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Abstract

Use of auxiliary variables is very common in estimating various popu-
lation parameters. In this study, we suggest a class of unbiased linear
estimators for estimating the population mean of the study variate y us-
ing information on the auxiliary variate x in systematic sampling. The
variance expressions of the suggested estimators are compared with
usual unbiased estimator, Swain’s (1964) ratio estimator and Shukla’s
(1971) product type estimator. It is demonstrated that the proposed
estimators are more efficient than others.
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1. Introduction

In sample researches, auxiliary information is commonly used in order to im-
prove efficiency and precision of estimators while calculating sum, mean and vari-
ance of population estimations. Auxiliary information is used in ratio, product,
regression and spread estimators due to its simplicity and precision. These esti-
mators are preferable regarding correlation between auxiliary variable and study
variable, and in some conditions, give results that have smaller variance, which
means more precise, compared to estimators based on simple means. Studies on
ratio estimator, which is one of the basic estimation methods using auxiliary in-
formation, are being carried out further. In literature, new estimators for mean,
sum and variance of population have been obtained by improving classical ratio
estimation. Use of auxiliary information provided by auxiliary variable was anal-
ysed extensively by Cochran [3]. In 1956, Quenouille studied the bias reduction
using ratio estimations obtained from two random halves [10]. Ratio estimator
for estimation of population mean in systematic sampling was first obtained by
Swain [9]. In case of negative correlation between variable and auxiliary variable,
Shukla suggested the product estimator in 1971 [6]. R. Singh and H. P. Singh,
by weighting and summing ratio and product estimators, obtained new ratio and
product estimators [8]. H. P. Singh et al. (2011) adapted the ratio and product
type exponential estimators for systematic sampling [7].
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1.1. Systematic Sampling. The method of systematic sampling, first studied
by Madow and Madow in 1944 [5], is widely used in surveys of finite populations.
When properly applied, the method pocks up any obvious or hidden stratification
in the population and thus, can be more precise than random sampling. In ad-
dition, systematic sampling can be implemented easily and therefore, it reduces
costs. In this variant of random sampling, only the first unit of the sample is
randomly selected from the population. The subsequent units are then selected
by following some definite rule.
After a simple random sampling is ranked randomly, a random unit is selected
from the first k unit to take an n size sample. The sampling method where each
following k unit is included in the sampling is called k-th systematic sampling.
The success of systematic sampling depends on the ranking of units. In case of
availability of information on the units, ranking should be accordingly. Thus, one
unit is selected from each group. In this method, the unit selected the first deter-
mines the sampling. This unit is called starting point. The starting point should
be selected from the [1,k] interval according to k.
Systematic sampling is a special version of simple random sampling, which facili-
tates the selection of units to be included in sampling. It is possible to form the
sampling more easily, in a shorter time and with less error than SRS. This is an
important feature especially in terms of fieldworks. Systematic sampling is more
fairly distributed in the population compared to simple random sampling.
yij denotes the j-th unit of i-th systematic sampling (i=1,2,...k and j=1,2,...,n).
Sytematic sampling is considered a special case of simple random sampling and
population mean can be calculated through simple random sampling.
To obtain the bias and mean square errors (MSE), let us define

e0 =
ySY S − Y

Y

and

e1 =
xSY S −X

X

[2] Such that,

E (e0) = E (e1) = 0

E
(
e20
)

=
N − 1

N

C2
y

n
[1 + (n− 1)ρyy]

E
(
e21
)

=
N − 1

N

C2
x

n
[1 + (n− 1)ρxx]

Where,

ρyy =

2
k∑
i=1

∑
j<u

(yij − Y )(yiu − Y )

(n− 1)(N − 1)S2
Y
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and

ρxx =

2
k∑
i=1

∑
j<u

(xij −X)(xiu −X)

(n− 1)(N − 1)S2
X

is intraclass correlation between a pair of units within the systematic sample
for the study variate y and auxiliary variate x, respectively;

ρxy =
E
(
xij −X

)
E
(
yij − Y

)√
E
(
xij −X

)2
E
(
yij − Y

)2
is the correlation coefficient between x and y [4];

