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Granulocyte colony stimulating factor (G-CSF) is sometimes administered to donors before bone marrow
(BM) harvest. G-CSFeprimed (G-BM) and unprimed BM (U-BM)ederived mesenchymal stem cells (MSC)
were obtained from 16 healthy donors and were expanded in vitro. Their proliferative characteristics,
morphology, and differentiation capacity were examined. Supernatants of the second passage of MSCs were
evaluated for transforming growth factor b1, hepatocyte growth factor, and prostaglandin E2 (PGE2) levels
and compared with controls. The analyses of cytokines in the G-BMe and U-BMederived MSCs supernatants
revealed that PGE2 levels were significantly lower in the G-CSFeprimed samples. These cytokines were also
measured in BM plasma. The level of hepatocyte growth factor in G-BM plasma was significantly increased.
The current study is the first to show the effects of G-CSF on the BM microenvironment of healthy human
donors. The preliminary data suggest that G-BMe and U-BMederived MSCs have similar morphologic/
phenotypic properties and differentiation capacity but differ in their secretory capacity. Significant changes in
cytokine levels of BM plasma in G-CSFeprimed donors were also demonstrated. These findings suggest that
BM MSCs and changes in the BM microenvironment may contribute to the effects of G-CSF on inflammation
and immunomodulation.

� 2015 American Society for Blood and Marrow Transplantation.
INTRODUCTION
Granulocyte colonyestimulating factor (G-CSF) is the

basic hematopoietic growth factor that modulates hemato-
poiesis and immune system. It is widely used in clinical
practice to overcome radiotherapy and chemotherapy-
induced myelosuppression, to increase the proliferation
and differentiation of hematopoietic cells, and to activate
neutrophil functions [1]. In addition, G-CSF is administered
to donors to mobilize stem cells from the bone marrow (BM)
into peripheral blood before collection of peripheral blood
(PB) stem cells. G-CSF is sometimes administered to donors
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before BM harvest [2-4]. However, if the established number
of stem cells needed for the recipient will require a large
volumemarrow collection (>16mL/kg) from the donor and if
the donor is not eligible for PB collection, G-CSF may be used
to increase the stem/progenitor cell content of the product.
G-CSF has been shown to affect the immune system by
modifying T cell reactivity and antigen-presenting cell
function. Some studies have shown that G-CSF stimulates the
inflammatory response while suppressing the adaptive im-
mune system. However, there is a paucity of information in
the literature regarding the effects of G-CSFeprimed stem
cells on recipient immune system. Data suggests that a G
CSFeinduced T helper 1 to T helper 2 shift may play a role in
modification of the alloimmune reactions in the recipient [5].

Mesenchymal stem cells (MSCs) were first characterized
more than 30 years ago and are described as fibroblast-like
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cells adhering to plastic when they were cultured from BM
in vitro. It has been shown that MSCs may be isolated from
most mesoderm-derived tissues and have differentiation
capacity to mainly connective tissue and different mesoderm
tissues [6]. To date, several studies have been performed on
the biological properties and function of these cells. MSCs are
believed to play a role in supporting other types of cells/stem
cells by establishing cellular interactions, providing secretory
factors for growth and differentiation and other biological
functions, and by contributing to angiogenesis and immune
modulation [7]. MSCs have been shown to affect the func-
tions of immune cells mainly by secreting immune-
modulatory factors, such as transforming growth factor
beta 1 (TGF-b1), hepatocyte growth factor (HGF), prosta-
glandin E2 (PGE2), indoleamine 2,3 dioxygenase (IDO), and
HLA G-5 through cell-cell interactions [8]. In recent years,
these cells have aroused increasing attention in regenerative
medicine and in the treatment of autoimmune and inflam-
matory conditions, including steroid-resistant graft-versus-
host disease (GVHD) [9].

To our knowledge, the effect of G-CSF on the immuno-
modulatory functions of MSCs and on the secretion capacity
of immune-modulatory cytokines has not been studied. In
the present study, it is hypothesized that G-CSFeprimed BM
(G-BM)ederived MSCs may modulate secretion of immune-
modulatory cytokines in the BM microenvironment.

