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Abstract

The present work suggests some imputation methods to deal with the

problems of non-response in sample surveys. The imputation meth-

ods presented in this work lead to the precise estimation strategies of

population mean. Empirical studies are carried out with the help of

data borrowed from natural populations to show the superiorities of

the suggested imputation methods over usual mean, ratio and regres-

sion methods of imputation in terms of the mean square error criteri-

ons. Suitable recommendations have been put forward for the survey

practitioners.
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1. Introduction

The clinical or life savings drug testing experiments face the problems of missing
data due to elimination of some of the experimental units during the course of
experiments. Similarly in agricultural experiments, crops destroy due to some
natural calamities or disease during the course of experiments. In demographic
and socio-economic surveys, generally response from each unit in sample is not
available due to various causes. Such incompleteness is known as non-response and
if the appropriate information about the nature of non-response is not available,
the conclusions concerning the population parameters may be spoiled.

In last couple of decades, significant advancements have been made to reduce
the negative impact of non-response. Imputation is one which deals with the
filling up method of incomplete data for adapting the standard analytic model in
statistics. It is typically used when it is needed to substitute missing item values
with certain fabricated values in a survey or census. To deal with the missing item
values effectively [13], [14], [16] and [9] suggested imputation methods that make
an incomplete data set structurally complete and its analysis simple. Imputation
may also be carried out with the aid of an auxiliary variable if it is available.
Some of the pioneer works which used information on an auxiliary variable under

∗Department of Applied Mathematics, Indian School of Mines,Dhanbad 826004, India, Email:
gnsingh ism@yahoo.com

†Corresponding Author.
‡Department of Statistics, Hacettepe University, Beytepe Campus 06800, Ankara, Turkey,

Email: kadilar@hacettepe.edu.tr



2

missing completely at random (MCAR) response mechanism were suggested by
[10] ,[11] , [20],[22],[1],[4],[18],[21],[17],[19]and [2].

[15] advocated the use of multiple imputations to lessen the negative impact of
missing data in more wise way. He showed multiple imputations provide a use-
ful strategy for dealing with missing data by replacing each missing value with
two or more acceptable fabricated values representing a distribution of possibili-
ties. Motivated with this suggestion and in follow up we suggest some single and
multiple imputations methods under MCAR response mechanism. The suggested
imputation methods lead to some effective estimation procedures of population
mean. Properties of the proposed imputation methods and subsequent estimation
procedures have been examined and suitable recommendations are made.

2. Sample structure and notations

Consider U = (U1, U2, U3, ..., UN) denote the finite population of size N and
let y and x be the positively correlated study and auxiliary variables respectively.
It is assumed that information on an auxiliary variable x is readily available for
each unit of the population and we intend to estimate the population mean of the
study variable y. Let a sample s of size n be drawn from the population under
simple random sampling without replacement (SRSWOR) scheme and surveyed
for study variable y but response from each sampled unit was not obtained which
leads to the presence of non-response. Let r be the number of responding units
out of sampled n units and the set of responding units is denoted by R and that of
non-responding units by Rc . For sampled units i ∈ R, the values yi are observed,
while for the units i ∈ Rc ,the yi values are missing and respective imputed values
are derived. We intend to develop some effective imputation methods with the aid
of an auxiliary variable x, such that the value of xi for unit Ui, is known and has
positive value for each unit of the population. Hence onwards we use the following
notations:
Ȳ , X̄:The population means of the study and auxiliary variables y and x respec-
tively.
S2
y ,S

2
x :The population variances of the study and auxiliary variables y and x re-

spectively.
Cy,Cx :The coefficients of variations of the study and auxiliary variables y and x
respectively.
ρyx: The correlation coefficient between the study and auxiliary variables y and
x.
ȳr, x̄r:The response means of the study and auxiliary variables y and x respec-
tively.
x̄n:The sample mean of the auxiliary variable x based on the sample size n.

2.1. Proposed imputation methods and subsequent estimators. In this
section, some more effective imputation methods and hence the corresponding
estimators have been proposed under MCAR response mechanism. The derived
resultant estimators have shown dominant performance over the existing methods
of imputations and are more relevant for practical applications.
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2.1.1. Single imputation methods and subsequent estimators. Following the MCAR
response mechanism we suggest the following three single imputation methods for
the missing values of the sample data.

(a) First method of imputation
The data after imputation takes the form,

(2.1) y.i =







yiexp
(

X̄−x̄r

X̄+x̄r

)

if i ∈ R
(

yr + b̂xi − b̂x̄i

)

exp
(

X̄−x̄r

X̄+x̄r

)

if i ∈ Rc

where b̂ =
syx(r)
s2x(r)

Under the method of imputation discussed in equation (2.1), the point estimator
of Ȳ takes the following form

(2.2) τ1 =
1

n

n
∑

i=1

y.i =
1

n

[

∑

i∈R

y.i +
∑

i∈Rc

y.i

]

which is simplified as

(2.3) τ1 =
[

ȳr + b̂ (x̄n − x̄r)
]

exp

(

X̄ − x̄r

X̄ + x̄r

)

