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Abstract The main goal of this study is to produce landslide susceptibility maps of a

landslide-prone area (Haraz) in Iran by using both fuzzy logic and analytical hierarchy

process (AHP) models. At first, landslide locations were identified by aerial photographs

and field surveys, and a total of 78 landslides were mapped from various sources. Then, the

landslide inventory was randomly split into a training dataset 70 % (55 landslides) for

training the models and the remaining 30 % (23 landslides) was used for validation pur-

pose. Twelve data layers, as the landslide conditioning factors, are exploited to detect the

most susceptible areas. These factors are slope degree, aspect, plan curvature, altitude,

lithology, land use, distance from rivers, distance from roads, distance from faults, stream

power index, slope length, and topographic wetness index. Subsequently, landslide sus-

ceptibility maps were produced using fuzzy logic and AHP models. For verification,

receiver operating characteristics curve and area under the curve approaches were used.

The verification results showed that the fuzzy logic model (89.7 %) performed better than

AHP (81.1 %) model for the study area. The produced susceptibility maps can be used for

general land use planning and hazard mitigation purpose.
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1 Introduction

Over the last two decades, many governments and international research institutes in the

world have invested considerable resources in assessing landslide hazard mapping by

portraying their spatial distribution (Guzzetti et al. 1999). Landslides have caused large

numbers of casualties and huge economic losses in mountainous areas of the world. It has

been estimated that nearly 600 people are killed every year worldwide as a consequence of

slope failure (Varnes 1981; Mowen et al. 2003). In many developing countries, natural

catastrophes account for 1–2 % of the gross national product (Hutchinson 1995).

According to the data of Iranian Landslide Working Party (2007), in Iran, about 187 people

have been killed by landslides, and total economic losses from mass movements until the

end of September 2007 have been estimated at 127,000 billion Iranian Rials (almost $

12,700 million dollars).

Landslide susceptibility mapping relies on a rather complex knowledge of slope

movements and their controlling factors. The reliability of landslide susceptibility maps

mainly depends on the amount and quality of available data, the working scale, and the

selection of the appropriate methodology of analysis and modeling (Baeza and Corominas

2001).

Landslide inventory and susceptibility mapping studies are accepted as the first stage of

landslide hazard mitigation efforts (Ercanoglu et al. 2004). These maps provide important

information to support decisions for urban development and land use planning. Also,

effective utilization of these maps can considerably reduce damage potential and other

cost-effects of landslides. The process of creating landslide susceptibility maps involves

several qualitative or quantitative approaches (Aleotti and Chowdhury 1999).

Landslide susceptibility maps are produced to help humans to recognize, avoid, or

otherwise adapt to landslide hazard mitigation procedures. Guzzetti et al. (1999) conducted

GIS-based studies in the Umbria and Marches regions of central Italy and also summarized

many case studies of landslide hazard evaluation along the Apennines Mountains. Reports

of landslide analyses using GIS and probabilistic models were also published (Van Westen

et al. 1999; Clerici et al. 2006; Lee and Pradhan 2006; Pradhan et al. 2006, 2011; Akgun

et al. 2008; Youssef et al. 2009, 2012; Akgun et al. 2011; Pradhan and Lee 2010a; Pradhan

and Youssef 2010). Most of the above studies have been conducted using the regional

landslide inventories derived from aerial photographs and remotely sensed images. Sta-

tistical models such as logistic regression also have been used in landslide susceptibility

mapping (Wang and Sassa 2005; Lee and Sambath 2006; Lee and Pradhan 2007; Pradhan

et al. 2008, 2010b, c; Tunusluoglu et al. 2008; Nefeslioğlu et al. 2008a; Pradhan 2010c).

