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In a country with diverse geologic, topographic and climatic conditions such as
Iran, landslides are frequent phenomena. The aim of this study is to perform a
landslide susceptibility assessment at Haraz watershed, Iran using two different
approaches such as Dempster–Shafer and Weights-of-evidence models in GIS.

First, a landslide inventory map was prepared using the landslide occurrence data
by interpreting aerial photographs and field surveys. Second, thematic maps
including lithology, altitude, and land-use are prepared in GIS. A total 11

landslide conditioning factors are considered such as slope angle, aspect, altitude,
distance from drainage, distance from road, distance from river, lithology, land
use, topographic wetness index, stream power index and slope-length (LS). The

relationship between the conditional factors and the landslides were calculated
using both Dempster–Shafer and Weights-of-evidence models. Using the
predicted values, landslide susceptibility maps of the study area is produced.
For verification, the results of the analyses were then compared with the field-

verified landslide locations. Additionally, the receiver operating characteristics
(ROC) curves for all landslide susceptibility models were drawn and the area
under curve values was calculated. The AUC value of the produced landslide

susceptibility maps has been obtained as 72.87% and 79.87% for Dempster–
Shafer and Weights-of-evidence models, respectively. The resulting susceptibility
maps would be useful for landuse planning and prioritization of efforts for the

reduction and mitigation of future landslide hazards in Haraz watershed.

1. Introduction

Landslide is defined as the movement of a mass of rock, debris or earth down a
slope (Cruden 1991). Other terms used to refer to landslide events include mass

*Corresponding author. Email: biswajeet24@gmail.com; biswajeet@mailcity.com
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movement, slope failures, slope instability and terrain instability (Gerath et al.
1997). Due to natural conditions or man-made actions, landslides have produced
multiple human and economic losses. Landslides result from interdependent,
spatio-temporal processes, including hydrology (rainfall, evaporation, transpiration
and groundwater, vegetation surcharge (weight of vegetation), root strength, soil
and bed rock condition, topography and human activities (Gerath et al. 1997).
Human activities, such as urban expansion and deforestation, also increase the
potential for landslides and result in adverse impacts to the environment. The
recent increasing of land-use changes has raised the level of landslide susceptibility,
particularly in mountainous regions. Guzzetti et al. (1999) asserted that, over the
last two decades, many governments and international research institutes in the
worldwide have invested considerable resources in assessing landslide hazards and
in attempting to construct maps that describe their spatial distribution (Guzzetti
et al. 1999).

Landslides have caused large numbers of casualties and huge economic losses in
hilly and mountainous areas of the world (Varnes 1984). Landslide is one of the main
natural hazards in Iran that annually makes great economic and personal defect.
Primary estimations show that annual fiscal defects of landslide are about 500 billion
Rials (about USD 600 Million) which does not involve the loss of unrecoverable
resources (ILWP 2007). Mountainous feature, high tectonic activity, geological and
climatologically variety make the Iranian plateau capable for the occurrence of
various kinds of landslides. In the northern part of Iran (Alborz mountain belt),
landslides occur frequently due to climatologic and geologic conditions and high
tectonic activities, that results, annually, millions of dollars financial defect excluding
casualties and unrecoverable resources. As an example, in Iran’s northern province
of Mazandaran (January 2007), a landslide has inflicted heavy damages on the water,
power communication installations, utilities and a large number of residential units
in the stricken area. This incident started initially with a slow landslip in the area,
which has accelerated and turned into a landslide, damaging 20 villages. The costs
of damages have been estimated about USD 5,000,000. It is difficult to ignore the
huge losses to buildings, roads, rails, power lines, water lines, mineral equipment, oil
industry, urban infrastructures, dams, forests, natural resources, farming lands and
rural areas caused by landslide. In addition to physical losses, landslides caused
environmental damage.

During the recent decades, the use of landslide susceptibility and hazard maps for
land use planning has increased significantly. These maps rank different sections of
land surface according to the degree of actual or potential landslide hazard; thus
planners are able to choose favourable sites for urban and rural development. In
recent years, the use of GIS for landslide hazard modelling has been increasingly
used. It is because of the development of commercial systems and the quick access to
data obtained through Global Positioning Systems (GPS) and remote sensing.
Moreover, GIS is an excellent and useful tool for the spatial analysis of a multi-
dimensional phenomenon such as landslides and for the landslide susceptibility
mapping (Van Westen et al. 2003). Over the last decades, a number of different
methods for landslide susceptibility mapping have been used and suggested. The
process of creating these maps includes several qualitative or quantitative
approaches (Soeters and Van Westen 1996). Early attempts defined susceptibility
classes by the qualitative overlaying of geological and morphological slope-attributes
to landslide inventories (Nilsen et al. 1979).
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process of creating these maps includes several qualitative or quantitative
approaches (Soeters and Van Westen 1996). Early attempts defined susceptibility
classes by the qualitative overlaying of geological and morphological slope-attributes
to landslide inventories (Nilsen et al. 1979).

Many studies have been carried out on landslide hazard evaluation using GIS;
for example, Guzzetti et al. (1999) summarized many landslide hazard evaluation
studies. Recently, there have been studies on landslide susceptibility evaluation
using GIS, and many of these studies have applied probabilistic models
(Gokceoglu et al. 2005). Logistic regression model, one of the most widely used
statistical models, has also been employed for the purpose of landslide
susceptibility mapping (Can et al. 2005, Gorsevski et al. 2006, Nefeslioglu et al.
2008, Pradhan 2010a, 2010b, 2010c, Pradhan et al. 2010a, Pradhan and Youssef
2010, Chauhan et al. 2010, Bui et al. 2011a). Data mining using fuzzy logic (e.g.
Ercanoglu and Gokceoglu 2002, 2004, Champati ray et al. 2007, Kanungo et al.
2008, Pradhan 2010c, 2011a, 2011b), artificial neural networks (Ermini et al. 2005,
Lee et al. 2006, Pradhan and Buchroithner 2010, Pradhan and Lee 2010a, b, c,
Pradhan and Pirasteh 2010), decision tree (Saito et al. 2009, Wan 2009, Akgun
and Turk 2010, Gorsevski and Jankowski 2010, Nefeslioglu et al. 2010, Yeon
et al. 2010) and neuro-fuzzy (Lee et al. 2009, Pradhan et al. 2010c, Vahidnia et al.
2010, Oh and Pradhan 2011, Bui et al. 2011b, Sezer et al. 2011) models have also
been applied using geographical information system (GIS). In recent years,
Dempster–Shafer and Weights-of evidence models has also been used for the
purpose of landslide susceptibility mapping (Tangestani 2009, Park 2011, Lee and
Choi 2004, Mathew et al. 2007, Neuhauser and Terhorst 2007, Pradhan et al.
2010b).