(b) Second method of imputation
The data after imputation takes the form,

(2.4) y.i =







yiexp
(

X̄−x̄r

X̄+x̄r

)

if i ∈ R
(

ȳr

x̄r
xi

)

exp
(

X̄−x̄r

X̄+x̄r

)

if i ∈ Rc

Under the method of imputation described in equation (2.4), the point estimator
of Ȳ takes the following form

(2.5) τ2 =
ȳr

x̄r

x̄nexp

(

X̄ − x̄r

X̄ + x̄r

)

(c) Third method of imputation
The data after imputation takes the form,

(2.6) y.i =

{

yi −
n2

r2
x̄nb̂ if i ∈ R

(

ȳr +
n

n−r
b̂x̄nexp

(

X̄−x̄r

X̄+x̄r

)

+ n
r
b̂xi

)

if i ∈ Rc

Under the method of imputation described in equation (2.6), the point estimator
of Ȳ takes the following form

(2.7) τ3 = ȳr + b̂

[{

x̄nexp

(

X̄ − x̄r

X̄ + x̄r

)}

− x̄r

]

2.1.2. Multiple imputations methods and resultant estimators. In single imputa-
tion, the single value being imputed can reflect neither sampling variability about
the actual value when one model for non-response is being considered nor addi-
tional uncertainty when more than one model is being entertained. Since, multiple
imputations retain the virtues of single imputation and corrects its major flaws,
therefore, we intend to use multiple imputations for each missing value in the
sample of size n. The previously discussed methods of imputations have been con-
sidered to derive the imputed values for each missing value. After the generations
of imputed values, complete data sets are produced and subsequently estimators



4

based on sample of size n are reproduced. The final estimator of population mean
Ȳ is the average of estimates produced by imputation methods. Hence the final
estimators of population mean Ȳ based on the procedure of multiple imputations
are considered as

ȳMI1 =
1

3
[τ1 + τ2 + τ3]

(2.8) ȳMI1 =
1

3











{

ȳr + b̂ (x̄n − x̄r) exp
(

X̄−x̄r

X̄+x̄r

)}

+
{

ȳr

x̄r
x̄nexp

(

X̄−x̄r

X̄+x̄r

)}

+
{

ȳr + b̂
{{

x̄nexp
(

X̄−x̄r

X̄+x̄r

)}

− x̄r

}











ȳMI2 =
1

2
[τ1 + τ2]

(2.9) ȳMI2 =
1

2





{

ȳr + b̂ (x̄n − x̄r) exp
(

X̄−x̄r

X̄+x̄r

)}

+
{

ȳr

x̄r
x̄nexp

(

X̄−x̄r

X̄+x̄r

)}





ȳMI3 =
1

2
[τ2 + τ3]

(2.10) ȳMI3 =
1

2





{

ȳr

x̄r
x̄nexp

(

X̄−x̄r

X̄+x̄r

)}

+
{

ȳr + b̂
{{

x̄nexp
(

X̄−x̄r

X̄+x̄r

)}

− x̄r

}





ȳMI4 =
1

2
[τ1 + τ3]

(2.11) ȳMI4 =
1

2





{

ȳr + b̂ (x̄n − x̄r) exp
(

X̄−x̄r

X̄+x̄r

)}

+
{

ȳr + b̂
{{

x̄nexp
(

X̄−x̄r

X̄+x̄r

)}

− x̄r

}





3. Bias and mean square errors of the proposed estimators τ1, τ2, τ3,

ȳMI1
, ȳMI2

, ȳMI3
and ȳMI4

Under the suggested method of imputation the estimators τ1, τ2, τ3, ȳMI1 , ȳMI2 ,

ȳMI3 and ȳMI4defined in equations (2.3), (2.5), (2.7) and (2.8)-(2.11) are biased
estimators of Ȳ . Since, we have considered the MCAR response mechanism, there-
fore, the bias and mean square errors of the proposed estimators are derived up
to the first order of approximations using the following transformations:
ȳr = Ȳ (1 + e1) , x̄n = X̄ (1 + e2) , x̄r = X̄ (1 + e3) , syx(r) = Syx (1 + e4) ,
s2x(r) = S2

x (1 + e5) such that E(ei) = 0 and |ei| < 1 for i=1,2,...,5.
Under the above transformation, the estimators τ1, τ2 and τ3 take the following
forms:

(3.1) τ1 =





{

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)
−1 (e2 − e3)

}

exp
{

e3
2

(

1 + e3
2

)−1
}





(3.2) τ2 =

[

{

Ȳ (1 + e1) (1 + e2) (1 + e3)
−1

}

exp

{

e3

2

(

1 +
e3

2

)−1
}]
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(3.3) τ3 =





{

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)
−1

}

{{

(1 + e2) exp
{

e3
2

(

1 + e3
2

)−1
}}

− (1 + e3)
}





The bias and the mean square errors up to the first order of approximations of
the proposed estimators τ1, τ2, τ3, ȳMI1 , ȳMI2 , ȳMI3 and ȳMI4 are derived in the
following theorems:

3.1. Theorem. The bias of the estimators τ1, τ2, τ3, ȳMI1 , ȳMI2 , ȳMI3 and ȳMI4

are given by

(3.4) B (τ1) =

[

Ȳ
{(

1
r
− 1

N

)

