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Buckley’s approach (Buckley (2004), (2005), (2006)) uses sets of confidence intervals by taking into consideration both of the
uncertainty and impreciseness of concepts that produce triangular shaped fuzzy numbers for the estimator.This approach produces
fuzzy test statistics and fuzzy critical values in hypothesis testing. In addition, the sample size is fixed for this test. When data comes
sequentially, however, it is not suitable to study with a fixed sample size test. In such cases, sequential and group sequential tests are
recommended. Unlike a sequential test, a group of sequential test provides substantial savings in sample and enables us to make
decisions as early as possible. This intends paper to combine the benefits of group sequential test and Buckley’s approach using
𝛼-cuts. It attempts to show that using 𝛼-cuts can be used within the group sequential tests. To illustrate the test more explicitly a
numerical example is also given.

1. Introduction

Estimation of unknown parameters of statistical models or
testing of statistical hypothesis in fuzzy environments are
interesting subjects for different approaches. So far Zadeh
[1], Taheri and Behboodian [2, 3], Taheri [4], Torabi and
Behboodian [5], and Taheri and Arefi [6] have worked on
these issues. Using a different point of view, Buckley [7–9]
developed an approach which uses a set of confidence inter-
vals. In addition, many studies have been done to combine
several statistical methods and fuzzy sets, called fuzzy statis-
tics, such as regression analysis, time series analysis, design of
experiments, probability theory, conjoint analysis, and con-
trol charts [10]. Since statistical tests based on fuzzy test statis-
tics are more flexible than classical tests, they seemed to be
competitive tools in certain situations; for example, when the
observed value of the test statistic is close to the quantile of
the test statistic [6].

Fixed sample size test is not useful where subjects enter
the study sequentially. And thus the accumulated data can
be analyzed sequentially. Wald [11] introduced a sequential
probability ratio test (SPRT) which requires substantially
fewer observations than a fixed sample size test. Several
authors such as Torabi and Behboodian [12] have proposed
fuzzy sequential probability ratio test. Talukdar and Baruah

[13] have fuzzified the SPRT. Torabi and Mirhosseini [14]
introduced the SPRT for fuzzy hypotheses testing.
Jamkhaneh and Gildeh [15] presented a new approach for
SPRT based on fuzzy hypothesis.

SPRT has no finite maximum number of observation; it
is generally considered inappropriate for clinical trials [16].
Group sequential tests (GST) are generally more practical
and they give more possible savings than SPRT when it is
impractical to perform an interim analysis after each new
observation [17]. GST are widely used in clinical trials. For
ethical, scientific, and economic reasons, clinical trials are
often repeatedly monitored for evidence of treatment benefit
or harm. To achieve this, statisticians conduct interm anal-
ysis periodically on accumulating data [18]. Various group
sequential testing procedures have been proposed to achieve
the desired levels of type-I error [18–20]. Much of the
development of GST are reviewed in detail by Jennison and
Turnbull [17].

None of the studies mentioned above consider Buckley’s
approach for group sequential tests [7–9]. In this study, our
aim is to use a group sequential test using 𝛼-cuts inspired
by Buckley’s approach when response variable has a normal
distribution with known variance.

This paper is organized as follows: some preliminaries for
fuzzy numbers are presented in Section 2. Buckley’s approach

Hindawi Publishing Corporation
Advances in Fuzzy Systems
Volume 2014, Article ID 896150, 9 pages
http://dx.doi.org/10.1155/2014/896150



2 Advances in Fuzzy Systems

using 𝛼-cuts for hypothesis testing is briefly reviewed in
Section 3. Then Pocock’s group sequential test and using
Buckley’s approachwithin Pocock’s group sequential test for a
normal response with known variance are given in Section 4.
A numerical example is given in Section 5. Results and dis-
cussions are given in Section 6. Finally, concluding remarks
and some possible future perspectives are presented in
Section 7.

2. Preliminaries

This section contains some definitions of fuzzy sets and fuzzy
numbers defined by Dubois and Prade [21] and Buckley
[7–9].

Definition 1. A fuzzy number 𝐴 is a fuzzy subset of the real
lineR. Its membership function 𝜇

𝐴
(𝑥) satisfies the following

criteria [21]:

(i) 𝛼-cut set of 𝜇
𝐴
(𝑥) is a closed interval,

(ii) ∃𝑥 such that 𝜇
𝐴
(𝑥) = 1, and

(iii) convexity such that 𝜇
𝐴
(𝜆𝑥
1

+ (1 − 𝜆)𝑥
2
) ≥

min(𝜇
𝐴
(𝑥
1
), 𝜇
𝐴
(𝑥
2
)) for 𝜆 ∈ [0, 1],

where 𝛼-cut set contains all 𝑥 elements that have a member-
ship grade 𝜇

𝐴
(𝑥) ≥ 𝛼.

Definition 2. A triangular shaped fuzzy number𝐴 (𝑇𝑆𝐹𝑁) is
a fuzzy number, whose membership function is defined by
three values, 𝑎

1
< 𝑎
2
< 𝑎
3
, where the base of triangular is the

interval [𝑎
1
, 𝑎
3
] and the vertex is 𝑥 = 𝑎

2
[21].

