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Abstract

This paper proposes some estimators for the population mean using the ratio estimators presented in [C. Kadilar,
H. Cingi, Ratio estimators in simple random sampling, Applied Mathematics and Computation 151 (2004)
893–902] and shows that all proposed estimators are always more efficient than the ratio estimators. This result is
also supported by a numerical example.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Kadilar and Cingi [1] suggested the following ratio estimators for the population meanȲ of the variate
of interesty in simple random sampling:

ȳKC1 = ȳ + b(X̄ − x̄)

x̄
X̄ , (1)

ȳKC2 = ȳ + b(X̄ − x̄)

x̄ + Cx
(X̄ + Cx), (2)

ȳKC3 = ȳ + b(X̄ − x̄)

x̄ + β2(x)
[X̄ + β2(x)], (3)
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ȳKC4 = ȳ + b (X̄ − x̄)

x̄β2(x) + Cx
[X̄β2(x) + Cx ], (4)

ȳKC5 = ȳ + b (X̄ − x̄)

x̄Cx + β2(x)
[X̄ Cx + β2(x)], (5)

whereCx andβ2(x) are the population coefficient of variation and the population coefficient of the
kurtosis, respectively, of the auxiliary variate,ȳ is the sample mean of the variate of interest,x̄ is the
sample mean of the auxiliary variate and it is assumed that the population meanX̄ of the auxiliary variate
x is known, andb = sxy

s2
x

is the regression coefficient. Heres2
x is the sample variance of the auxiliary

variate andsxy is the sample covariance between the auxiliary variate and the variate of interest.
In [1], mean square error (MSE)equations of these ratio estimators were given by

MSE(ȳKC1) ∼= 1 − f

n
[R2

KC1S2
x + S2

y(1 − ρ2)], (6)

MSE(ȳKC2) ∼= 1 − f

n
[R2

KC2S2
x + S2

y(1 − ρ2)], (7)

MSE(ȳKC3) ∼= 1 − f

n
[R2

KC3S2
x + S2

y(1 − ρ2)], (8)

MSE(ȳKC4) ∼= 1 − f

n
[R2

KC4S2
x + S2

y(1 − ρ2)], (9)

MSE(ȳKC5) ∼= 1 − f

n
[R2

KC5S2
x + S2

y(1 − ρ2)], (10)

respectively, where f = n
N , n is the sample size,N is the population size,RKC1 = R = Ȳ

X̄
is the

population ratio,RKC2 = Ȳ
X̄+Cx

, RKC3 = Ȳ
X̄+β2(x)

, RKC4 = Ȳ β2(x)

X̄β2(x)+Cx
andRKC5 = Ȳ Cx

X̄ Cx +β2(x)
, S2

x and

S2
y are the population variances of the auxiliary variate and of the variate of interest, respectively, andρ

is the population coefficient of correlation between the auxiliary variate and the variate of interest.
Kadilar and Cingi [1] concluded that all ratio estimators, given above, were more efficient than

traditional estimators, presented in [2,3] and [4], under certain conditions. In addition, this result was
satisfied with the aid of a numerical example, whose data will also be used in this paper. Note that
Kadilar and Cingi [5] adapted these traditional estimators in the simple random sampling to the stratified
random sampling and then Kadilar and Cingi [6] proposed a new ratio estimator that was always more
efficient than these adapted estimators in stratified random sampling.

In the next section, we develop new estimators combining ratio estimators in [1] andobtain the MSE
equation of these new estimators. We compare the efficiencies, based on MSE equations, between the
proposed estimators and ratio estimators, theoretically, inSection 3and also we show this theoretical
comparison numerically inSection 4. In the lastsection, we give a hint to obtain different estimators by
a similar methodpresented in this study.

2. Suggested estimators

We propose the estimator combining ratio estimators (1) and (2) as follows:

ȳ pr1 = ω1
ȳ + b(X̄ − x̄)

x̄
X̄ + ω2

ȳ + b(X̄ − x̄)

x̄ + Cx
(X̄ + Cx), (11)

whereω1 andω2 are weights that satisfy the condition:ω1 + ω2 = 1.
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The MSE of this estimator can be found using the first degree approximation in the Taylor series
method defined by

MSE(ȳ pr1) ∼= dΣd′, (12)

where

d =
[

∂h(a, b)

∂a

∣∣∣∣
Ȳ ,X̄

∂h(a, b)

∂b

∣∣∣∣
Ȳ ,X̄

]

Σ = 1 − f

n

[
S2

y Syx

Sxy S2
x

]

(see [7]). Hereh(a, b) = h(ȳ, x̄) = ȳ pr1. According to this definition, we obtaind for the proposed
estimator as follows:

d = [
1 −ω1(B + R) − ω2(B + RKC2)

]
,

whereB = Sxy

S2
x

= ρSx Sy

S2
x

= ρSy
Sx

. Note that we omit the difference:b − B [8].

