
A GROUP SEQUENTIAL TEST OF

CIRCULAR DATA USING THE VON

MISES DISTRIBUTION
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Abstract

In this study, the group sequential test is suggested for the mean direction
parameter of the von Mises distribution when the concentration parameter is
known and unknown. An application of the proposed test is illustrated by using
a medical data of the patients, who were complained about internal rotation
angles of the shoulder and treated in a rehabilitation and physical therapy center
in Eskiehir, Turkey. It is shown that the results of the study demonstrate that
the group sequential test can provide a great advantage not only for linear data
but also for circular data in terms of sample size.
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1 Introduction

Circular data often arise in many scientific disciplines like meteorology, geography,
biology, geology and medicine etc. As an example, meteorological events are periodical,
that’s why it is convenient to analyze them by using directional methods. It is shown
that the distribution of the wind direction can be approximated by a specific circular
model.

Ecologists consider the prevailing wind direction as an important factor in many
studies including those of which involve pollutant transport. In Geology, geologists
study paleocurrents to find out about the direction of flow of rivers in the past [16]
and analyze paleomagnetic directions of the earth’s magnetic pole to investigate the
phenomenon of pole-reversal as well as in support of the hypothesis of continental
drift. In Biology, biologists who study bird-migrations record the flight directions
of just-released birds as they disappear over the horizon. Batschelet [2] presented a
number of noteworthy applications of circular statistics in Biology. Also, any periodic
phenomenon which is known and may be a day, a month or a year, can be represented
on a circle by aggregating the necessary data of several individuals or periods if the
circumferences corresponds to this period. Examples include arrival times of patients
to a hospital over the day, or the time of patients at a hospital in the day. As a
last example, the circle may represent the 365 days in the year and could be plotted
the occurrence of crash accidents in a specific roadway junction to see if they are
uniformly distributed over the different seasons of the year [8].
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Circular data take values on the circumference of a circle and they form the angles
in the range (0o, 360o) or (0, 2π) radians [7]. The circular probability distributions
are used to fit the distribution of circular data. The von Mises distribution is the
most common probability distribution for circular data. A comprehensive discussion
of circular statistics as well as examples of the applications and general properties of
the von Mises distribution can be found in [11] and [8].

There are many practical situations in which it is desirable to update the decision
with every incoming observation, by sequentially, either in the temporal or in the
spatial mode of collecting the circular data.

As an example of using a sequential test for circular data, observations on the
imbalanced directions of individually produced wheels can provide for the information
of whether the procedure is under control.

Gadsden & Kanji [5] developed a sequential probability ratio test (SPRT) of
Wald [17] for the mean direction (µVM ) of the von Mises distribution with a known
and an unknown concentration parameter (κ). Gadsden & Kanji [6] represents the
applications of SPRT for circular data.

The sample size is a predetermined fixed value in fixed sample size test procedure.
In practice, this test cause, the practitioner, to spend more resources such as money
and time. When the sequential tests are used, these difficulties can be removed. The
test begins with a single observation value and stops when there is sufficient data for
statistical comparison and for making a decision on the hypothesis. Thus, it leads to
a great saving in the sample size [17].

However, in some cases, when a new data is obtained, testing the data by grouping
is an easier way than applying SPRT. A test which is performed sequentially by
grouping data is called a group sequential test (GST ). Various group sequential
testing procedures have been proposed to achieve the desired levels of type I error.
Pocock [14], O’Brien & Fleming [12] and Lan & DeMets [10] were among the first
scholars to develop group sequential test. A great part of the progress of group
sequential tests are reviewed in detail by Jennison & Turnbull [9].

Group sequential tests are widely used in medicine. On the other hand, medical
events are convenient to be analyzed using directional methods since many of them
are periodical. The occurrences of deaths caused by some disease in several times
of year is a typical example for circular data observations. However, none of these
studies consider group sequential test for von Mises distribution. In this study, a
group sequential test is suggested for the mean direction of the von Mises distribution
with known and unknown concentration parameter.