κ = ρxy (Cy/Cx)

ρ∗ =
[1 + (n− 1)ρyy]

1/2

[1 + (n− 1)ρxx]
1/2

and Cx, Cy are the coefficients of variation of the variates x and y respectively.
The mean of i-th systematic sampling can be found as,

ySY S =

n∑
i=1

yi

n

It’s not possible to say that the mean estimators in systematic sampling are always
unbiased. When N=nk is not true, estimators include a systematic error [1] The
variance of the usual population mean estimator ȳSY S is given by,

(1.1) V (ySY S) =
(N − 1)S2

Y

nN
[1 + (n− 1)ρY Y ]

Classical ratio and product estimators are respectively defined by Swain (1964)
and Shukla (1971) as follows:

(1.2) yr SY S
=
ySY S
xSY S

X

(1.3) ypSY S
=
xSY S
ySY S

X

The MSEs and biases of ȳrSY S and ȳpSY S to first degree approximation are
found by,

(1.4) B(yrSY S
) =

N − 1

N

Y

n
C2
x [1 + (n− 1)ρxx] (1− κρ∗)

(1.5) B(ypSY S
) =

N − 1

N

Y

n
[1 + (n− 1)ρxx]C2

xκρ
∗

(1.6) MSE(ypSY S
) =

N − 1

Nn
Y

2
[1 + (n− 1)ρxx]

[
C2
yρ

∗2 + C2
x(1 + 2κρ∗)

]
(1.7) MSE(yr SY S

) =
N − 1

Nn
Y

2
[1 + (n− 1)ρxx]

[
C2
yρ

∗2 + C2
x(1− 2κρ∗)

]
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R. Singh and H. P. Singh (1998) suggested ratio and product type estimators
for estimating the population mean in systematic sampling as,

(1.8) dr = ω1ySY S + ω2ySY S
X

xSY S
+ ω3ySS

(
X

xSY S

)2

(1.9) dp = ω∗
1ySY S + ω∗

2ySY S
xSY S

X
+ ω∗

3ySY S

(
xSY S

X

)2

where,

3∑
i=1

ω∗
i = 1

and

3∑
i=1

ωi = 1

The minimum variances of dr and dp to first degree approximation are the same
and found by,

(1.10) V (dr)MN = V (dp)MN =
N − 1

Nn
[1 + (n− 1)ρyy] (1− ρ2xy)S2

y

H.P. Singh, R.Tailor, N.K. Jatwa (2011) proposed ratio and product type esti-
mators as follows,

(1.11) yPE = ySY S exp

(
xSY S −X
X + xSY S

)

(1.12) yRE = ySY S exp

(
X − xSY S
X + xSY S

)
The biases and MSEs of ȳRE and ȳPE to first degree approximation are found

by,

(1.13) E
(
yRE − Y

)
=
N − 1

Nn
Y
C2
x

8
[1 + (n− 1)ρxx] (3− 4κρ∗)

(1.14) E
(
yPE − Y

)
=
N − 1

Nn

Y

8
C2
x [1 + (n− 1)ρxx] (4κρ∗ − 1)

(1.15) MSE (y∗RE) =
N − 1

Nn
Y

2
[1 + (n− 1)ρxx]

[
C2
yρ

∗2 + C2
x

(
1

4
− κρ∗

)]

(1.16) MSE (y∗PE) =
N − 1

Nn
Y

2
[1 + (n− 1)ρxx]

[
C2
yρ

∗2 + C2
x

(
1

4
+ κρ∗

)]
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2. Suggested estimator in systematic sampling

Supposed d1 = ySS , d2 = ySS

(
axSS+b
aX+b

)α
and d3 = ySS

(
axSS+b
aX+b

)β
where α, β ∈

R. We proposed a new class of generalised and unbiased linear estimators based
on ratio and product type estimators of R. Singh & H.P. Singh (1998) and also
including these estimators is suggested as follows,

(2.1) tG =

3∑
i=1

λidi

where
3∑
i=1

λi = 1 for λ ∈ R. and λi denotes the constant used for reducing the bias.