Definition 3. The 𝛼-cut of a fuzzy number 𝐴 is a nonfuzzy
set defined as 𝐴(𝛼) = {𝑥 ∈ R, 𝜇

𝐴
(𝑥) ≥ 𝛼}. Hence 𝐴(𝛼) =

[𝐴
𝐿
(𝛼), 𝐴

𝑈
(𝛼)], where 𝐴

𝐿
(𝛼) = inf{𝑥 ∈ R, 𝜇

𝐴
(𝑥) ≥ 𝛼} and

𝐴
𝑈
(𝛼) = sup{𝑥 ∈ R, 𝜇

𝐴
(𝑥) ≥ 𝛼} [21].

Definition 4. Consider 𝑋 a random variable with probability
density function 𝑁(𝜇, 𝜎

2
), which is the normal probability

density with unknown mean 𝜇, a known variance 𝜎
2. To

estimate 𝜇, a random sample 𝑋
1
, . . . , 𝑋

𝑛
from 𝑁(𝜇, 𝜎

2
) is

obtained. Suppose that themean of this random sample turns
out to be 𝑋, which is a crisp number. It is known that 𝑋 is
𝑁(𝜇, 𝜎

2
/𝑛); therefore, (𝑋 − 𝜇)/(𝜎/√𝑛) is 𝑁(0, 1). So

𝑃(−𝑧
𝛾/2

≤

𝑋 − 𝜇

𝜎/√𝑛

≤ 𝑧
𝛾/2

) = 1 − 𝛾, (1)

where 𝑧
𝛾/2

is the 𝑧 value that the probability of a 𝑁(0, 1)

random variable exceeding it is 𝛾/2 (𝛾 is the type-I error).
Then inequality is solved to produce 𝜇 that is given as follows:

𝑃(𝑋 −

𝑧
𝛾/2

𝜎

√𝑛

≤ 𝜇 ≤ 𝑋 +

𝑧
𝛾/2

𝜎

√𝑛

) = 1 − 𝛾. (2)

This leads directly to the (1 − 𝛾) 100% confidence interval for
𝜇

[𝜃
1
(𝛾) , 𝜃

2
(𝛾)] = [𝑋 −

𝑧
𝛾/2

𝜎

√𝑛

,𝑋 +

𝑧
𝛾/2

𝜎

√𝑛

] , (3)

where

∫

𝑧𝛾/2

−∞

𝑁(0, 1) 𝑑𝑥 = 1 −

𝛾

2

, (4)

and 𝑁(0, 1) denotes the normal density with mean zero and
unit variance.With putting these confidence intervals one on
top of other, we obtain𝑋 that is the fuzzy estimator of 𝜇 [7–9]
whose 𝛼-cuts are confidence intervals as

𝑋 [𝛼] = [𝑋 −

𝑧
𝛼/2

𝜎

√𝑛

;𝑋 +

𝑧
𝛼/2

𝜎

√𝑛

] , (5)

for 0.01 ≤ 𝛼 ≤ 1. Hence we obtain the fuzzy estimator of 𝜇.

3. Hypothesis Testing Using 𝛼-Cuts

Buckley’s approach [7–9] uses set of confidence intervals pro-
ducing a triangular shaped fuzzy number for the estimator.
Therefore this approach produces a fuzzy test statistic and
fuzzy critical values in fuzzy hypothesis testing.

In this section the classical hypothesis test, based on fixed
sample size of 𝑛 from 𝑁(𝜇, 𝜎

2
) mean and variance known, is

given. The following hypothesis 𝐻
0

: 𝜇 = 𝜇
0
against 𝐻

1
:

𝜇 ̸= 𝜇
0
is going to be tested at significance level 𝛾.

From the random sample its mean is computed as 𝑋 and
then the test statistic is determined as

𝑍
0
=

𝑋 − 𝜇
0

𝜎/√𝑛

. (6)

Let 𝛾, 0 < 𝛾 < 1, denote the significance level of the test.
Now under the null hypothesis𝐻

0
, 𝑍
0
is𝑁(0, 1) and decision

rule is (1) reject 𝐻
0
if 𝑍
0
≥ 𝑧
𝛾/2

; (2) reject 𝐻
0
if 𝑍
0
≤ −𝑧
𝛾/2

,
and (3) do not reject 𝐻

0
when −𝑧

𝛾/2
< 𝑍
0

< 𝑧
𝛾/2

. In the
above decision rule 𝑧

𝛾/2
is the 𝑧 value so that the probability

of a random variable having the 𝑁(0, 1) probability density
exceeding 𝑧 is 𝛾/2 (𝛾 is the type-I error rate) [7].

If the uncertainty is taken into account for parameter
𝜇, triangular shaped fuzzy number 𝑋 and its 𝛼-cuts (𝛼 ∈

[0.01, 1]) can be given with Definition 4 in (7)

̃
𝑍 =

𝑋 − 𝜇
0

𝜎/√𝑛

. (7)

Calculations are performed by 𝛼-cuts and interval arith-
metic. Substituting the bounds of 𝑋[𝛼] into (7), all 𝛼-cuts of
̃
𝑍 can be given with (8)

̃
𝑍 [𝛼] =

𝑋 [𝛼] − 𝜇
0

𝜎/√𝑛

= [

𝑋 − 𝑧
𝛼/2

𝜎/√𝑛 − 𝜇
0

𝜎/√𝑛

;

𝑋 + 𝑧
𝛼/2

𝜎/√𝑛 − 𝜇
0

𝜎/√𝑛

]

= [

𝑋 − 𝜇
0

𝜎/√𝑛

− 𝑧
𝛼/2

;

𝑋 − 𝜇
0

𝜎/√𝑛

+ 𝑧
𝛼/2

]

= [𝑍
0
− 𝑧
𝛼/2

; 𝑍
0
+ 𝑧
𝛼/2

] .

