
  

and 

Ψ𝑘
∗ = ∑

𝑚,𝑤=0

∞

(𝑟)𝑤
(−1)𝑘2𝜆𝑤+1𝜃𝑟+2(1 − 𝜃)𝑚Γ(𝑤 + 1)Γ(𝑟 + 𝑤 +𝑚 + 3)

𝑤!𝑚! 𝑘! Γ(𝑤 − 𝑘 + 1)Γ(𝑟 + 𝑤 + 3)[𝑘 + 𝑟 + 𝑚 + 2]
 

 

Finally, the (𝑠, 𝑟)th PWM of 𝑋 can be obtained from an infinite linear combination of 

exp-W moments given by  

𝜌𝑠,𝑟 = ∑

𝑘,𝑗=0

∞

𝑝𝑘,𝑗Γ (1 +
𝑠

𝛽
). 

where 

𝑝𝑘,𝑗 =
(−1)𝑗𝛼−𝑠

𝑗! (𝑗 + 1)(𝑠+𝛽)/𝛽
[
Γ(𝑘 + 𝑟 + 𝑚 + 2)Υ𝑘

∗

Γ(𝑘 + 𝑟 +𝑚 + 1 − 𝑗)
−
Γ(𝑘 + 𝑟 +𝑚 + 3)Ψ𝑘

∗

Γ(𝑘 + 𝑟 +𝑚 + 2 − 𝑗)
]. 

2.9. Reliability estimation 

The stress-strength model is the most widely approach used for reliability estimation. 

This model is used in many  applications of physics and engineering such as strength 

failure and system collapse. In stress-strength modeling, 𝐑 = Pr(𝑋2 < 𝑋1) is a measure 

of reliability of the system when it is subjected to random stress 𝑋2 and has strength 𝑋1. 
The system fails if and only if the applied stress is greater than its strength and the 

component will function satisfactorily whenever 𝑋1 > 𝑋2. 𝐑 can be considered as a 

measure of system performance and naturally arise in electrical and electronic  systems. 

Other interpretation can be that, the reliability, say 𝐑, of the system is the  probability that 

the system is strong enough to overcome the stress imposed on it. Let 𝑋1 and 𝑋2 be two 

independent random variables with TG-W(𝜆1, 𝜃1, 𝛼, 𝛽) and TG-W(𝜆2, 𝜃2, 𝛼, 𝛽) 
distributions. Then, the reliability is defined by 

𝐑 = ∫
∞

0

𝑓1(𝑥; 𝜆1, 𝜃1, 𝛼, 𝛽)𝐹2(𝑥; 𝜆2, 𝜃2, 𝛼, 𝛽)𝑑𝑥 = ∑

∞

𝑘,𝑗=0

{𝑎𝑘,𝑗 − 𝑏𝑘,𝑗 − 𝑐𝑘,𝑗 + 𝑑𝑘,𝑗}, 
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where 

𝑎𝑘,𝑗 =
(1 + 𝜆1)(1 + 𝜆2) (1 − 𝜃1)

𝑘 (1 − 𝜃2)
𝑗  (𝑘 + 1)

(𝑘 + 𝑗 + 2)(𝜃1𝜃2)−1
, 

𝑏𝑘,𝑗 =
(1 + 𝜆1) (1 − 𝜃1)

𝑘  (1 − 𝜃2)
𝑗(𝑘 + 1) (𝑗 + 1) 

(𝑘 + 𝑗 + 3)(𝜆2𝜃1𝜃 2
2)−1

, 

𝑐𝑘,𝑗 =∑

∞

𝑘=0

(1 + 𝜆2)(1 − 𝜃1)
𝑘 (1 − 𝜃2)

𝑗(𝑘 + 2)(𝑘 + 1)

(𝑘 + 𝑗 + 3)(𝜆1 𝜃1
2 𝜃2)−1

 

and 

𝑑𝑘,𝑗 = ∑

∞

𝑘,𝑗=0

(1 − 𝜃1)
𝑘 (1 − 𝜃2)

𝑗(𝑘 + 2)𝜆2 (𝑗 + 1)(𝑘 + 1) 

(𝑘 + 𝑗 + 4)(𝜆1 𝜆2𝜃1
2 𝜃 2

2)−1
. 