1
2

(

3
4
µ200

X̄2
− µ110

X̄Ȳ

)}

+
{

(

1
r
− 1

n

)

βyx

(

1
2
µ200

X̄
+ µ300

µ200
− µ210

µ110

)}

]

(3.5) B (τ2) = Ȳ

[ {(

1
n
− 1

N

) (

ρyxCyCx − 3
2C

2
x

)}

+
{(

1
r
− 1

N

)

1
2

(

15
4 C2

x − 3ρyxCyCx

)}

]

(3.6) B (τ3) = βyx





{

(

1
r
− 1

N

)

3
2

(

1
4
µ200

X̄
+ µ300

µ200
− µ210

µ110

)}

+
{

(

1
n
− 1

N

)

(

µ210

µ110

− µ300

µ200

− 1
2
µ200

X̄

)}





(3.7) B(ȳMI1 ) =
1

3
{B(τ1) +B(τ2) +B(τ3)}

(3.8) B(ȳMI2 ) =
1

2
{B(τ1) +B(τ2)}

(3.9) B(ȳMI3 ) =
1

2
{B(τ2) +B(τ3)}

(3.10) B(ȳMI4 ) =
1

2
{B(τ1) +B(τ3)}

where µrst = E
[

(

xi − X̄
)r (

yi − Ȳ
)s (

zi − Z̄
)t
]

; (r, s, t) ≥ 0 are integers.

C2
y =

S2

y

Ȳ 2
, C2

x =
S2

x

X̄2
, ρyx =

Syx

SySx
, S2

y , S
2
x and Syx have their usual meanings.

Proof. The bias of the estimators τ1, τ2 and τ3 are derived as
B (τ1) = E

[

τ1 − Ȳ
]

(3.11) = E









{

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)
−1 (e2 − e3)

}

exp
{

− e3
2

(

1 + e3
2

)−1
}



 − Ȳ





B (τ2) = E
[

τ2 − Ȳ
]

(3.12) = E

[[

{

Ȳ (1 + e1) (1 + e2) (1 + e3)
−1

}

exp

{

−
e3

2

(

1 +
e3

2

)−1
}]

− Ȳ

]

B (τ3) = E
[

τ3 − Ȳ
]

(3.13) = E









{

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)
−1

{{

(1 + e2) exp
{

− e3
2

(

1 + e3
2

)−1
}}

− (1 + e3)
}



 − Ȳ
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Now, expanding the right hand side of the equations (3.11) - (3.13) binomially
and exponentially, taking expectations and retaining the terms up to first order
of approximations, we get the expressions of the bias of the estimators τ1, τ2 and
τ3 as derived in equations (3.4) - (3.6).

The bias of the estimators ȳMI1 , ȳMI2 , ȳMI3 and ȳMI4 are derived as

B (ȳMI1) = E
[

ȳMI1 − Ȳ
]

= E

[{

1

3
{τ1 + τ2 + τ3}

}

− Ȳ

]

=
1

3
E
[(

τ1 − Ȳ
)

+
(

τ2 − Ȳ
)

+
(

τ3 − Ȳ
)]

=
1

3

[

E
(

τ1 − Ȳ
)

+ E
(

τ2 − Ȳ
)

+ E
(

τ3 − Ȳ
)]

(3.14) B (ȳMI1) =
1

3
{B(τ1) +B(τ2) +B(τ3)}

B (ȳMI2) = E
[

ȳMI2 − Ȳ
]

= E

[{

1

2
{τ1 + τ2} − Ȳ

]

=
1

2
E
[(

τ1 − Ȳ
)

+
(

τ2 − Ȳ
)]

=
1

2

[

E
(

τ1 − Ȳ
)

+ E
(

τ2 − Ȳ
)]

(3.15) B (ȳMI2) =
1

2
{B(τ1) +B(τ2)}

B (ȳMI3) = E
[

ȳMI3 − Ȳ
]

= E

[{

1

2
{τ2 + τ3}

}

− Ȳ

]

=
1

2
E
[(

τ2 − Ȳ
)

+
(

τ3 − Ȳ
)]

=
1

2

[

E
(

τ2 − Ȳ
)

+ E
(

τ3 − Ȳ
)]

(3.16) B (ȳMI3) =
1

2
{B(τ2) +B(τ3)}

B (ȳMI4) = E
[

ȳMI4 − Ȳ
]

= E

[{

1

2
{τ1 + τ3}

}

− Ȳ

]

=
1

2
E
[(

τ1 − Ȳ
)

+
(

τ3 − Ȳ
)]

=
1

2

[

E
(

τ1 − Ȳ
)

+ E
(

τ3 − Ȳ
)]

(3.17) B (ȳMI4) =
1

2
{B(τ1) +B(τ3)}

where B (τ1) = E
[

τ1 − Ȳ
]

, B(τ2) = E
[

τ2 − Ȳ
]

and B (τ3) = E
[

τ3 − Ȳ
]

�
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3.2. Theorem. The mean square errors of the estimators τ1, τ2, τ3, ȳMI1 , ȳMI2 , ȳMI3

and ȳMI4 are given by

(3.18) M(τ1) = Ȳ 2

[ (

1
r
− 1

N

) {

C2
y + 1

4C
2
x − ρyxCyCx

}

+
(

1
r
− 1

n

)