This article evaluated the susceptible areas in Haraz wateshed located in north
part of Iran using Dempster–Shafer and Weights-of evidence models, GIS and
remote sensing techniques. The main difference between the present study and the
approaches described in the aforementioned publications is that a Dempster–Shafer
and Weights-of-evidence models were applied and their results were compared for
landslide susceptibility mapping at Haraz watershed, Iran. Final susceptibility
map might be useful for decision making process about land use management in the
future in order to avoid more losses.

2. Study area

The study area is located in the north of Iran, which is one of the most landslide-
prone areas in the country (Pourghasemi 2008). The watershed area lies between
longitudes 5280600200E and 5281801300E and latitudes between 3584900500N and
3585703900N. The study area is mountainous with rugged topography and part of
Alborz folded zone (figure 1). It covers two adjacent 1:50,000 topographic sheets of
the Army Geographic Institute of Iran and has an extent of about 114.5 km2. The
main river in the study area is the Haraz river. Based on Iranian Meteorological
Department, The temperature varies between 258C in winter and 36.58C in summer.
The mean annual rainfall is around 500 mm, most of which falls between November
and January. The altitudes in the study area vary between 1200 and 3290 m. The
slope angles of the area range from 0 degrees to as much as 70 degrees. The majority
of the area (64.82%) is covered by moderate pasture. The other parts of the study
area are utilized for orchard and agricultural (13.33%), residential (0.3%) and
pasture purposes (21.55%). The study area is covered by various types of lithologic
formations, such as Quaternary, Eocene, Paleocene, late Cetaceous, late Jurassic,
early Triassic and early Permian. The Quaternary deposits cover about 40% of the
study area.

Landslide 
susceptibility 

mapping using GIS
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3. Data and methodology

The first step in every assessment consists of collecting all available information and
dataset on the study area (Guzzetti et al. 1999). For the landslide-susceptibility

Figure 1. Location map of the study area.
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analysis, the main steps were data collection and construction of a spatial database
from which the relevant factors were extracted, followed by assessment of the
landslide susceptibility using the relationship between the landslide and landslide-
related factors, and validation of the results (Pradhan and Lee 2010c). A spatial
database of the Haraz watershed related to landslide susceptibility modelling was
compiled. The spatial database is mainly composed of two parts such as landslide
location map and landslide conditioning factors.

3.1. Landslide inventory map

Preparation of landslide inventory is one of the most important stages in landslide
hazard mitigation. These maps show the locations and properties of landslides that
have occurred in the past. These slope failures were related to geological,
topographical and climatic conditions. It is important to determine the location
and area of the landslide accurately when preparing the landslide susceptibility
maps. Landslide susceptibility assessment is performed in a range of phases. The
initial phase is identifying and evaluating landslide-prone areas, and constructing
a landslide inventory map for future use. Landslide inventory mapping is the
systematic mapping of existing landslides in a region using different techniques such
as field survey, air photo/satellite image interpretation, and literature search for
historical landslide records (Yalcin et al. 2011). A landslide inventory map provides
the spatial distribution of locations of existing landslides. The landslides in the
study area were determined by comprehensive field surveys. In this study, the
susceptibility mapping started with the preparation of an inventory map of 78
landslides from field studies (figure 2). Of the 78 landslides identified, randomly 55
(70%) locations were chosen for the landslide susceptibility maps, while the
remaining 23 (30%) cases were used for the model validation. The size of the
smallest and largest landslide is 50m2 and 5400m2, respectively. Figure 3 shows
some field photographs taken during April 2007. These landslides were then
classified based on their modes of occurrence using the classification scheme
proposed by Varnes (1978). Most of the landslides are shallow rotational with a few
translational. However, during the analyses performed in the present study, only
rotational failure is considered and translational slides were eliminated because its
occurrence is rare.

3.2 Landslide conditioning factors

In this study, 11 factors were considered which are slope angle, altitude, slope aspect,
distance from river, distance from road, topographic wetness index, stream power
index, slope-length (LS) factor, lithology, distance from fault, and land use. These
factors can be divided into three broad categories which are topographical,
geological and environmental conditioning parameters. The availability of thematic
data varies widely, depending on the type, scale, and method of data acquisition.
These eleven factors were extracted from the constructed GIS-based spatial
database.

For DEM creation, 20 m interval contours and surveyed base points showing the
elevation values were extracted from the 1:50,000 scale topographic maps. Using the
DEM, slope angle, altitude, slope aspect, topographic wetness index, stream power
index and stream transport index were calculated. For the landslide susceptibility
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assessment the slope angle was classified into six classes (0–58, 5–158, 15–308, 30–508,
50–708 and 4708) (figure 4). The slope aspects are grouped into nine classes: flat,
north (337.58–3608, 08–22.58), north-east (22.58–67.58), east (67.58–112.58), south-
east (112.58–157.58), south (157.58–202.58), south-west (202.58–247.58), west (247.58–
292.58) and north-west (292.58–337.58). The topography has a vital role in the spatial
variation of hydrological conditions such as soil moisture, groundwater flow and
slope stability. Topographic indices have, therefore, been used to describe spatial soil
moisture patterns (Moore et al. 1991). The Stream power index (SPI) is a compound
topographic attribute. It is a measure of the erosive power of flowing water based on
the assumption that discharge is proportional to specific catchment area. It generally
predicts net erosion in areas of profile and tangential convexity (flow acceleration
and convergence zones) and net deposition in areas of profile concavity (zones of
decreasing flow velocity). Stream power index was calculated based on the formula
given by Moore et al. (1991).

SPI ¼ AS � tan b ð1Þ

where AS is the specific catchment’s area and b is the local slope gradient measured
in degrees. Another topographic factor within the runoff model is the topographic
wetness index (TWI). A topographic wetness index measures the degree of

Figure 2. Landslide inventory map of the study area.
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accumulation of water at a site. It is defined as (Beven and Kirkby 1979, Moore et al.
1991):

TWI ¼ lnða=tan bÞ ð2Þ

Where a is the cumulative upslope area draining through a point (per unit contour
length) and tanb is the slope angle at the point. The lnða=tan bÞ index reflects the
tendency of water to accumulate at any point in the catchment (in terms of a) and the
tendency of gravitational forces to move that water down slope (expressed in terms
of tan b as an approximate hydraulic gradient). The water infiltration primarily
depends upon material properties such as permeability, pore water pressure, and
effects on the soil strength (Poudyal et al. 2010). In this study, TWI was considered
as another contributing factor. Besides, the stream power index and topographic
wetness index, there is another factor is also included i.e. slope-length (LS). The soil
loss is a combined effect of length (L) and slope steepness (S). The LS factor in the
Universal Soil Loss Equation (USLE) is a measure of the sediment transport
capacity of overland flow (Moore and Wilson 1992). Slope-length is the distance
from the origin of overland flow along its flow path to the location of either
concentrated flow or deposition. The larger slope length, the more water
accumulates at the bottom of the field, increasing erosion. It also depends on the
surface slope. Carrara et al. (1995) stated that there is a relation between slide density

Figure 3. Shows some field photographs (a) shows a landslide in study area between Tehran
and Mazandaran Province (b) and (c) small scale landslides.
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and slope length. The slope length factor was calculated based on work by Moore
and Burch (1986) as

LS ¼ AS

22:13

� �0:6
sin b
0:0896

� �1:3

ð3Þ

These indices can be estimated as a function of primary terrain attributes and
can be easily implemented in a SAGA GIS.