3. Characterizations 

Here, we provide characterizations of the GT-W distribution in terms of two truncated 

moments. This characterization result is based on a theorem (see Theorem 1 below) due 

to Glänzel (1987). The proof of Theorem 1 is given in Glänzel (1990). This result holds 

also when the interval 𝐻 is not closed. Moreover, as mentioned above, it could be also 

applied when the cdf 𝐹 does not have a closed form. Glänzel (1990) proved that this 

characterization is stable in the sense of weak convergence. 

 

Theorem 1. Let (Ω, , 𝑝) be a given probability space and let 𝐻 = [𝑎, 𝑏] be an interval for 

some 𝑎 < 𝑏(𝑎 = −∞ , 𝑏 = ∞ mightaswellbeallowed). Let 𝐻:Ω → 𝐻 be acontinuous 

random variable with cdf 𝐹 and let 𝑔  and ℎ be two real functions defined on 𝐻 such that 

𝐸(𝑔(𝑥)|𝑋 ≥ 𝑥) = 𝐸(ℎ(𝑥)|𝑋 ≥ 𝑥)𝜂(𝑥), 𝑥 ∈ 𝐻, 

is defined with a real function ℎ. Assume that 𝑔, ℎ ∈ 𝐶1(𝐻), 𝜂 ∈ 𝐶2(𝐻) and 𝐹 is twice 

continuously differentiable and strictly monotone function on the set 𝐻. Finally, assume 

that the equation ℎ𝜂 = 𝑔 has no real solution in the interior of 𝐻. Then 𝐹 is uniquely 

determined by the functions 𝑔, ℎ and 𝜂, particularly 

𝐹(𝑥) = ∫
𝑥

𝑎

 𝐶 |
𝜂′(𝑢)

𝜂(𝑢)ℎ(𝑢) − 𝑔(𝑢)
| exp(−𝑠(𝑢))𝑑𝑢, 

where the function 𝑠 is a solution of the differential equation 𝑠′ = 𝜂′ℎ/(𝜂ℎ − 𝑔) and 𝐶 is 

the normalization constant, such that 𝐻𝑑𝐹 = 1. 

Proposition 1. 

Let 𝑋:Ω → (0,∞) be a continuous random variable and let 

ℎ(𝑥) = [1 + 𝜆 −
2𝜆𝜃 (1 − 𝑒−(𝛼𝑥)

𝛽
)

1 + (𝜃 − 1)(1 − 𝑒−(𝛼𝑥)
𝛽
)
]

−1

 

and 

𝑔(𝑥) = ℎ(𝑥) [1 + (𝜃 − 1) (1 − 𝑒−(𝛼𝑥)
𝛽
)]
−1

. 
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The random variable 𝑋 belongs to GT-W distribution (5) if and only if the function 𝜂 

defined in Theorem 1 has the formand 

𝜂(𝑥) =
1

2𝜃
[
2𝜃 − (𝜃 − 1)𝑒−(𝛼𝑥)

𝛽

1 + (𝜃 − 1)(1 − 𝑒−(𝛼𝑥)
𝛽
)
]. 

Proof. 

Let 𝑋 be a random variable with density (5), then 

𝐹(𝑥)𝐸[ℎ(𝑥)|𝑋 ≥ 𝑥] =
𝑒−(𝛼𝑥)

𝛽

[1 + (𝜃 − 1)[1 − 𝑒−(𝛼𝑥)
𝛽
]]

 

and 

𝐹(𝑥)𝐸[𝑔(𝑥)|𝑋 ≥ 𝑥] =
𝑒−(𝛼𝑥)

𝛽
[2𝜃 − (𝜃 − 1)𝑒−(𝛼𝑥)

𝛽
]

2𝜃 [1 + (𝜃 − 1)[1 − 𝑒−(𝛼𝑥)
𝛽
]]
2, 

and finally 

𝜂(𝑥)ℎ(𝑥) − 𝑔(𝑥) =
1

2
ℎ(𝑥) [1 − 𝑒−(𝛼𝑥)

𝛽
]
𝑎

, 

𝑆′(𝑥) =
𝜂′(𝑥)ℎ(𝑥)

𝜂(𝑥)ℎ(𝑥) − 𝑔(𝑥)
=
𝑎𝛽𝛼𝛽𝑥𝛽−1𝑒−(𝛼𝑥)

𝛽

[1 − 𝑒−(𝛼𝑥)
𝛽
]
. 