The application of the analytical hierarchy process (AHP) method, developed by Saaty

(1977), has been used by many authors worldwide (Barredo et al. 2000; Nie et al. 2001;

Yagi 2003; Ayalew et al. 2005; Komac 2006; Yoshimatsu and Abe 2006; Yalcin 2008;

Ercanoglu et al. 2008; Akgun and Turk 2010). All these models provide solutions for

integrating information levels and mapping the outputs. Recently, other new methods have

been applied for landslide susceptibility evaluation using evidential belief function model

(Park 2010; Althuwaynee et al. 2012); fuzzy logic (Ercanoglu and Gokceoglu 2002, 2004;

Lee 2007; Pradhan and Lee 2009; Pradhan 2011a, b; Akgun et al. 2012) and artificial

neural network models (Lee et al. 2004b; Pradhan and Lee 2007, 2009, 2010b; Biswajeet

and Saied 2010; Pradhan et al. 2010a; Pradhan and Buchroithner 2010). More recently,

new techniques have been used for landslide susceptibility mapping such as neuro-fuzzy

(Kanungo et al. 2005; Lee et al. 2009; Pradhan et al. 2010d; Vahidnia et al. 2010; Sezer

et al. 2011; Oh and Pradhan 2011), support vector machine (SVM) (Brenning 2005; Yao
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et al. 2008; Yilmaz 2010), and decision-tree methods (Nefeslioglu et al. 2010) have been

tried and their performances have been assessed. The spatial results of these approaches are

generally appealing, and they give rise to qualitatively and quantitatively map of the

landslide hazard areas (Pradhan 2010a).

In this paper, we considered a fuzzy logic-based approach and analytical hierarchy

process (AHP) to produce landslide susceptibility maps at the Haraz watershed in Iran

(Fig. 1). These models exploit information obtained from an inventory map to predict

where landslides may occur in future. These models are tested, and the results are

Fig. 1 Location of the Haraz watershed and landslide inventory map
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discussed. In the literature, fuzzy approach including data-driven membership functions for

landslide susceptibility (Ercanoglu and Gokceoglu 2002) and Mamdani fuzzy inference

system for landslide susceptibility (Akgun et al. 2012) exists. However, a comparison of

fuzzy approaches with another expert-based system such as AHP is not encountered. This

contribution provides originality to this study.

2 Study area

The study area is located at the north of Iran, one of the most landslide-prone areas in Iran

(Pourghasemi 2008). The watershed area lies between the longitudes of 52�0600200 E to

52�1801300 E and latitudes of 35�4900500 N to 35�5703900 N is mountainous and lies in the

geological Alborz Folded zone (Fig. 1). It covers two adjacent 1:50,000 topographic sheets

of the Army Geographic Institute of Iran and has an extent of about 114.5 km2. Main

stream in the study area is the Haraz River. The temperature varies between -25 �C in

winter and 36.5 �C in summer. The mean annual rainfall is around 500 mm. In general, the

precipitation falls between November and January based on the records from the Iranian

Meteorological Department. Altitude in the study area varies between 1,200 to 3,290 m.

The majority of the area is covered by moderate pasture (64.3 %). The other parts of the

study area are utilized for orchard and agricultural (13.4 %), residential (0.3 %), and good

pasture (21.9 %).

3 Production of the thematic data layers

Various thematic data layers representing landslide conditioning factors namely slope

degree, aspect, plan curvature, altitude, lithology, land use, distance from faults, distance

from rivers, distance from roads, stream power index (SPI), slope length (LS), and topo-

graphic wetness index (TWI) were prepared. These factors fall under the category of

preparatory factors, responsible for the occurrence of landslides in the region for which

pertinent data can be collected from available resources as well as from the field. The

triggering factors such as rainfall and earthquake set off the movement by shifting the slope

from a marginally stable to an actively unstable area. The attributes of the ground in terms

of landslide susceptibility are considered. Rainfall and earthquakes are triggering factors

and temporal phenomena. However, past data on these triggering factors in relation to

landslide occurrence are not available, and therefore, these factors are not considered in

this study.

3.1 Landslide inventory map

The mapping of existing landslides is essential to study the relationship between the

landslide distribution and the conditioning factors. In order to produce a detailed and

reliable landslide inventory map, extensive field surveys and observations are performed in

the study area. A total of 78 landslides are identified and mapped by evaluating aerial

photos in 1:25,000 scale with well supported by field surveys (Fig. 1). The mode of failure

of the landslides identified in the study area is rotational sliding according to the landslide

classification proposed by Varnes (1978). Of the 78 landslides identified, randomly 55

(%70 %) locations were chosen for the landslide susceptibility maps, while the remaining

23 (%30 %) cases were used for the model validation.