ρyxCyCx {Cx − ρyxCy}

]

(3.19) M(τ2) = Ȳ 2

[ (

1
r
− 1

N

) {

C2
y + 9

4C
2
x − 3ρyxCyCx

}

+2
(

1
n
− 1

N

) {

ρyxCyCx − C2
x

}

]

(3.20) M(τ3) = Ȳ 2C2
y

(

1

r
−

1

N

)[

1−
3

4
ρ2yx

]

(3.21) M(ȳMI1) =

[

1
9 [M(τ1) +M(τ2) +M(τ3)]
+2 {C (τ1, τ2) + C (τ1, τ3) + C (τ2, τ3)}

]

(3.22) M(ȳMI2) =
1

4
[M(τ1) +M(τ2) + 2C (τ1, τ2)]

(3.23) M(ȳMI3) =
1

4
[M(τ2) +M(τ3) + 2C (τ2, τ3)]

(3.24) M(ȳMI4) =
1

4
[M(τ1) +M(τ3) + 2C (τ1, τ3)]

where

(3.25) C (τ1, τ2) = Ȳ 2

[ (

1
r
− 1

N

) (

C2
y − 1

4C
2
x − ρyxCyCx

)

+
(

1
r
− 1

n

) (

C2
x − ρ2yxC

2
y

)

]

(3.26) C (τ1, τ3) = Ȳ 2

[ (

1
r
− 1

N

) (

C2
y − 1

4ρyxCyCx − 1
2ρ

2
yxC

2
y

)

+
(

1
r
− 1

n

)

1
2

(

ρyxCyCx − ρ2yxC
2
y

)

]

(3.27) C (τ2, τ3) = Ȳ 2

[ (

1
r
− 1

N

) (

C2
y − 1

4ρyxCyCx − 1
2ρ

2
yxC

2
y

)

+
(

1
r
− 1

n

) (

ρyxCyCx − ρ2yxC
2
y

)

]

Proof. The mean square errors of the estimators τ1, τ2 and τ3 are derived as

M (τ1) = E
[

τ1 − Ȳ
]2

(3.28) = E









{

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)
−1

(e2 − e3)
}

exp
{

− e3
2

(

1 + e3
2

)−1
}



 − Ȳ





2

M (τ2) = E
[

τ2 − Ȳ
]2

(3.29) = E

[[

{

Ȳ (1 + e1) (1 + e2) (1 + e3)
−1

}

exp

{

−
e3

2

(

1 +
e3

2

)−1
}]

− Ȳ

]2

M (τ3) = E
[

τ3 − Ȳ
]2

(3.30) = E









{

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)
−1

{{

(1 + e2) exp
{

− e3
2

(

1 + e3
2

)−1
}}

− (1 + e3)
}



 − Ȳ





2
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Now, expanding the right hand side of the equations (3.28) - (3.30) binomially
and exponentially, taking expectations and retaining the terms up to first order
of approximations, we get the expressions of the mean square errors of the
estimators τ1, τ2 and τ3 as derived in equations (3.18) - (3.20).

The mean square errors of the estimators ȳMI1 , ȳMI2 , ȳMI3 and ȳMI4 are derived
as

M (ȳMI1) = E
[

ȳMI1 − Ȳ
]2

= E

[{

1

3
{τ1 + τ2 + τ3}

}

− Ȳ

]2

= E

[

1

3

(

τ1 − Ȳ
)

+
1

3

(

τ2 − Ȳ
)

+
1

3

(

τ3 − Ȳ
)

]2

(3.31) M (ȳMI1) =







1
9

{

E
(

τ1 − Ȳ
)2

+ E
(

τ2 − Ȳ
)2

+ E
(

τ3 − Ȳ
)2
}

2
9

[

E
[(

τ1 − Ȳ
) (

τ2 − Ȳ
)]

+ E
[(

τ1 − Ȳ
) (

τ3 − Ȳ
)]]

+ 2
9

[

E
[(

τ2 − Ȳ
) (

τ3 − Ȳ
)]]







M (ȳMI2) = E
[

ȳMI2 − Ȳ
]2

= E

[{

1

2
{τ1 + τ2}

}

− Ȳ

]2

= E

[

1

2

(

τ1 − Ȳ
)

+
1

2

(

τ2 − Ȳ
)

]2

=

[

1

4
E
(

τ1 − Ȳ
)2

+
1

4
E
(

τ2 − Ȳ
)2

+
1

2
E
[(

τ1 − Ȳ
) (

τ2 − Ȳ
)]

(3.32) M(ȳMI2) =
1

4
[M(τ1) +M(τ2) + 2C (τ1, τ2)]

M (ȳMI3) = E
[

ȳMI3 − Ȳ
]2

= E

[{

1

2
{τ2 + τ3}

}

− Ȳ

]2

= E

[

1

2

(

τ2 − Ȳ
)

+
1

2

(

τ3 − Ȳ
)

]2

=

[

1

4
E
(

τ2 − Ȳ
)2

+
1

4
E
(

τ3 − Ȳ
)2

+
1

2
E
[(

τ2 − Ȳ
) (

τ3 − Ȳ
)]

