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dental characteristics. These anomalies are listed as 
follows:

NUMERIC DENTAL ANOMALIES

Tooth agenesis
Tooth agenesis is the most common numeric dental 
anomaly.[9] Hypodontia, oligodontia and anodontia 
are the terms used to describe the numerical values 
of tooth agenesis. Hypodontia is the absence of 
1‑6 teeth (excluding third molars), whereas oligodontia 
refers to the absence of more than 6 teeth (excluding 
third molars) and anodontia is the complete absence 
of teeth.

Different inheritance modes were found for tooth 
agenesis. Hypodontia is frequently accompanied 
with cleft‑lip or palate, reduction in tooth size, short 
root anomaly, malformation of other teeth, impaction, 
maxillary canine and first premolar transposition, 
delayed formation or eruption of other teeth, 
microdontia, taurodontism, enamel hypoplasia and 
altered craniofacial growth.[10] Sometimes, it is caused 
by environmental factors such as; infection, different 

INTRODUCTION

The process of odontogenesis is under the control 
of homeobox  (HOX) genes; a number of different 
mesenchymal regulatory molecules and their receptors. 
HOX genes are classified as muscle segment (MSX1 
and MSX2), distal‑less (Dlx), orthodontical, goosecoid, 
paired box gene 9 (Pax9) and sonic hedgehog (Shh). 
Msx1 and Msx2 genes are responsible for the 
developmental position and further development 
of tooth buds, respectively.[1,2] Dlx‑1, Dlx‑2[3,4] and 
Barx‑1 genes[5,6] are involved in development of molar 
teeth. Pax9 is a transcription factor required for tooth 
morphogenesis[7] and plays a role in the establishment 
of the inductive capacity of the tooth mesenchyme 
as it is necessary for the mesenchymal expression of 
bone morphogenetic protein (Bmp4), MSX1 and Lef1 
genes.[8] Tumor necrosis factor, fibroblast growth 
factor, Bmp, Shh and Wnt pathways are involved 
in signaling pathways of organogenesis on the 
9th to 11th embryonic days to initiate tooth epithelium.

Any mutation in these genes and any disruption of 
regulatory molecules may result in the anomaly of 
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kinds of trauma in the apical area of dentoalveolar 
process, chemical substances or drugs, radiation 
therapy or disturbances in the jaw innervations, 
but in the majority of cases, hypodontia is impacted 
by genetics. Autosomal dominant inheritance with 
incomplete penetrance and variable expressivity 
was first proposed by Burzynski and Escobar.[11] For 
a genetic linkage study on hypodontia, Arte et al.,[12] 
evaluated 214 family members in three generations 
and concluded that incisor‑premolar agenesis is 
transmitted by autosomal dominant genes with small 
upper incisors, ectopic canines, taurodontism and 
rotated premolars as accompanying anomalies.

Several candidate genes have been investigated 
for tooth agenesis. A  familial autosomal dominant 
hypodontia was demonstrated to be caused by a 
point mutation in the MSX1 gene. Vastardis et al.,[13] 
using a linkage analysis in a family with second 
premolar and third molar agenesis, defined a locus 
on the chromosome 4p16 as the site of the MSX1. 
Sequence analysis revealed arg31‑to‑pro missense 
mutation in the MSX1 homeodomain for all of the 
affected subjects. Arg31‑to‑pro mutation is known 
to influence the MSX1 interactions, which are critical 
in the normal development of human teeth.[13] This 
finding supported the result of an animal study, which 
showed a knockout mutation of MSX1 gene leading 
to the inhibition of dental development;[14] however, 
when the premolar agenesis was accompanied with a 
lateral incisor, the influence of MSX1 and MSX2 genes 
could not be proved.[15]

Another gene, causing tooth agenesis is Pax9 in 
chromosome 14 (14q21‑q13). In hypodontia cases, a 
deletion of the Pax9 gene resulting in haploinsufficiency 
has been described. A  frameshift mutation and a 
nonsense termination mutation of the same gene 
have been observed in oligodontia. According to 
Das et  al., this situation suggests that hypodontia 
and oligodontia are not fundamentally different or 
at least can be caused by different mutations in the 
same gene.[16]

The frameshift mutation of Pax9 gene located on 
chromosome 14 was identified as responsible for 
autosomal dominant oligodontia in a large family for 
four generations. In some of the affected members, 
maxillary and mandibular second premolars and 
mandibular central incisors were absent in addition 
to the lack of permanent molars; although, a normal 
primary dentition was present.[17] In 2001, Nieminen 
et al.,[18] identified an A‑to‑T transversion of the Pax9 

gene in a family with autosomal dominant oligodontia. 
They reported that all the second and third permanent 
molars, maxillary lateral incisors and in some cases 
all of the first permanent molars and several second 
premolars were missing, in addition to deciduous 
second molar agenesis. Another feature observed 
in the affected individuals was reduced size of 
permanent teeth.[18] A year later, Frazier‑Bower 
et al.[19] concluded that the molar oligodontia is due 
to allelic heterogeneity in Pax9, which is an important 
regulator of molar teeth development. In 2003, Lamni 
showed a distinct phenotype with canine agenesis, 
which is quite rare, in a family segregating autosomal 
dominant oligodontia.[20]

In recent studies,[21,22] different transition, insertion and 
transversion mutations in Pax9 gene were reported, 
providing more comprehensive explanations for the 
pathogenic mechanisms of the interactions between 
mutations and tooth agenesis. In addition to Pax9 and 
MSX1 genes, contribution of a regulatory molecule in 
the mesenchyme, called transforming growth factor 
alpha, might play a role in isolated dental agenesis.[23] 
Furthermore, Axin2 is a negative regulator of canonical 
Wnt signaling and mutations of this gene can cause 
tooth agenesis associated with colorectal cancer.