968 Nat Hazards (2012) 63:965–996

123



3.2 Slope degree

The main parameter of the slope stability analysis is the slope degree (Lee and Min 2001).

Because the slope degree is directly related to the landslides, it is frequently used in preparing

landslide susceptibility maps (Clerici et al. 2002; Ercanoglu et al. 2004; Lee et al. 2004a;

Saha et al. 2005; Lee 2005). For this reason, the slope degree map of the study area is

prepared from the digital elevation model (DEM) and divided into six slope categories

(Fig. 2a). An integrated land and water information system (ILWIS 3.3) software was used to

discover in which slope group the landslide occurred and the rate of occurrence is observed.

3.3 Aspect

Aspect is accepted as a main landslide conditioning factor, and this parameter is considered

in several studies (van Westen and Bonilla 1990; Fernandez et al. 1999; Ercanoglu et al.

2004; Lee et al. 2004a). Some of the meteorological events such as the amount of rainfall,

amount of sunshine, and the morphologic structure of the area affect the propensity of

landslides. The hillsides receiving dense rainfall reach saturation faster; however, this is

also related to filtering capacity of the slope controlled by various parameters such as slope

topography, soil type, permeability, porosity, humidity, organic ingredients, land cover,

and the climatic season. As a result, pore water pressure of the slope-forming material

changes. In this study, the aspect map of the study area is produced to show the relationship

between aspect and landslides (Fig. 2b). Aspects are grouped into 9 classes such as flat

(-1)�, north (337.5�–360�, 0�–22.5�), northeast (22.5�–67.5�), east (67.5�–112.5�),

southeast (112.5�–157.5�), south (157.5�–202.5�), southwest (202.5�–247.5�), west

(247.5�–292.5�), and northwest (292.5�–337.5�).

3.4 Altitude

Altitude is also a relevant landslide conditioning factor used in this study. The altitude map

was prepared from the 10 m 9 10 m digital elevation model (Fig. 2c).

3.5 Plan curvature

The term curvature is theoretically defined as the rate of change of slope gradient or aspect,

usually in a particular direction (Wilson and Gallant 2000). The curvature value can be

evaluated by calculating the reciprocal value of the radius of curvature of that particular

direction (Nefeslioğlu et al. 2008b). Hence, while the curvature values of broad curves are

small, the tight ones have higher values. Plan curvature is described as the curvature of a

contour line formed by intersecting a horizontal plane with the surface (Fig. 2d). The

influence of plan curvature on the slope erosion processes is the convergence or divergence

of water during downhill flow (Ercanoglu and Gokceoglu 2002; Oh and Pradhan 2011). For

this reason, this parameter constitutes one of the conditioning factors controlling landslide

occurrence (Nefeslioğlu et al. 2008b). The plan curvature map was produced using a

system for automated geoscientific analyses (SAGA) GIS.

3.6 Lithology

The landslide phenomenon, a part of geomorphologic studies, is related to the lithology of

the land. Since different lithological units have different landslide susceptibility values,
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they are very important in providing data for susceptibility studies. For this reason, it is

essential to group the lithological properties properly (Dai et al. 2001; Duman et al. 2006).

Therefore, the geological map of the study area was prepared by the Geological Survey of

Iran (GSI) at 1:100,000 scale (sheet number 6461) and was digitized in GIS. The study area

is covered with various types of lithological units. The general geological setting of the

area is shown in Fig. 2e, and the lithological properties are summarized in Table 1.

3.7 Land use

Four different types of land use were described for this study using a supervised classi-

fication (method: maximum likelihood, accuracy: 88 %) and field surveys of ETM? (2006)

satellite images. These types of land use were moderate pasture, best pasture, mixing

orchard, and agricultural and residential areas (Fig. 2f). Most of the study area is covered

by moderate pasture (64.32 %). It is well known that land use and vegetation cover play

important roles in the stability of slopes (Ocakoglu et al. 2002).