MATERIALS AND METHODS
This study enrolled 16 HLA-identical healthy related donors for children

who underwent allogeneic hematopoietic stem cell transplantation (HSCT)
at Ankara Children’s Hematology Oncology Education and Research Hospi-
tal. Eight donors received G-CSF (lenograstim, Granocyte) when the pre-
dicted marrow harvest volume was assumed to be more than 16 mL/kg of
donor’s weight. Eight age-matched donors unexposed to G-CSF (U-BM)
were included as the control group.

Informed consent was obtained from all patients, donors, and their legal
guardians for HSCT. This study was approved by the local ethical committee.

Harvesting BM
Among 16 donors, 8 received G-CSF at a dosage of 10 mg/kg/day

(lenograstim, Granocyte) as a single injection for 3 consecutive days. The
other 8 donors had unstimulated BM.

The BM was obtained from the posterior iliac crest of healthy donors
under general anesthesia. G-BM and U-BM harvest were performed with a
target volume to meet the optimal cell numbers for engraftment and not to
exceed 16 mL/kg of donor’s body weight. For this study, 2 to 3 mL of BMwas
separated and frozen.

Collection of Plasma from BM
BM samples were centrifuged at 2000 rpm for 10minutes. The plasma at

the upper part of the tube was collected and stored at �80�C.

Isolation of Human BMeDerived MSCs
Mononucleated cells separation procedure

BM samples were diluted with Dulbecco’s PBS (Biochrom, Germany)
after the plasma collection and layered on Biocoll (1.077 g/mL) separating
solution (Biochrom, Germany) (1:1) and centrifuged at 2200 rpm for
20 minutes.

Mononucleated cell freezing procedure
The buffy coat containing the mononucleated cells (MNCs) was washed

with PBS and frozen in DMEM low glucose (DMEM-LG) (Biochrom, Ger-
many) containing 20% FBS (Biochrom, Germany) and 10% DMSO. Cryovials
were kept in liquid nitrogen tanks at �196�C.

MNC Thawing procedure
MNC samples in the cryovials were thawed in a 37�C water bath before

the seeding procedure. The cells were disaggregated by gentle pipetting
several times and centrifuged with PBS at 2000 rpm for 5minutes to remove
freezing solution. The supernatant was discarded, and the pellet was
resuspended in 10 mL DMEM-LG, 10% FBS, and 1% penicillin-streptomycin
(Biochrom, Germany) and at least 20 � 106 cell were seeded in 75 cm2
plastic flasks. Flasks were kept at 37�C in a humidified atmosphere con-
taining 5% CO2 (Galaxy 170R incubator, Eppendorf Company, Hamburg,
Germany).

Culture of Human BMeDerived MSCs
After 72 hours, nonadherent cells were removed. The culture medium

was changed every 3 days. When 70% to 80% adherent cells were confluent,
they were trypsinized (.05% trypsin) at 37�C for 5 minutes (Biochrom).
Characterization of MSCs, collection of supernatant for ELISA assay, and MSC
differentiation assay were set up within passage 2 of MSC culture.

Characterization and Differentiation Assay of MSCs
In vitro differentiation capacity of MSCs towards adipogenic and oste-

ogenic lineages were tested. Adipogenic Stimulatory Supplements (Human)
(MesenCult Adipogenic Differentiation Medium; Stemcell Technologies,
Vancouver, Canada) induction was used for adipogenic, and Osteogenic
Stimulatory Supplements (Human) (MesenCult Osteogenic Stimulatory Kit,
Stemcell Technologies, Vancouver, Canada) was used to induce osteogenic
differentiation. Oil red o and alizarin red stains were used to verify,
respectively, adipogenic and osteogenic differentiation capacity of MSCs at
day 21 of induced cultures. MSCs were also tested for positive staining of
HLA ABC, CD90, CD73, CD44, and CD49e (BD Biosciences, Piscataway, NJ,
USA) and negative antibody staining for CD34, CD3, CD4, and HLA DR (BD
Biosciences, Piscataway, NJ, USA). Flow cytometry with a BD-FACS Aria (BD
Biosciences) was used for surface phenotyping of MSCs.