In addition, the distance from river and distance from road were calculated using
the topographic database. The river and road buffer were calculated in 100 meter
intervals. The lithology map was prepared from a 1:100,000 scale geological map
(source: geology survey of Iran, (GSI)). The study area is covered by various types of
lithologic formations. The general geological setting of the area is shown in figure 5
and table 1. The distance from fault was calculated in 100 meter intervals. Land use
data were classified from ETMþ satellite images using a supervised classification
method and field surveys. Four types of landuse are identified such as good range,
moderate range, mixed orchard and agricultural and residential area (figure 6). The
collected data were converted to a raster grid with 25m6 25m cells for application
of the two different methods namely, Dempster–Shafer, and Weights-of evidence
models.

Figure 4. The slope map of the study area.
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4. Results and discussion

4.1 Landslide susceptibility mapping by Dempster–Shafer theory

In landslide susceptibility analysis based on the Dempster–Shafer theory (DSET), a
structure of discernment can be considered as follow (Dempster 1967; Shafer 1976):

m : 2Y ¼ f;TP;TP;Y
� �

With Y ¼ TP;TP

� �
ð4Þ

Where TP indicates a goal: ‘‘At each pixel p, it will be influenced by future
landslides’’. The opposite goal proposition can be written as ‘‘At each pixel p, it will
not be influenced by future landslides’’ is showed as TP. In literature, it is possible to
find the studies (i.e. Park 2011) giving the details of the Dempster–Shafer theory.
As mentioned earlier, by using DSET to landslide susceptibility analysis is to
define mass functions employing quantitative relationships in between the known
landslides and input conditioning factors. In this article, the mass functions are
calculated by a likelihood ratio function, which separate the susceptible areas from
the non-susceptible areas. In this context, the suitability of spatial data in landslide
susceptibility analysis is distinguishing between the susceptible and non-susceptible
areas. In the frequency distribution functions, the function ratios can emphasis on
differences. For landslide susceptibility analysis layer of spatial data is considered as
evidence Biði ¼ 1; 2; :::; lÞ for the target proposition TP. Given the Bij, which is the jth

Figure 5. The lithology map of the study area.
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class feature of the evidence Bi and frequency distribution functions of positive and
opposite target propositions, the likelihood ratio lðTPÞBji for affirming the positive

target proposition is defined as follow:

ðTPÞBji ¼
NðA\BijÞ
NðAÞ

NðBijÞ�NðA\BijÞ
NðCÞ�NðAÞ

ð5Þ

Where NðA \ BijÞ is the density of landslide pixels that occurred in Bij, NðAÞ is the
total density of whole landslides that have occurred in the study area, NðAijÞ is the
density of pixels in Bij, and NðCÞ is the density of pixels in the whole study area C.

The numerator and denominator are the proportion of the susceptible and non-
susceptible areas in the given attribute Bij, respectively. In the weights-of-evidence
model (Bonham-Carter 1994), a positive weight is usually defined as the natural
logarithm of the likelihood ratio in equation 5. Consequently, the likelihood ratio for
affirming the opposite target proposition is defined as follow:

ðTPÞBji ¼
NðAÞ�NðA\BijÞ

NðAÞ
NðCÞ�NðAÞ�NðBijÞþNðA\BijÞ

NðCÞ�NAÞ

ð6Þ

Where the numerator and denominator are the proportion of non-susceptible
and susceptible areas in the given attribute Bij. A negative weight in the

Table 1. Geologic formation of the study area.

Code Class Formation Lithology Geological age

Qsc A 7 Scree Quaternary
Qt

2 7 Young terraces Quaternary
Qt

1 7 Old terraces Quaternary
Qag B 7 Agglomerate Quaternary
Qta 7 Trachy andesitic lava flows Quaternary
Qtu 7 Ash tuff, lapilli tuff Quaternary

Qb 7 Olivine basalt Quaternary

Ktv
k C Karaj Green tuff, basaltic and limestone

with gypsum and conglomerate
Eocene

E
gy
k

Karaj Gypsum Eocene

PEz D Ziarat Limestone bearing nummulites and
alveolina, conglomerate

Paleocene

PEf Fajan Conglomerate, agglomerate, some
marl and limestone

Paleocene

K2 E 7 Biogenic and cherty limestone Late Cretaceous
Kt Tizkuh Orbitoline bearing limestone Late Cretaceous
J1 Lar Massive to well bedded, cherty

limestone
Late Jurassic

Jd Dalichai Well bedded, partly oolitic-detritic
limestone, marly limestone

Late Jurassic

JS Shemshak Dark shale and sandstone with plant
remains, coal

Late Jurassic

TReL Elika Thin bedded limestone Early Triassic

Pd Dorud Cross bedded, quartzitic sandstone Early Permian
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susceptible areas in the given attribute Bij, respectively. In the weights-of-evidence
model (Bonham-Carter 1994), a positive weight is usually defined as the natural
logarithm of the likelihood ratio in equation 5. Consequently, the likelihood ratio for
affirming the opposite target proposition is defined as follow:

ðTPÞBji ¼
NðAÞ�NðA\BijÞ

NðAÞ
NðCÞ�NðAÞ�NðBijÞþNðA\BijÞ

NðCÞ�NAÞ

ð6Þ

Where the numerator and denominator are the proportion of non-susceptible
and susceptible areas in the given attribute Bij. A negative weight in the

Table 1. Geologic formation of the study area.