3.8 Distance from rivers

An important parameter that controls the stability of a slope is the saturation degree of the

material on the slope (Yalcin and Bulut 2007; Yalcin 2008). The closeness of the slope to

drainage structures is another important factor in terms of stability. Streams may adversely

affect stability by eroding the slopes or by saturating the lower part of material resulting in

Table 1 Description of geological units of the study area

Geological
age

Lithology Formation Symbol No.

Quaternary Scree – Qsc A

Quaternary Young terraces – Qt
2

Quaternary Old terraces – Qt
1

Quaternary Agglomerate – Qag

Quaternary Trachy andesitic lava flows – Qta

Quaternary Ash tuff, lapilli tuff – Qtu

Quaternary Olivine basalt – Qb

Eocene Green tuff, basaltic and limestone with gypsum, and
conglomerate

Karaj K tv
k B

Eocene Gypsum Karaj Egy
k

Paleocene Limestone bearing nummulites and alveolina, conglomerate Ziarat PEz C

Paleocene Conglomerate, agglomerate, some marl, and limestone Fajan PEf

Late
Cretaceous

Biogenic and cherty limestone – K2 D

Late
Cretaceous

Orbitoline bearing limestone Tizkuh Kt

Late Jurassic Massive to well-bedded, cherty limestone Lar J1

Late Jurassic Well-bedded, partly oolitic-detritic limestone, marly
limestone

Dalichai Jd

Late Jurassic Dark shale and sandstone with plant remains, coal Shemshak JS E

Early Triassic Thin-bedded limestone Elika TReL

Early Permian Cross-bedded, quartzitic sandstone Dorud Pd
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water level increases (Gokceoglu and Aksoy 1996; Saha et al. 2002). For this reason, five

different buffer zones were created within the study area to determine the degree to which

the streams affected the slopes (Fig. 2g). Euclidean distance method was applied, and a

visual inspection was done to see the correlation between the river and landslide.

3.9 Distance from roads

Similar to the effect of the distance from rivers, landslides may occur on the road and on

the side of slopes affected by roads (Pachauri et al. 1998; Ayalew and Yamagishi 2005).

Change of slope (over steepening) due to excavation, additional load, change in

hydrology, and drainage may affect the stress state and slope equilibrium. In fact, during

the field works, some landslides owing to road construction work are detected. For this

reason, five different buffer zones are created on the path of the road to determine the effect

of the road on the stability of slope (Fig. 2h). The landslide percentage distribution and its

frequency ratio are determined considering the distance classes to the road by comparing

the map of the distance to the road and the landslide inventory.

3.10 Distance from faults

The distance from faults is calculated at 100-m intervals using the geological map (Fig. 2i).

Euclidean distance method was applied, and a visual inspection was done to see the corre-

lation between the faults and landslides. Faults form a line or zone of weakness characterized

by heavily fractured rocks (Foumelis et al. 2004). Generally speaking, farther the distance

from tectonic structures will result less numbers of landslides. Selective erosion and

movement of water along fault planes promote such phenomena. Apart from the major thrusts

and faults derived from the geological maps, some complementary information regarding

possible faults and structural dislocations was recognized as lineaments by means of image

enhancement (filtering) of satellite imagery. The recognition of lineaments were performed

step-by-step from large to smaller scales allowing the generalization of many neighboring

small-order lineaments taking into account the spatial scale of the study (Fig. 2i).

3.11 Stream power index (SPI)

The stream power index (SPI) is a compound topographic attribute. It is a measure of the

erosive power of flowing water based on the assumption that discharge is proportional to

specific catchment area (Fig. 2j). It generally predicts net erosion in the areas of profile and

tangential convexity (flow acceleration and convergence zones) and net deposition in the

areas of profile concavity (zones of decreasing flow velocity). Stream power index was

calculated based on the formula given by Moore et al. (1991).

SPI ¼ AS � tan b ð1Þ

where AS is the specific catchment’s area and b is the local slope gradient measured in

degrees.

