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INTRODUCTION

Let R be a commutative domain and let M be an R-module. It is
proved that to every prime submodule of M there corresponds a prime
ideal of R and a set of linear equations of a certain type, and conversely.
In particular, in case M is a finitely generated R-module generated by n
elements, for some positive integer n, then the prime submodules of M
are given by prime ideals of R and certain finite systems of equations
containing at most »n equations.

PRELIMINARIES AND RESULTS

Throughout this article all rings are commutative with identity and all
modules are unital. Let R be a ring and let M be an R-module. For any
submodule N of M let (N: M) = {r € R: rM C N}. Clearly (N: M) is an
ideal of R. A submodule N of M is called prime if N # M and given,
reR, m €M, then rm € N implies m € N or r € (N: M). (For more
information about prime submodules, see [1-4]). The following lemma is
well known (see, for example, [4]).
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LEMMA 1. Let M be an R-module. Then a submodule N of M is prime if
and only if P = (N: M) is a prime ideal of R and the (R /P)-module M /N is
torsionfree.

Let M be an R-module which is generated by elements m (i € I),
where the index set I need not be finite. Then every element of M can be
written in the form X, _ ;r;m; where r, € R(i € I) and r; # 0 for at most a
finite number of elements i € /. It will be convenient to write the elements
of M in this form.

Let I be a nonempty index set. By an I X I column-finite matrix (a,;)
over a ring R we mean a collection of elements a;; € R (i,j € I) such
that for each j € I the set {i € I a;; # 0} is empty or finite.

LEMMA 2. Let R be a domain with field of fractions K and let M be a free
R-module with basis {m,: i € I}. Let N be a proper submodule of M such that
M /N is a torsionfree R-module. Then there exists a nonzero I X I column-finite
matrix (a;;) over K such that

N = {Zrl-mi eEM:r,eR,(i€l) and Zaijrj=0,(i61)}.
iel jel

Proof.  Without loss of generality we can consider M as an R-module of
the K-vector space V' with basis {m;: i € I}. Now KN is a subspace of '
and N =KN N M because M/N is torsionfree. Thus KN is a proper
subspace of I and hence V= KN @ W for some nonzero K-submodule W
of V.

Let 7: VV — W denote the canonical projection with kernel KN. For
each j € I, w(m;) = ¥, ;a;;m,; for some a;; € K (i € I) such that {i € I
a;; # 0} is empty or finite. Clearly (a;;) is an I X I column-finite matrix
over K and is nonzero because W, and hence , is nonzero.

Let m € M. Then m = ¥, ;s;m; for some s; € R where s; # 0 for at
most finite number of elements j € I. It follows that

m(m) = Zsjﬂ'(mj) = Zsj( Zaijmi) =)

jel jel ‘iel iel

( Y aijsj)mi.

JjeI
Now

N=MNKN={meM: =(m) =0}

= { ZsjmjeM: Zaijsj=0(i61)}.

JEL JEI
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COROLLARY 3. Let R be a domain and let M be a free R-module with
basis {my, ..., m,}, for some positive integer n. Let N be a proper submodule
of M such that M /N is a torsionfree R — module. Then there exist elements
bl-j € Rfor 1 <i, j<n, notall zero, such that

N={rm,+ - +r,m, r;,€R,(1<i<n)and

n
br,=0,(1<i<n)
j=1

Proof. In Lemma 2, I ={1,...,n}. For each 1 <i, j < n, there exist
b € R, 0 # ¢;; € R such that a;; = b;;/c;;. Without loss of generality,
there exists 0 # ¢ € R such that ¢;; = c (1 <i, j <n). The result now
follows by Lemma 2. |

Note that, in general, in Lemma 2 we cannot assume that a;; € R for all
i,j € I, as the following example shows.