(3.33) M(ȳMI3) =
1

4
[M(τ2) +M(τ3) + 2C (τ2, τ3)]

M (ȳMI4) = E
[

ȳMI4 − Ȳ
]2

= E

[{

1

2
{τ1 + τ3}

}

− Ȳ

]2

= E

[

1

2

(

τ1 − Ȳ
)

+
1

2

(

τ3 − Ȳ
)

]2

=

[

1

4
E
(

τ1 − Ȳ
)2

+
1

4
E
(

τ3 − Ȳ
)2

+
1

2
E
[(

τ1 − Ȳ
) (

τ3 − Ȳ
)]

(3.34) M(ȳMI4) =
1

4
[M(τ1) +M(τ3) + 2C (τ1, τ3)]

whereM (τ1) = E
[

τ1 − Ȳ
]2
, M(τ2) = E

[

τ2 − Ȳ
]2
, M(τ3) = E

[

τ3 − Ȳ
]2

, C (τ1, τ2) =

E
[(

τ1 − Ȳ
) (

τ2 − Ȳ
)]

, C (τ1, τ3) = E
[(

τ1 − Ȳ
) (

τ3 − Ȳ
)]

and C (τ2, τ3) =

E
[(

τ2 − Ȳ
) (

τ3 − Ȳ
)]

The expressions of C (τ1, τ2) , C (τ1, τ3) and C (τ2, τ3) are
derived as

C (τ1, τ2) = E
[(

τ1 − Ȳ
) (

τ2 − Ȳ
)]
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(3.35) = E











[{(

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)
−1 (e2 − e3)

)

(

exp
(

− e3
2

(

1 + e3
2

)−1
))

} − Ȳ ]
[[{

Ȳ (1 + e1) (1 + e2) (1 + e3)
−1

}

exp
{

− e3
2

(

1 + e3
2

)−1
}]

− Ȳ
]











C (τ1, τ3) = E
[(

τ1 − Ȳ
) (

τ3 − Ȳ
)]

(3.36) = E

















[{(

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)
−1

(e2 − e3)
)

(

exp
(

− e3
2

(

1 + e3
2

)−1
))

} − Ȳ ]
[{

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)
−1

{{

(1 + e2) exp
{

− e3
2

(

1 + e3
2

)−1
}}

− (1 + e3)
}

} − Ȳ ]

















C (τ2, τ3) = E
[(

τ2 − Ȳ
) (

τ3 − Ȳ
)]

(3.37) = E











[[{

Ȳ (1 + e1) (1 + e2) (1 + e3)
−1

}

exp
{

− e3
2

(

1 + e3
2

)−1
}]

− Ȳ
]

[{

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)
−1

{{

(1 + e2) exp
{

− e3
2

(

1 + e3
2

)−1
}}

− (1 + e3)
}

} − Ȳ ]











Now, expanding the right hand side of the equations (3.35)− (3.37) binomially
and exponentially, taking expectations and retaining the terms up to the first order
of approximations, we get the expressions of the C (τ1, τ2) , C (τ1, τ3) and C (τ2, τ3)
as derived in equations (3.25) - (3.27). �

4. Some well-known methods of single imputation and resultant

estimators

Following are the list of some existing methods of imputation and their resultant
estimators which are often practiced in survey sampling.

4.1. Mean method of imputation. The data produced under mean method
of imputation is described as

(4.1) y.i =

{

yi if i ∈ R

yr if i ∈ Rc

Under the method of imputation discussed in equation (4.1), the point estimator
of the population mean Ȳ is derived as

(4.2) ȳM =
1

n

n
∑

i=1

y.i =
1

n

[

∑

i∈R

y.i +
∑

i∈Rc

y.i

]

= ȳr

which is simplified as

The variance of the estimator ȳM given in equation (4.2) is obtained under
MCAR response mechanism and is given as

V (ȳM ) =

(

1

r
−

1

N

)

Ȳ 2C2
y
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4.2. Ratio method of imputation. The ratio method of imputation is applied
with the help of information obtained on an auxiliary variable x and consequently
the data generated is described as

(4.3) y.i =

{

yi if i ∈ R

b̂rxi if i ∈ Rc

where b̂r =
∑

i∈R
yi

∑

i∈R x.
= ȳr

x̄r

Under the method of imputation discussed in equation (4.3), the point estimator
of population mean Ȳ is derived as

(4.4) ȳRAT =
1

n

n
∑

i=1

y.i = ȳr
x̄n

x̄r

The bias and mean square error of the estimator ȳRAT are obtained under MCAR
response mechanism up to first order of approximations and given as

(4.5) B (ȳRAT ) =

(

1

r
−

1

n

)

Ȳ
(

C2
x − ρyxCyCx

)

(4.6) M (ȳRAT ) = Ȳ 2

[(

1

r
−

1

n

)

C2
y +

(

1

r
−

1

n

)

(

C2
x − ρyxCyCx

)

]

4.3. Regression method of imputation. The data generated by regression
method of imputation is given as

(4.7) y.i =

{

yi if i ∈ R

ŷi if i ∈ Rc

where

ŷi = â+ b̂rexi, â = ȳr − b̂x̄r and b̂re =
Syx(r)
S2
x(r)

Under the method of imputation discussed in equation (4.5), the point estimator
of population mean Ȳ is derived as