3.12 Topographic wetness index (TWI)

Another topographic factor within the runoff model is the topographic wetness index

(TWI). A topographic wetness index measures the degree of accumulation of water at a site

(Fig. 2k). It is defined as (Beven and Kirkby 1979; Moore et al. 1991):
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TWI ¼ ln a= tan bð Þ ð2Þ

where a is the cumulative upslope area draining through a point (per unit contour length)

and tan b is the slope angle at the point. The ln(a/tan b) index reflects the tendency of water

to accumulate at any point in the catchment (in terms of a) and the tendency of gravita-

tional forces to move that water down slope (expressed in terms of tan b as an approximate

hydraulic gradient). The water infiltration primarily depends upon material properties such

as permeability, pore water pressure, and effects on the soil strength (Pouydal et al. 2010).

3.13 Slope length (LS)

Besides the stream power index and topographic wetness index, there is also another factor

included, that is, slope length (LS). The soil loss is a combined effect of length (L) and

slope steepness (S). The LS factor in the Universal Soil Loss Equation (USLE) is a

measure of the sediment transport capacity of overland flow (Moore and Wilson 1992).

Slope length is the distance from the origin of overland flow along its flow path to the

location of either concentrated flow or deposition. The larger the slope length, the more

water accumulates at the bottom of the field, increasing erosion. It also depends on the

surface slope. Carrara et al. (1995) stated that there is a relationship between slide density

and slope length. The slope length factor was calculated based on work by Moore and

Burch (1986) using Eq. (3).

LS ¼ AS

22:13

� �0:6
sin b

0:0896

� �1:3

ð3Þ

These indices can be estimated as a function of primary terrain attributes and can be easily

implemented in SAGA GIS (Fig. 2l).

4 Landslide susceptibility mapping

4.1 Application of fuzzy logic model

The fuzzy set theory introduced by Zadeh (1965) is one of the tools used to handle a

complex problems. Therefore, the fuzzy set theory has been commonly used for many

scientific studies in different disciplines. The idea of fuzzy logic is to consider the spatial

objects on a map as the members of a set. In the classical set theory, an object is a member

of a set if it has a membership value of 1 or is not a member if it has a membership value of

0 (Hines 1997). In the fuzzy set theory, membership can take on any value between 0 and

1, reflecting the degree of certainty of membership (Zadeh 1965). The fuzzy set theory

employs the idea of a membership function that expresses the degree of membership with

respect to some attribute of interest. With maps, generally, the attribute of interest is

measured over discrete intervals, and the membership function can be expressed as a table,

relating map classes to membership values (Pradhan 2010b, 2011a, b). Fuzzy logic is

attractive because it is straightforward to understand and implement. It can be used with

data from any measurement scale, and the weighting of evidence is controlled entirely by

the expert. The fuzzy logic method allows more flexible combinations of weighted maps

and could be readily implemented with a GIS modeling language (Pradhan 2010b). This is

different from data-driven approaches such as weights of evidence or logistic regression,
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which use the locations of known objects such as landslides to estimate weights or coef-

ficients (Pradhan 2011a, b) (Table 2).

The idea of using fuzzy approach in landslide susceptibility mapping is to consider the

pixels on any causal factor layer as susceptible to landslides. Pixel values can be numeric

and range from 0 (i.e., not susceptible) to 1 (i.e., ‘‘susceptible’’). Pixel values must lie in

the range of 0 to 1, but there is no practical constraint on the choice of values. Values are

chosen to reflect the degree of membership of a set, based on subjective judgment as shown

by Bonham-Carter (1994) for mineral exploration, or they can be derived by various

functions representing the reality such as J-shape, sigmoidal, and linear functions (Eastman

2003). These values can be user-defined, or can be derived from a frequency ratio (Lee

2007; Pradhan et al. 2009), or through analytical hierarchy process (Saaty 1977). In the

present case, fuzzy membership values have been assigned based on frequency ratio model