 

Then, we have 

𝑆(𝑥) = 𝑎ln [1 − 𝑒−(𝛼𝑥)
𝛽
]. 

 

Then, 𝑋 has the pdf (5). 

 

Corollary: Let 𝑋:Ω → (𝜃,∞) be a continuous random variable and let ℎ(𝑥) be as in 

Proposition (1). Then the random variable 𝑋  has the pdf (5) if and only if the functions 𝑔 

and ℎ defined in Theorem 1 satisfy the following differential equation 

𝜂′(𝑥)ℎ(𝑥)

𝜂(𝑥)ℎ(𝑥)−𝑔(𝑥)
=
𝑎𝛽𝛼𝛽𝑥𝛽−1𝑒−(𝛼𝑥)

𝛽

[1−𝑒−(𝛼𝑥)
𝛽
]
.     (15) 

 

The general solution of the above differential equation is 

𝜂(𝑥) = [1 − 𝑒−(𝛼𝑥)
𝛽
]
𝑎

{−∫
𝑎𝛽𝛼𝛽𝑥𝛽−1𝑒−(𝛼𝑥)

𝛽

[1 − 𝑒−(𝛼𝑥)
𝛽
]

×
𝑔(𝑥)

ℎ(𝑥)
𝑑𝑥 + 𝐾}, 

where 𝐾 is a constant. There is a set of functions satisfying the differential equation (15) 

is given in Proposition 1 with 𝐾 = 0. Moreover, there are other triplets (ℎ, 𝑔, 𝜂) 
satisfying the conditions of Theorem 1. 

4. Maximum Likelihood Estimation 

Several approaches for parameter estimation were proposed in the literature but the 

maximum likelihood method is the most commonly employed. The maximum likelihood 

estimators (MLEs) enjoy desirable properties and can be used when constructing 

confidence intervals and also in test statistics. The normal approximation for these 

estimators in large sample theory is easily handled either analytically or numerically. So, 



The Transmuted Geometric-Weibull distribution: Properties, Characterizations and Regression Models 

Pak.j.stat.oper.res.  Vol.XIII  No.2 2017  pp395-416 407 

we consider the estimation of the unknown parameters for this family from complete 

samples only by maximum likelihood. Here, we determine the MLEs of the parameters of 

the new family of distributions from complete samples only. Let 𝑥1, … , 𝑥𝑛 be a random 

sample from the TG-W distribution with parameters 𝜆, 𝜃, 𝛼 and 𝛽. Let Θ =(𝜆, 𝜃, 𝛼, 𝛽)T be 

the (4 × 1) parameter vector. Then, the log-likelihood function for Θ, say ℓ = ℓ(Θ), is 

given by 

ℓ = 𝑛log𝜃 + 𝑛log𝛽 + 𝑛𝛽log𝛼 + (𝛽 − 1)∑𝑛𝑖=0 log(𝑥𝑖) + ∑
𝑛
𝑖=0 log𝑠𝑖 − 2∑

𝑛
𝑖=0 log𝑧𝑖 +

∑𝑛𝑖=0 log𝑝𝑖,          (16) 
 

where    

𝑠𝑖 = e
−𝛼𝛽𝑥𝑖

𝛽

= e−(𝛼𝑥𝑖)
𝛽
, 𝑧𝑖 = [1 + (𝜃 − 1)(1 − 𝑠𝑖)] 

and  

𝑝𝑖 = [1 + 𝜆 −
2𝜆𝜃(1 − 𝑠𝑖)

𝑧𝑖
]. 