When this estimator is denominated with e terms for formulating the bias and
mean square error,

tG = λ∗1Y (e0 + 1) + λ∗2Y (e0 + 1)

[
aX (e1 + 1) + b

aX + b

]α

+λ∗3Y (e0 + 1)

[
aX (e1 + 1) + b

aX + b

]β
= Y (e0 + 1)

[
λ1 + λ2(1 + υe1)

α
+ λ3(1 + υe1)

β
]

tG ∼= Y

{
1 + υe1λG + υ2e21

[
λ2
α(α− 1)

2
+ λ3

β(β − 1)

2

]
+ e0 + υe0e1λG

}
is obtained where λG = λ2α + λ3β and υ = aX

aX+b
. Then, to the first degree of

approximation, the variance of tG is given by,

(2.2) MSE (tG) =
N − 1

N

Y
2

n
[1 + (n− 1) ρxx]

[
C2
yρ

∗2 + λGυC
2
x (λGυ + 2κρ∗)

]
which is minimized for

(2.3) [λGMN
= −κρ

∗

υ
= −aX + b

aX
κρ∗

(2.4) MSE(tG)MN =
N − 1

N

Y
2

n
[1 + (n− 1) ρxx]

[
C2
yρ

∗2 (1− ρ2xy)]
From (2.1), (2.3), we have

(2.5)

3∑
i=1

λi = 1

and

(2.6) λG = λ2α+ λ3β = −κρ
∗

υ

There are three unknown quantities to be determined (λ1, λ2 and λ3) from only
two equations. It is not possible to obtain unique values for the λi’s. For obtaining
λi’s and making the estimator unbiased, we can write,
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(2.7)

3∑
i=1

B(di) = 0

Where B(di) shows for the biases. Then we can write a matrix for solving
Equation (2.5), (2.6) and (2.7) together,

(2.8)

 1 1 1
0 α β

B(d1) B(d2) B(d3)

 λ1
λ2
λ3

 =

 1

−κρ
∗

υ
0


where,

B(d1) = B(ySY S) = 0

B(d2) = B

[
ySY S

(
axSY S + b

aX + b

)α]
=
N − 1

Nn
Y C2

x [1 + (n− 1)ρxx] υα

[
υ

(α− 1)

2
+ ρ∗κ

]
B(d3) = B

[
ySY S

(
axSY S + b

aX + b

)β]

=
N − 1

Nn
Y C2

x [1 + (n− 1)ρxx] υβ

[
υ

(β − 1)

2
+ ρ∗κ

]
We get values of λ1, λ2 and λ3 from solving matrix on (2.8) as follows,

(2.9) λ1 = 1− κρ∗

υ2
1

αβ (α− β)
{β [υ (β − 1) + 2ρ∗κ]− α [υ (α− 1) + 2ρ∗κ]}

λ2 =
κρ∗

υ2
[υ (β − 1) + 2ρ∗κ]

λ3 =
−κ2ρ∗2

υ2
[υ (α− 1) + 2ρ∗κ]

β (α− β)

Equations of (2.9) yield in Equation (2.1) and (2.2), we have class of unbiased
linear estimator for Ȳ as,

(2.10) tG = 1− κρ
∗

υ2
1

αβ (α− β)
{β [υ (β − 1) + 2ρ∗κ]− α [υ (α− 1) + 2ρ∗κ]} ySY S

−κρ
∗

υ2
[υ (β − 1) + 2ρ∗κ] ySY S

(
axSY S + b

aX + b

)α
−κ

2ρ∗2

υ2
[υ (α− 1) + 2ρ∗κ]

β (α− β)
ySY S

(
axSY S + b

aX + b

)β
With the variance,

(2.11) MSE(tG)MN =
N − 1

N

Y
2

n
[1 + (n− 1) ρxx]

[
C2
yρ

∗2 (1− ρ2xy)]
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Some unbiased members of the class of estimators tG are shown in Table 1.