Code Class Formation Lithology Geological age

Qsc A 7 Scree Quaternary
Qt

2 7 Young terraces Quaternary
Qt

1 7 Old terraces Quaternary
Qag B 7 Agglomerate Quaternary
Qta 7 Trachy andesitic lava flows Quaternary
Qtu 7 Ash tuff, lapilli tuff Quaternary

Qb 7 Olivine basalt Quaternary

Ktv
k C Karaj Green tuff, basaltic and limestone

with gypsum and conglomerate
Eocene

E
gy
k

Karaj Gypsum Eocene

PEz D Ziarat Limestone bearing nummulites and
alveolina, conglomerate

Paleocene

PEf Fajan Conglomerate, agglomerate, some
marl and limestone

Paleocene

K2 E 7 Biogenic and cherty limestone Late Cretaceous
Kt Tizkuh Orbitoline bearing limestone Late Cretaceous
J1 Lar Massive to well bedded, cherty

limestone
Late Jurassic

Jd Dalichai Well bedded, partly oolitic-detritic
limestone, marly limestone

Late Jurassic

JS Shemshak Dark shale and sandstone with plant
remains, coal

Late Jurassic

TReL Elika Thin bedded limestone Early Triassic

Pd Dorud Cross bedded, quartzitic sandstone Early Permian

weights-of-evidence model can be calculated by employing the natural logarithm of
the likelihood ratio in equation 6 that ranges from 0 to infinity. This means that,
derivation of mass functions from two likelihood ratio functions is required. The
likelihood ratios are separated by the sum of likelihood ratio values of whole class
attributes in the given evidence Bi, not only to satisfy the standardization condition
in equation 6 but also to account for the relative importance inside class attribute
amounts (Park 2011):

m : 2Y ! ½0; 1�
( mðfÞ ¼ 0

P
T�Y

mðTÞ¼1

ðTPÞBij ¼
lðTPÞBijP
lðTPÞBij

m TP

� �
Bij
¼

l TP

� �
BijP

l TP

� �
Bij

mðYÞ ¼ 1�mðTPÞBij
�m TP

� �
Bij

ð7Þ

Considering the equation 7, the belief function can be directly derived from the mass
function mðTPÞBij

, for supporting the positive target proposition, and the plausibility

Figure 6. The land use map of the study area.
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function can also be computed by 1�mðTPÞBij
. When defining the belief and

plausibility functions from likelihood ratio functions, two specific constraints
depended to landslide occurrences are attended independently. When no landslides
have created in the given attribute Bij, this corresponds that there is no belief for

the target proposition (i.e. mðTPÞBij
¼ 0). In any case, this does not mean that the

disbelief should be committed to its complement mðTPÞBij
, and this study considers

the existing of uncertainty. Thus, mðTPÞBij
is obliged to 0 and as a result, mðYÞBij

is

set to 1. The complementary second constraint is related to landslide occurrences.
In some cases, the first constraint cannot be directly applied. For example, landslides
cannot occur in flat areas (zero slope values), thus no belief is committed to
mðTPÞBij. The disbelief should be 0 and mðYÞBij

should be 1, when applying the first

constraint, while the disbelief is forced to 1, considering the second. So, in the flat
areas, mðTPÞBij and mðYÞBij are set to 0, and mðYÞBij

(Park 2011).

Based on, equations 6 and 7 three mass functions, mðTPÞ;mðTpÞ, and mðYÞ were
calculated which correspond to belief, disbelief, and ignorance functions, respectively
(table 2). For example in the slope aspect map, most landslides occurred in the west
facing and so the highest mass function amount was obtained. The higher amounts
of the belief function in that class leads to the lower amounts of the disbelief and
ignorance functions. Also, based on total weight amount, the susceptibility map for
Haraz Watershed was prepared using DST (figure 7).

4.2 Landslide susceptibility mapping by Weights-of-evidence model

In this theory, for each of the factors, the weights and contrast were calculated using
the weights-of-evidence model. The magnitude of the contrast, C, was determined
from the difference, Wþ and W�; it provided a measure of the spatial association
between a set of points and a binary pattern (Bonham-Carter et al. 1989). C is
positive for a positive spatial association and negative for a negative spatial
association. The Studentised value of C, the ratio of C to its standard deviation or
C=SðCÞ, serves as a guide to the significance of the spatial association and acts as
a measure of the relative certainty of the posterior probability (Bonham-Carter
1994). The weights and contrasts for each predictor pattern are summarized in
table 2. The contrast was set to the rating of each landslide conditioning factor, as
the contrast is related to the landslide probability. There were 1,144,281 total pixels

in the study area. The ratio Wþ is the percentage of landslides/percentage of the

domain and C is the contrast. S2ðWþÞ and S2ðW�Þ are the variances of Wþ and W�.
S(C) is the standard deviation of the contrast, and C/S(C) is the Studentised value of
the contrast (table 3). The Studentised value of C, serves as a guide to the significance
of the spatial association and acts as a measure of the relative certainty of the
posterior probability (Bonham-Carter 1994). The standard deviation of C is
calculated by

SðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðWþÞ þ S2ðW�Þ

q
ð8Þ

The relationships between the landslides and the landslide-related factors,
contrast and Studentised C are presented in table 2. The pixel values obtained are
then classified into four classes (low, moderate, high and very high) based on natural
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the existing of uncertainty. Thus, mðTPÞBij
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cannot occur in flat areas (zero slope values), thus no belief is committed to
mðTPÞBij. The disbelief should be 0 and mðYÞBij

should be 1, when applying the first

constraint, while the disbelief is forced to 1, considering the second. So, in the flat
areas, mðTPÞBij and mðYÞBij are set to 0, and mðYÞBij

(Park 2011).

Based on, equations 6 and 7 three mass functions, mðTPÞ;mðTpÞ, and mðYÞ were
calculated which correspond to belief, disbelief, and ignorance functions, respectively
(table 2). For example in the slope aspect map, most landslides occurred in the west
facing and so the highest mass function amount was obtained. The higher amounts
of the belief function in that class leads to the lower amounts of the disbelief and
ignorance functions. Also, based on total weight amount, the susceptibility map for
Haraz Watershed was prepared using DST (figure 7).

4.2 Landslide susceptibility mapping by Weights-of-evidence model

In this theory, for each of the factors, the weights and contrast were calculated using
the weights-of-evidence model. The magnitude of the contrast, C, was determined
from the difference, Wþ and W�; it provided a measure of the spatial association
between a set of points and a binary pattern (Bonham-Carter et al. 1989). C is
positive for a positive spatial association and negative for a negative spatial
association. The Studentised value of C, the ratio of C to its standard deviation or
C=SðCÞ, serves as a guide to the significance of the spatial association and acts as
a measure of the relative certainty of the posterior probability (Bonham-Carter
1994). The weights and contrasts for each predictor pattern are summarized in
table 2. The contrast was set to the rating of each landslide conditioning factor, as
the contrast is related to the landslide probability. There were 1,144,281 total pixels

in the study area. The ratio Wþ is the percentage of landslides/percentage of the

domain and C is the contrast. S2ðWþÞ and S2ðW�Þ are the variances of Wþ and W�.
S(C) is the standard deviation of the contrast, and C/S(C) is the Studentised value of
the contrast (table 3). The Studentised value of C, serves as a guide to the significance
of the spatial association and acts as a measure of the relative certainty of the
posterior probability (Bonham-Carter 1994). The standard deviation of C is
calculated by

SðCÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2ðWþÞ þ S2ðW�Þ

q
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The relationships between the landslides and the landslide-related factors,
contrast and Studentised C are presented in table 2. The pixel values obtained are
then classified into four classes (low, moderate, high and very high) based on natural

T
a
b
le

2
.
M
a
ss

fu
n
ct
io
n
s
fo
r
la
n
d
sl
id
e
co
n
d
it
io
n
in
g
fa
ct
o
rs

b
y
D
em

p
st
er
–
S
h
a
fe
r
m
o
d
el
.