(8)
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Figure 1: Fuzzy test statistic.

Each 𝛼-cut is put one over the other in order to get a
triangular fuzzy test statistic ̃

𝑍[𝛼] which is given in Figure 1.
Since the test statistics are fuzzy the critical valueswill also

be fuzzy.There will be two fuzzy critical value sets: (1) let ̃CV
1

correspond to−𝑧
𝛾/2

and (2) let ̃CV
2
gowith 𝑧

𝛾/2
. Set ̃CV

𝑖
[𝛼] =

[cv
𝑖1
(𝛼), cv

𝑖2
(𝛼)], 𝑖 = 1, 2. The end points of an 𝛼-cut of ̃CV

2

are computed from the end points of the corresponding 𝛼-cut
of ̃

𝑍 with the following equations:

Prob (𝑍
0
+ 𝑧
𝛼/2

> cv
22
) =

𝛾

2

. (9)

Hence under 𝐻
0
, 𝑍
0
is 𝑁(0, 1) so

cv
22 (

𝛼) = 𝑧
𝛾/2

+ 𝑧
𝛼/2

. (10)

By using the left end point of ̃
𝑍[𝛼] in (9), we have

cv
21 (

𝛼) = 𝑧
𝛾/2

− 𝑧
𝛼/2

. (11)

Hence 𝛼-cuts of ̃CV
2
and ̃CV

1
are given by

̃CV
2 [

𝛼] = [𝑧
𝛾/2

− 𝑧
𝛼/2

, 𝑧
𝛾/2

+ 𝑧
𝛼/2

] ,

̃CV
1 [

𝛼] = −
̃CV
2 [

𝛼] ,

̃CV
1 [

𝛼] = [−𝑧
𝛾/2

− 𝑧
𝛼/2

, −𝑧
𝛾/2

+ 𝑧
𝛼/2

] ,

(12)

respectively [7, 8]. Both ̃CV
1
and ̃CV

2
are triangular shaped

fuzzy numbers. Since the crisp test statistics has a normal
distribution, ̃CV

1
= −

̃CV
2
because this density is symmetric

with respect to zero [7–9]. The final decision depends on the
relationship between ̃

𝑍 and ̃CV
1
and ̃CV

2
: (1)

̃
𝑍 >

̃CV
2

reject 𝐻
0
(Figure 2(a)); (2) ̃

𝑍 <
̃CV
1
reject 𝐻

0
(Figure 2(b));

(3)
̃CV
1

<
̃
𝑍 <

̃CV
2
do not reject Ho (Figure 2(c)); and

(4)
̃CV
1
≈

̃
𝑍 <

̃CV
2
or ̃CV

1
<

̃
𝑍 ≈

̃CV
2
no decision (Figures

2(d) and 2(e)). These situations are explained in detail as
follows. For example, if ̃𝑍 >

̃CV
2
, draw ̃

𝑍 to the right of ̃CV
2
,

then find the height of the intersection as

V (
̃
𝑍 ≤

̃CV
2
) = max {min (

̃
𝑍 (𝑥) ,

̃CV
2
(𝑦)) | 𝑥 ≤ 𝑦} , (13)

which measures how much ̃CV
2
(𝑦) is less than or equal to

̃
𝑍(𝑥). Thus, ̃CV

2
<

̃
𝑍 if V(̃𝑍 ≤

̃CV
2
) < 𝜂, where 𝜂 is

some fixed fraction in (0, 1] (Figure 2(a)). Other situations
are summarized in Figures 2(b), 2(c), 2(d), and 2(e). In this
figure, the height of the intersection is 𝑦

0
and 𝜂 = 0.8 as

Buckley [7–9] states. Now the results can be given as (1) if
𝑦
0
< 0.8, then ̃

𝑍 >
̃CV
2
(Figure 2(a)) and (2) if 𝑦

0
≥ 0.8 then

̃
𝑍 ≈

̃CV
𝑖
, 𝑖 = 1, 2 (Figures 2(d) and 2(e)). Similar results hold

for ̃
𝑍 versus ̃CV

1
(Figures 2(b), 2(c), 2(d), and 2(e)).

It is interesting that after evaluating ̃
𝑍 and ̃CV

1
, ̃CV
2
,

if ̃
𝑍 ≈

̃CV
𝑖
, 𝑖 = 1, 2 (Figures 2(d) and 2(e)) then the

final decision is “no decision” on 𝐻
0
. This is because of the

fuzzy numbers that incorporate all uncertainty in confidence
intervals [7–9]. Consequently, hypothesis testing based on
fuzzy test statistic and fuzzy critical values that is described
above ismore realistic and providesmore benefits when value
of the test statistic is very near to the quantile of the test
statistic.