Another mode of inheritance for hypodontia 
associated with other dental anomalies such as dental 
malformations, enamel hypoplasia and eruption 
failure is the autosomal recessive inheritance,[24] with 
polygenic inheritance also suggested.[25,26]

Studies showed that tooth agenesis could be manifested 
as an isolated feature or as a part of a syndrome.[27,28] 
Tooth agenesis was associated with a large number of 
syndromes,[27] which indicating that the development 
of teeth and certain organs are under the control of 
the same molecular mechanisms. Hypodontia is a 
major component of ectodermal dysplasia, oral‑facial 
digital syndromes with oral‑facial clefting. Ectodermal 
dysplasia is characterized by small, misshapen and 
missing teeth, delayed eruption, prominent lip, 
maxillary hypoplasia, sparse hair and hypohidrotic 
skin.[29‑31] This disorder is inherited as an X‑linked 
trait,[27] though the autosomal recessive form has also 
been reported.[32] Oral‑facial digital syndrome type 1 
has symptoms such as hypodontia of lower incisors, 
facial asymmetry, hypertelorism, micrognathia, 
supernumerary frenulum and thickened alveolar ridges.

Oral‑facial clefting is affected by chromosome 6p24, 
2p13, 19q13 and 4q and the prevalence of hypodontia 
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increases with cleft severity. The upper lateral incisor 
is the most frequently affected tooth in the cleft area 
both in primary and in permanent dentitions.

In syndromic cleft lip and palate  (CLP) like 
Pierre‑Robin sequence 50% hypodontia and Van Der 
Woude syndrome 70% hypodontia prevalence is 
associated with other disorders.

Hyperdontia
Hyperdontia is the term used to describe 
supernumerary teeth. The genetic basis of hyperdontia 
has been extensively explained in the literature. In 1932, 
Stafne[33] evaluated over 200 cases with hyperdontia 
and concluded 90% hereditary etiology. Brook[34] 
reported a greater occurrence of supernumerary 
teeth in the close relatives of effected individuals, 
compared with the general population. Evidence 
from twin and family studies supported the genetic 
basis of hyperdontia.[35‑39] It was also reported that the 
supernumerary and impacted teeth occupied the same 
location in the identical twins and in their parents.[40]

The mode of inheritance of hyperdontia has been 
proposed as autosomal dominant.[41] Although 
there is no difference in the sex distribution for the 
primary dentition, supernumeraries occur more 
frequently in the permanent dentition of males. 
Supernumerary teeth may occur in isolation or as part 
of a syndrome, such as in CLP, cleidocranial dysplasia 
and Gardner’s syndrome and less commonly in Fabry 
Anderson’s syndrome, chondroectodermal dysplasia, 
Ehlers‑danlos syndrome and tricho‑rhino‑phalangeal 
syndrome.[42] Supernumerary and impacted teeth, 
retarded eruption of primary and permanent dentition, 
aplasia or hypoplasia of clavicles and other skeletal 
anomalies are the features of this disorder exhibiting 
autosomal dominant inheritance.[27]

STRUCTURAL ANOMALIES

The structural anomalies of teeth are caused 
by the disturbances at the level of enamel and 
dentin during tooth development. Amelogenesis 
imperfecta as one of these disorders, is characterized 
by discolored teeth and anterior open bite[43] and 
exhibits X‑linked, autosomal dominant and recessive 
inheritance[44‑46] caused by mutation of five different 
genes; Amelogenin AMEL, Enamelin ENAM, Matrix 
metalloproteinase‑  20 MMP20, Kallikrein‑related 
peptidase 4 KLK4 and Family with sequence 
similarity 83, member H FAM83H. Both deciduous 
and permanent dentitions are affected. There are three 

types of amelogenesis imperfecta; as hypoplastic; 
with thin, normally calcified enamel, hypocalcified; 
with less mineralized, but normal thickness enamel 
and hipomaturation with enamel structure that has 
the same radiodensity of dentin and which is easily 
dislodged from dentin. In a study of 50  patients 
with hypoplastic amelogenesis imperfecta, anterior 
openbite occurred in 24% of the cases and severe 
vertical discrepancy was observed in almost all of 
them.[47] Furthermore, it was shown that this specific 
malocclusion with autosomal recessive inheritance 
was caused by the mutation in the enamelin gene,[46] 
which is the largest protein in the enamel matrix of 
developing teeth.[48] When hypoplastic teeth coexist 
with an anterior openbite, the orthodontists should 
investigate the genetic background for any existing 
condition.