 

Equation (15) can be maximized either directly by using the R (optim function), SAS 

(PROC NLMIXED) or Ox program (sub-routine MaxBFGS) or by solving the nonlinear 

likelihood equations obtained by differentiating (15).The score vector components, say 

𝐔(Θ) =
∂ℓ

∂Θ
= (

∂ℓ

∂𝜆
 ,
∂ℓ

∂𝜃
 ,
∂ℓ

∂𝛼
 ,
∂ℓ

∂𝛽
 )T = (𝑈𝜆, 𝑈𝜃, 𝑈𝛼, 𝑈𝛽)

T
, are given by 

𝑈𝜆 =∑

𝑛

𝑖=0

𝑡𝑖
𝑝𝑖
, 𝑈𝜃 =

𝑛

𝜃
+ −2∑

𝑛

𝑖=0

1 − 𝑠𝑖
𝑧𝑖

+∑

𝑛

𝑖=0

𝑞𝑖
𝑝𝑖
, 𝑈𝛼

=
𝑛𝛽

𝛼
+∑

𝑛

𝑖=0

𝑚𝑖
𝑠𝑖
+ 2(𝜃 − 1)∑

𝑛

𝑖=0

𝑚𝑖
𝑧𝑖
+∑

𝑛

𝑖=0

𝑎𝑖
𝑝𝑖
,  

and 

𝑈𝛃 =
𝑛

𝛽
+ 𝑛log𝛼 +∑

𝑛

𝑖=0

log(𝑥𝑖) +∑

𝑛

𝑖=0

𝑤𝑖
𝑠𝑖
+ 2∑

𝑛

𝑖=0

(𝜃 − 1)𝑤𝑖
𝑧𝑖

+∑

𝑛

𝑖=0

𝑏𝑖
𝑝𝑖
, 

where 

𝑚𝑖 =
−𝛽𝛼𝛽−1𝑥𝑖

𝛽

e(𝛼𝑥𝑖)
𝛽

, 𝑤𝑖 =
−(𝛼𝑥𝑖)

𝛽log(𝛼𝑥𝑖)

e(𝛼𝑥𝑖)
𝛽

, 𝑏𝑖 =
−2𝜆𝜃[−𝑤𝑖𝑧𝑖 + (𝜃 − 1)(1 − 𝑠𝑖)𝑤𝑖]

𝑧𝑖
2 , 

𝑞𝑖 = −
2𝜆(1 − 𝑠𝑖)[𝑧𝑖 − 𝜃(1 − 𝑠𝑖)]

𝑧𝑖
2 , 𝑎𝑖 =

−2𝜆𝜃[−𝑚𝑖𝑧𝑖 + (𝜃 − 1)(1 − 𝑠𝑖)𝑚𝑖]

𝑧𝑖
2  and 𝑡𝑖

= 1 −
2𝜃(1 − 𝑠𝑖)

𝑧𝑖
. 

 

Setting the nonlinear system of equations 𝑈𝜆 = 𝑈𝜃 = 𝑈𝛼 = 𝑈𝛽 = 𝟎 and solving them 

simultaneously yields the MLE Θ̂ = (𝜆̂, 𝜃, 𝛼̂, 𝛽̂)T of Θ = (𝜆, 𝜃, 𝛼, 𝛽)T. These equations 

cannot be solved analytically and statistical software can be used to solve them 

numerically using iterative methods such as the Newton-Raphson type algorithms. For 

interval estimation of the model parameters, we require the observed information matrix 

𝐽(Θ) = −

(

 
 

𝑈𝜆𝜆 𝑈𝜆𝜃 𝑈𝜆𝛼 𝑈𝜆𝛽
𝑈𝜃𝜆 𝑈𝜃𝜃 𝑈𝜃𝛼 𝑈𝜃𝛽
𝑈𝛼𝜆 𝑈𝛼𝜃 𝑈𝛼𝛼 𝑈𝛼𝛽
𝑈𝛽𝜆 𝑈𝛽𝜃 𝑈𝛽𝛼 𝑈𝛽𝛽

 

)

 
 

, 
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Under standard regularity conditions when 𝑛 → ∞, the distribution of Θ̂ can be 

approximated by a multivariate normal 𝑁4(0, 𝐽(Θ̂)
−1) distribution to construct 

approximate confidence intervals for the parameters. Here, 𝐽(Θ̂) is the total observed 

information matrix evaluated at Θ̂. The method of the re-sampling bootstrap can be used 

for correcting the biases of the MLEs of the model parameters. Interval estimates may 

also be obtained using the bootstrap percentile method. Likelihood ratio tests can be 

performed for the proposed family of distributions in the usual way.  