(Table 2). The frequency ratio, a ratio between the occurrence and non-occurrence of

landslides in each pixel, is calculated for each factor’s type or range that has been identified

as significant with respect to causing landslides. An area ratio for each factor’s type or

range to the total area is determined. Finally, frequency ratios for each factor’s type or

range are calculated by dividing the landslide occurrence ratio by the area ratio as:

Fr ¼ landslide occurrence ratio

area ratio
ð4Þ

Then, the frequency ratio is normalized between 0 and 1 to describe the fuzzy membership

functions. For inference in a rule-based fuzzy model, the fuzzy propositions need to be

represented by an implication function. The implication function is called a fuzzy if–then

rule or a fuzzy conditional statement (Alvarez Grima 2000). A fuzzy set is a collection of

paired members, which consist of members and degrees of ‘‘support’’ or ‘‘confidence’’ for

those members. In a discrete form, the fuzzy set ‘‘about 7’’ might be expressed as (0.1/5,

0.7/6, 1/7, 0.7/8, 0.1/9). In a fuzzy set notation, the members after the slash (/) are the

members of the set (or appropriate numerical grades in each case), and the values before

the slash are the degrees of confidence or ‘‘membership’’ of those numbers. The use of

fuzzy sets to represent linguistic terms enables one to represent more accurately and

consistently something which is fuzzy (Juang et al. 1992). A linguistic variable whose

values are words, phrases, or sentences are labels of fuzzy sets (Zadeh 1973). In the present

study, the following fuzzy sets are used to express the input parameters in linguistic forms:

1. Very low = (1/1, 0.75/2, 0.5/3, 0.25/4, 0/5)

2. Low = (0/1, 0.25/2, 0.75/3, 1/4, 0/5)

3. Moderate = (0/1, 0.5/2, 1/3, 0.5/4, 0/5)

4. High = (0/1, 1/2, 0.75/3, 0.25/4, 0/5)

5. Very high = (0/1, 0.25/2, 0.5/3, 0.75/4, 1/5).

In addition to input sets, the outputs of each parameter are also classified into groups in

terms of landslide susceptibility. The degrees of memberships in the fuzzy set

representations for the outputs are obtained from the normalized results of frequency

ratios. The fuzzy set representations of the conditioning parameters of the landslides are

obtained as follows:

1. ls Slope degree = (0/1, 0.34/2, 1/3, 0.84/4, 0.38/5, 0.37/6).

2. ls Aspect = (1/1, 0.17/2, 0.13/3, 0.34/4, 0.22/5, 0.36/6, 0.38/7).

3. ls Altitude = (0/1, 1/2, 0.56/3, 0.19/4, 0.24/5, 0.07/6, 0/7).

4. ls Plan curvature = (0/1, 1/2).
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5. ls Lithology = (1/1, 0.3/2, 0.21/3, 0/4, 0.84/5).

6. ls Land use = (0.03/1, 0.07/2, 1/3, 0/4).

7. ls Distance from faults = (0.77/1, 0.80/2, 1/3, 0.39/4, 0/5).

8. ls Distance from rivers = (1/1, 0.20/2, 0.41/3, 0/4, 0.15/5).

9. ls Distance from roads = (1/1, 0.16/2, 0.24/3, 0.27/4, 0.22/5, 0/6).

10. ls TWI = (1/1, 0.01/2, 0.18/3, 0/4).

11. ls SPI = (1/1, 0.79/2, 0/3, 0.74/4, 0.81/5, 0.89/5).

12. ls LS = (0.86/1, 0.69/2, 0.65/3, 0.53/4, 1/5, 0/5).

In the next stage, the fuzzy sets representing the inputs and outputs as expressed above

were extracted using the fuzzy rules (Table 3). Considering the fuzzy if–then rules

expressed above, the fuzzified index maps representing slope degree, aspect, altitude, plan

curvature, lithology, land use, distance from rivers, distance from roads, distance from

faults, SPI, TWI, and LS are produced using the previously produced maps (Fig. 2a–m).