ExAMPLE 4. Let Z denote the ring of integersand let M =Z & Z &
Z & 7 @ --- denote the free Z-module of countably infinite rank. Let

N = {(rl,rz,rs,...) eEM: %rl+%r2+%r3+ =0}.

Then N is a proper submodule of M and M /N is a torsionfree Z-module.
However there do not exist elements a;, € Z (i > 1), not all zero, such that

N c {(rl,rz,r3,...): Y oar = O}.
i>1

Proof. It is easy to check that N is a proper submodule of M and that
M /N is a torsionfree Z module. Suppose that there exist elements a;, € Z
(i > 1), not all zero, such that N c {(r;,r,,rs,...): X;.qa;r; = 0}. There
exists a positive integer k such that a, # 0. Let ¢ be any positive integer
with ¢ > k. Then x =(0,0,...,0, —1,0,0,...,0,27%,0,0,...) belongs to
N, where —1 is the kth component and 2/~ % is the th component. Then
a, (=) +a2"%=0,ie, a, =2"%a,. Thus a, € N>_, 72" =0, a con-
tradiction. 1

Let R be a domain with field of fractions K. Let M be an R-module
with ordered generating set G = {m,;: i € I}, i.e, M = ¥,_ ,Rm;, where [
is some ordered index set. Let 4 = (a;;) be an I X I column-finite matrix
over K. Then we say that A is G-compatible if whenever r, € R (i € I)
with r; # 0 for at most a finite number of elements i € I and X,  ,7;m; = 0
then ¥, a7, =0 (i €1). We illustrate this concept in the following
proposition.

ijly
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PropPosITION 5. Let A be a G-compatible N X N column-finite matrix
over Q for the Z-module Q with ordered generating set G = {1, %, %, %, .
where N, Z, and Q denote the natural numbers, integers and rational

numbers, respectively. Then

@ @
‘1123
S P
qn23

for some positive integer n and nonzero q; € Q (1 < i < n).

Proof. Suppose that A4 = (a;;) where i,j € N. Let m € N \ {1}. Then
1 — m(1/m) = 0 so that

ayl +a;,(—m) =0, (iel).
Thus a;,, = a;;/m for all i, m € N. The result follows. [

LEMMA 6. Let R be a domain with field of fraction K and let M be an
R-module with ordered generating set G = {m,: i € I}. Then N is a proper
submodule of M such that M /N is a torsionfree R module if and only if there
exists a nonzero G-compatible I X I column-finite matrix (a,;) over K such
that

N = {Zrl-ml. EM:r,eR,(i€l) and Zaijrj=0,(iel)}.
iel jel

Proof.  Suppose that (aij) is a nonzero G-compatible I X I column-finite
matrix over K and N ={¥L,_,,m; eM: r,eR(iel)and L, a;r; =0
(i € I)}. Note that if m € M such that m = X, _,r;m; and m = ¥, _ ;s,m;
where r;, s; € R (i € I) and neither of the set {i € I r, # 0} and {i € I
s; # 0} is infinite then X, ,(r; — s)m; =0 so that X,_,a;(r; —s) =0
Gel),ie., Yicsa;r,=0 Gel) = Ljcsa;5 =0 (ieI). Thus N is
well defined and it is easy to check that N is a submodule of M. There
exist i’,j" €1 such that a;; # 0. Then m; & N. Thus N is a proper
submodule of M. It is clear that the module M /N is torsionfree.