MSC’s Coculture with PB MNC
PB MNCs isolation and activation test

MNC were purified from heparinized PB by density-gradient centrifu-
gation using Biocoll (1.077 g/mL) separating solution (as described in MNC
separation procedure).

MNCs from PB samples were plated at a density of 3 � 105 cells/cm2 on
T-75 flask (Cellstar, Grenier Bio-one, Kremsmünster, Austria) with a density
of 10 mL pythohemagglutinin (PHA)/1 � 106 cells in DMEM supplemented
10% FBS and 1% penicillin-streptomycin at 37�C in a humidified atmosphere
containing 5% CO2 for 72 hours for activation of lymphocytes.

BM MSC isolation
BM MSC isolation was performed as described previously. All assays

were performed using MSCs at passage 2.

Coculture
Coculture were carried out in 6-well tissue plates (Cellstar, Grenier Bio-

one) with PBMNCs from a healthy donor and allogeneic humanMSCs from 2
different sources, G-BM 8 samples and U-BM 8 samples.

Control cultures consisted of MNC in the absence of MSCs, with or
without PHA stimulation. Also, another control culture was set that con-
sisted of U-BMMSCs for the evaluation of proliferation capacity of MSCs. For
the immunological assays, different sets of cocultures were generated as
below: PHA-activatedMNCsþG-BMMSCs and PHA-activatedMNCsþU-BM
MSCs (8 different samples for each condition).

For the coculture experiments, MNCs were washed with PBS at least
twice after activation with PHA. Cocultures were performed as in each well,
we added 30,000 MNCs, with a ratio of 10:1 (MNC:MSC). The coculture
plates were kept at 37�C in a humidified atmosphere containing 5% CO2 for
4 days. After 4 days, the cultured cells were washed with PBS and centri-
fuged at 2000 rpm for 5 minutes.

The number of cells and cellular viability were determined.

Flow Cytometry Data Acquisition and Analysis
Cells were acquired on a Beckmann Coulter Navios using Kaluza version

1.2 software. For the immunological assays and to define the different stages
of lymphocyte activation, we used mAb against CD3-PC7, CD4-FITC, CD25-
PE, CD69-PC5, and HLA-DR-ECD (Beckmann Coulter, Brea, CA, USA).

Quantification of Immune Modulatory Factors
To quantify PGE2, HGF, and TGF-b1, MSCs supernatants were collected at

passage 2 and stored at �80�C until measured by ELISA. When MSCs
reached 70% to 80% confluency at passage 2, cells were trypsinized and
counted before freezing and stored at �80�C. BM plasma was harvested and
frozen at �80�C until measured by ELISA. PGE2 ELISA was performed using
the Human PGE2 Assay ELISA (R&D Systems, Minneapolis, MN), TGF-b1
ELISA was assayed using the Human TGF-b1 ELISA (R&D Systems), and HGF
ELISA was performed using the Human HGF ELISA (R&D Systems). MSC
supernatants and BM plasma were analyzed on BioTEK ELx808 Absorbance
Microplate Readers (BioTEK, Winooski, VT, USA). Measured ELISA test from
supernatant of MSC for standard results were taken as the value for the
10 � 104 per MSCs.



Table 1
G-BM and U-BMeDerived MSCs Expression of CD Markers

Marker U-BM G-BM

Donor 1 Donor 2 Donor 3 Donor 4 Donor 5 Donor 6

CD90 100 99.5 99.6 99.2 98.9 99.4
CD73 90.3 88.1 93.2 94.3 86.2 80.9
CD29 95.7 89.5 90 97.4 74.5 92.7
CD34 .3 .7 .1 .1 .1 .2
CD45 .2 .4 .2 .2 .3 .2

Data shown are percentages.
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Statistics
The statistical significance was assessed by Mann Whitney U-test. A P

value < .05 was considered significant. Statistical analyses were performed
using the SPSS 16,0 software program (SPSS Inc, Chicago, IL).