When producing the fuzzified index maps, a grid-based (discrete) analysis is performed in

GIS. Finally, all the fuzzified index maps were combined by overlying based on the

maximum operator in fuzzy mathematics (Eq. 5).

lcombination ¼ MAXðlA; lB; lC; . . .Þ: ð5Þ

Maximum values were calculated for each parameter combination and were assigned to

represent the landslide susceptibility (Fig. 3). The main reason for taking the maximum

value at each pixel is to evaluate the most effective parameter representing the landslide

susceptibility (Ercanoglu and Gokceoglu 2004). Then, landslide susceptibility map was

classified into 4 classes (low, moderate, high, and very high) based on natural break

classification scheme (Falaschi et al. 2009; Bednarik et al. 2010; Constantin et al. 2010;

Erner et al. 2010; Ram Mohan et al. 2011; Xu et al. 2012).

The frequency ratio depicts the spatial relationship between the landslide and landslide

conditioning factors (Table 2). For slopes between 16 and 50, the ratio was [1, which

indicates a high probability of landslide occurrence (Table 2). For slope angles 6–15, the

frequency ratio was 0.65, which indicates a very low probability of landslide occurrence

(Table 2). However, for the slope\5, the frequency ratio value was 1.51. This is because

only one landslide has occurred in a relatively low number of pixel domains.

In the case of the slope aspect (Table 2), landslides were most abundant on southeast

and west-facing slopes. The frequency of landslides was lowest on east-facing, south-

facing, and north-facing slopes. In the case of altitude (Table 2), the frequency ratios[1 at

intervals 1,500–1,800 m and 1,800–2,100 m (2.52 and 1.51, respectively). Results showed

that the ratio decrease with the increase in altitude. In the case of lithology (Table 2), the

frequency ratio was higher (1.36) in quaternary deposits (class A) and lower (0.00) in

Paleocene age (class D). In the case of land use (Table 2), the landslide occurrence values

were higher in residential areas (6.07) and lower in middle pasture areas (0.62).

In the case of distance from fault (Table 2), for distances 300–400 m and[400 m, the

ratio is 0.93 and 0.86, respectively, indicating a low probability of landslide occurrence.

Subsequently, at distances of 0–100 m, 100–200, and 200–300 m, the frequency ratios are

1.39, 1.93, and 2.89, respectively, indicating a high probability. This means that the

landslide probability decreases with increasing distance from fault lines. For the distance

from river (Table 2), it can be seen that the frequency ratio [1 at distance from river of

0–100 m, whereas the values of frequency ratios \1 are at distances from river of

100–200 m, 200–300 m, 300–400 m, and[400 m. From this observation, we can say that
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Table 3 If–then rules used in the study area

Rule
no.