Table 1. Some members of the class of estimators tG

Estimators
(λ1, λ2,λ3 are minimum values)

α β a b

tG = λ1ySY S + λ2ySY S

(
axSY S+b
aX+b

)α
+ λ3ySY S

(
axSY S+b
aX+b

)β
α β a b

tG1
= λ1ySY S + (1− λ1) ySY S

(
axSY S+b
aX+b

)α
α=β a b

tG2
= ySY S 0 0 a b

α β 0 1

tG3
= λ1ySY S + λ2ySY S

(
axSY S+b
aX+b

)
+ λ3ySY S

(
axSY S+b
aX+b

)2
1 2 a b

tG4
= λ1ySY S + λ2ySY S

(
xSY S

X

)α
+ λ3ySY S

(
xSY S

X

)β
> 0 > 0 1 0

α β Cx,ρxy, β2(x) 0

tG5
= λ1ySY S + λ2ySY S

(
X

xSY S

)α
+ λ3ySY S

(
X

xSY S

)β
< 0 < 0 1 0

tG6
= λ1ySY S + λ2ySY S

(
X

xSY S

)α
+ λ3ySY S

(
xSY S

X

)β
< 0 > 0 1 0

tG7
= λ1ySY S + λ2ySY S

(
xSY S+Cx

X+Cx

)α
+ λ3ySY S

(
xSY S+Cx

X+Cx

)β
> 0 > 0 1 Cx

tG8
= λ1ySY S + λ2ySY S

(
xSY S+ρxy

X+ρxy

)α
+ λ3ySY S

(
xSY S+ρxy

X+ρxy

)β
> 0 > 0 1 ρxy

tG9
= λ1ySY S + λ2ySY S

(
xSY S+β2(x)

X+β2(x)

)α
+ λ3ySY S

(
xSY S+β2(x)

X+β2(x)

)β
> 0 > 0 1 β2(x)

tG10
= λ1ySY S + λ2ySY S

(
X+Cx

xSY S+Cx

)α
+ λ3ySY S

(
X+Cx

xSY S+Cx

)β
< 0 < 0 1 Cx

tG11
= λ1ySY S + λ2ySY S

(
X+ρxy

xSY S+ρxy

)α
+ λ3ySY S

(
X+ρxy

xSY S+ρxy

)β
< 0 < 0 1 ρxy

tG12
= λ1ySY S + λ2ySY S

(
X+β2(x)

xSY S+β2(x)

)α
+ λ3ySY S

(
X+β2(x)

xSY S+β2(x)

)β
< 0 < 0 1 β2(x)

3. Theorical comparison

Minimum variance of proposed estimator is always smaller than the variance
of Swain’s ratio type, Shukla’s product type estimators and H. P. Singh and etc.
(2011) ratio and product type estimators except special situations as follows:

The inequality,

V (tG)MIN < V (ySY S)

N − 1

Nn
[1 + (n− 1)ρxx]

[
ρ∗2S2

y(1− ρ2xy)
]
<
N − 1

Nn
[1 + (n− 1)ρyy]S2

Y

N − 1

Nn
[1 + (n− 1)ρyy]S2

y−
N − 1

Nn
[1 + (n− 1)ρyy]S2

yρ
2
xy <

N − 1

Nn
[1 + (n− 1)ρyy]S2

Y

[1 + (n− 1)ρyy] > 0

is always true when ρyy > −1/(n− 1) condition is true.

The inequality,

V (tG)MIN < MSE(yrSY S
)

N − 1

Nn
[1 + (n− 1)ρxx]Y

2 [
ρ∗2C2

y(1− ρ2xy)
]
<
N − 1

Nn
[1 + (n− 1)ρxx]Y

2 [
ρ∗2C2

y + C2
x(1− 2κρ∗)

]



8

0 < C2
x − 2C2

xκρ
∗ + ρ∗2C2

yρ
2
xy

0 < (κρ∗ − 1)
2

is always true except when κρ∗ > 1

The inequality,

V (tG)MIN < HKO(ypSY S
)