RESULTS
Demographic Features of Donors

The median age was 9.5 years (range, 4.5 to 17 years) in
U-BM group and 9 years (range, 3.5 to 17 years) in G-BM
group. There were 4 girls and 4 boys in U-BM group and 3
girls and 5 boys in G-BM group. There was no significant
difference in sex or age of donors between the 2 groups.

There was no immediate or subacute complication in
donors after G-CSF injections. The median harvested BM
volume was 585 � 211 mL in the G-BM group and
513 � 163 mL in the U-BM group. There were no complica-
tions during the harvesting BM.

Expansion and Characterization of Human MSCs from
G-BM and U-BM

Both types of MSCs were expanded and used in the ex-
periments at passage 2. The immunophenotype analysis
showed that both types of MSCs were positive for HLA ABC,
CD90, CD73, CD44, and CD49e and negative for CD34, CD3,
Figure 1. In vitro differentiation of G-BMederived MSCs into adipocytes (�4 magnific
(This figure is available in color online at www.bbmt.org).
CD4, and HLA DR. G-BMe and U-BMederived MSCs
expression levels of CD markers are summarized in Table 1.

The adipogenic and osteogenic differentiation capacity of
both study and control groups of MSCs were confirmed by
differentiation assays. Images from a representative sample
are shown in Figure 1 and Figure 2.

ELISA assays
The levels of immunosuppressive/immune modulatory

cytokines (HGF, PGE2, and TGF- b1) were determined by
ELISA assay in the BM plasma and MSC supernatants of
G-CSFeprimed and unprimed donors. Therewas a significant
increase in the level of HGF (P < .05) in BM plasma of
G-CSFeprimed donors when compared with that of controls.

The investigation of the MSC supernatants for the
immunomodulatory cytokines revealed a statistically sig-
nificant decrease in PGE2 levels in G-CSFeprimed samples
(P < .05).

Results of ELISA assays are summarized in Table 2 and
Figure 3. HSCT patients’ outcomes summarized in Table 3.
Immunological Assays
Lymphocytes undergo clonal division after mitogenic

stimulation. To investigate the kinetics of lymphocyte acti-
vation, in the presence of PHA and the effects of MSCs
derived from G-BM and U-BM on activated lymphocytes, we
analyzed activation markers of lymphocytes with flow
cytometry. We analyzed subpopulations of lymphocytes,
especially T lymphocytes phenotypically defined as
CD3þCD69þ, CD3þHLADRþ, and CD4þCD25þ in different
culture conditions. The percentage of CD3þCD69þ cells was
decreased in both the PHA-activated MNCs þ G-BM MSCs
group and PHA-activated MNCs þ U-BM MSCs group when
compared with MNC þ PHA. Also the percentage of
CD3þHLA-DRþ cells was increased in both PHA-activated
ation). (A) Unstained, (B) oil o red staining, (C) unstained, (D) oil o red staining.
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Figure 2. In vitro differentiation of G-BMederived MSCs into osteocytes (�4 magnification). (A) Unstained, (B) alizarin red staining, (C) unstained, (D) alizarin red
staining. (This figure is available in color online at www.bbmt.org).
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MNCsþ G-BMMSCs group and PHA-activatedMNCsþ U-BM
MSCs group when compared with MNC þ PHA. Therefore,
the results were not statistically significant. Results of these
immunological assays are summarized in Table 4.
DISCUSSION
This study evaluates the relationship between

G-BMederived MSCs and the immunosuppressive and im-
mune modulatory cytokines of MSCs. This is the first report
showing that G-BMe and U-BMederived MSCs have similar
morphologic/phenotypic properties and differentiation ca-
pacity but they differ in their secretory capacity, an impor-
tant feature of MSCs. Additionally, significant changes in
cytokine levels of BM plasma of G-CSFeprimed donors were
also demonstrated in this study.

