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ABSTRACT

Aim Tracking technologies are often proposed as a method to elucidate the
complex migratory life histories of migratory marine vertebrates, allowing spatially
explicit threats to be identified and mitigated. We conducted a global analysis of
foraging areas of adult green turtles (Chelonia mydas) subject to satellite tracking (n
= 145) and the conservation designation of these areas according to International
Union for Conservation of Nature criteria.

Location The green turtle has a largely circumtropical distribution, with adults
migrating up to thousands of kilometres between nesting beaches and foraging
areas, typically in neritic seagrass or algal beds.

Methods We undertook an assessment of satellite tracking projects that followed
the movements of green turtles in tropical and subtropical habitats. This approach
was facilitated by the use of the Satellite Tracking and Analysis Tool (http://
www.seaturtle.org) and the integration of publicly available data on Marine Pro-
tected Areas (MPAs).

Results We show that turtles aggregate in designated MPAs far more than would
be expected by chance when considered globally (35% of all turtles were located
within MPAs) or separately by ocean basin (Atlantic 67%, Indian 34%, Mediterra-
nean 19%, Pacific 16%). Furthermore, we show that the size, level of protection and
time of establishment of MPAs affects the likelihood of MPAs containing foraging
turtles, highlighting the importance of large, well-established reserves.

Main conclusions Our findings constitute compelling evidence of the world-
wide effectiveness of extant MPAs in circumscribing important foraging habitats
for a marine megavertebrate.
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Chelonia mydas, foraging, marine megavertebrate, Marine Protected Area,
satellite tracking, sea turtle.
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INTRODUCTION

The current scale of the biodiversity crisis (Pimm et al., 1995;

Koh et al., 2004) coupled with finite resources has provoked

considerable controversy over the most legitimate goals and use

of biodiversity measures to guide conservation efforts (e.g.

Marris, 2007). Whilst one of the main responses has been the

establishment of protected areas and ecosystem-based manage-

ment approaches, this has typically focused on terrestrial

biomes. Consequently the proportion of the total ocean surface

currently annexed for any level of protection is an order of

magnitude smaller than in the terrestrial realm (Chape et al.,

2005; IUCN & UNEP, 2010). With the ecological integrity of

marine ecosystems under increasing scrutiny, and at least half

of the oceans now suffering markedly from human impacts

(Halpern et al., 2008), the need to redress this imbalance is

becoming ever more apparent. This is particularly pertinent for

coastal systems which face severe degradation in many locations

due to exponentially rising human populations living in coastal

areas and resultant impacts of land- and ocean-based anthropo-

genic activities (Green & Short, 2003; Halpern et al., 2008;

Waycott et al., 2009).

One of the most direct and pervasive threats facing marine

ecosystems is the overexploitation of large marine vertebrates

(Pauly et al., 1998; Pauly & Watson, 2005). This has the potential

to exacerbate the threats to these ecosystems due to the impor-

tant roles large consumers are thought to play in maintaining

the structure and functioning of their foraging habitats (Jackson

et al., 2001; Pandolfi et al., 2003). Many sea turtle populations

have been subject to high levels of harvest and other indirect

threats (Jackson et al., 2001) and all species for which data are

available are now of conservation concern (IUCN, 2010). The

largely herbivorous green turtle (Chelonia mydas) has a circum-

global distribution in tropical and subtropical regions and after

centuries of intensive harvest, some populations are recovering

under increased protection (Broderick et al., 2006; Chaloupka

et al., 2008).

Traditional capture, mark and recapture studies have shown

how adults generally migrate hundreds to thousands of kilome-

tres between nesting beaches and shallow neritic seagrass or

algal foraging grounds (Carr et al., 1978; Balazs, 1980; Limpus

et al., 1992). The recent exponential rise of satellite tracking

(Godley et al., 2008) has been instrumental in detailing the

routes of post-nesting migrations of marine turtle populations

from nesting to foraging grounds with findings offering novel

insights into basic life-history strategies as well as feeding into a

number of key ecological questions considered to be important

for management (Godley et al., 2008; Hamann et al., 2010). A

key recurring theme is that many populations use the waters of

multiple nations (Godley et al., 2008).

Nevertheless, fiscally dictated sample sizes within such studies

have constrained the impact of these data, resulting in little

conservation action and highlighting the need for more syn-

thetic analytical approaches. Such analyses hold the potential to

act as a strong empirical basis for assessing the efficacy of extant

protected areas and highlighting key sites worthy of additional

investigation and management. By conducting a global analysis

of the foraging areas of green turtles tracked by satellite, inte-

grated with data on the status, distribution and size of Marine

Protected Areas (MPAs), we investigated the extent to which

MPAs incorporate important foraging habitats for this species.