F
a
ct
o
r

C
la
ss

N
o
.
o
f
p
ix
el
s

in
d
o
m
a
in

P
er
ce
n
ta
g
e

o
f
d
o
m
a
in

N
o
.
o
f

la
n
d
sl
id
e

P
er
ce
n
ta
g
e

o
f
la
n
d
sl
id
e

m
T
P

ð
Þ

m
T
P

�
�

m
Yð
Þ

S
lo
p
e
a
n
g
le

(d
eg
re
e)

0
–
5

1
3
8
5
1

1
.2
1

1
1
.8
2

0
.2
3
8

0
.1
6
6

0
.5
9
6

6
–
1
5

6
4
2
6
8

5
.6
2

2
3
.6
4

0
.1
0
2

0
.1
7

0
.7
2
8

1
6
–
3
0

1
5
5
6
0
2

1
3
.5
9

1
0

1
8
.1
8

0
.2
1
2

0
.1
5
8

0
.6
3

3
1
–
5
0

3
4
3
6
3
4

3
0
.0
3

1
9

3
4
.5
5

0
.1
8
2

0
.1
5
6

0
.6
6
2

5
1
–
7
0

2
6
2
1
1
7

2
2
.9
1

1
0

1
8
.1
8

0
.1
2
6

0
.1
7
7

0
.6
9
7

4
7
0

3
0
4
8
0
9

2
6
.6
4

1
3

2
3
.6
4

0
.1
4

0
.1
7
4

0
.6
8
6

A
sp
ec
t

N
o
rt
h

1
4
9
9
9
7

1
3
.1
2

5
9
.0
9

0
.0
8
5

0
.1
3
1

0
.7
8
4

N
o
rt
h
ea
st

1
9
5
3
0
1

1
7
.0
7

9
1
6
.3
6

0
.1
1
7

0
.1
2
6

0
.7
5
7

E
a
st

1
2
9
1
6
7

1
1
.2
9

2
3
.6
4

0
.0
3
9

0
.1
3
6

0
.8
2
5

S
o
u
th
ea
st

1
7
1
1
4
4

1
4
.9
5

1
6

2
9
.0
9

0
.2
3
8

0
.1
0
4

0
.6
5
8

S
o
u
th

1
3
5
6
7
7

1
1
.8
5

3
5
.4
6

0
.0
5
6

0
.1
3
4

0
.8
1

S
o
u
th
w
es
t

1
3
1
7
1
8

1
1
.5
1

9
1
6
.3
6

0
.1
7
4

0
.1
1
8

0
.7
0
8

W
es
t

7
9
9
7
9

6
.9
9

7
1
2
.7
3

0
.2
2
9

0
.1
1
7

0
.6
5
4

N
o
rt
h
w
es
t

1
5
1
2
9
8

1
3
.2
2

4
7
.2
7

0
.0
6
7

0
.1
3
4

0
.7
9
9

A
lt
it
u
d
e
(m

)
1
2
0
0
–
1
5
0
0

2
8
4
6
3

2
.4
9

0
0

0
0
.1
4
7

0
.8
5
3

1
5
0
0
–
1
8
0
0

1
5
7
0
1
8

1
3
.7
2

1
9

3
4
.5
4

0
.4
7
8

0
.1
0
8

0
.4
1
4

1
8
0
0
–
2
1
0
0

3
0
3
0
5
8

2
6
.4
8

2
2

4
0

0
.2
8
7

0
.1
1
7

0
.5
9
6

2
1
0
0
–
2
4
0
0

3
0
5
8
4
4

2
6
.7
3

7
1
2
.7
3

0
.0
9

0
.1
7

0
.7
4

2
4
0
0
–
2
7
0
0

2
0
8
3
2
1

1
8
.2

6
1
0
.9
1

0
.1
1
4

0
.1
5
6

0
.7
3

2
7
0
0
–
3
0
0
0

1
2
5
3
8
4

1
0
.9
6

1
1
.8
2

0
.0
3
1

0
.1
5
8

0
.8
1
1

4
3
0
0
0

1
6
1
9
3

1
.4
2

0
0

0
0
.1
4
5

0
.8
5
5

L
it
h
o
lo
g
y

A
4
5
9
9
1
4

4
0
.1
9

3
0

5
4
.5
5

0
.4
2
5

0
.1
5
5

0
.4
2

B
1
5
3
6
2
1

1
3
.4
3

3
5
.4
5

0
.1
2
7

0
.2
2
2

0
.6
5
1

C
1
4
7
3
8
6

1
2
.8
8

2
3
.6
4

0
.0
8
8

0
.2
2
5

0
.6
8
7

D
1
9
6
5
5

1
.7
2

0
0

0
0
.2
0
7

0
.7
9
3

E
3
6
3
7
0
5

3
1
.7
8

2
0

3
6
.3
6

0
.3
5
9

0
.1
9

0
.4
5
1

L
a
n
d
u
se

B
es
t
R
a
n
g
e

2
4
6
6
0
1

2
1
.5
5

1
2

2
1
.8
2

0
.0
9
7

0
.2
2
5

0
.6
7
8

M
ix
in
g
o
rc
h
a
rd

a
n
d

a
g
ri
cu
lt
u
re

1
5
2
5
1
8

1
3
.3
3

2
0

3
6
.3
6

0
.2
6
2

0
.1
6
6

0
.5
7
2

(c
o
n
ti
n
u
ed
)



106 H. Pourghasemi et al.

T
a
b
le

2
.
(C

o
n
ti
n
u
ed
).