This article is organized as follows: The von Mises distribution and the sequential
probability ratio test (SPRT ) are briefly reviewed in the second and the third sections,
respectively. In the fourth section, Pocock’s group sequential test is described for the
mean of the normal distribution. In the fifth section, it is indicated that Pocock’s
group sequential test can be used for the mean direction of the von Mises distribution.
An application of medical data and conclusions are given in the sixth and the seventh
sections, respectively.

2 The Von Mises Distribution

The von Mises distribution is a symmetric distribution which is the most important
model for unimodal samples of circular data and it plays the same role in circular
statistical inference as the normal distribution on the line.

If a circular random variable θ has a von Mises distribution (θ ∼ VM(µ, κ)), its
probability density function (pdf) is given by

(2.1) f(θ;µ, κ) = 1
2πIo(κ)

eκcos(θ−µ) , 0 ≤ θ < 2π
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where κ ≥ 0 and 0 ≤ µ < 2π. Here, Io(κ) is a particular function of κ and it
denotes the modified Bessel function of the first kind and order zero, and is defined
by

(2.2) Io(κ) = 1
2π

∫ 2π

0
eκcosθdθ =

∑∞
r=0 ( 1

r! )
2(κ2 )2r

This function has the effect of scaling the distribution.
For sufficiently large κ, the von Mises distribution is related to the normal distribution.

If κ → ∞ and ξ = κ1/2(θ − µ), ξ is approximately distributed as standard normal
distribution (N(0, 1)) [11], [8].

Several properties of the von Mises distribution are similar to those of the normal
distribution. For instance, it is completely determined by two parameters. The
parameter µ is the mean direction. The von Mises density is unimodal and symmetrical
about the mean direction µ. The mode of the distribution is at θ = µ and antimode
is at θ = µ+ π. The parameter κ is the concentration parameter which measures the
concentration around the mean direction. As κ approaches zero, the von Mises pdf
approaches a uniform distribution and as κ increases, the distribution increasingly
concentrated at µ. Due to these properties, the concentration parameter is similar to
the variance of a normal distribution.

By giving a random sample θ1, θ2, ..., θn from VM(µ, κ), the log-likelihood function
is given by

(2.3) logL(µ, κ; θ1, θ2, ..., θn) = n[log2π + κR̄cos(θ̄ − µ)− logIo(κ)].

Then the maximum likelihood estimate µ̂ of µ is

(2.4) µ̂ = θ̄

where

(2.5) θ̄ =


tan−1(

∑n
i=1 sinθi∑n
i=1 cosθi

),
∑n
i=1 cosθi ≥ 0

tan−1(
∑n

i=1 sinθi∑n
i=1 cosθi

) + π,
∑n
i=1 cosθi < 0.

Differentiating (2.3) with respect to κ gives

(2.6)
logL(µ, κ; θ1, θ2, ...θn)

∂κ
= n{R̄cos(θ̄ − µ)−A(κ)}

where A(κ) = I1(κ)/Io(κ) is the ratio of two modified Bessel functions and I1(κ)
is the imaginary Bessel function of order one. The maximum likelihood estimate κ̂ of
κ is the solution of

(2.7) A(κ̂) = R̄

i.e.

(2.8) κ̂ = A−1(R̄)

where R̄ is the mean resultant length of the sample and is given by;
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(2.9) R̄ =

√√√√( 1

n

n∑
i=1

cosθi

)2

+

(
1

n

n∑
i=1

sinθi

)2

.

Values of functions A and A−1 are taken from the tables, such as Mardia and
Jupp (2000, p. 362-363) and Fisher (1993, p. 224-225). A reasonable approximation
to the solution of (2.8) can, also, be obtained by

(2.10) κ̂ =

 2R̄+ R̄3 + 5R̄5/6, R̄ < 0.53
−0.4 + 1.39R̄+ 0.43/(1− R̄), 0.53 ≤ R̄ < 0.85
1/(R̄3 − 4R̄2 + 3R̄), R̄ ≥ 0.85

[4, 11].