4. Group Sequential Test Using 𝛼-Cuts

In Pocock’s group sequential test, subject entry is divided
into 𝐾 equally sized groups containing 𝑛 subject on each
treatment and the data are analyzed after each new group
[20]. Consider the response variables to be normal with
unknown means 𝜇

1
and 𝜇

2
with a common variance 𝜎

2.
Subjects are randomized sequentially into two treatment
groups.

The paper is planned as a test of the null hypothesis 𝐻
0
:

𝜇
1
= 𝜇
2
against the two sided alternative𝐻

1
: 𝜇
1

̸= 𝜇
2
. Let𝑋

1𝑗

and 𝑋
2𝑗
be the observed mean responses in the 𝑗th group of

2𝑛 subjects, then the statistics,

𝑍
𝑗
=

√𝑛 (𝑋
1𝑗

− 𝑋
2𝑗
)

√2𝜎
2

, (14)

are normally distributed with mean Δ and unit variance,
whereΔ = 𝐸(𝑍

𝑗
) = √𝑛(𝜇

1
−𝜇
2
)/√2𝜎

2.Therefore test statistic
is defined with 𝑆

𝑘
= ∑
𝑘

𝑗=1
𝑍
𝑗
and 𝑘 = 1, 2, . . . , 𝐾, where

𝑆
𝑘
, under 𝐻

0
, 𝑆
𝑘
∼ 𝑁(0, 𝑘), is a partial sum process of inde-

pendent identically distributed (i.i.d.) standard normal ran-
dom variables 𝑍

𝑘
∼ 𝑁(0, 1), 𝑘 = 1, 2, . . . , 𝐾. Under 𝐻

1
, 𝑆
𝑘

is again partial sum of i.i.d. normal random variables, 𝑍
𝑘

∼

𝑁(Δ, 1), 𝑘 = 1, 2, . . . , 𝐾, 𝑆
𝑘

∼ 𝑁(Δ, 𝑘). Critical values of
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Z̃

y0

1

0.8

𝛼

2̃CV

(a) Reject𝐻0 if 𝑍 > C̃V2

Z̃

y0

1

0.8

𝛼

1̃CV

(b) Reject𝐻0 if 𝑍 < C̃V1

Z̃

y0 y0

1

0.8

𝛼

2̃CV
1̃CV

(c) Accept𝐻0 if C̃V1 < 𝑍 < C̃V2

Z̃

y0

y0

1

0.8

𝛼

2̃CV1̃CV

(d) No decision if C̃V1 ≈ 𝑍 < C̃V2

Z̃

y0

y0

1

0.8

𝛼

2̃CV
1̃CV

(e) No decision if C̃V1 < 𝑍 ≈ C̃V2

Figure 2: Decision criteria for testing 𝐻
0
: 𝜇 = 𝜇

0
versus 𝐻

1
: 𝜇 ̸= 𝜇

0
using 𝛼-cuts.

Pococks’s GST (𝑍
𝑝
(𝐾, 𝛾)) are given in Table 1 for𝐾 = 1, . . . , 5;

1 − 𝛽 = 0.95, and 𝛾 = 0.10. Then GST process is as follows:

(1) after group 𝑘 = 1, 2, . . . , 𝐾 − 1

if




𝑆
𝑘






√𝑘

≥ 𝑍
𝑝
(𝐾, 𝛾) , stop, reject 𝐻

0
,

otherwise, continue to group 𝑘 + 1,

(15)

(2) after group 𝐾

if




𝑆
𝑘






√𝐾

≥ 𝑍
𝑝
(𝐾, 𝛾) , stop, reject 𝐻

0
,

otherwise, stop, accept 𝐻
0
.

(16)

Table 1: Pocock’s critical values 𝑍
𝑝
(𝐾, 𝛾) and Δ for two-sided test,

𝐾 = 1, . . . , 5; 1 − 𝛽 = 0.95; 𝛾 = 0.10.

𝐾 𝑍
𝑝
(𝐾, 𝛾) Δ

1 1.645 3.290
2 1.875 1.875 2.445
3 1.993 1.993 1.993 2.035
4 2.067 2.067 2.067 2.067 1.782
5 2.122 2.122 2.122 2.122 2.122 1.605

The value of noncentrality parameter, Δ, can be deter-
mined to achieve a given value of 1 − 𝛽 [17]. Corresponding
to a specific Δ under 𝐻

1
to be detected, the required sample
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size per treatment per stage, 𝑛, at given 𝛾 and 1 − 𝛽 with a
maximum of 𝐾 stages, is obtained as

𝑛 = Δ
2
(

√2𝜎
2

𝜇
1
− 𝜇
2

)

2

. (17)

The maximum sample size, 𝑛, to find Δ for maximum of 𝐾

stages is simply

𝑛max = 2𝑛𝐾. (18)

Group sequential tests can also be used in an experiment
with only one treatment in which the response results are
compared with a known standard. For a normal response
with a known variance and 𝐻

0
hypothesis mean 𝜇

0
, the criti-

cal values𝑍
𝑘
andΔ become√𝑛(𝜇

1
−𝜇
0
)/𝜎 [17, 22].When𝐾 =

1, that is, for fixed sample size test, (17) becomes the classical
hypothesis test for normal response.