F
a
ct
o
r

C
la
ss

N
o
.
o
f
p
ix
el
s

in
d
o
m
a
in

P
er
ce
n
ta
g
e

o
f
d
o
m
a
in

N
o
.
o
f

la
n
d
sl
id
e

P
er
ce
n
ta
g
e

o
f
la
n
d
sl
id
e

m
T
P

ð
Þ

m
T
P

�
�

m
Yð
Þ

R
es
id
en
ti
a
l

3
4
5
0

0
.3

1
1
.8
2

0
.5
8
1

0
.2
2
3

0
.1
9
6

M
o
d
er
a
te

ra
n
g
e

7
4
1
7
1
2

6
4
.8
2

2
2

4
0

0
.0
5
9

0
.3
8
6

0
.5
5
5

D
is
ta
n
ce

fr
o
m

fa
u
lt

B
u
ff
er

(1
0
0
m
)

4
4
9
4
2

3
.9
3

3
5
.4
5

0
.1
7
4

0
.1
7
4

0
.6
5
2

B
u
ff
er

(2
0
0
m
)

4
3
1
3
2

3
.7
7

4
7
.2
7

0
.2
4
1

0
.1
7
1

0
.5
8
8

B
u
ff
er

(3
0
0
m
)

4
3
1
4
4

3
.7
7

6
1
0
.9
1

0
.3
6
2

0
.1
6
4

0
.4
7
4

B
u
ff
er

(4
0
0
m
)

4
4
9
1
4

3
.9
2

2
3
.6
4

0
.1
1
6

0
.1
7
8

0
.7
0
6

B
u
ff
er

(4
4
0
0
m
)

9
6
8
1
4
9

8
4
.6
1

4
0

7
2
.7
3

0
.1
0
7

0
.3
1
4

0
.5
7
9

D
is
ta
n
ce

fr
o
m

ri
v
er

B
u
ff
er

(1
0
0
m
)

2
6
3
5
8
4

2
3
.0
3

3
3

6
0

0
.5
3
4

0
.1
0
3

0
.3
6
3

B
u
ff
er

(2
0
0
m
)

2
0
5
7
5
9

1
7
.9
8

5
9
.0
9

0
.1
0
4

0
.2
2
1

0
.6
7
5

B
u
ff
er

(3
0
0
m
)

1
5
9
8
0
1

1
3
.9
7

7
1
2
.7
3

0
.1
8
7

0
.2
0
2

0
.6
1
1

B
u
ff
er

(4
0
0
m
)

1
3
1
4
2
0

1
1
.4
9

3
5
.4
5

0
.0
9
7

0
.2
1
3

0
.6
9

B
u
ff
er

(4
4
0
0
m
)

3
8
3
7
1
7

3
3
.5
3

7
1
2
.7
3

0
.0
7
8

0
.2
6
1

0
.6
6
1

D
is
ta
n
ce

fr
o
m

ro
a
d

B
u
ff
er

(1
0
0
m
)

1
3
6
2
2
8

1
1
.9

2
3

4
1
.8
2

0
.4
6
8

0
.1
0
5

0
.4
2
7

B
u
ff
er

(2
0
0
m
)

1
1
0
2
8
3

9
.6
4

4
7
.2
7

0
.1

0
.1
6
3

0
.7
3
7

B
u
ff
er

(3
0
0
m
)

9
3
4
4
0

8
.1
7

5
9
.1

0
.1
4
8

0
.1
5
7

0
.6
9
5

B
u
ff
er

(4
0
0
m
)

8
3
8
7
6

7
.3
3

3
5
.4
5

0
.0
9
9

0
.1
6
2

0
.7
3
9

B
u
ff
er

(5
0
0
m
)

7
4
6
2
6

6
.5
2

3
5
.4
5

0
.1
1
1

0
.1
6
1

0
.7
2
8

B
u
ff
er

(4
5
0
0
m
)

6
4
5
8
2
8

5
6
.4
4

1
7

3
0
.9
1

0
.0
7
3

0
.2
5
2

0
.6
7
5

C
T
I

0
–
4

1
4
4
5
2
9

1
2
.6
3

5
0

9
0
.9
1

0
.8
3
9

0
.0
1
2

0
.1
4
9

4
–
8

9
8
3
6
2
1

8
5
.9
6

4
7
.2
7

0
.0
1

0
.7
5
9

0
.2
3
1

8
–
1
2

1
6
0
7
7

1
.4

1
1
.8
2

0
.1
5
1

0
.1
1
4

0
.7
3
5

4
1
2

5
4

0
.0
0
5

0
0

0
0
.1
1
5

0
.8
8
5

S
P
I

0
–
2
0

2
6
6
9
6
2

2
3
.3
3

1
5

2
7
.2
7

0
.2
2
5

0
.1
5
8

0
.6
1
7

2
0
–
4
0

2
6
7
9
2
6

2
3
.4
2

1
2

2
1
.8
2

0
.1
7
9

0
.1
7

0
.6
5
1

4
0
–
6
0

1
9
1
3
2
5

1
6
.7
2

8
1
4
.5
5

0
.1
6
7

0
.1
7
1

0
.6
6
2

6
0
–
8
0

1
3
0
6
8
0

1
1
.4
2

6
1
0
.9
1

0
.1
8
4

0
.1
6
8

0
.6
4
8

8
0
–
1
0
0

8
7
7
8
0

7
.6
7

4
7
.2
7

0
.1
8
2

0
.1
6
7

0
.6
5
1

4
1
0
0

1
9
9
6
0
8

1
7
.4
4

1
0

1
8
.1
8

0
.2
0
1

0
.1
6
5

0
.6
3
4

(c
o
n
ti
n
u
ed
)



 Landslide susceptibility mapping using GIS 107

T
a
b
le

2
.
(C

o
n
ti
n
u
ed
).

F
a
ct
o
r

C
la
ss

N
o
.
o
f
p
ix
el
s

in
d
o
m
a
in

P
er
ce
n
ta
g
e

o
f
d
o
m
a
in

N
o
.
o
f

la
n
d
sl
id
e

P
er
ce
n
ta
g
e

o
f
la
n
d
sl
id
e

m
T
P

ð
Þ

m
T
P

�
�

m
Yð
Þ

R
es
id
en
ti
a
l

3
4
5
0

0
.3

1
1
.8
2

0
.5
8
1

0
.2
2
3

0
.1
9
6

M
o
d
er
a
te

ra
n
g
e

7
4
1
7
1
2

6
4
.8
2

2
2

4
0

0
.0
5
9

0
.3
8
6

0
.5
5
5

D
is
ta
n
ce

fr
o
m

fa
u
lt

B
u
ff
er

(1
0
0
m
)

4
4
9
4
2

3
.9
3

3
5
.4
5

0
.1
7
4

0
.1
7
4

0
.6
5
2

B
u
ff
er

(2
0
0
m
)

4
3
1
3
2

3
.7
7

4
7
.2
7

0
.2
4
1

0
.1
7
1

0
.5
8
8

B
u
ff
er

(3
0
0
m
)

4
3
1
4
4

3
.7
7

6
1
0
.9
1

0
.3
6
2

0
.1
6
4

0
.4
7
4

B
u
ff
er

(4
0
0
m
)