3 Sequential Probability Ratio Test for the Mean
Direction

Let θ be a von Mises distributed random variable with a mean direction µ0 and a
concentration parameter. For testing H0 : µ = µ0 against H1 : µ = µ1, sequential
probability ratio test is defined as follows; If the values of θ random variable is defined
as θ1, θ2, ..., θn, likelihood ratio is defined as,

(3.1) Ln =

n∏
i=1

f(θi;µ1)

f(θi;µ0)
=

1
[2πI0(κ)]n

eκ
∑n

i=1 cos(θi−µ1)

1
[2πI0(κ)]n

eκ
∑n

i=1 cos(θi−µ0)
.

Then by taking logarithm and simplifying, (3.1) can be written as;

(3.2) lnLn =

n∑
i=1

Zi = 2κ

n∑
i=1

sin(θi − v1)sin(−v2)

where v1 = µ0+µ1

2 and v2 = µ0−µ1

2 .
At each stage of the test process, the value of

∑n
i=1 Zi is computed and compared

with lnA and lnB critical values which depend on type-1(α) and type-2(β) errors.
A and B values are computed as A = 1−β

α , B = β
1−α . Then, one of the following

decision is made.

1. If
∑n
i=1 Zi ≤ lnB, the process is terminated with the acceptance of H0.

2. If
∑n
i=1 Zi ≥ lnA, the process is terminated with the rejection of H0.

3. If lnB <
∑n
i=1 Zi < lnA, the experiment is continued by taking an additional

observation.

[17].
When µ is the test parameter for the von Mises distribution, the approximate

formula for the operating characteristic (OC) function P (µ) is given by;

(3.3) P (µ) =
Ah − 1

Ah −Bh
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where h = sin(µ−v1)
sinv2

[5, 6].
In linear data, acceptance probabilities are computed for the various values of h.

Apart from the linear data, minimum and maximum values of operating characteristic
function are obtained in circular data. Differentiating OC function with respect to µ,
it is obtained that µ = 900 + v1 and µ = 2700 + v1, and these can be shown to be a
minimum and maximum, respectively.

An approximation to the average sample number function ASN(µ), which is the
expected number of observations, is given by;

(3.4) ASN(µ) =
P (µ)lnB + [1− P (µ)]lnA

2A(κ)sinv1sinv2
.

It is possible to compute maximum and minimum values of the average sample
number in circular data. Therefore, the average sample numbers, which are obtained
when H0 or H1 is true in linear data, are computed for the maximum and minimum
values in circular data. Differentiating the average sample number with respect to v2
and setting that equal to zero gives;

(3.5) ASN(µ)min =
P (µ)lnB + [1− P (µ)]lnA

2A(κ)sinv1
.

Since a minimum can be obtained in only one turning point, the ends of the range
of v2 will give the maximum. This leads to the point 00 and it gives

(3.6) ASN(µ)max =∞

[5, 13].

4 Pocock’s Group Sequential Test

The basic concepts of Pocock’s group sequential test in one sample are described as
follows. Consider K groups (stages) of normally distributed observations with an
unknown mean µ and a known variance σ2, where in group k,k = 1, 2, ...,K and
n1 = n2 = ...nK = n observations are obtained. It is planned as a test of the null
hypothesis H0 : µ = µ0 against the two sided alternative H1 : µ 6= µ0. Let x̄j denote
the mean response of the sample in the jth. group of n observations. In the jth stage,
the normal score Zj is given by

(4.1) Zj =
√
n(x̄j − µ0)/

√
σ2.

The cumulative normal score

(4.2) Sk =
∑k
j=1 Zj , k = 1, 2, ...K

is the usual statistic for testing the hypothesis of the mean at type-I error probability
α. Zj is N(0, 1) and N(∆, 1) distributed, under H0 and H1 respectively. Where ∆ is
given as

(4.3) ∆ = E(Zj) =
√
n(µ1 − µ0)/

√
σ2

[1, 9]. Formally the test process is as follows:
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1. After group k = 1, 2, ...,K − 1
If |Sk| ≥ zp(K,α)

√
k, stop, reject H0

otherwise, continue to groupk + 1

2. After group K
If |SK | ≥ zp(K,α)

√
K, stop, reject H0

otherwise, stop, acceptH0.