In light of the increasing degradation of coastal habitats, the

requirements of foraging sea turtles and the role they play in

maintaining the structure and functioning of seagrass habitats,

we hypothesize that foraging turtles will be aggregated in MPAs

where threats should be lower and habitat quality higher. Fur-

thermore, if extant MPAs effectively circumscribe foraging sea

turtles we hypothesize that turtle distribution within MPAs will

be positively influenced by the size and level of protection of

MPAs.

MATERIALS AND METHODS

Spatial footprint of satellite tracking projects

A global database of the deployment and foraging areas of adult

green turtles tracked by satellite from breeding to neritic forag-

ing grounds was compiled through an exhaustive review of all

peer- and non-peer-reviewed literature and collaboration with

colleagues who enabled unpublished satellite telemetry data to

be used (see Table S1 in Supporting Information). All turtles

were tracked using the Argos system operated by CLS Argos

(http://www.argos-system.org); the dominant platform for fol-

lowing large-scale movements of marine vertebrates. In con-

ducting this review a total of six electronic literature databases

were searched (Google Scholar, Scopus, ISI Web of Science,

Science Direct, Seaturtle.org and the Marine Turtle Newsletter).

All searches used the following search terms: satellite tracking,

sea turtle, marine turtle, green turtle, Chelonia mydas, migration

and foraging. No restrictions on year of publication were

imposed. The Satellite Tracking and Analysis Tool (Coyne &

Godley, 2005) facilitated collaboration among co-authors to

enable both published and unpublished data to be used.

Longitude and latitude of the nesting (satellite transmitter

deployment location) and final foraging areas of all post-

nesting/breeding adult green turtles successfully tracked to

coastal foraging areas were derived from Argos locations pre-

filtered for accuracy using standard data filtering protocols (see,

for example, Blumenthal et al., 2006). Coordinates were plotted

as global point shapefiles using the World Geodetic System

(1984) in ESRI ArcGIS® (version 9.2) software. The foraging

areas of green turtles are typically hundreds of kilometres

distant from breeding grounds. Only turtles where the final

locations of tracks showed a period of residence, typically weeks

or months, to coastal areas were considered successfully tracked

to foraging areas. Both sexes were included in analyses as males

tracked from breeding grounds have been shown to display

migration patterns broadly similar to female conspecifics

(Godley et al., 2008). Where individual turtles were tracked on

more than one occasion or used in more than one publication

(e.g. Cheng, 2000; Blumenthal et al., 2006; Broderick et al.,

2007) data from the first year of tracking/publication were used.
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Designation of turtle foraging areas

The freely available World database on protected areas (www.

protectedplanet.net), a global shapefile of International Union

for Conservation of Nature (IUCN) designated MPAs (IUCN &

UNEP-WCMC, 2010), was used to identify which green turtle

foraging areas were observed to coincide within the boundaries

of MPAs and the level of protection afforded to such areas. IUCN

designation ranged from category Ia (strictly protected areas

managed mainly for science) to category VI (managed resource

protected areas managed mainly for sustainable use; IUCN,

1994). We needed to delineate the area of sea covered by our

tracking studies to evaluate how much potential habitat within

each population range was designated as an MPA. Consequently

for each population where the foraging areas and coastal migra-

tory paths of three or more turtles were known, nesting locations

and coastal phases of migratory routes to foraging areas were

used to create minimum convex polygons (MCP; shapefiles rep-

resentative of population distributional ranges, see Fig. S1) using

the Geospatial Modelling Environment (Beyer, 2009). For popu-

lations with fewer than three individuals successfully tracked to

foraging areas insufficient information was available to generate

distributional ranges. Terrestrial area was removed from all MCP

shapefiles to represent the distribution range (area) of each

population. Using global bathymetry data (Amante & Eakins,

2008), the foraging areas of all turtles were identified as occurring

within water � 25 m deep (from hereafter referred to as shallow

neritic water). Within each distribution shapefile the amount of

shallow neritic water and the proportion currently designated as

protected along with the level of protection afforded to each MPA

were then determined. Without access to all the raw satellite

tracking data, MCP shapefiles were derived where necessary from

digitization of nesting locations, key points of the route and the

final foraging location of each turtle.