Another structural anomaly is dentinogenesis 
imperfecta (DGI), an autosomal dominant condition. 
There are three types of DGI. Type  I is syndromic 
form of DGI which is inherited with osteogenesis 
imperfecta and the genes encoding collagen, type I, 
alpha 1,  (COL1A1) and COL1A2. The teeth of both 
dentitions are typically amber, translucent and show 
significant attrition. Radiographically, the teeth have 
short, constricted roots and dentin hypertrophy 
leading to pulpal obliteration either before or just 
after eruption. Expressivity is variable even within 
an individual, with some teeth showing total pulpal 
obliteration while in others the dentin appears normal. 
The other two forms seem to result from mutations 
in the gene dentin sialophosphoprotein, encoding 
dentin phosphoprotein and dentin sialoprotein.[49] 
Bulbous crown are typical features of DGI type  II, 
with hypotrophy in dentine structure. Dentin 
dysplasia  (DD), which has radicular and coronal 
subtypes is another structural anomaly and has 
the same genetic disorder with DGI, except DD 
type I (radicular type).

DENTAL MORPHOLOGY, SIZE AND 
POSITIONAL ANOMALIES

The importance of the genetic factors controlling 
tooth size and morphology has been shown by 
twin studies.[50‑52] Some authors reported that tooth 
crown dimensions, especially buccolingually and 
mesiodistally were genetically determined.[53,54]

It has been suggested that there is an association 
between oversized teeth and supernumerary teeth.[34] 
Similarly, the existence of peg shaped or strongly 
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mesiodistally reduced lateral incisors may be the 
result of a variation in the expression of hypodontia.[12]

The displacement of canines in a palatinal direction 
is a positional dental anomaly and can generally 
happen even if there is adequate place in the dental 
arch. This situation frequently results in the impaction 
of the ectopic tooth. There is an association between 
the malpositions of certain teeth, such as palatally 
displaced canines, mandibular lateral incisor‑canine 
transposition and maxillary canine‑first premolar 
transpositions and tooth agenesis. Similar for tooth 
agenesis, the positional anomalies of canines have been 
shown to affect some family members and thought to be 
under strong genetic control. Some authors suggested 
that the ectopic canines exhibit a multifactorial 
inheritance pattern with high phenotypic variance 
and low penetrance.[37,55‑60] Peck et al.[26] reported that 
palatally displaced and frequently impacted canines 
and mandibular lateral incisor‑canine transposition 
were related to congenitally missing third molars in 
the posterior orofacial area. Similarly, an association 
between the maxillary canine‑first premolar 
transposition and maxillary lateral incisor agenesis 
in the anterior orofacial area may exist. Furthermore, 
the agenesis of the lower second premolar, which is 
located in an intermediate zone is related to all the 
positional anomalies of canines.

The anteroposterior morphogenetic field concept, 
proposed by Butler in 1939,[61] supports the current 
molecular investigations such as the determination of 
the interaction between a single gene and site specific 
orofacial expressivity. HOX genes, which play a role in 
oral and dental development are known to show site 
specific anteroposterior expression patterns.[62,63] MSX1, 
regulator gene in the third molar and lower second 
premolar agenesis, may be responsible for posterior site 
development.[13] In addition to the other posterior area 
genes, which are Dlx‑1, Dlx‑2[3,4] and Barx‑1,[5,6] Pax9 
also control the development of all of the molars.[19] 
Furthermore, Neubüser et al.,[7] reported that there is 
an association between Pax9 transcription factor and 
repositioning of tooth buds on the mesenchymal level. 
This theory might give a clue to researchers about the 
genetic mechanisms of dental positional anomalies 
such as palatally displaced canines or different kind 
of transpositions. It appears that tooth agenesis, tooth 
size and position anomalies, which are often seen 
together, are the components of a complex, genetically 
controlled dental condition. Dental malpositions such 
as rotations, eruption failures and ankylosis are among 
other anomalies complicating this dental condition.[64,65]

CONCLUSION

The etiology of dental anomalies is partly environmental 
and partly genetic. Because of the polygenic nature of 
dental characteristics, it is very challenging to identify 
one single defective gene responsible for a specific 
dental anomaly. However, recent studies provide new 
data about the candidate genes. Further studies are 
required and the rapid progress in the field of genetics 
may help the clinicians to more accurately discern 
the environmental and genetic factors contributing to 
the development of dental anomalies. Currently, the 
orthodontist, probably the first to diagnose hereditary 
dental anomalies and malocclusion of an individual, 
will remain responsible for the detection of any 
additional defects in the same patient in order to 
provide the best treatment. The clinician should always 
keep in mind that some of those dental anomalies 
can coexist with certain syndromes and other family 
members might also have been affected. Whenever 
it seems necessary, a genetic consultation should be 
added as part of the orthodontic treatment. Finally, 
this interdisciplinary approach may help to reveal any 
risk of recurrence in subsequent generations.
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