In the present study, the post-transplantation immuno-
logic effects (incidence of GVHD, immune reconstitution,
etc.) are presented in a table without comparison because of
the limited number of patients, different diagnosis, and
conditioning regimens used in this patient group. Instead,
Table 2
ELISA Assays Levels of Cytokines in the G-BMe and U-BMeDerived MSCs
Supernatants and BM Plasma

Cytokines U-BM G-BM P

MSCs supernatant (10 � 104 cells)
HGF, pg/mL 125.91 � 135 121.60 � 68 .24
TGF- b1, pg/mL 86.30 � 49.39 53.98 � 47.48 .41
PGE2, pg/mL 314.66 � 97.18 143.19 � 31.69 .001*

BM plasma
HGF, pg/mL 2340.56 � 843.97 6699.92 � 4125.69 .027*

TGF- b1, pg/mL 4956.93 � 2158.45 14757 � 24,415.12 1
PGE2, pg/mL 2254.68 � 794.15 3350.06 � 1654.91 .11

Data presented are mean � SD.
* P < .05 statistical significance.
immune-modulatory properties of the G-BM microenviron-
ment were obtained in this study.

In the literature, the mechanisms for immunosuppressive
potential of MSCs include both cell-cell contact and the
release of soluble mediators. These immune modulatory
factors include TGF-b1, HGF, PGE2, indoleamine 2,3 dioxy-
genase, and HLA-G5 [10-13]. These properties make them
promising tools in the treatment of steroid-resistant GVHD
and autoimmune diseases [9].

HGF was first identified and partially characterized as
mitogenic protein for hepatocytes in 1984 [14]. It has also
been shown to function in placenta, kidney, lung, muscle,
salivary gland, and hematopoietic tissue [15]. Many studies
have demonstrated that embryogenesis, angiogenesis, he-
matopoiesis, as well as organ regeneration, are controlled by
HGF [16,17]. A previous study demonstrated that HGF levels
are altered by various factors, including age and sex. Serum
HGF levels were reported as (mean� SD) 360� 160 pg/mL in
females and 350 � 250 pg/mL in males at 10 to 19 years of
age [18]. In our study, HGF levels are 6700 � 4125 pg/mL and
2340 � 843 pg/mL in the G-BM and U-BM plasma, respec-
tively. These levels are very high compared with reported
blood levels. There was a statistically significant difference in
the HGF levels of G-BM and U-BM plasma (P ¼ .027). The
results of the present study suggesting that G-CSF induces
HGF release from the BM microenvironment may have
implications for MSCs, as they are the major cells of BM
microenvironment [19]. For this purpose, we analyzed levels
of HGF in the MSCs supernatants. HGF levels were 121 � 68
pg/mL and 125 � 135 pg/mL in the G-BM and U-BMederived
MSCs supernatants, respectively. The difference was not
statistically different. In the present study, relatively
early passage cells (passage 2) were used to maintain the
in vivo functional properties as much as possible during
ex vivo expansion. It has been demonstrated that

http://www.bbmt.org


Figure 3. Concentration of HGF, TGFb1, and PGE2 in MSCs supernatants and BM plasma. *In the BM plasmas, HGF with G-CSF increase. **In the MSCs supernatants,
PGE2 with G-CSF decrease.
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immunosuppressive factors are released upon exposure to
cytokines, including IFN-g, IL-1b, in MSCs medium [20].
Unlike in vivo, MSCs has no contact with other cells in culture
medium, so lack of the alerts could the change secretory
functions of MSCs. In further studies, experiments can be
repeated with priming with cytokines and coculture with
hematopoietic cells.