4
4
9
1
4

3
.9
2

2
3
.6
4

0
.1
1
6

0
.1
7
8

0
.7
0
6

B
u
ff
er

(4
4
0
0
m
)

9
6
8
1
4
9

8
4
.6
1

4
0

7
2
.7
3

0
.1
0
7

0
.3
1
4

0
.5
7
9

D
is
ta
n
ce

fr
o
m

ri
v
er

B
u
ff
er

(1
0
0
m
)

2
6
3
5
8
4

2
3
.0
3

3
3

6
0

0
.5
3
4

0
.1
0
3

0
.3
6
3

B
u
ff
er

(2
0
0
m
)

2
0
5
7
5
9

1
7
.9
8

5
9
.0
9

0
.1
0
4

0
.2
2
1

0
.6
7
5

B
u
ff
er

(3
0
0
m
)

1
5
9
8
0
1

1
3
.9
7

7
1
2
.7
3

0
.1
8
7

0
.2
0
2

0
.6
1
1

B
u
ff
er

(4
0
0
m
)

1
3
1
4
2
0

1
1
.4
9

3
5
.4
5

0
.0
9
7

0
.2
1
3

0
.6
9

B
u
ff
er

(4
4
0
0
m
)

3
8
3
7
1
7

3
3
.5
3

7
1
2
.7
3

0
.0
7
8

0
.2
6
1

0
.6
6
1

D
is
ta
n
ce

fr
o
m

ro
a
d

B
u
ff
er

(1
0
0
m
)

1
3
6
2
2
8

1
1
.9

2
3

4
1
.8
2

0
.4
6
8

0
.1
0
5

0
.4
2
7

B
u
ff
er

(2
0
0
m
)

1
1
0
2
8
3

9
.6
4

4
7
.2
7

0
.1

0
.1
6
3

0
.7
3
7

B
u
ff
er

(3
0
0
m
)

9
3
4
4
0

8
.1
7

5
9
.1

0
.1
4
8

0
.1
5
7

0
.6
9
5

B
u
ff
er

(4
0
0
m
)

8
3
8
7
6

7
.3
3

3
5
.4
5

0
.0
9
9

0
.1
6
2

0
.7
3
9

B
u
ff
er

(5
0
0
m
)

7
4
6
2
6

6
.5
2

3
5
.4
5

0
.1
1
1

0
.1
6
1

0
.7
2
8

B
u
ff
er

(4
5
0
0
m
)

6
4
5
8
2
8

5
6
.4
4

1
7

3
0
.9
1

0
.0
7
3

0
.2
5
2

0
.6
7
5

C
T
I

0
–
4

1
4
4
5
2
9

1
2
.6
3

5
0

9
0
.9
1

0
.8
3
9

0
.0
1
2

0
.1
4
9

4
–
8

9
8
3
6
2
1

8
5
.9
6

4
7
.2
7

0
.0
1

0
.7
5
9

0
.2
3
1

8
–
1
2

1
6
0
7
7

1
.4

1
1
.8
2

0
.1
5
1

0
.1
1
4

0
.7
3
5

4
1
2

5
4

0
.0
0
5

0
0

0
0
.1
1
5

0
.8
8
5

S
P
I

0
–
2
0

2
6
6
9
6
2

2
3
.3
3

1
5

2
7
.2
7

0
.2
2
5

0
.1
5
8

0
.6
1
7

2
0
–
4
0

2
6
7
9
2
6

2
3
.4
2

1
2

2
1
.8
2

0
.1
7
9

0
.1
7

0
.6
5
1

4
0
–
6
0

1
9
1
3
2
5

1
6
.7
2

8
1
4
.5
5

0
.1
6
7

0
.1
7
1

0
.6
6
2

6
0
–
8
0

1
3
0
6
8
0

1
1
.4
2

6
1
0
.9
1

0
.1
8
4

0
.1
6
8

0
.6
4
8

8
0
–
1
0
0

8
7
7
8
0

7
.6
7

4
7
.2
7

0
.1
8
2

0
.1
6
7

0
.6
5
1

4
1
0
0

1
9
9
6
0
8

1
7
.4
4

1
0

1
8
.1
8

0
.2
0
1

0
.1
6
5

0
.6
3
4

(c
o
n
ti
n
u
ed
)

T
a
b
le

2
.
(C

o
n
ti
n
u
ed
).

F
a
ct
o
r

C
la
ss

N
o
.
o
f
p
ix
el
s

in
d
o
m
a
in

P
er
ce
n
ta
g
e

o
f
d
o
m
a
in

N
o
.
o
f

la
n
d
sl
id
e

P
er
ce
n
ta
g
e

o
f
la
n
d
sl
id
e

m
T
P

ð
Þ

m
T
P

�
�

m
Yð
Þ

L
S

0
–
1
0

2
7
1
9
6
6

2
3
.7
7

1
6

2
9
.0
9

0
.2
1
2

0
.1
5
5

0
.6
3
3

1
0
–
2
0

3
6
2
2
5
5

3
1
.6
6

1
7

3
0
.9
1

0
.1
6
9

0
.1
6
9

0
.6
6
2

2
0
–
3
0

2
6
7
6
1
9

2
3
.3
9

1
2

2
1
.8
2

0
.1
6
2

0
.1
7

0
.6
6
8

3
0
–
4
0

1
3
9
5
8
2

1
2
.2

5
9
.0
9

0
.1
2
9

0
.1
7
3

0
.6
9
8

4
0
–
5
0

5
8
7
3
2

5
.1
3

4
7
.2
7

0
.2
4
6

0
.1
6
3

0
.5
9
1

4
5
0

4
4
1
2
7

3
.8
5

1
1
.8
2

0
.0
8
2

0
.1
7

0
.7
4
8

D
o
m
a
in
:
p
ix
el
s
in

st
u
d
y
a
re
a
,
d
o
m
a
in

(%
):
(d
o
m
a
in
/t
o
ta
l
p
ix
el
s
in

st
u
d
y
a
re
a
)*

1
0
0
,
la
n
d
sl
id
e:
n
u
m
b
er

o
f
la
n
d
sl
id
e
o
cc
u
rr
en
ce
s,
la
n
d
sl
id
e
(%

):
(l
a
n
d
sl
id
e/

to
ta
l
n
u
m
b
er

o
f
la
n
d
sl
id
e
o
cc
u
rr
en
ce
s)
*
1
0
0
.
A
¼

Q
sc
,
a
n
d
Q

1
t ,
B
¼

Q
a
g
,
Q

ta
,
Q

tu
a
n
d
Q

b
,
C
¼

K
tv k
a
n
d
E
g
y
k
,
D
¼

P
E
z
a
n
d
P
E
f,
E
¼

K
2
,
K
t,
J
1
,
J
d
,
J
S
,
T
R
e
l

a
n
d
P
d
.