5. Simulation Study 

In this section, a brief simulation study is conducted to examine the performance of the 

MLEs of TGW parameters. Inverse transform method is used to generate random 

observations from TGW distribution. We generate 1000 samples of size, n =50, 100, 500 

and n=1000 of TGW distribution. The evaluation of estimates was based on the bias of 

the MLEs of the model parameters, the mean squared error (MSE) of the MLEs. The 

empirical study was conducted with software R and the results are given in Table 1. The 

values in Table 1 indicate that the estimates are quite stable and, more importantly, are 

close to nominal values when 𝑛 goes to infinity. It is observed from Table 1 that the 

biases and MSEs decreases as n increases. The simulation study shows that the maximum 

likelihood method is appropriate for estimating the parameters of TGW distribution. In 

fact, the MSEs of the parameters tend to be closer to the zero when n increases. This fact 

supports that the asymptotic normal distribution provides an adequate approximation to 

the finite sample distribution of the MLEs. The normal approximation can be improved 

by using bias adjustments to these estimators. 

Table 1:  Biases and MSEs for the MLEs of the parameters of the TGW distribution 

  𝜶 = 𝟎. 𝟓, 𝜷 =
𝟎. 𝟓  

 Bias   MSE  

 𝜽   𝝀   n   𝜽   𝝀   𝜶   𝜷   𝜽   𝝀   𝜶   𝜷  

 0.5   0.5   50   1.049   0.877   0.701   0.622   0.549   0.945   0.154   0.322  

    100   0.549   0.349   0.443   0.559   0.217   0.444   0.049   0.173  

    500   0.134   0.144   0.105   0.513   0.019   0.103   0.011   0.059  

    1000   0.071   0.011   0.015   0.5   0.030   0.054   0.001   0.013  

 2   0.5   50   0.933   0.649   0.504   0.632   0.249   0.547   0.094   0.103  

    100   0.519   0.394   0.301   0.496   0.103   0.343   0.043   0.048  

    500   0.104   0.104   0.148   0.338   0.018   0.109   0.011   0.014  

    1000   0.034   0.047   0.039   0.079   0.002   0.049   0.005   0.002  

 3   0.7   50   1.273   1.011   0.335   0.445   0.949   1.031   0.334   0.509  

    100   0.553   0.589   0.147   0.049   0.549   0.566   0.109   0.202  

    500   0.104   0.147   0.049   0.017   0.107   0.193   0.039   0.018  

    1000   0.049   0.056   0.001   0.003   0.043   0.044   0.003   0.001  
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6. The log-transmuted geometric-Weibull (LTW-W) regression model 

The TGW distribution with four parameters 𝛼 > 0, 𝜃 > 0, 𝑎 > 0 and 𝑏 > 0, introduced 

in Section 1. Let 𝑋 is a random variable following the TGW density function and 𝑌 is 

defined by 𝑌 = 𝑙𝑜𝑔(𝑋). The density function of 𝑌 obtained by replacing 𝛽 = 1/𝜎 and 

𝜇 = −log(𝛼) reduces to  

𝑓(𝑦) =
𝜃

𝜎
exp[(

𝑦−𝜇

𝜎
)−exp(

𝑦−𝜇

𝜎
)]

[1+(𝜃−1){1−exp[−exp(
𝑦−𝜇

𝜎
)]}]

2 [1 + 𝜆 −
2𝜆{1−exp[−exp(

𝑦−𝜇

𝜎
)]}

1+(𝜃−1){1−exp[−exp(
𝑦−𝜇

𝜎
)]}
] (17) 

where 𝑦 ∈ ℜ, 𝜇 ∈ ℜ, 𝜎 > 0, 𝜃 > 0 and 𝜆 > 0. We refer to Equation (17) as the LTGW 

distribution, say 𝑌: 𝐿𝑇𝐺𝑊(𝜃, 𝜆, 𝜎, 𝜇), where 𝜇 ∈ ℜ is the location parameter, 𝜎 > 0 is the 

scale parameter and 𝜃 and 𝜆 are shape parameters. 