Where zp(K,α) is the Pocock’s critical value as in Table 1. The sample size per
group is obtained as

(4.4) n = ∆2

( √
σ2

µ1 − µ2

)2

where ∆ is the value of noncentrality parameter and it can be determined by a
given value of 1− β. The maximum sample size is nmax = nK. If K = 1 is taken as
fixed sample size design (4.4) becomes the familiar sample size for a normal response.
The average sample number, under H1 is ASN = nK̄∗, where K̄∗ is the average
number of stages.

zp(K,α), ∆ and K̄∗ values are given in Table 1 for k = 1, 2, .., 5, α = 0, 05,
1 − β = 0, 95. More complete tabulations of various values can be found in [14] and
[9].

Table 1: Pocock’s Critical Values zp(K,α), ∆ and K̄∗ for k = 1, 2, ..., 5, α = 0, 05,
1− β = 0, 95

k zp(K,α) ∆ K̄∗

1 1,645 3,290 1
2 1,875 1,875 2,445 1,282
3 1,993 1,993 1,993 2,035 1,656
4 2,067 2,067 2,067 2,067 1,782 2,056
5 2,122 2,122 2,122 2,122 2,122 1,605 2,460

When the variance σ2 is unknown, group sequential t-test is used. Test procedure
is the same as the one with known σ2. Since σ2 is unknown, the pooled sample
variance is estimated of n observations and is used for σ2 in (4.1). Furthermore,
sample size per group can not be calculated with (4.4) in group sequential t-test.
Thus, the researcher supposed that each group contains n observations, in this case
[9].

5 Group Sequential Test for the Mean Direction of
the Von Mises Distribution

In this section, it is shown that Pocock’s group sequential test can be used for the
mean direction of the von Mises distribution both for known κ and unknown κ cases.

It is assumed that θ1, ϑ2, ..., ϑn is a random sample from a von Mises distribution
VM(µ, κ).

Let the concentration parameter be known as κ = κ0(κ0 ≥ 2). Then, the
population mean resultant length of a von Mises distribution is ρ. The hypothesis to
be tested is H0 : µ = µ0 against H1 : µ 6= µ0. From (2.3), the score statistic is defined
as
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(5.1)
∂logL(µ, κ; θ1, θ2, ..., θn)

∂µ

∣∣∣∣
µ=µ0

= nκR̄sin(θ̄ − µ0).

[3]. Under H0, the score statistic is equal to

(5.2)
√
nκ0ρsin(θ̄ − µ0)

and it has approximately the distribution N(0, 1), for large n. The circular
standard error of the mean direction for the von Mises distribution is

(5.3) σVM =
1

√
nκ0ρ

.

Thus, the test statistic for the score test is given by

(5.4) ZVM =
sin(θ̄ − µ0)

σVM

[4]. Let zα/2 indicates the upper 100(α/2)% point and zα indicates 100(α)% point
of the standard normal distribution. Then the test of H0 : µ = µ0 against the
alternatives are at the 100α% level are follows:

1. When H1 : µ 6= µ0: if |ZVM | > zα/2, then reject H0.

2. When H1 : µ < µ0: if µ0 − π < θ̄ < µ0 and ZVM < −zα, then reject H0.

3. When H1 : µ > µ0: if θ̄ < µ0 + π and ZVM > −zα, then reject H0.

In the sense of the information given above, the group sequential test statistic for
the von Mises distribution can be defined as:

(5.5) SVMk =
∑k
j=1 ZVMj , k = 1, ...,K

where

(5.6) ZVMj =
√
nκ0ρsin(θ̄j − µ0)

where θ̄j is computed from the data of n observations for the jth group. For
K = 1, the test statistic (5.5) transforms into fixed sample test in the von Mises
distribution. Therefore, since ZVMj has approximately the distribution N(0, 1) under
H0, the group sequential test can be used for testing the mean direction of the von
Mises distribution with the known concentration parameter. The test statistic SVMk

is compared with zp(K,α) as follows:
After group k = 1, 2, ...,K − 1
For H1 : µ 6= µ0, if |SVMk| ≥ zp(K,α)