108 H. Pourghasemi et al.

classification scheme to determine the class intervals in the landslide susceptibility
map (figure 8).

To establish the spatial relationship between the landslide and landslide
conditioning factors, a frequency ratio analysis was performed. Frequency ratio
approaches are based on the observed relationships between distribution of
landslides and each landslide-related factor, to reveal the correlation between
landslide locations and the factors in the study area (Pradhan and Lee 2010a). In the
frequency ratio relationships analysis, the ratio is that of the area where landslides
occurred to the total area, so that a value of 1 is an average value. If the value is 41,
it means a higher correlation, and a value lower than 1 means a lower correlation.
For slope angles 6–15, the frequency ratio was 0.65, which indicates a very low
probability of landslide occurrence (table 3). For slopes between 16 and 50, the ratio
was 41, which indicates a high probability of landslide occurrence (table 3).
However, for the slope 55, the frequency ratio value was 1.51. This is because only
one landslide has occurred in a relatively low number of pixel domain.

In the case of the slope aspect (table 3), landslides were most abundant on
southeast and west-facing slopes. The frequency of landslides was lowest on east-
facing, south-facing and north-facing slopes. In the case of altitude (table 3), the
frequency ratios 41 at intervals 1500–1800 m and 1800–2100 m (2.52 and 1.51
respectively). Results showed that the ratio decrease with the increase of altitude. In
the case of lithology (table 3), the frequency ratio was higher (1.36) in quaternary

Figure 7. Landslide susceptibility map produced by Dempster–Shafer theory.
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deposits (class A), and lower (0.00) in Paleocene age (class D). In the case of land use
(table 3), the landslide-occurrence values were higher in residential areas (6.07), and
lower in middle pasture areas (0.62).

In the case of distance from fault (table 3), for distances 300–400 m, and 4 400m
the ratio is 0.93, and 0.86, respectively, indicating a low probability of landslide
occurrence. Subsequently, at distances of 0–100 m, 100–200 and 200–300 m, the
frequency ratios are 1.39, 1.93 and 2.89, respectively, indicating a high probability.
This means that the landslide probability decreases with increasing distance from
fault lines. For the distance from river (table 3), it can be seen that the frequency
ratio 41 at distance from river of 0–100 m, whereas the values of frequency ratios
51 are at distances from river of 100–200 m, 200–300 m, 300–400 m and 4 400 m.
From this observation, we can say that the general trend of the ratio decreases with
the distance from the river. This can be attributed to the fact that terrain
modification is caused by gully erosion, which may influence the initiation of
landslides. For the distance from road, frequency ratio are 3.51 and 1.11 at distance
of 0–100 m, and 200–300 m respectively, whereas the values of frequency ratios
51 at distances of 100–200 m, 300–400 m, 400–500 m and 4 500 m. From this
observation, we can say that the general trend of the ratio decreases with the distance
from the road. In the case of CTI, frequency ratio is higher for the class 0–4 and
8–12. In the case of SPI, and LS, frequency ratios are higher (i.e. 41) for the range
0–20 and 40–50 respectively.

Figure 8. Landslide susceptibility map produced by Weights-of-evidence model.
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4.3 Validation and comparison of the landslide susceptibility maps

The critical strategy in prediction models is the task of validating the predicted
results, so that the prediction results can provide meaningful interpretation with
respect to the future landslides. To apply the validation, we must restrict using all of
past landslides data in the study area. By partitioning the data, one subset is used for
obtaining a prediction map; the other subset is compared with the prediction results.
For the purpose of validation, the learning set of landslides was randomly selected
from a total of 78 landslides location (55 or 70% of landslides with similar portions
for each landslide type) disregarding the temporal component. Here, the model
development set is almost twice as big as the testing set. Then, the validation was
performed using the receiver operating characteristic (ROC) curve (Pradhan and
Lee 2010a, 2010b). In the ROC curve, the sensitivity of the model (in our case, the
percentage of unstable pixels correctly predicted by the model) is plotted against
17specificity (the percentage of predicted unstable pixels over the total). These
values indicate the ability of the model to correctly discriminate between positive and
negative observations in the validation sample. High sensitivity indicates a high
number of correct predictions (true positives) whereas high specificity (low
17specificity difference) indicates a low number of false positives. For instance, a
conservative model, which predicts most of the cells as unstable, would have high
sensitivity but low specificity (high number of false positives). The area under the
ROC curve (AUC) can serve as global accuracy statistic for the model and it is
threshold-independent. This statistical ranges from 0.5 (random prediction,
represented by the diagonal straight line) to 1 (perfect prediction) and can be used
for models comparison (Cervi et al. 2010). The results showed a 72.87% and 79.87%
for Dempster–Shafer and Weights-of-evidence models, respectively (figure 9).

5. Conclusions

Landslides in mountainous areas cause enormous loss of life and property every
year. Due to their hazardous character, many government and research institutions
throughout the world have attempted to assess landslide susceptibility, hazards, and

Figure 9. ROC curve for the susceptibility maps produced by (a) Dempster–Shafer theory and
(b) Weights-of-Evidence model.
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risks and to show their spatial pattern over the years. In such areas, landslide
susceptibility mapping is essential to delineate the landslide prone area. Various
methodologies have been proposed for landslide susceptibility mappings. In this
study, two GIS-based methodologies for landslide susceptibility mapping were tested
in a landslide prone area, north Iran, and the outputs were compared.

In the first stage of the study, an extensive landslide inventory mapping study
was performed because a reliable landslide inventory map is necessary for all
indirect landslide susceptibility evaluations. For this purpose, a landslide inventory
database that is used to assess the landslide susceptibility of the study area, with a
total of 78 landslides, was mapped in the study area. In the second stage, the
landslide conditioning factors were determined, and these were prepared for the
landslide susceptibility assessment by Dempster–Shafer and Weights-of-evidence
models. Finally, for the purpose of validation, the learning set of landslides was
randomly selected from a total of 78 landslides population (55 or 70% of landslides
with similar portions for each landslide type) disregarding the temporal component.
The ROC curve produced based on the test data set, which was randomly collected
from landslide bodies and safe zones. The results showed a 72.87% and 79.87%
with a standard error of 0.0748 and 0.0663 for Dempster–Shafer and Weights-of-
evidence models, respectively. So, the performance of the produced map by
Weights-of-evidence model is obviously higher than that of the map produced by
Dempster–Shafer theory. Prepared landslide prediction map could be the basis for
decisions making. The information provided by this landslide susceptibility map
could help citizens, planners and engineers to reduce losses caused by existing and
future landslides by means of suitable preventive measures and mitigation
procedures. If the factors related to the tectonic activity, vulnerability of buildings
and other property were available, a hazard and risk analysis could also be
performed.
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