TGF-b is a multipotent cytokine, modulator of cell pro-
liferation, differentiation, apoptosis, adhesion, inflammation,
and matrix synthesis. Most cell types, including immature
Table 3
Characteristics and Outcomes of HSCT Patients

Patient No. G-BM Disease MNC count, � 108/kg CD34þ

Cell count, � 106/kg
N
E

1 No BTM 4.26 3.88 þ
2 No HES 4.6 6.77 þ
3 No BTM 6.72 4.99 þ
4 No CHS 9.67 5.18 þ
5 No BTM 5.14 7.76 þ
6 No AML 4.21
7 No BTM 5.5 14.1 þ
8 No FA 4.71 5.62 þ
9 Yes HL 6.33 2.17 þ
10 Yes AML 1.31 4.87 þ
11 Yes ALL 9.33 1.67 þ
12 Yes BTM þ
13 Yes ALL
14 Yes ALL 4 3.72 þ
15 Yes ALL 3.24 2.12 þ
16 Yes AML 4.58 2.2 þ

BTM indicates beta thalassemia major; HES, hyper-immunoglobulin E syndrome; C
aplastic anemia; HL, Hodgkin lymphoma; ALL, acute lymphoblastic leukemia.
hematopoietic cells, lymphocytes, neutrophils, macrophages,
and dendritic cells, produce TGF-b and are sensitive to its
effects [21]. Kulkarni et al. demonstrated that TGF-b plays a
pivotal role in maintenance of immune cell homeostasis in
TGF-b1 knockout mice experiments [22]. In vitro studies
have shown that TGF-b affects B and T cells at all stages of
development, inhibits proliferation, and stimulates
apoptosis, thus acting as an immune-suppressive molecule
[23]. Several studies in the literature have demonstrated that
release of TGF-b1 contributes to immunosuppressive effects
eutrophil
ngraftment

Platelet
Engraftment

Acute GVHD Chronic GVHD Graft Failure

20 day - No No þ30 day
20 day þ25 day Grade III No
16 day þ23 day No No
16 day þ19 day Grade III No
13 day þ24 day No No

No
18 day þ31 day No No
11 day þ15 day No No
16 day þ24 day No Liver
6 day No
20 day þ23 day Grade II No
15 day þ29 day No No

Grade IV Skin, liver
16 day þ23 day Grade II No
17 day þ32 day No No
13 day þ17 day No No

HS, Chediak-Higashi syndrome; AML, acute myeloid leukemia; FA, Fanconi



Table 4
Immunological Assay by Determination of Activation Markers after Coculture of PHA-Activated MNCs with G-BM MSCs and U-BM MSCs

Activation markers MNC þ PHA þ G-BM MCSs,
median (min-max) (n:8)

MNC þ PHA þ U-BM MCSs,
median (min-max) (n:8)

MNC þ PHA,
(n:1)

P (control
versus G1*)

P (control
versus G2*)

P (G1
versus G2)

CD3þ-CD69þ 25.71 (21.49-36.51) 26.30 (15.70-29.03) 34.59 .75 .22 .53
CD3þ-HLADRþ 49.09 (36.21-57.37) 50.14 (42.35-57.76) 36.10 .25 .22 .90
CD4þ-CD25þ 50.00 (44.48-53.57) 50.27 (45.39-53.46) 49.94 1.00 .88 .90

Data presented are percentages. Statistical significance is P < .05.
* G1 (group 1): MNC þ PHA þ G-BM MCSs; G2 (group 2): MNC þ PHA þ U-BM MCSs; and Control: MNC þ PHA.
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of MSCs [10,13]. In the present study, we showed TGF-b1 was
secreted by G-BMe and U-BMederived MSCs. TGF-b1 levels
are 54� 47 pg/mL and 86� 49 pg/mL in the G-BM and U-BM
MSCs supernatants, respectively. There was no statistically
significant difference between these TGF-b1 levels (P ¼ .41).
Here again, the cell culture medium and the absence of dy-
namic cell-cell interactions that change the properties of
secretory cells comes to mind. We examined BM plasma that
would reflect dynamic cell-cell interactions. TGF-b1 levels
were found to be 14,757� 24,415 pg/mL and 4956� 2158 pg/
mL in the G-BM and U-BM plasma, respectively, and there
was no statistically significant difference between these
TGF-b1 levels (P ¼ 1.00). However, in some cases, the level of
TGF-b1 in the plasma of G-BM was found to be very high
(73,540 pg/mL), whereas the levels in the supernatants
of MSCs remained low (6 pg/mL). Additionally, there was
heterogeneity between different donors particularly in
G-CSFeprimed samples. Mesenchymal stem cells interact
with other cells in BM microenvironment, so when they lose
the signals during ex vivo expansion their functional prop-
erties are not maintained. Signals by macrophages, natural
killer cells, and damaged tissue induce MSCs to produce
more TGF-b1 [20].