Conversely, suppose that N is a proper submodule of M and M /N is a
torsionfree R-module. There exist a free R-module F with basis {f;: i € I}
and an epimorphism ¢: F — M such that o(f,) =m; (i €I). Let H =
@ (N). It can easily be checked that H is a proper submodule of F and
F/H is a torsionfree R — module. By Lemma 2, there exists a nonzero
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I X I column-finite matrix (a;;) over K such that

H= {Zr,f,.eF:r,.eR,(ieI) and Zaijrj=0,(iel)}.

iel jerl

Let s; € R (i € I) such that s, # 0 for at most a finite number of elements
i€land X;c,;s;m; =0.Then X, s, f; € Kero < H sothat X, ;a

iS5 =
0, (i € ). Thus the matrix (a;;) is G-compatible. Finally,

N=¢(H) = {Zrimi EM:r,eR,(i€l)and ) a;r;=0,(i e])}.
iel jel

To illustrate Lemma 6, consider the Z-module @ with ordered generat-
ing set G ={1,3,%,%,...}. By Proposition 5 and Lemma 6, N is a proper

submodule of Q and Q /N is torsionfree if and only if

rﬂ rn -
N={Z —: ) — =0}, ie,N=0.

neN n neN h

There is an analogue of Lemma 6 in case [ is finite, say 7 = {1,..., n},
for some n € N. In this case the elements a;; can be replaced by elements
b;; € R, (1 < i, j < n) (compare Corollary 3).

Let R be a domain with field of fractions K and let P be a prime ideal
of R. Let R, denote the localization of R at P. Then R, is the subring of
K consisting of all elements r/c where r € R, c € R\ P. Let M be an
R-module with ordered generating set G = {m;: i € I}. Let A = (a;;) be
an I X I column-finite matrix over K. Then we say that A4 is (G, P)-com-
patible if whenever r, € R, (i € I) with r; # 0 for at most a finite number
of elements i €1 and X, ,r,;m; € PM then X,_,a,r; €Rp,P, (i €1).

Note that A is (G, 0)-compatible if and only if A4 is G-compatible.

EXAMPLE 7. Let M denote the Z-module (Z/72 & 7Z/73) with or-
dered generating set G = {(1 + 72,0 + 73),(0 + 72,1 + Z3)}.

(i) The zero 2 X 2 matrix is the only (G, 0)-compatible matrix.

(i) For any prime p # 2,3, a 2 X 2 matrix A is (G, P)-compatible
if and only if each entry of A belongs to Z,P when P = Z,.

(i) [; olis a (G,Z2)-compatible matrix.

(iv) [3 ;lis a(G,Z3)-compatible matrix.
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Proof. (i) Let m; =0+ 72,0+ 73), m, =0 + 72,1 + 73). Let
[« "]be a (G, 0)-compatible matrix. Then 2m; = 0 gives

¢ alls]- [l

so that a = 0, ¢ = 0, and 3m, = 0 gives
a bfl0f_|0
c d]|3 0]
sothat b =0,d = 0.

(i) Now let p be a prime integer, p # 2,3 and set P = Zp. Then
PM =M. Let A =[" "] where a, b, ¢, and d € Q. Clearly if a,b,c,d €
Z,P then A is (G, P)-compatible. Conversely, suppose that A4 is (G, P)-
compatible. Then m, € M = PM gives al + b0 € Z,P, cl + do Z,P,
i.e, a,ce ZPP. Similarly m, € M = PM gives b,d € ZPP.

(iii) Note that 2M = (0 ® Z/Z3). Let r,s € Z such that rm, + sm,
€ 2M. Then rm, = 0 so that r is even. Then

1 0ffr|_|r
0 0]]0 0]
where r € 72 ¢ 7,2. Thus [ ’]is a (G, Z2)-compatible matrix.
(iv) Similar to Gii). 1
THEOREM 8. Let R be a domain and let M be an R-module with ordered
generating set G = {m;. i € I). Then N is a prime submodule of M if and only

if there exist a prime ideal P of R and a (G, P)-compatible I X I column-finite
matrix (a;;) over the local ring R such that a;; & R, P for some i, j € I and

N = {Zrimi EM:r,€R,(i€l)and ) a,r, € R,P, (i EI)}.
iel jel

In this case P = (N: M).