 

The corresponding survival function is 

𝑠(𝑦) = 1 −
𝜃{1−exp[−exp(

𝑦−𝜇

𝜎
)]}

1+(𝜃−1){1−exp[−exp(
𝑦−𝜇

𝜎
)]}
[1 +

𝜆exp[−exp(
𝑦−𝜇

𝜎
)]

1+(𝜃−1){1−exp[−exp(
𝑦−𝜇

𝜎
)]}
] (18) 

and the hrf is simply ℎ(𝑦) = 𝑓(𝑦)/𝑆(𝑦). The standardized random variable 𝑍 = (𝑌 −
𝜇)/𝜎 has density function  

𝑓(𝑧) =
𝜃exp[𝑧−exp(𝑧)]

[1+(𝜃−1){1−exp[−exp(𝑧)]}]2
[1 + 𝜆 −

2𝜆{1−exp[−exp(𝑧)]}

1+(𝜃−1){1−exp[−exp(𝑧)]}
]  (19) 

 

Parametric regression models to estimate univariate survival functions for censored data 

are widely used. A parametric model that provides a good fit to lifetime data tends to 

yield more precise estimates of the quantities of interest. Based on the LTGW density, we 

propose a linear location-scale regression model linking the response variable 𝑦𝑖 and the 

explanatory variable vector 𝐯𝑖
𝑇 = (𝑣𝑖1, . . . , 𝑣𝑖𝑝) given by  

𝑦𝑖 = 𝐯𝑖
𝑇𝛃 + 𝜎𝑧𝑖, i = 1, . . . , n       (20) 

where the random error 𝑧𝑖 has density function (19), 𝛃 = (𝛽1, … , 𝛽𝑝)
𝑇 , 𝜎 > 0, 𝜃 > 0 and 

𝜆 > 0 are unknown parameters. The parameter 𝜇𝑖 = 𝐯𝑖
𝑇𝛃 is the location of 𝑦𝑖. The 

location parameter vector 𝜇 = (𝜇1, … , 𝜇𝑛)
𝑇 is represented by a linear model 𝜇 = 𝑉𝛽, 

where 𝑉 = (𝑣1, … , 𝑣𝑛)
𝑇 is a known model matrix. 

 

Consider a sample (𝑦1, 𝑣1),… , (𝑦𝑛, 𝑣𝑛) of 𝑛 independent observations, where each 

random response is defined by 𝑦𝑖 = min{log(𝑥𝑖), log(𝑐𝑖)}. We assume non-informative 

censoring such that the observed lifetimes and censoring times are independent. Let 𝐹 

and 𝐶 be the sets of individuals for which 𝑦𝑖 is the log-lifetime or log-censoring, 

respectively. The log-likelihood function for the vector of parameters 𝜏 = (𝛼, 𝜆, 𝜎, 𝛽𝑇)𝑇 

from model (20) has the form 𝑙(𝜏) = ∑𝑖∈𝐹 𝑙𝑖(𝜏) + ∑𝑖∈𝐶 𝑙𝑖
(𝑐)
(𝜏), where 𝑙𝑖(𝜏) =

log[𝑓(𝑦𝑖)], 𝑙𝑖
(𝑐)
(𝜏) = log[𝑆(𝑦𝑖)], 𝑓(𝑦𝑖) is the density (17) and 𝑆(𝑦𝑖) is the survival 

function (18) of 𝑌𝑖. Then, the total log-likelihood function for 𝜏 reduces to  

ℓ(𝜏) = 𝑟log (
𝜃

𝜎
) + ∑𝑖∈𝐹 (𝑧𝑖 − 𝑢𝑖) − ∑∈𝐹 log[1 + (𝜃 − 1){1 − exp[−𝑢𝑖]}]

−2

+∑ log∈𝐹 [1 + 𝜆 −
2𝜆{1−exp[−𝑢𝑖]}

1+(𝜃−1){1−exp[−𝑢𝑖]}
]

+∑𝑖∈𝐶 log {1 −
𝜃{1−exp[−𝑢𝑖]}

1+(𝜃−1){1−exp[−𝑢𝑖]}
[1 +

𝜆exp[−𝑢𝑖]

1+(𝜃−1){1−exp[−𝑢𝑖]}
]}

 (21) 
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where 𝑢𝑖 = exp(𝑧𝑖), 𝑧𝑖 = (𝑦𝑖 − 𝑣𝑖
𝑇𝛽)/𝜎 and 𝑟 is the number of uncensored observations 

(failures) and 𝑐 is the number of the censored observations. The MLE 𝜏̂ of the vector of 

unknown parameters can be evaluated by maximizing the log-likelihood (21). We use the 

statistical software R to determine the estimate 𝜏̂. 
 