(4.8) ȳREG =
1

n

n
∑

i=1

y.i = ȳr + b̂re (x̄n − x̄r)

The bias and mean square error of the estimator ȳREG are obtained under MCAR
response mechanism up to first order of approximations and given as

(4.9) B (ȳREG) =
ρyxCy

CxX̄

(

1

r
−

1

n

)

Ȳ

(

µ300

µ200
−

µ210

µ110

)

(4.10) M (ȳREG) = Ȳ 2C2
y

[(

1

r
−

1

n

)

−

(

1

r
−

1

n

)

ρ2yx

]
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5. Empirical study

In this section, we demonstrate the performances of the proposed imputation
methods over mean, ratio and regressionmethods of imputation. To access the per-
formances of the proposed methods, empirical studies are carried out on seventeen
natural populations chosen from various survey literatures related to life sciences,
agricultural and socio-economic characters. The details of the populations are
provided in this section. The methodology of empirical study is as follows; from a
finite population of size N a sample of size n is drawn under SRSWOR sampling
scheme. The first m samples were selected from the all possible NCn samples.
First we drop (n-r) units randomly from each sample corresponding to the study
variable y and imputed values are derived with six methods of imputations namely
(i) Mean method of imputation (ii) Ratio method of imputation (iii) Regression
method of imputation (iv) Suggested single imputations methods (v) Suggested
multiple imputations methods

The percent relative efficiencies of the proposed single imputation methods with
respect to the mean, ratio and regression methods of imputation are given as

PRE1 =

∑m
s=1

[

(ȳM )s − Ȳ
]2

∑m
s=1

[

(τ1)s − Ȳ
]2 ×100, PRE2 =

∑m
s=1

[

(ȳRAT )s − Ȳ
]2

∑m
s=1

[

(τ1)s − Ȳ
]2 ×100,

PRE3 =

∑m
s=1

[

(ȳREG)s − Ȳ
]2

∑m
s=1

[

(τ1)s − Ȳ
]2 ×100, PRE4 =

∑m
s=1

[

(ȳM )s − Ȳ
]2

∑m
s=1

[

(τ2)s − Ȳ
]2 ×100,

PRE5 =

∑m
s=1

[

(ȳRAT )s − Ȳ
]2

∑m
s=1

[

(τ2)s − Ȳ
]2 ×100, PRE6 =

∑m
s=1

[

(ȳREG)s − Ȳ
]2

∑m
s=1

[

(τ2)s − Ȳ
]2 ×100,

PRE7 =

∑m
s=1

[

(ȳM )s − Ȳ
]2

∑m
s=1

[

(τ3)s − Ȳ
]2 ×100, PRE8 =

∑m
s=1

[

(ȳRAT )s − Ȳ
]2

∑m
s=1

[

(τ3)s − Ȳ
]2 ×100

and PRE9 =
∑m

s=1[(ȳREG)
s
−Ȳ ]2

∑

m
s=1[(τ3)s−Ȳ ]

2 × 100

The percent relative efficiencies of the proposed multiple imputations methods
with respect to the mean, ratio, regression and proposed single imputation meth-
ods are given as