R software (R Development Core Team, 2009) was used for all

statistical analyses. For our analysis we are looking at the pro-

portion of migratory endpoints; discrete areas where turtles

remained for prolonged periods (typically several weeks or

months) in protected habitats. Binomial tests were used to test

the null hypothesis that the proportion of turtles found to

forage in designated MPAs was equal to the proportion of neritic

water used by sea turtles in each ocean basin designated as an

MPA. Significant departures from this null hypothesis would

suggest either that foraging turtles avoid MPAs or that they are

found aggregated within them. Similarly the proportion of

turtles found to be foraging in MPAs was compared using bino-

mial and goodness of fit tests among different IUCN categories

of MPA protection. Significant departure from the null hypoth-

esis of random representation of turtles among IUCN categories

would denote bias in the relative quality of the categories as

marine turtle foraging grounds. Due to the sensitivity of statis-

tical analyses to sample sizes this analysis was carried out at

global and regional scales, ensuring areas where the spatial foot-

prints of populations overlapped were not counted more than

once. All shapefiles were projected using the World Equidistant

Cylindrical projection.

Turtle aggregations in MPAs

For individual MPAs that contained turtles, the total area of the

MPA of depth � 25 m (including the area outside turtle distri-

butional MCPs) was also calculated. Generalized linear mixed

modelling (GLMM) was then used to test whether the density of

foraging turtles in each MPA was influenced by the neritic area

of the MPA. The number of turtles per MPA was modelled using

a Poisson error structure, regressed against the fixed effect of

log-transformed neritic MPA area (km2), meanwhile absorbing

the random effect of ocean basin to control for spatial non-

independence and varying numbers of tracked turtles in each

basin. MPAs in the Mediterranean were excluded due to the

paucity of MPAs in this region. Year of establishment was also

included as a fixed effect with the oldest MPA (designated in

1889) set to zero and other MPAs set to the year of establishment

minus 1889. Significance of MPA area and time since establish-

ment was tested using model simplification of a maximum like-

lihood version of the mixed model, followed by a likelihood

ratio test (Crawley, 2007). Recognizing that turtle counts were

bounded above by the total number of tracked turtles observed

to forage in MPAs in each ocean basin (which violates the

assumption of unbounded counts for Poisson analysis), the sig-

nificance of the likelihood ratio test statistic was checked using

simulations. In each simulation, turtles were assigned to MPAs

at random, the GLMM test was repeated and the slope of the

relationship between turtle density and MPA area and year was

recorded. This process was repeated 100,000 times to achieve an

empirical frequency distribution of slopes. The true slope was

deemed to be significant if it lay within the top or bottom 2.5%

of simulated slope magnitudes. This was conducted at a global

scale whilst including ocean basin as a random effect. Regional

ocean boundaries were defined by the Food and Agriculture

Organization of the United Nations (FAO) major statistical

areas for fishery purposes (FAO, 1990).

RESULTS

Spatial footprint of satellite tracking projects

Data were obtained for a total of 145 green turtles satellite

tracked from 28 nesting sites to neritic foraging grounds

(Table S1, Appendix S1). Coverage was global and included data

from 11 rookeries in the Pacific, 7 rookeries in each of the

Atlantic and Indian Oceans and 3 in the Mediterranean. The

number of individuals successfully tracked to foraging areas

ranged from a minimum of 1 (Spring, 1999; Rees et al., 2008) to

19 individuals (Kennett et al., 2004) per rookery.

Effectiveness of MPAs in incorporating turtle
foraging areas

For the 116 individuals that could be used for statistical and

spatial analysis (n � 3 per population; Table S1), a total of 35%

of satellite tracked green turtles were tracked to foraging areas

within MPAs of varying degrees of protection. All bar two of

Green turtles and MPAs
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these MPAs (containing one turtle each) were known to be

extant at the time of tracking (Table S2). The total proportion of

satellite-tracked green turtles observed foraging in MPAs was

significantly greater, as much as eight-fold, than expected by

chance when considered globally or when considering the Atlan-

tic, Indian, Pacific or Mediterranean separately (Table 1, Fig. 1).

We repeated binomial tests of observed and expected numbers

of turtles in MPAs excluding turtles foraging in MPAs < 50 km2.

Results were still significant globally (P < 0.001) and for all

ocean basins bar the Indian which was non-significant (Atlantic

P < 0.001, Indian P = 0.122, Mediterranean P = 0.005, Pacific

P = 0.042).