Proof. Suppose first that there exists a prime ideal P of R and a
(G, P)-compatible I X I column-finite matrix (a;;) over R, such that N
has the stated form. By hypothesis, PM € N and N is a submodule of M.
There exist i’, j* € I such that a;,; & R, P and then m; & N. Thus N is a
proper submodule of M. Let m € M, ¢ € R \ P such that cm € N. There
exist elements r, € R (i € I) such that r, + 0 for at most a finite number
of elements i€l and m = X,_,r;m;. Then cm € N implies that
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Ljcsa;(cr) €ERpP (i €1) and hence c¢(X;.,a,r) € RpP (i €1) and
(X, ,a,r;)) € RpP (i €1). Thus m € N. It follows that the (R/P)-mod-
ule M/N is torsionfree. By Lemma 1, N is a prime submodule of M.
Clearly P = (N: M).

Conversely, suppose that N is a prime submodule of the R — module
M. By Lemma 1, P=(N: M) is a prime ideal of R and M/N is a
torsionfree (R /P)-module. Now M = M /PM has ordered generating set
G = {m,;: i € I} where m, = m, + PM. Let K denote the field of fractions
of the domain R/P. By Lemma 6, there exists a nonzero G-compatible
1 X I column-finite matrix (b;;) over K such that

Y. (r;,+P)m,eM:r,e R (i el)and

iel
Y b(r;+P)=0,(i€ 1)}.

jeI

o |

Let x € N. Then x + PM = ¥, _ ,(r; + P)m, where r, € R (i € I), there
are at most a finite number of elements i € I such that r, ¢ P and
Yiehj(r; +P)=0 Gel. Let J={iel. r; € P}. Then x + PM =
Yic,(r; + P)m; = (X,c ;r;m;) + PM so that there exist a finite subset J'
of I and elements p, € P (i €J’) such that

X = Zrimi + Z pim;.
ieJ ielJ'

Let N'={X,c,sm;eM: s;,€R (€D and L;c;b(s;+P)=0
(i € I)}. We have shown that x € N’ and hence N C N'. But it is clear
that N'/PM C N/PM and hence N' C N. Thus N' = N.

For each i,j €1, b, =(c; +P) *(f; + P) for some f, €R, ¢; €
R\ P. For each i,j €1 such that f,, € P we set a,;; = 0. Note that
f;j & P for some i,j € I. Let i be any element of I such that f;; & P for
some j' € I. Consider the equation ¥, ,b;(r; + P) =0 (in K) where
1 €R (jeI and r; # 0 for at most a finite number of elements j € I.
Let J" ={j €J: r; # 0} Then J" is finite. Let ¢ =II,.,.c;; €ER\ P.
Then X, ,b,(r; + P) = 0 gives &, ,(c;; + P)"*(f;; + P)r; + P) = 0 and
hence, multiplying through by ¢ + P, we have

Y ( I'T (en +P))(ﬁj +P)(r, +P) =0,
jeJ YkeIN{j}

so that

Z( I1 Cik)fijrj EP.

jeJ YkeIN{j}
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Now multiplying through by ¢! we have

Y ciitfyr € RpP,
jelJ

and hence

Y. cii*fir; € RpP.
jel

Let a;; = c;;'f;; €R, for all j €I such that f;; & P. Clearly (a;)) is an
I X I column-finite matrix over the ring R,.

Now suppose that ¢, € R (i € I) such that ¢, # 0 for at most a finite
number of elements i € I and X, _ ,t,m; € PM. Then L, _ ,(¢; + P)m, = 0.
Thus X, ,b;(t; + P) = 0. By the preceding argument, X, ;a;;t; € R, P.
Thus the matrix (a;;) is (G, P)-compatible. It is now clear that

N = {ZrimiEM: rne€R(iel)and ) a;r; €R,P (iEI)},
iel jel

as required. |1

Let R be any ring. By a maximal prime submodule of an R — module M
we mean a prime submodule N such that N is maximal in {L: L is a prime
submodule of M and (L: M) = (N: M)}. Theorem 8 has the following
corollary.