The test statistic defined with (14) can also be given as
follows:

𝑍
𝑗
=

√𝑛 (𝑋
𝑗
− 𝜙
0
)

√𝜎
2

. (19)

Suppose that 𝑋
𝑖
= (𝑋
1𝑖

− 𝑋
2𝑖
)/√2 𝑖 = 1, 2, . . . , 𝑛 and 𝑋

𝑖
∼

𝑁(𝜙, 𝜎
2
), where 𝜙 = (𝜇

1
− 𝜇
2
)/√2 [23]. Therefore the mean

of 𝑗 group of 𝑛 subject𝑋
𝑗
can be defined as𝑋

𝑗
= (∑
𝑛

𝑖=1
𝑋
𝑖
)/𝑛.

Now proceed to the fuzzy situation of𝑋
𝑗
that is explained for

each group of 𝑛 subject in (5) as triangular shaped fuzzy
number is defined as

𝑋
𝑗 [

𝛼] = [𝑋
𝑗
−

𝜎

√𝑛

𝑧
(𝛼/2)

; 𝑋
𝑗
+

𝜎

√𝑛

𝑧
(𝛼/2)

] . (20)

Substituting the 𝛼-cuts of 𝑋
𝑗
into (19) and using interval

arithmetic 𝛼-cuts of the fuzzy test statistics are obtained as
follows:

̃
𝑍
𝑗 [

𝛼] =

𝑋
𝑗 [

𝛼] − 𝜙
0

𝜎/√𝑛

= [

𝑋
𝑗
− (𝜎/√𝑛) 𝑧

𝛼/2
− 𝜙
𝑜

𝜎/√𝑛

;

𝑋
𝑗
+ (𝜎/√𝑛) 𝑧

𝛼/2
− 𝜙
𝑜

𝜎/√𝑛

]

= [

𝑋
𝑗
− 𝜙
0

𝜎/√𝑛

− 𝑧
𝛼/2

;

𝑋
𝑗
− 𝜙
0

𝜎/√𝑛

+ 𝑧
𝛼/2

]

= [𝑍
𝑗
− 𝑧
𝛼/2

; 𝑍
𝑗
+ 𝑧
𝛼/2

] .

(21)

In the sense of this fuzzification fuzzy group sequential
test statistic, 𝑆

𝑘
can be defined as

∑
𝑘

𝑗=1
̃
𝑍
𝑗 [

𝛼]

√𝑘

= 𝑆
𝑘 [

𝛼] , 𝑘 = 1, 2, . . . , 𝐾. (22)

The defined test statistic sample size fuzzy test statistic for
𝐾 = 1which is givenwith (7). Afterwards, 𝛼-cuts of Pococks’s
fuzzy critical value (̃PCV

𝑖
, 𝑖 = 1, 2)

̃PCV
𝑖 [

𝛼] = [pcv
𝑖1 (

𝛼) , pcv𝑖2 (𝛼)] , 𝑖 = 1, 2 (23)

can be calculated. The following equations include calcula-
tions for ̃PCV

2
[𝛼] and ̃PCV

1
[𝛼], respectively:

Prob [𝑍
𝑗
+ 𝑧
𝛼/2

> pcv
22 (

𝛼)] = 𝛾. (24)

Hence

pcv
22

(𝛼) = (𝑍
𝑝
(𝐾, 𝛾) + 𝑧

𝛼/2
) . (25)

By using the left end point of ̃
𝑍
𝑗
[𝛼] given with (21) it is

possible to have

pcv
21

(𝛼) = (𝑍
𝑝
(𝐾, 𝛾) − 𝑧

𝛼/2
) . (26)

As a result we obtain 𝛼-cuts of ̃PCV
2
[𝛼] with (27)

̃PCV
2 [

𝛼] = [𝑍
𝑝
(𝐾, 𝛾) − 𝑧

𝛼/2
, 𝑍
𝑝
(𝐾, 𝛾) + 𝑧

𝛼/2
] . (27)

In the above equation for ̃PCV
2
, 𝛾 is fixed and 𝛼 ranges in the

interval [0.01, 1]. Now ̃PCV
1
= −

̃PCV
2
so

̃PCV
1 [

𝛼] = [−𝑍
𝑝
(𝐾, 𝛾) − 𝑧

𝛼/2
, −𝑍
𝑝
(𝐾, 𝛾) + 𝑧

𝛼/2
] . (28)

Both ̃PCV
1
and ̃PCV

2
are triangular shaped fuzzy numbers.

Thefinal decision depends on the relationship between 𝑆
𝑘
and

̃PCV
1
and ̃PCV

2
. Therefore fuzzy group sequential test

process is as follows:

(1) after group 𝑘 = 1, 2, . . . , 𝐾 − 1

if 𝑆
𝑘
<

̃PCV
1
or 𝑆
𝑘
>

̃PCV
2
; stop reject 𝐻

0
,

otherwise; continue to 𝑘 + 1,

(29)

(2) after group 𝐾

if 𝑆
𝑘
<

̃PCV
1
or 𝑆
𝑘
>

̃PCV
2
; stop, reject 𝐻

0
,

if ̃PCV
1
< 𝑆
𝑘
<

̃PCV
2
; accept 𝐻

0
,

if 𝑆
𝑘
≈

̃PCV
𝑖
for 𝑖 = 1, 2; no decision.