Whilst the proportion of green turtles foraging within the

boundaries of MPAs varied greatly across ocean basins (Atlantic

67%, Indian 34%, Mediterranean 19%, Pacific 16%; Fig. 1), 21%

of the turtles observed to be foraging in MPAs were shown to be

foraging in the most strictly protected MPAs. Where year of

MPA designation was known, all bar one of these MPAs (which

contained just one turtle) were designated at the time of track-

ing with IUCN category Ia; strictly protected areas managed

mainly for science (IUCN, 1994; Fig. 2a). More turtles were

tracked to category Ia MPAs, and fewer to unclassified MPAs and

those known to be receiving the lowest level of protection (cat-

egory VI), than was expected according to the relative areas of

MPAs in these categories (Fig. 2b). A goodness of fit test

revealed the bias in distribution to be significant with over-

representation of turtles in category Ia MPAs and under-

representation of turtles in category VI and unset MPAs (c2
5 =

29.7, P = 0.002). This bias in distribution was also significant

when turtles in MPAs of unset IUCN designation were excluded

(c2
4 = 21.3, P = 0.005).

Density of turtle aggregations in MPAs

Mixed model regression of turtle counts in MPAs against neritic

surface area of MPAs revealed a highly significant positive

impact of neritic MPA area on number of turtles (likelihood

ratio test, c2
1 = 121.3, P < 0.001; Fig. 3). This was still significant

when neritic MPA areas > 4000 km2 were removed from the

analysis (c2
1 = 131.4, P < 0.001; Table S2). Furthermore mixed

model regressions revealed that over and above the effect of

MPA size, year of MPA designation also had an influence with

Table 1 Green turtles foraging in Marine Protected Areas
(MPAs). The number of turtles successfully tracked from each
nesting to foraging areas (n) are listed, along with the percentage
of individuals in each population observed foraging in MPAs
and the percentage of individuals expected to forage in MPAs
assuming this corresponds to the proportion of area protected in
waters � 25 m deep used by populations.

Ocean basin Nesting location n

Turtles

observed

in MPAs

(%)

Turtles

expected in

MPAs (%)

Atlantic Ascension 7 29 6

Cayman 8 63 19

Costa Rica 10 90 19

Guadeloupe 4 50 7

Guinea Bissau 4 100 26

Mexico* 2 100 n.a.

Montserrat* 1 0 n.a.

Indian Australia

(Barrow Island)

5 40 21

Australia (Scott Reef) 3 1 1

Cocos Islands 6 0 0

East Java* 2 0 0

Mayotte Island 5 40 25

Sri Lanka 9 44 15

Thailand 7 43 14

Mediterranean Cyprus 10 20 1

Syria* 1 0 n.a.

Turkey 6 17 3

Pacific America Samoa 5 0 0

Australia (GBR)* 1 0 n.a.

China 3 33 2

French Frigate Shoals 8 25 76

Galapagos 3 33 18

Japan 3 33 27

Malaysia 4 0 0

Northern Australia* 19 0 n.a.

Sangalaki* 1 0 n.a.

SW islands of Palau* 2 50 n.a.

Taiwan 6 0 0

*Populations marked with asterisks denote populations where the for-
aging areas and migratory paths for fewer than three individuals were
available and thus spatial and statistical analysis were not carried out.
GBR, Great Barrier Reef.

Figure 1 Effectiveness of the location of International Union for
Conservation of Nature (IUCN) Marine Protected Areas (MPAs)
in capturing foraging turtle locations: Observed (white bars) and
expected (black bars) proportions of turtles foraging in MPAs
assuming expected values correspond to the proportion of area
protected in waters � 25 m deep used by populations. The total
number of turtles tracked to foraging areas are plotted below each
data pair. Significantly more turtles were observed to be foraging
in MPAs than expected at both global and regional scales for all
ocean basins (global P < 0.001, Atlantic P < 0.001, Indian P =
0.026, Mediterranean P = 0.005, Pacific P = 0.010).

R. Scott et al.
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more turtles aggregating in older protected areas (c2
1 = 3.7, P =

0.05). In all cases, the observed slopes lay well above the 99.9th

percentile of a distribution of simulated slopes resulting from

random allocation of turtles to MPAs.