√
k, stop, reject H0

For H1 : µ < µ0 and µ0 − π < θ̄k < µ0, if |SVMk| < −zp(K,α)
√
k, stop, reject H0

For H1 : µ > µ0 and θ̄k < µ0 + π, if |SVMk| > −zp(K,α)
√
k, stop, reject H0

otherwise continue to group k + 1
After group K
For H1 : µ 6= µ0, if |SVMk| ≥ zp(K,α)

√
K, stop, reject H0

For H1 : µ < µ0 and µ0 − π < θ̄k < µ0, if |SVMk| < −zp(K,α)
√
K, stop, reject H0

For H1 : µ > µ0 and θ̄k < µ0 + π, if |SVMk| > −zp(K,α)
√
K, stop, reject H0

otherwise stop, accept H0.
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For this test, the group size nVM is obtained from the expected value of the test
statistic (5.6) under H1;

(5.7) ∆ = E(ZVMj|H1
) =
√
nVMρκsin(µ1 − µ0).

Therefore, the value of nVM for this test is

(5.8) nVM = ∆2 1

[sin(µ1 − µ0)]2κρ
.

The maximum sample size can be defined as

(5.9) nmax = nVMN

and the average sample number is

(5.10) ASNVM = nVMK̄
∗.

Now, let the concentration parameter κ be unknown, and then the test statistic
for the score test can be defined as

(5.11) ZVM =
sin(θ̄ − µ0)

σ̂VM

where

(5.12) σ̂VM =
1√
nκ̂R̄

.

Therefore, ZVM is approximately distributed asN(0, 1) underH0.This approximation
is satisfactory for the values of estimated concentration parameter (κ̂) and sample size
(n) which are given in Table 2 [4, 11].

Table 2: κ̂ and n values for the test
κ̂ n

0, 4 ≤ κ̂ < 1 n ≥ 25
1, 0 ≤ κ̂ < 1, 5 n ≥ 15
1, 5 ≤ κ̂ < 2, 0 n ≥ 10

κ̂ ≥ 2, 0 All n

Then, as for group sequential test statistic, it can be defined as

(5.13) ZVMj =
√
nR̄j κ̂jsin(θ̄j − µ0)

where θ̄j ,R̄j and κ̂j values are computed from the data of n observations for the jth
group. The test proceeds as in the same way of known κ. Since κ is unknown, group
size can not be calculated in (5.8). Therefore, group size is supposed by researchers.

To give an instance for the application of real-life data on wind directions, the
following example compares the group sequential test for the von Mises distribution
with known κ, with fixed sample test and SPRT.
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Example 5.1: Wind directions, in Anadolu University Airport Eskisehir, are
measured sequentially (hourly) in university’s weather station. For this data set, κ
is known as κ = 4, 58 (corresponding ρ = 0, 88263) and α = β = 0, 05 is supposed
and the hypothesis is tested H0 : µ = 1410 against H1 : µ = 1300. Table 3 gives
the maximum sample sizes and the expected sample sizes for the fixed sample, the
sequential probability ratio, and the group sequential test.

Table 3: Comparison of the Fixed Sample, Sequential Probability Ratio and Group
Sequential Tests for κ = 4, 58, α = β = 0, 05, H0 : µ = 1410, H1 : µ = 1300 (von
Mises response with known κ)

Tests Maximum Sample Size Average Sample Number
Fixed Sample Test 73,545 73,545

minimum maximum
SPRT ∞ 2,380 ∞

Group Sequential Test

Group sizes nmax
K = 2 40,618 81,236 52,072
K = 3 28,138 84,413 46,596
K = 4 21,576 86,305 44,361
K = 5 17,503 87,515 43,057

Other examples can be presented that have the same general principle with different
choices of α,β,µ0,µ1 and κ. Pocock [15] compared those tests for the mean of the
normal distribution and showed that GST is more advantageous than the fixed sample
test and SPRT in terms of sample size; in addition , Bacanlı & Demirhan [1] proposed
the group sequential test for the mean of the inverse Gaussian distribution, in a similar
way and showed that this test is more advantageous than the others.