Under standard regularity conditions, the asymptotic distribution of (𝜏̂ − 𝜏) is 

multivariate normal 𝑁𝑝+3(0, 𝐾(𝜏)
−1), where 𝐾(𝜏) is the expected information matrix. 

The asymptotic covariance matrix 𝐾(𝜏)−1 of 𝜏̂ can be approximated by the inverse of the 

(𝑝 + 3) × (𝑝 + 3) observed information matrix −(𝜏). The elements of the observed 

information matrix −Ł̈(𝜏), namely −Ł𝜃𝜃, −Ł𝜃𝜆, 

−Ł𝜃𝜎, −Ł𝜃𝛽𝑗 , −Ł𝜆𝜆, −Ł𝜆𝜎 , −Ł𝜆𝛽𝑗 , −Ł𝜎𝜎, −Ł𝜎𝛽𝑗 and −Ł𝛽𝑗𝛽𝑠 for 𝑗, 𝑠 = 1,… , 𝑝, are 

evaluated numerically. The approximate multivariate normal distribution 

𝑁𝑝+3(0, −Ł̈(𝜏)
−1) for 𝜏̂ can be used in the classical way to construct approximate 

confidence regions for some parameters in 𝜏. 

7. Applications 

In this section, we provide an application to real data set to illustrate the flexibility of the 

TGW distribution. The parameters are estimated by maximum likelihood method and R 

statistical software is used for computations. First, we describe the data sets and then 

determine the MLEs (and the corresponding standard errors) of the parameters. In order 

to compare models with the proposed distribution, we apply goodness-of-fit tests to 

verify which distribution fits better the real data set. The statistics Cramer von Mises 

(W*) and Anderson Darling (A*) are described in details in Chen and Balakrishnan 

(1995). The log-likelihood values and Akaike Information Criterion (AIC) are also 

obtained for all models and used to decide best model. In general, the smaller the values 

of these statistics, the better the fit to the data. 

 

We compare the performance of the TGW distribution with other well-known families 

given in Table 2. 

Table 2:   Fitted families and their abbreviations 

Families  References  

Weibull    

Odd Log-Logistic-Weibull (OLL-W)   da Cruz  et al. (2014)  

Kumaraswamy-Weibull (Kum-W)   Cordeiro and de Castro (2011)  

Exponentiated Generalized-Weibull (EG-W)   Cordeiro  et al. (2013)  

Weibull-Weibull (W-W)   Bourguignon  et al. (2014) 

Beta-Weibull (B-W)   Eugene  et al. (2002)  

Transmuted Geometric-Weibull (TGW)   Proposed  
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7.1. Strength of glass fibres 

The data set represents the strength of 1.5 cm glass fibres, measured at National physical 

laboratory, England (see, Smith and Naylor [46]). The data are: 0.55, 0.93, 1.25, 1.36, 

1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 

1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 

1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 

1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89. 

 

Table 3 gives W* and A* statistics, AIC and log-likelihood values. Based on Tables 2, it 

is clear that TGW distribution provides the overall best fit and therefore could be chosen 

as the more adequate model from other models for explaining the used data set. 