DISCUSSION

World-wide concern over the status of large marine vertebrates

and tropical coastal ecosystems (Jackson et al., 2001; Green &

Short, 2003; Paddack et al., 2009) has highlighted an urgent

need for innovative approaches to guide marine conservation

efforts (Pimm et al., 1995; Koh et al., 2004; Chape et al., 2005;

Marris, 2007). The recent rise in the satellite tracking of

marine vertebrates (Coyne & Godley, 2005; Godley et al., 2008)

now permits us to advance from qualitative studies of their

migratory feats to inter-disciplinary analytical approaches such

as the current work where data on spatial ecology are inte-

grated with those on the status of marine habitats. Although

past capture–mark–recapture data, typically concentrated at

nesting sites, were instrumental in gaining insights into the

long-distance migrations of sea turtles, findings are of limited

spatial utility (Godley et al., 2003). In particular, distributional

ranges cannot be reliably determined from these data as migra-

tion routes are unknown and recapture sites are likely to be

biased to locations where there are interacting fisheries and/or

focused research. Finally, with no information on residency, it

is not possible to confirm whether turtles have completed

migrations. The use of satellite tracking data is, however, a less

biased means of reliably determining the range of foraging

areas. Whilst many satellite tags are deployed on turtles at pro-

tected nesting grounds, they generally migrate considerable

distances away from such areas, often in a number of range

states across a region.

Notwithstanding limitations in the satellite tracking data cur-

rently available, results clearly show that foraging adult green

turtles are found in association with MPAs far more often than

Figure 2 Effectiveness of Marine Protected Area (MPA) level of
protection in capturing foraging turtle locations. (a) Proportion
of turtles foraging within each management category of
International Union for Conservation of Nature (IUCN)
designated MPAs: (Ia) Strictly Protected Areas, managed mainly
for science; (II) National Park, protected area managed mainly for
ecosystem protection and recreation; (III) Natural Monument,
protected area managed mainly for conservation of specific
natural features; (IV) Habitat/Species Management Area,
protected area managed mainly for conservation through
management intervention; (V) Protected Landscape/Seascape,
protected area managed mainly for landscape/seascape
conservation and recreation; (VI) Managed Resource Protected
Area, protected area managed mainly for the sustainable use of
natural ecosystems; unset, IUCN protected area but management
designation currently unset. (b) Proportion of MPAs in neritic
seas used by turtles afforded each IUCN management category
status. Significantly more turtles were found in category Ia MPAs
than expected by chance (binomial test of observed proportion of
0.220 versus expected proportion of 0.103, n = 41, P = 0.022), and
a goodness of fit test revealed the bias in distribution to be
significant with over-representation of turtles in category Ia and
also IV MPAs and under-representation of turtles in unset and VI
category MPAs (c2

4 = 36.4, P = 0.002). Error bars of the standard
error associated with ocean basins are also plotted.

Figure 3 Relationship between the size of sea turtle foraging
aggregations and the size of Marine Protected Areas (MPAs) �

25 m in depth. Mixed model regression of turtle counts in MPAs
against logged neritic areas of MPAs revealed a highly significant
positive impact of MPA area on turtle density (likelihood ratio
test, c2

1 = 112.3, P < 0.001). For graphical purposes, data are
jittered and shaded to separate ocean basins (Atlantic, Black;
Indian, Grey; Pacific, White) and the regression line is fitted from
the mixed effect model with basin as a random effect.

Green turtles and MPAs
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expected by chance. The reasons for this correlation are not

clear, but there are two obvious possibilities, which are challeng-

ing to tease apart:

1. MPAs are designated because they contain sea turtles or their

important coastal habitats. Whilst turtles have indeed influ-

enced the establishment of protected areas this has been biased

towards terrestrial nesting habitats (Eckert & Hemphill, 2005;

Dobbs et al., 2007; Dryden et al., 2008) and the presence of

turtles in marine areas distant from nesting habitats as a primary

driver of designation is rare. The general importance of sea-

grasses, a primary diet item of sea turtles, is, however, widely

recognized (Waycott et al., 2009) and incorporation of this

habitat type may have an influence in increasing the likelihood

of the presence of turtles in a MPA. However, compared with

other coastal systems such as coral reefs and mangroves, sea

grass habitats are deemed to be poorly represented in MPAs

(Green & Short, 2003).

2. Turtles aggregate in higher-quality habitats where threats are

low. Sea turtles require healthy coastal foraging habitats and are

thought to play important roles in maintaining ecosystem health

(Jackson, 1997; Jackson et al., 2001). We might reasonably

expect MPAs to be in better health than other areas of coastal

seas and thus a better/safer habitat for exploited species, espe-

cially if there is a positive feedback loop with these large con-

sumers maintaining habitat quality.