E1 =

∑m
s=1

[

(ȳM )s − Ȳ
]2

∑m
s=1

[

(ȳMI1 )s − Ȳ
]2 × 100, E2 =

∑m
s=1

[

(ȳRAT )s − Ȳ
]2

∑m
s=1

[

(ȳMI1)s − Ȳ
]2 × 100,

E3 =

∑m
s=1

[

(ȳREG)s − Ȳ
]2

∑m
s=1

[

(ȳMI1)s − Ȳ
]2 × 100, E4 =

∑m
s=1

[

(τ1)s − Ȳ
]2

∑m
s=1

[

(ȳMI1)s − Ȳ
]2 × 100,

E5 =

∑m
s=1

[

(τ2)s − Ȳ
]2

∑m
s=1

[

(ȳMI1 )s − Ȳ
]2 × 100, E6 =

∑m
s=1

[

(τ3)s − Ȳ
]2

∑m
s=1

[

(ȳMI1 )s − Ȳ
]2 × 100,

E7 =

∑m
s=1

[

(ȳM )s − Ȳ
]2

∑m
s=1

[

(ȳMI2 )s − Ȳ
]2 × 100, E8 =

∑m
s=1

[

(ȳRAT )s − Ȳ
]2

∑m
s=1

[

(ȳMI2)s − Ȳ
]2 × 100,
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E9 =

∑m
s=1

[

(ȳREG)s − Ȳ
]2

∑m
s=1

[

(ȳMI2)s − Ȳ
]2 × 100, E10 =

∑m
s=1

[

(τ1)s − Ȳ
]2

∑m
s=1

[

(ȳMI2)s − Ȳ
]2 × 100,

E11 =

∑m
s=1

[

(τ2)s − Ȳ
]2

∑m
s=1

[

(ȳMI2)s − Ȳ
]2 × 100, E12 =

∑m
s=1

[

(ȳM )s − Ȳ
]2

∑m
s=1

[

(ȳMI3)s − Ȳ
]2 × 100,

E13 =

∑m
s=1

[

(ȳRAT )s − Ȳ
]2

∑m
s=1

[

(ȳMI3)s − Ȳ
]2 × 100, E14 =

∑m
s=1

[

(ȳREG)s − Ȳ
]2

∑m
s=1

[

(ȳMI3)s − Ȳ
]2 × 100,

E15 =

∑m
s=1

[

(τ2)s − Ȳ
]2

∑m
s=1

[

(ȳMI3)s − Ȳ
]2 × 100, E16 =

∑m
s=1

[

(

τ3)s − Ȳ
]2

∑m
s=1

[

(ȳMI3)s − Ȳ
]2 × 100,

E17 =

∑m
s=1

[

(ȳM )s − Ȳ
]2

∑m
s=1

[

(ȳMI4)s − Ȳ
]2 × 100, E18 =

∑m
s=1

[

(ȳRAT )s − Ȳ
]2

∑m
s=1

[

(ȳMI4)s − Ȳ
]2 × 100,

E19 =

∑m
s=1

[

(ȳREG)s − Ȳ
]2

∑m
s=1

[

(ȳMI4)s − Ȳ
]2 × 100, E20 =

∑m
s=1

[

(τ1)s − Ȳ
]2

∑m
s=1

[

(ȳMI4)s − Ȳ
]2 × 100,

and E21 =

∑m
s=1

[

(τ2)s−Ȳ ]2
∑

m
s=1[(ȳMI4)s−Ȳ ]2

× 100,

The percent relative efficiencies are computed for seventeen natural populations
as described below and presented in Tables 1-7.
Population I [Source: [12]] (Page No. 399)
Y: Area under wheat in 1964
X: Area under wheat in 1963
N = 34, n = 7, r = 5, ρyx = 0.9800867.
Population II [Source: [3]] (Page No. 58)
Y: Head length of second son.
X: Head length of first son.
N = 25, n = 7, r = 5, ρyx = 0.7107518.
Population III [Source: [5]] (Page No. 182)
Y: Number of placebo children.
X: Number of paralytic polio cases in the placebo group.
N = 34, n = 7, r = 5, ρyx = 0.7328235.
Population IV [Source: [8]] (Page No. 682)
Y: No. of hhś on ith block.
X: Eye estimate of no. of hhś on ith block
N = 20, n = 7, r = 5, ρyx = 0.8662052.
Population V [Source: [24]] (Page No. 349)
Y: Volume.
X: Diameter
N = 31, n = 7, r = 5, ρyx = 0.9671194.
Population VI [Source: [5]] (Page No. 182)
Y: Number of placebo children.
X: Number of paralytic polio cases in the not inoculated group.
N = 34, n = 7, r = 5, ρyx = 0.6426412.
Population VII [Source: [12] ] (Page No. 399)
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Y: Area under wheat in 1964
X: Cultivated area in 1961
N = 34, n = 7, r = 5, ρyx = 0.9042627.
Population VIII [Source: [3]] (Page No. 58)
Y: Head length of second son.
X: Head breadth of first son.
N = 34, n = 7, r = 5, ρyx = 0.6931573.
Population IX [Source: [5]] (Page No. 34)
Y: Food cost of family
X: Size of family
N = 33, n = 7, r = 5, ρyx = 0.432738.
Population X [Source: [7]] (Page No. 180)
Y: Sepal width of Iris setosa
X: Sepal length of Iris setosa
N = 35, n = 7, r = 5, ρyx = 0.6315548.
Population XI [Source: [6]] (Page No. 154)
Y: Average salary (in dollars) U. S.
X: Per pupil spending (in dollars) U. S.
N = 26, n = 7, r = 5, ρyx = 0.8096703.
Population XII [Source: [6]] (Page No. 274)
Y: Saving (in billions of dollars) U. S. (1970-1995).
X: Personal disposable income (in billions of dollars) U. S. (1970-1995).
N = 26, n = 7, r = 5, ρyx = 0.8759079.
Population XIII [Source: [6]] (Page No. 460)
Y: Index of real compensation per hour, business sector of U. S. (1959-1998).
X: Index of output per hour, business sector of U. S. (1959-1998).
N = 30, n = 7, r = 5, ρyx = 0.9910549.
Population XIV [Source: [6]] (Page No. 710)
Y: Investment in fixed plant and equipment in manufacturing (in billions of dollars)
of U. S. (1970-1991).
X: Manufacturing sales (in billions of dollars) seasonally adjusted of U. S. (1970-
1991).
N = 22, n = 7, r = 5, ρyx = 0.9903192.
Population XV [Source: [23]] (Page No. 166)
Y: Number of banana bunches.
X: Number of banana pits.
N = 20, n = 7, r = 5, ρyx = 0.9800867.
Population XVI [Source: [24]] (Page No. 349)
Y: Volume.
Z: Height
N = 31, n = 7, r = 5, ρyx = 0.5982497.
Population XVII [Source: [5]] (Page No. 32)
Y: Food cost of family
X: Income of family
N = 33, n = 7, r = 5, ρyx = 0.2521603.