(30)

These situations are explained in detail in Figure 3. The
final decision depends on the relationship between 𝑆

𝑘
and

̃PCV
1
and ̃PCV

2
: (1) 𝑆

𝑘
>

̃PCV
2
reject 𝐻

0
(Figure 3(a));

(2) 𝑆
𝑘

<
̃PCV
1
reject 𝐻

0
(Figure 3(b)); (3) ̃PCV

1
< 𝑆
𝑘

<

̃PCV
2
do not reject 𝐻

0
(Figure 3(c)); and (4)

̃PCV
1

≈ 𝑆
𝑘

<

̃PCV
2
or ̃PCV

1
< 𝑆
𝑘

≈
̃PCV
2
no decision (Figures 3(d) and

3(e)). We take the height of the intersection 𝜂 = 0.8, which
measures how much ̃PCV

𝑖
, 𝑖 = 1, 2 is less than, bigger than,

or equal to 𝑆
𝑘
. The advantage of 𝛼-cuts approach to GST is

that, instead of generating and processing a single confidence
interval, all the confidence intervals at the same time are
calculated in the process of corresponding fuzzy test statistic.
Therefore in this study we showed that this advantage is also
valid for the process of group sequential tests using 𝛼-cuts.
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P̃CV2 kS̃

y0

1

0.8

𝛼

(a) Reject𝐻0 if 𝑆𝑘 > P̃CV2

kS̃

y0

1

0.8

𝛼

P̃CV1

(b) Reject𝐻0 if 𝑆𝑘 < P̃CV1

kS̃

y0 y0

1

0.8

𝛼

P̃CV2P̃CV1

(c) Accept𝐻0 if P̃CV1 < 𝑆𝑘 < P̃CV2

kS̃

y0

y0

1

0.8

𝛼

P̃CV2P̃CV1

(d) No decision if P̃CV1 ≈ 𝑆𝑘 < P̃CV2

kS̃

y0

y0

1

0.8

𝛼

P̃CV2P̃CV1

(e) No decision if P̃CV1 < 𝑆𝑘 ≈ P̃CV2

Figure 3: Decision criteria for 𝛼-cuts approach to group sequential testing 𝐻
0
: 𝜇 = 𝜇

0
versus 𝐻

1
: 𝜇 ̸= 𝜇

0
.

5. Numerical Example

As an illustration we consider a real data inMcCleve and Sin-
cich [24] on page 381 givenwith Table 2.The content of data is
as follows: a new developed diet, that is, low in fats, carbonhy-
drates, and cholesterol, is intended to be used by people with
heart disease. Furthermore the dietitian wishes to examine
the effect that this diet has on the weights of obese people.
Hence this data set concerns two groups which are called low
fat diet (A) and regular diet (B), respectively.

We want to test 𝐻
0
: 𝜇A − 𝜇B = 0 with 𝛽 = 𝛾 =0.10, 𝜎2 =

50.063, and 𝐾 = 3 at 𝐻
1

: 𝜇A − 𝜇B = ±5; sample size which
is calculated from (17) is 𝑛A = 𝑛B = 17 per treatment per

stage withmaximum sample size (𝑛max) = 102 [23].The fuzzy
group sequential test statistics 𝑆

1
, 𝑆
2
, and 𝑆

3
and fuzzy

Pocock’s critical values ̃PCV
𝑖
, 𝑖 = 1, 2, 3 are given in Table 3.

The test statistic and critical value that is calculated in
each stage is recalculated using Buckley’s approach. Hence
each 𝛼-cut value is obtained for test statistic and critical value
(for 𝛼 = 0.01, 0.2, 0.4, 0.6, 0.8, and 1.00). 𝛼-cuts, base and
peak values of 𝑆

1
, 𝑆
2
, and 𝑆

3
, and critical values that are calcu-

lated in each stage are detailed in Table 4. Thus, as suggested
in Buckley’s approach, not only one value but also more
than one confidence interval is used, in order to test hypoth-
esis, so that more information is included in group sequential
test process. The results are obtained using the Maple 9 [25].
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Table 2: Diet study data.

𝐾 = 1 𝐾 = 2 𝐾 = 3

(A) Low Fat Diet

(1) 8 (6) 3 (11) 21 (16) 20 (1) 11 (6) 10 (11) 13 (16) 8 (1) 11 (6) 4 (11) 11 (16) 2

(2) 10 (7) 11 (12) 8 (17) 14 (2) 15 (7) 12 (12) 14 (17) 10 (2) 19 (7) 11 (12) 12 (17) 4

(3) 10 (8) 7 (13) 9 (3) 6 (8) 1 (13) 4 (3) 0 (8) 7 (13) 4

(4) 12 (9) 9 (14) 2 (4) 13 (9) 7 (14) 8 (4) 9 (9) 14 (14) 12

(5) 9 (10) 2 (15) 2 (5) 8 (10) 10 (15) 12 (5) 10 (10) 2 (15) 9

(B) Regular Diet

(1) 6 (6) 6 (11) 14 (16) 8 (1) 13 (6) 6 (11) 5 (16) 6 (1) 5 (6) 8 (11) 12 (16) 13

(2) 6 (7) 10 (12) 4 (17) 8 (2) 9 (7) 11 (12) 8 (17) 8 (2) 7 (7) 13 (12) 10 (17) 11

(3) 5 (8) 3 (13) 10 (3) 3 (8) 12 (13) 7 (3) 16 (8) 1 (13) 6

(4) 5 (9) 9 (14) 13 (4) 4 (9) 9 (14) 6 (4) 18 (9) 9 (14) 1

(5) 2 (10) 11 (15) 3 (5) 12 (10) 8 (15) 2 (5) 6 (10) 8 (15) 0

Table 3: Summarized calculations for fuzzy group sequential test.