COROLLARY 9. Let R be a domain and let M be an R-module with
generating set G = {m;: i € I}. Then N is a maximal prime submodule of M if
and only if there exists a prime ideal P of R and elements a; € R, (i € I), not
all in Rp P, such that

(i) whenever r; € R (i € 1) such that r; # 0 for at most a finite
number of elements i € [ and ¥, ;r;m; € PM then *, _ ;a,r; € Rp P and

L

(i) N={X,c,rm,eM:r,eRG<])and X, a;r; € RpP}.

Proof. Suppose that N is a maximal prime submodule of M and
P =(N: M). By Theorem 8 there exists a (G, P)-compatible I X I col-
umn-finite matrix (a;;) over R, such that a;; & R, P for some i, j € I and

N = {Zrimi EM:r,eR(iel)and ) a,r, €R,P (iel)}.
iel jel
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Suppose that i’, j € I such that a;; & Rp P and let

LA

L= {Zrimi eEM:r,eR(icl)and ) a,r eRPP}.
iel jel

By Theorem 8, L is a prime submodule of M and (L : M) = P. Clearly
N c L. Therefore N = L and N satisfies (i) and (ii).
Conversely, suppose that N satisfies (i) and (ii). Define a mapping,

Rp
0: — —
PM R,P

by 9( zm) = Y ar +R,P.

iel iel

By (i), 6 is well defined. Clearly, 6 is an R-homomorphism and by (ii)
N = ker 0. Let 9: M/N — R,/R, P be the induced monomorphism and
let ¢: R, ® (M/N) - R,/R,P be the induced R,-homomorphism. Be-
cause R,/R,P is a simple R,-module and ¢ # 0 it follows that R, ®
(M/N) is a simple R,-module. It follows easily that N is a maximal prime
submodule of M with (N: M) =P. 1

The situation for finitely generated modules is a good deal more
straightforward. We have the following analogue of Theorem 8.

THEOREM 10. Let R be a ring and let M = ¥!'_Rm; be a finitely
generated R-module. Then N is a prime submodule of M if and only if there
exist a prime ideal P of R and elements a;; € R (1 < i, j < n), not all in P,
such that

(i) given elements r; € R (1 <i <n), X! r;m, € PM implies that
Xj_ja;r; €Pforall 1 <i<n,and

(i) N=AXj_;ssm;eM: s;€R (1<i<n) and Yj_ja;s; €P,
(1 <i < n)}. In this case, P = (N: M).

Proof. Suppose first that N satisfies (i) and (ii). Then the proof of
Theorem 8 shows that N is a prime submodule of M with P = (N: M).
Conversely, suppose that N is a prime submodule of M. Let P = (N: M).
Let R=R/P, M=M/PM, N=N/PM, # =r+ P for all r in R and
m =m + PM for all m in M. Then M/N is a torsionfree R-module. By
Lemma 6 there exist elements a,; € R (1 <i, j <n), not all in P and
¢ € R \ P such that

(i) whenever r, € R (1 <i <n) with I/ ,#m;, =0 then
X (a;c Y =0forall1 <i<nand

(i) N=(X/,5m:s;eRG(eDand¥/_(a,c15=00U<ix<
n)}.

It is now clear that the elements {a;;: 1 <, j < n} satisfy (i) and (ii). 1
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There is an analogue of Corollary 9 for finitely generated modules.

COROLLARY 11. Let R be a ring and let M = X'_,Rm; be a finitely
generated R — module. Then N is a maximal prime submodule of M if and
only if there exist a prime ideal P of R and elements a, € R (1 < i < n), not
all in P, such that

(i) given elements r; € R, (1 <i <n), LI'_,r;m; € PM implies that
Y ja;r, € P, and
(i) N={Xlsm;:s;,eRQ<i<n)and X' ja;; €P}.

i

Proof. By the proof of Corollary 9.
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