Weobtain the MSE of the proposed estimator using (12) as

MSE(ȳ pr1) = 1 − f

n
(S2

y − 2ηSyx + η2S2
x ), (13)

where

η = ω1(B + R) + ω2(B + RKC2). (14)

Wealso propose the estimator combining ratio estimators (1) and (3) as

ȳ pr2 = ω1
ȳ + b(X̄ − x̄)

x̄
X̄ + ω2

ȳ + b(X̄ − x̄)

x̄ + β2(x)
[X̄ + β2(x)]. (15)

The MSE ofthis estimator is the same as (13) but RKC2 in (14) is replaced withRKC3.
In addition, we propose the following estimator combining ratio estimators (1) and (4):

ȳ pr3 = ω1
ȳ + b(X̄ − x̄)

x̄
X̄ + ω2

ȳ + b(X̄ − x̄)

x̄β2(x) + Cx
[X̄β2(x) + Cx ]. (16)

The MSE of this estimator is again the same as (13) but RKC2 in (14) is replaced withRKC4.
Lastly, we propose the estimator combining ratio estimators (1) and (5) as

ȳ pr4 = ω1
ȳ + b(X̄ − x̄)

x̄
X̄ + ω2

ȳ + b(X̄ − x̄)

x̄Cx + β2(x)
[X̄Cx + β2(x)]. (17)

The MSE of this estimator is also the same as (13) but RKC2 in (14) is replaced withRKC5.
The optimal values ofω1 andω2 to minimize (13) can easily be found as follows:

ω∗
1 = RKC2

RKC2 − R
and ω∗

2 = R

R − RKC2
. (18)

When we useω∗
1 andω∗

2 instead ofω1 andω2 in (14), respectively, we getη = B. As η is independent
of RKC2, all proposed estimators have the same minimum MSE as follows:

MSEmin(ȳ pr) = 1 − f

n
(S2

y − 2BSyx + B2S2
x ).
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Table 1
Data statistics

N = 106 Ȳ = 2212.59 R = 0.0807
n = 20 X̄ = 27 421.70 RKC2 = 0.0807
ρ = 0.86 Sy = 11 551.53 RKC3 = 0.0806
Cy = 5.22 Sx = 57 460.61 RKC4 = 0.0807
Cx = 2.10 β2(x) = 34.57 RKC5 = 0.0806
Syx = 568 176 176.10

Table 2
MSE values of estimators

ȳKC1 2318 722.45
ȳKC2 2318 589.19
ȳKC3 2316 527.82
ȳKC4 2318 718.59
ȳKC5 2317 674.08
Proposed 1446 719.34

Wecan also writethis expression by

MSEmin(ȳ pr) ∼= 1 − f

n
S2

y(1 − ρ2). (19)

3. Efficiency comparisons

In this section, we compare the MSE of proposed estimators in (19) with the MSE of ratio estimators
in [1] given in (6)–(10). As we obtain the following condition by these comparisons

R2
KC i S2

x > 0, i = 1, 2, . . . , 5 (20)

we can infer that all proposed estimators are more efficient than all ratio estimators in [1] in all
conditions, because the condition given in (20) is always satisfied.

4. Numerical illustration

We have used the same data, concerning the level of apple production (as the variate of interest) and
number of apple trees (as the auxiliary variate), as in [1] to compare the efficiencies of the proposed
estimators with the ratio estimators numerically.

In Table 1, we observe the statistics about the population. Note that we take the sample size as
n = 20 [9]. Wewould like to recall that sample size has no effect on efficiency comparisons of estimators,
as shown inSection 3.

In Table 2, values of MSE, which are computed using equations presented inSections 1and2, are
given. When we examineTable 2, weobserve that the proposed estimators have the smallest MSE value
among all ratio estimators given inSection 1. This is an expected result, as mentioned inSection 3.

From the result of this numerical illustration, we deduce that all proposed estimators are more efficient
than ratio-type estimators that were more efficient than all traditional estimators for this data set in [1].
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5. Conclusion

We havedeveloped new estimators combining ratio estimators considered in [1] and obtained the
minimum MSE equation for proposed estimators. Theoretically, we have demonstrated that all proposed
estimators are always more efficient than ratio estimators. In addition, we support this theoretical result
numerically using the same data set as in [1].

Some other estimators can also be derived combining ratio estimators given in (2)–(5) in the form
(11), but all these estimators have again the same minimum MSE equation given in (19). We would like
to recall thatR and RKC2 in (14) and in (18) should be changed according to ratio estimators that are
combined.
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