Step No Test statistics Critical values

(1)

̃
𝑍
1 [

𝛼] =

𝑋
1
− 0

𝜎/√𝑛

= [1.26488 − 𝑧
(𝛼/2)

; 1.26488 + 𝑧
(𝛼/2)

]
̃PCV
1 [

𝛼] = [1.993 − 𝑧
(𝛼/2)

; 1.993 − 𝑧
(𝛼/2)

]

𝑆
1 [

𝛼] = [1.26488 − 𝑧
(𝛼/2)

; 1.26488 + 𝑧
(𝛼/2)

]

(2)

̃
𝑍
2 [

𝛼] =

𝑋
2
− 0

𝜎/√𝑛

= [1.22768 − 𝑧
(𝛼/2)

; 1.22768 + 𝑧
(𝛼/2)

]

̃PCV2 [𝛼] = [1.993 − 𝑧
(𝛼/2)

; 1.993 − 𝑧
(𝛼/2)

]

𝑆
2 [

𝛼] =






∑
2

𝑗=1
̃
𝑍
𝑗







√2

=







̃
𝑍
1 [

𝛼] +
̃
𝑍
2 [

𝛼]







√2

= [1.7625 − 𝑧
(𝛼/2)

; 1.7625 + 𝑧
(𝛼/2)

]

(3)

̃
𝑍
3 [

𝛼] =

𝑋
3
− 0

𝜎/√𝑛

= [1.533 − 𝑧
(𝛼/2)

; 1.533 + 𝑧
(𝛼/2)

]

̃PCV3 [𝛼] = [1.993 − 𝑧
(𝛼/2)

; 1.993 − 𝑧
(𝛼/2)

]

𝑆
3 [

𝛼] =






∑
3

𝑗=1
̃
𝑍
𝑗







√3

=







̃
𝑍
1 [

𝛼] +
̃
𝑍
2 [

𝛼] +
̃
𝑍
3 [

𝛼]







√3

= [2.3248 − 𝑧
(𝛼/2)

; 2.3248 + 𝑧
(𝛼/2)

]

Table 4: Base and peak values {[𝑎
1
, 𝑎
2
, 𝑎
3
]} of triangular shaped fuzzy numbers for group sequential test using𝛼-cuts for𝐾 = 3 and 𝑘 = 1, 2, 3.

𝛼-cut 𝑘 = 1

̃
𝑍
1

𝑆
1

̃PCV1
̃PCV2

0.01 [−1.23, 1.265, 3.761] [−1.23, 1.265, 3.761] [0.551, −1.993, −4.553] [−0.551, 1.993, 4, 553]

0.20 [0.013, 1.265, 2.561] [0.013, 1.265, 2.561] [−0.714, −1.993, −3.271] [0.714, 1.993, 3.271]

0.40 [0.432, 1.265, 2.091] [0.432, 1.265, 2.091] [−1.113, −1.993, −2.831] [1.113, 1.993, 2.831]

0.60 [0.724, 1.265, 1.887] [0.724, 1.265, 1.887] [−1.487, −1.993, −2.534] [1.487, 1.993, 2.534]

0.80 [1.102, 1.265, 1.517] [1.102, 1.265, 1.517] [−1.763, −1.993, −2.266] [1.763, 1.993, 2.266]

1.00 [1.265, 1.265, 1.265] [1.265, 1.265, 1.265] [−1.993, −1.993, −1.993] [1.993, 1.993, 1.993]

𝛼-cut 𝑘 = 2

̃
𝑍
2

𝑆
2

̃PCV1
̃PCV2

0.01 [−1.331, 1.235, 3.782] [−0.824, 1.763, 4.335] [0.551, −1.993, −4.553] [−0.551, 1.993, 4, 553]

0.20 [−0.074, 1.235, 2.513] [0.468, 1.763, 3.023] [−0.714, −1.993, −3.271] [0.714, 1.993, 3.271]

0.40 [0.394, 1.235, 2.122] [0.967, 1.763, 2.645] [−1.113, −1.993, −2.831] [1.113, 1.993, 2.831]

0.60 [0.756, 1.235, 1.693] [1.253, 1.763, 2.284] [−1.487, −1.993, −2.534] [1.487, 1.993, 2.534]

0.80 [0.997, 1.235, 1.486] [1.511, 1.763, 1.987] [−1.763, −1.993, −2.266] [1.763, 1.993, 2.266]

1.00 [1.235, 1.235, 1.235] [1.763, 1.763, 1.763] [−1.993, −1.993, −1.993] [1.993, 1.993, 1.993]

𝛼-cut 𝑘 = 3

̃
𝑍
3

𝑆
3

̃PCV1
̃PCV2

0.01 [−1.032, 1.533, 4.122] [−0.274, 2.325, 4.923] [0.551, −1.993, −4.553] [−0.551, 1.993, 4, 553]