Prostaglandins are small-molecule derivatives of arach-
idonic acid, produced by cyclooxygenases. PGE2 can be
produced by all cell types of the body. PGE2 is relatively
stable in vitro, although its decay is accelerated by albumin.
In contrast, PGE2 has very rapid turnover rate in vivo and is
rapidly eliminated from tissues. Aggarwal et al. showed that
MSCs, when cocultured with immune cells, such as T cells,
resulted in increased PGE2. They observed that MSCs exhibit
a bell-shaped time-dependent curve of PGE2 secretion (after
an initial increase, there is a decrease in levels of PGE2 after 4
to 5 days) [10]. Spaggiari et al. demonstrated that MSCs
strongly inhibited the maturation and functioning of
monocyte-derived dendritic cells by interfering selectively
with the generation of immature via inhibitory mediator of
MSC-derived PGE2 [23]. In our study, we determined that
level of PGE2 was 143 � 31 pg/mL and 314 � 94 pg/mL in the
G-BM and U-BMederived MSCs supernatants, respectively.
These results reflect the secretion of PGE2 from MSCs. We
showed that MSCs isolated from G-BM were significantly
decreased for releasing PGE2 compared with the control. The
difference was statistically significant (P ¼ .001). The BM
plasma PGE2 levels were 3350� 1654 pg/mL and 2254� 794
pg/mL in the G-BM and U-BM plasmas, respectively, and
there was no statistically significant difference (P ¼ .11).
Although G-CSF didn’t lead to any change in PGE2 levels in
BM plasma, there was a statistically significant difference in
MSC supernatant levels. However, further studies under
activating conditions are needed to delineate MSC secretory
functions.

PHA is a lectin with the ability to bind and crosslink
different cell membrane glycoproteins, leading to the
polyclonal activation of lymphocytes [24]. The early activa-
tion marker CD69 is expressed on natural killer, B, and T cell
surfaces 4 hours after activation and is implicated on the
transcription of interleukin 2 (IL-2) and TNF-a; 12 to 24 hours
after cell activation, the a subunit of IL-2 receptor (CD25)
expression is upregulated. Between 48 and 60 hours, T cells
initiate HLA-DR expression [25]. Althoughmany studies have
been completed to determine the immune suppressive
function of MSCs, to our knowledge, there is not any study
concerning the immunological properties of G-BM and
U-BMederived MSCs. Based on this, we evaluated cytokines
and immunological assays with G-BM compared with U-BM.
Immunological assays that we performed in this study
revealed that there is no significant difference between
HLA-DR expression of MNCs when cocultured, even with
G-BMederived or U-BMederived MSCs. Therefore, HLA-DR
expression of MNCs are different in both the PHA-activated
MNCs þ G-BM MSCs group and PHA-activated MNCs þ
U-BM MSCs group when compared with MNC þ PHA. That
expression pattern indicated that coculture of MNCs with
MSCs could possibly facilitate activation of T lymphocytes.

In summary, the present study investigating the
G-CSFeprimed BM plasma and MSCs revealed that in vivo
G-CSF exposure affects the release of immune modulatory
cytokines/growth factors from the BM microenvironment
and in cultured MSCs. The changes in HGF and PGE2 levels
were statistically significant. In addition, BM-derived MSCs
were shown to secrete cytokines, including HGF, TGF-b1, and
PGE2, in unstimulated culture conditions. These preliminary
results suggest a possible role for these secretory factors in
immunomodulation. However, coculture experiments, cyto-
kine array analysis, and extensive further studies of stimu-
lationwith soluble factors would be useful to show the effect
of G-CSF.
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