Thus, it is seen that these results are, also, valid for circular normal distribution
that is known as Von-mises distribution.

6 Application to Medical Data

In this section, the group sequential test is applied to a medical circular data set.
The medical data were collected from sequentially patients who was male and female
and between the age of 44 and 75 in Eskiehir Private Fizyomer Rehabilitation and
Physical Therapy Center between the years of 2010 and 2013. These patients were
admitted to the center with complaints of pain in their shoulders. After the physical
examination, some problems were detected in patients such as shoulder joint motions
are painful and, also, partially restrictive and so on. Then, the range of motion the
shoulder joints of patients were measured. These measurements include active and
passive angular values for flexion, extension, abduction, internal rotation and external
rotation variables. After the patients were diagnosed with the adhesive capsulitis of
shoulder (also known as the frozen shoulder), 30 sessions of physical therapy and
rehabilitation were applied to them and the range of motion of the shoulder joints
were measured again. After the therapy, it is aimed that the patients will reach a
complete joint range of motion in all of the shoulder motions. In this study, the group
sequential test is applied for the internal rotation (passive) variable which is obtained
after the therapy in the data set. In anatomy, internal rotation (also known as medial
rotation) is a term that refers to the rotation towards the center of the body [18] and
the term passive means that the patient moves with an external support or assistance.

It is theorized that a healthy, ”perfect” shoulder should have 90 degrees of internal
rotation [19]. Therefore, the group sequential test is applied for H0 : µ = 900 against
the alternative H1 : µ = 800 with α = β = 0, 05 and K = 4. The concentration
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parameter is unknown, so the group sizes are supposed as n = 5. GST results are
given in Table 4.

Table 4: κ̂ and n values for the test
j 1 2 3 4
n 5 5 5 5
θ̄j 84,133 85,031 86,012 85,031
κ̂j 11,486 27,181 47,768 27,181
R̄j 0,978 0,991 0,995 0,991

ZVMj -0,766 -1,005 -1,072 -1,005
SVMk -0,766 -1,771 -2,843 -3,848

Zp(4; 0, 05)
√
k 2,067 2,923 3,580 4,134

Decision Continue Continue Continue Accept H0

When Table 4 results are examined, it can be seen that, in stage 4;

SVM4 = 3, 848 > −ZP (4; 0, 05)
√

4 = −2, 067(2) = −4, 134

hence we stop and accept H0.
Therefore, researchers can apply the group sequential test for predetermined α, β,

N and n values.

7 Discussion and Conclusions

As in many scientific fields, the most common probability distribution in medical
applications of circular data is the von Mises distribution. However, the group
sequential tests are often used in medical researches which the data is collected
sequentially. Therefore, the group sequential test for the mean of the distributed
von Mises data is proposed in this study.

In medical studies, a significant amount of the collected data is in the form of
circular. In the literature, there are fixed sample and sequential probability ratio
tests for circular data. However, in medical studies, the use of these tests is very
difficult in terms of obtaining required sample sizes. The reason of this is that, when
SPRT is used in the studies in which the data is collected sequentially, the expected
sample size and the maximum sample size are infinite (see Table 3). Therefore, these
values cannot be predetermined before the test. In this study, the group sequential
test have been proposed for circular data. An application of this test for a medical
data set (shoulder internal rotation angles) is carried out and it is shown that the
advantages of the test are also valid for circular data.

In GST, researchers can determine required maximum sample size and expected
sample size values for their hypotheses, determined α and β probabilities and K
values. In this respect, using GST provides a great advantage. GST was generated
for linear data in the literature. In this study, GST is defined for circular data and it
is indicated that GST can be used for the mean of the von Mises distribution which
is frequently encountered in medical studies.
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