N − 1

Nn
[1 + (n− 1)ρxx]Y

2 [
ρ∗2C2

y(1− ρ2xy)
]
<
N − 1

Nn
[1 + (n− 1)ρxx]Y

2 [
ρ∗2C2

y + C2
x(1 + 2κρ∗)

]
0 < C2

x + 2C2
xκρ

∗ + ρ∗2C2
yρ

2
xy

0 < (κρ∗ + 1)
2

is always true except when κρ∗ > −1

The inequality,

V (tG)MIN < HKO(yRE)

N − 1

Nn
[1 + (n− 1)ρxx]Y

2 [
ρ∗2C2

y(1− ρ2xy)
]
<
N − 1

Nn
[1 + (n− 1)ρxx]Y

2
[
ρ∗2C2

y + C2
x(

1

4
− κρ∗)

]
−ρ∗2C2

yρ
2
xy < C2

x(
1

4
− κρ∗)

0 < C2
x

(
1

4
− ρxy

Cy
Cx

ρ∗ + ρ∗2
C2
y

C2
x

ρ2xy

)
1

4
> κρ∗ (1− κρ∗)

is always true when the condition is true.

The inequality,

V (tG)MIN < HKO(yPE)

N − 1

Nn
[1 + (n− 1)ρxx]Y

2 [
ρ∗2C2

y(1− ρ2xy)
]
<
N − 1

Nn
[1 + (n− 1)ρxx]Y

2
[
ρ∗2C2

y + C2
x(

1

4
+ κρ∗)

]
−ρ∗2C2

yρ
2
xy < C2

x(
1

4
+ κρ∗)

0 < C2
x

(
1

4
+ ρxy

Cy
Cx

ρ∗ + ρ∗2
C2
y

C2
x

ρ2xy

)

−1

4
< κρ∗ (1 + κρ∗)

is always true when the condition is true.
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4. Numerical Study

This chapter, in order to be able to make digital impressions at 2013, the
amount of particulate matter and Nitric oxide measurements which recorded at
air quality monitoring station in Istanbul’s Kadikoy district , were used. Airborne
particulate matter like emoticon study variable, is the amount of nitrogen oxide
(x) auxiliary variables has been accepted. The correlation between the amount
of airborne particulate matter and amount of Nitric oxide was found to be ρxy =
0.833 as well as seen in Table 2. Due to the positive high relationship between
these two variables in the estimates used to estimation of population mean values
of ratio estimation, as well, and MSEs was calculated.

Table 2. Population parameters

N Mean Std. Deviation Correlation
PM10 (Y) 351 51,57 32,71 0,833

NO (X) 351 36,11 52,74

We ranked the population according to the dates and drew a sample with n=117
and k=3 from the population with systematic sampling. Table 3 shows the infor-
mation of sample. Table 4 gives solution of the calculation of estimates, biases
and MSEs.

Table 3. Summaring of the sample data

n Mean Std. Deviation
PM10 (Y) 351 51,57 32,71
NO (X) 351 36,11 52,74

Table 4. Estimates, biases ans MSEs values

Estimators Estimate Bias MSE
ySY S 52,9316 - 8,1453

dr = ω1ySY S + ω2ySY S
X

xSY S
+ ω3ySY S

(
X

xSY S

)2
50,7472 - 2,4931

yRE = ySY S exp
(
X−xSY S

X+xSY S

)
51,5872 -0,0054 3,3389

tG = λ1ySY S + λ2ySY S

(
axSY S+b
aX+b

)α
+ λ3ySY S

(
axSY S+b
aX+b

)β
50,7514 - 2,4931

5. Conclusion

Table 4 shows that the performance of the proposed a class of estimator tG is
better than usual anbiased estimator , Swain’s (1964) ratio estimator and H.P.
Singh and etc. (2011) ratio estimator . dr and tG estimators have minimum and
the same variance value. Suggested estimator is independent from alpha and beta’s
negativity so estimates are not depend on type of estimator. Thus we don’t need
to check positive or negative correlation between study and auxiliary variable.
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