14

Table 1: Percent relative efficiencies of the estimator τ1 with respect

to mean, ratio and regression method of imputation

Population Source PRE1 PRE2 PRE3

Population I 651.309 316.1384 323.7037
Population II 157.1894 126.3349 124.532
Population III 223.1392 162.9272 194.0364
Population IV 294.5976 188.9788 186.6463
Population V 164.7055 154.3641 158.9833
Population VI 200.7349 166.7052 181.3413
Population VII 284.5805 182.3409 178.0122
Population VIII 241.128 170.1591 155.7499
Population IX 146.6306 133.258 110.9385
Population X 100.5127 106.255 101.159
Population XI 182.2423 144.3668 142.4705
Population XII 264.9797 189.8048 184.0865
Population XIII 2139.517 735.6239 925.6935
Population XIV 287.5206 237.6237 237.7244
Population XV 236.8863 169.4697 172.0994

Table 2: Percent relative efficiencies of the estimator τ2 with respect

to mean, ratio and regression method of imputation

Population Source PRE1 PRE2 PRE3

Population I 609.8675 296.0231 303.1071
Population II 125.24594 100.6827 100.24594
Population III 177.9285 129.9161 154.7222
Population IV 248.101 147.7621 150.0241
Population V 301.875 282.9211 291.3873
Population VI 143.1064 118.8463 129.3873
Population VII 245.6476 157.3952 153.6587
Population VIII 181.8826 127.9263 117.0935
Population IX 116.9035 111.8727 106.1338
Population X 145.7711 115.4754 113.9586
Population XI 163.0738 142.7995 138.4974
Population XII 193.4761 198.1857 205.0121
Population XIII 3647.527 1254.118 1578.156
Population XIV 316.3238 261.4263 261.5392
Population XV 208.6929 149.2999 151.6167
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Table 3: Percent relative efficiencies of the estimator τ3 with respect

to mean, ratio and regression method of imputation

Population Source PRE1 PRE2 PRE3

Population I 746.0278 362.1138 370.7794
Population II 148.3297 119.2142 117.5129
Population III 136.2724 100.50058 118.4991
Population IV 287.3633 184.3382 182.063
Population V 158.7588 148.7907 153.2432
Population VI 121.4111 100.8289 109.6812
Population VII 339.7371 217.6817 212.5141
Population VIII 261.7878 184.1273 168.5353
Population IX 149.2613 135.6488 112.9288
Population X 105.8197 111.8657 106.5001
Population XI 174.4859 138.224 136.4069
Population XII 241.7096 247.5934 256.1216
Population XIII 1264.535 434.813 547.1196
Population XVI 307.6482 254.2538 254.3616
Population XV 236.1414 168.9367 171.5582

Table 4: Percent relative efficiencies of the estimator ȳMI1 with respect

to mean, ratio, regression, τ1, τ2, and τ3 method of imputation

Source E1 E2 E3 E4 E5 E6

Population I 264.907 207.769 204.951 101.495 100.9956 100.4527
Population XVI 161.723 149.986 123.486 111.909 131.157 115.262
Population XVII 108.2 101.727 104.704 108.014 107.128 126.231

Table 5: Percent relative efficiencies of the estimator ȳMI2 with respect

to mean, ratio, regression, τ1, and τ2 method of imputation

Source E7 E8 E9 E10 E11

Population I 263.29 206.5075 203.701 100.8759 100.38554
Population I 204.77 134.7842 157.6394 105.1446 108.5116
Population I 192.0412 148.8212 173.3055 106.0514 111.1025
Population I 142.7501 122.8817 144.1724 108.6922 101.2051
Population I 239.2887 173.8419 171.1855 101.0125 101.3311
Population I 107.9156 101.4604 104.4289 107.7306 106.847

Table 6: Percent relative efficiencies of the estimator ȳMI3 with respect

to mean, ratio, regression, τ2, and τ3 method of imputation

Source E12 E13 E14 E15 E16

Population I 578.9268 251.5427 240.5896 102.2776 101.6885
Population I 189.3006 124.63 145.77 100.3426 138.7786
Population I 280.08 169.36 166.809 102.6493 112.8907
Population I 143.5103 131.2604 113.5755 110.1633 103.5136
Population I 120.7001 109.198 114.8592 101.4147 109.9245
Population I 314.2731 259.8436 259.7335 102.1552 100.3516
Population I 169.3458 157.0557 129.3067 137.3398 120.6951
Population I 109.7599 103.1943 106.2136 108.6731 128.0516
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Table 7: Percent relative efficiencies of the estimator ȳMI4 with respect

to mean, ratio, regression, τ1, and τ3 method of imputation

Source E17 E18 E19 E20 E21

Population I 264.0247 207.0764 204.268 101.1567 100.1214
Population I 118.5684 118.6753 128.109 100.5546 101.4809
Population I 152.753 127.9926 137.42 100.3505 101.3829
Population I 155.0982 143.8421 118.4277 107.3255 110.5407

6. Conclusions and recommendations

A close look on Tables 1-7 reveals that the proposed methods of imputations are
rewarding in terms of percent relative efficiencies. These findings suggest that the
proposed single and multiple methods of imputations described in this paper are
highly beneficial in minimizing the negative impact of non-response to a greater
extent as compared to the mean, ratio and regression methods of imputation.
The survey statisticians may be encouraged for the practical applications of the
suggested imputation methods, if non-response is unavoidable in the survey data.
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