Table3:   Parameter estimations of fitted distributions   

Models  Parameters  −𝓵   AIC  A*   W*  

   𝜽   𝝀   𝜶   𝜷          

W       5.781   1.628   15.206   34.413   1.303   0.237  

      0.576   0.037          

OLL-W     0.943   6.025   1.623   15.186   36.373   1.282   0.233  

    0.267   1.340   0.043          

KUM-W   0.497   0.199   7.009   1.346   13.408   34.817   0.829   0.144  

  0.138   0.027   0.002   0.002          

EG-W   0.188   0.762   6.705   1.319   14.685   37.370   1.111   0.199  

  0.034   0.121   0.006   0.006          

W-W   0.052   3.041   1.089   1.299   14.429   36.858   1.109   0.199  

  0.111   2.061   0.559   0.623          

B-W   0.637   0.199   7.073   1.350   13.994   35.988   0.966   0.172  

  0.128   0.028   0.003   0.002          

TG-W   0.035   0.773   3.051   1.125   11.538   31.076   0.495   0.088  

  0.046   0.284   1.015   0.280          

 

More information can be provided in Figure 3 by a histogram of the data with fitted lines 

of the pdfs for all distributions. We present the plots of the fitted density, cumulative and 

survival functions with the probability-probability (P-P) plot for the TGW distribution in 

Figure 4. They reveal a good adjustment for the data of the estimated density, cumulative 

and survival functions of the TGW distribution. 
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Figure 3:   Fitted pdfs on histogram of first data set 

 

 

Figure 4:   Fitted plots for TGW distribution 
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7.2. Multiply censored relay data 

The used data set represents the production relay and on a proposed design change (𝑛 =
35). Engineering experience suggested that lifetime has a Weibull distribution. 

Engineering sought to compare the production and proposed designs over the range of 

test currents. These data are also reported and analyzed in Cordeiro et al. (2017). LTGW 

regression model is adopted  to analyze these data set. The variables involved in the study 

are: 𝑦𝑖 - observed thounsands of cycles; 𝑐𝑒𝑛𝑠𝑖 - censoring indicator (0=censoring, 

1=lifetime observed) and 𝑥𝑖1 - production (16 amps, 26 amps, 28 amps). We consider the 

following regression model  

𝑦𝑖 = 𝛽1 + 𝛽2𝑣𝑖 + 𝜎𝑧𝑖, 
where 𝑦𝑖 has the LTGW density (17), for 𝑖 = 1, … ,35. Table 4 lists the MLEs of the 

model parameters of the LTGW regression model fitted to the current data and the log-

likelihood, AIC and BIC statistics. Based on the Table 4, it is clear that 𝛽1 is statistically 

significant at the 5% level and then there is a significant difference among the levels of 

the production for the thousands of cycles. 

Table 4:  MLEs of the parameters (standard errors in parentheses and 𝒑-values in 

[ ⋅ ]) and the log-likelihood, AIC and BIC measures.   

Model   𝜽   𝝀   𝝈   𝜷𝟎   𝜷𝟏   −𝓵   AIC   BIC  

LTGW   4.834   0.001   0.3257   7.504   -0.065   22.146   54.293   62.071  

  (0.625)   (0.522)   (3.104)   (0.757)   (0.014)        

        [< 0.001]   [< 0.001]        

 

The plots in Figure 5(a) provide the Kaplan-Meier (KM) estimate and the estimated 

survival functions of the LTGW regression model. In view of Figure 5(a), there is no 

significant differences between the 26 and 28 amps levels survival functions. The plots of 

the hrf in Figure 5(b) corresponding to the thousands of cycles variable under the LTGW 

regression model indicate that the hrf is larger for 16 amps level than for 26 and 28 amps 

levels. Based on these plots, we conclude that the LTGW regression model provides a 

good fit to this data. 

 

(a) 

 

(b) 
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Figure 5: (a) Estimated survival functions and the empirical survival: LTGW regression 

model versus KM. (b) Fitted hrf using the LTGW regression model for the level 

production (16, 26 and 28 amps.).   

8. Conclusions 

We introduce the new lifetime distribution named the Transmuted Geometric-Weibull 

(TGW) distribution. Some of its mathematical properties are obtained. The maximum 

likelihood method is used to estimate the model parameters and the performance of the 

maximum likelihood estimators are discussed in terms of biases and mean squared errors. 

Two applications of the proposed family prove empirically its flexibility to model the real 

data sets. The log location-scale regression model based on a new generated distribution 

is introduced and discussed by means of real data application. Finally, it is clear that the 

proposed distribution provides better fits than other competitive models for used data 

sets.  
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