0.20 [0.278, 1.533, 2.775] [1.078, 2.325, 3.587] [−0.714, −1.993, −3.271] [0.714, 1.993, 3.271]

0.40 [0.684, 1.533, 2.356] [1.458, 2.325, 3.184] [−1.113, −1.993, −2.831] [1.113, 1.993, 2.831]

0.60 [1.084, 1.533, 2.023] [1.836, 2.325, 2.835] [−1.487, −1.993, −2.534] [1.487, 1.993, 2.534]

0.80 [1.321, 1.533, 1.786] [2.079, 2.325, 2.586] [−1.763, −1.993, −2.266] [1.763, 1.993, 2.266]

1.00 [1.533, 1.533, 1.533] [2.325, 2.325, 2.325] [−1.993, −1.993, −1.993] [1.993, 1.993, 1.993]
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1S̃1.0

0.75

0.5

0.25

0.0

0 1 2 3 4−4 −3 −2 −1

Stage 1 (k = 1)

𝛼

P̃CV2P̃CV1

(a)

2S̃
1.0

0.75

0.5

0.25

0.0

0 1 2 3 4−4 −3 −2 −1

Stage 2 (k = 2)

𝛼

P̃CV2P̃CV1

(b)

3S̃
1.0
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0.5

0.25

0.0

0 1 2 3 4 5−4 −3 −2 −1

Stage 3 (k = 3)

𝛼

P̃CV1 P̃CV2

(c)

Figure 4: Summarized calculations for group sequential test using 𝛼-cuts for 𝐾 = 3, 𝑘 = 1, 2, 3.

The graphical illustration of Table 4, which includes fuzzy
group sequential test statistics and fuzzy critical values in each
stage, is presented in Figure 4.

When Figure 4 is examined, 𝛼-cut approach proposed by
Buckley to group sequential test is seen more clearly. We take
𝜂 = 0, 8 to sort the triangular shaped fuzzy numbers which
are calculated by confidence intervals. This value is used in
Buckley’s work [7–9]. It is possible to take different 𝜂 values to
test hypothesis.Thus, the flexibility of statistical tests based on
fuzzy test statistics is said to be used for group sequential tests.

It is clear that ̃PCV
1
< 𝑆
1
<

̃PCV
2
for first stage (𝑘 = 1) in

Figure 4. In this casewe proceed to the second stage (𝑘 = 2). It
is 𝑆
2
≈

̃PCV
2
in stage 2, because the height of the intersection

of two triangular shaped fuzzy numbers is very close to the
value 𝜂 = 0, 8.Therefore we proceed to the third stage (𝑘 = 3).
When 𝑘 = 3 is examined, it is seen that 𝑆

3
>

̃PCV
3
beacuse

𝜂 ≈ 0, 74. As a result, 𝐻
0
is rejected. It is possible to say that

the mean of two groups is different from each other.

6. Results and Discussion

In Buckley’s approach, fuzzy test statistic is obtained by using
more than one confidence interval as the 𝛼-cut of triangular
shaped fuzzy number. Thus, more information is used in
hypothesis testing procedure. However sample size is fixed in
the approach proposed by Buckley. Fixed sample size has no
benefit in the studies where data comes sequentially. For this
purpose, we show in this study how to use 𝛼-cut approach
proposed by Buckley in group sequential test. 𝛼-cuts of the
fuzzy test statistics and fuzzy critical values for each stage are
calculated with (21) and (22) which are given in Section 4.

We apply Buckley’s approcah to GST in an example given
in Section 5. In this example if we take 𝛼 = 1 at each stage,
the fuzzy group sequential test returns into the classical group
sequential test.This situation is given in Table 4 with 𝛼 = 1. In
classical group sequential testing procedure 𝑆

1
= 1, 265 (for

𝑘 = 1), 𝑆
2
= 1, 763 (for 𝑘 = 2), and 𝑆

3
= 2, 325 (for 𝑘 = 3) are

obtained. But is seems that especially in the second stage
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critical value and test statistics are very close to each other.
Compared with each stage based on the critical value and test
statistic,𝐻

0
is rejected in third stage. In this situation only one

value is considered in order to decide.
If we worked with fixed sample size in the example which

is considered and if hypothesis was tested in accordance
with Buckley’s approach only, we would need 88 observations
(𝑛A = 44 and 𝑛B = 44) for 𝐾 = 1 in (17). However, we started
testing hypothesis with 34 observations (𝑛A = 17 and 𝑛B =

17) in total by using the 𝛼-cut approach proposed by Buckley
in the group sequential test for 𝐾 = 3.

7. Conclusion

In this study, we combine the benefits of 𝛼-cut approach
proposed by Buckley for the hypothesis testing procedure and
GST. Fuzzy test statistics and fuzzy critical values proposed by
Buckley are calculated for each step in the process of group
sequential test and we achieved results that are more flexible
and closer to the real life at the end of our study. In addition,
group sequential test is done by considering more than one
𝛼-cut value instead of only one 𝛼 value (𝛼 = 1), which is
the advantage of fuzzy approach. Ultimately hypothesis is
rejected. This situation is consistent with the classical situa-
tion. Consequently, it is shown that Buckley’s approach can
be used for Pocock’s group sequential test as well. It is shown
that the advantages of the two tests can be combined and used
together in the application that is presented in this study.
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