Irrespective of the primary underlying cause, our study is

the first to provide compelling evidence as to the world-wide

effectiveness of extant MPAs in capturing important foraging

habitats for large marine vertebrates. Thus, we suggest that the

foraging areas of such tracked animals could be used as indi-

cators of additional habitats worthy of protection. Our ratio-

nale here is that since large animals such as green turtles are

among the first to be overharvested in tropical coastal systems

(Jackson et al., 2001), areas where they still persist may be

excellent targets for conservation focus. This role is augmented

by the fact that from a central breeding site, individuals can be

tracked across a wide region, highlighting distant areas of

relatively intact tropical coastal ecosystems that may not yet

have been subject to over-exploitation or other forms of

degradation.

Despite recent debate over the relative effectiveness of MPAs

(Roberts et al., 2003; Bellwood et al., 2004; McClanahan et al.,

2006; Dobbs et al., 2007; Dryden et al., 2008), it is encouraging

that MPAs appear to incorporate important green turtle for-

aging habitats (to varying degrees) in all ocean basins. Further-

more, the finding that the size and age of MPAs significantly

affects the density of sea turtle foraging aggregations under-

lines the importance of large and well-established reserves for

large consumers and supports concerns over the small size of

many reserves (Woodroffe & Ginsberg, 1998; Carr et al., 2003;

Halpern, 2003). It is also noteworthy that 21% of the turtles

observed to be foraging in MPAs were shown to be foraging

within the boundaries of the most strictly protected IUCN cat-

egory Ia MPAs (Fig. 2a, Table S2). Large marine vertebrates

face particularly high risks from anthropogenic activities in

their foraging habitats (Hooker & Gerber, 2004). Conse-

quently, conservation efforts within foraging areas of sentinel

species are likely to be a valuable tool in uniting single-species

and ecosystem management approaches. The satellite tracking

of species such as sea turtles may thus have the potential to

help indicate global patterns/changes in the quality of coastal

marine ecosystems and highlight important marine areas that

could be priority candidates for active management. This role

is anticipated to be substantiated due to the fact sea turtles

show high fidelity to foraging habitats over considerable time

frames (Broderick et al., 2007) and typically only return to

breeding grounds every 2–7 years (Troëng & Chaloupka,

2007).

The Argos system is currently the platform of choice for

detailing the post-nesting migrations of sea turtles. Although

limitations in position accuracy and frequency make it difficult

to interpret fine-scale behaviour (Witt et al., 2010), concurrent

GPS tracking has shown that locations of foraging areas are

robust. For green turtles, core foraging areas, are typically

much smaller in size than the majority of MPAs to which

turtles were tracked (e.g. Seminoff et al., 2002, Troëng et al.,

2005, Broderick et al., 2007; Hazel, 2009; Godley et al., 2010).

The majority (81%) of MPAs containing foraging turtles were

(> 50 km2) and when we excluded MPAs smaller than this

threshold, observed numbers of turtles in MPAs were still sig-

nificantly higher than expected globally and for all ocean

basins bar the Indian Ocean. Small home range size, site fidel-

ity, long breeding intervals and the size of MPAs to which the

majority of turtles were tracked adds confidence in our find-

ings that foraging green turtles are both aggregated in MPAs

and likely to remain at these sites for extended periods. Given

tracking duration on the foraging grounds has typically been

limited (reviewed by Hays et al., 2007 although see Broderick

et al., 2007) we cannot tell how site fidelity varies among indi-

viduals and populations, though as transmitters become more

robust and accurate, more detailed quantitative analyses of the

proportion of time spent in strictly protected areas will be pos-

sible. Due to limitations in the location accuracy of both Argos

positions and protected area shapefiles, we acknowledge that

the foraging locations of some turtles may have been incor-

rectly assigned as being within or outside of the boundaries of

MPAs, however the level of significance of our results provides

confidence in the robustness of our findings.

Given that the average cost of operational management of

MPAs is estimated at a mere fraction of the value of coastal

ecosystems (Balmford et al., 2004) the underexploited potential

for charismatic sentinel species to influence conservation policy

may be profound. Consequently our findings are expected to

have much broader application amongst the wider marine con-

servation community. In addition to sea turtles, satellite tracking

efforts for other candidate species such as marine mammals

(Andrews et al., 2008; Edrén et al., 2010), seabirds (Boersma

et al., 2007; Votier et al., 2011), sharks (Schmidt et al., 2009;

Brunnschweiler et al., 2010), and other large pelagic fish (Block

et al., 2003; Dewer et al., 2010) will allow for increased coverage

and potential to influence conservation policy in more temper-

ate and polar seas.
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