Antecedent part Consequent part

1 If slope is very low Then landslide susceptibility is low

2 If slope is moderate Then landslide susceptibility is very high

3 If slope is high or very high Then landslide susceptibility is moderate

4 If aspect is very low Then landslide susceptibility is very high

5 If aspect is low and high Then landslide susceptibility is very low

6 If aspect is moderate or very high Then landslide susceptibility is low

7 If altitude is very low Then landslide susceptibility is non-
susceptible

8 If altitude is low Then landslide susceptibility is very high

9 If altitude is moderate Then landslide susceptibility is moderate

10 If altitude is high or very high Then landslide susceptibility is very low

11 If plan curvature is concave Then landslide susceptibility is low

12 If plan curvature is convex Then landslide susceptibility is very high

13 If lithology is (A) or (E) Then landslide susceptibility is very high

14 If lithology is (B) or (C) Then landslide susceptibility is low

15 If lithology is (D Then landslide susceptibility is non-
susceptible

16 If land use is good pasture or orchard agriculture Then landslide susceptibility is very low

17 If land use is residential Then landslide susceptibility is very high

18 If land use is moderate pasture Then landslide susceptibility is non-
susceptible

19 If distance from fault is very small or small Then landslide susceptibility is high

20 If distance from fault is moderate Then landslide susceptibility is very high

21 If distance from fault is high Then landslide susceptibility is low

22 If distance from fault is very high Then landslide susceptibility is non-
susceptible

23 If distance from river is very small Then landslide susceptibility is very high

24 If distance from river is small Then landslide susceptibility is low

25 If distance from river is moderate Then landslide susceptibility is moderate

26 If distance from river is high Then landslide susceptibility is non-
susceptible

27 If distance from river is very high Then landslide susceptibility is very low

28 If distance from road is very small Then landslide susceptibility is very high

29 If distance from road is low, moderate, or high Then landslide susceptibility is low

30 If distance from road is very high Then landslide susceptibility is non-
susceptible

31 If SPI is very small or small Then landslide susceptibility is very high

32 If SPI is moderate Then landslide susceptibility is moderate

33 If SPI is high and very high Then landslide susceptibility is low

34 If TWI is small Then landslide susceptibility is very high

35 If TWI is moderate Then landslide susceptibility is very low

36 If TWI is high and very high Then landslide susceptibility is non-
susceptible

37 If LS is very low Then landslide susceptibility is high
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the general trend of the ratio decreases with the distance from the river. This can be

attributed to the fact that terrain modification is caused by gully erosion, which may

influence the initiation of landslides. For the distance from road, frequency ratio are 3.51

and 1.11 at distance of 0–100 m and 200–300 m, respectively, whereas the values of

frequency ratios \1 at distances of 100–200 m, 300–400 m, 400–500 m, and [500 m.

From this observation, we can say that the general trend of the ratio decreases with the

distance from the road. In the case of CTI, frequency ratio is higher for the class 0–4 and

8–12. In the case of SPI and LS, frequency ratios are higher (i.e., [1) for the range 0–20

and 40–50, respectively.

4.2 Application of analytical hierarchy process (AHP)

The analytical hierarchy process (AHP) is a semi-qualitative method, which involves a

matrix-based pair-wise comparison of the contribution of different factors for landsliding.

Fig. 3 Landslide susceptibility map based on fuzzy logic model

Table 3 continued

Rule
no.

Antecedent part Consequent part

38 If LS is low or moderate Then landslide susceptibility is moderate

38 If LS is high Then landslide susceptibility is very high

40 If LS is very high Then landslide susceptibility is non-
susceptible
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AHP is a multi-objective, multi-criteria decision-making approach, which enables the user

to arrive at a scale of preference drawn from a set of alternatives (Saaty 1980). It helps

decision makers find out the best suits their goal and their understanding of the problem.

This mathematical method widely used in site selection, suitability analysis, regional

planning, routing modeling, and landslide susceptibility analysis. The process includes

several steps: (1) break a complex unstructured problem down into its component factors

which are the parameters chosen in this study; (2) arrange these factors in a hierarchic

order; (3) assign numerical values according to their subjective relevance to determine the

relative importance of each factor; and (4) synthesize the rating to determine the priorities

to be assigned to these factors (Saaty and Vargas 2001). When arranging the factors in a

hierarchic order, there should be relative importance of one factor over another forming a

pair-wise comparison matrix with scores given in Table 4. In the construction of a pair-

wise comparison matrix, each factor is rated against every other factor by assigning a

relative dominant value between 1 and 9 to the intersecting cell (Table 5).

When the factor on the vertical axis is more important than the factor on the horizontal

axis, this value varies between 1 and 9. Conversely, the value varies between the recip-

rocals 1/2 and 1/9. In these techniques, firstly, the effects of each parameter to the sus-

ceptibility of landslides relative to each other were determined by dual evaluation in

determining the preferences in the effects of the parameters to the landslide susceptibility

map. Normally, the determination of the values of the parameters relative to each other is a

situation that depends on the choices of the decision maker. The landslide susceptibility

map using AHP model was constructed using the following equation:

LSMAHP ¼ððslope degree�WAHPÞ þ ðaspect�WAHPÞ þ ðaltitude�WAHPÞ
þ ðplan curvature�WAHPÞ þ ðlithology�WAHPÞ þ land use�WAHPÞ
þ ðdistance from rivers�WAHPÞ þ ðdistance from roads�WAHPÞ
þ ðdistance from faults�WAHPÞ þ ðSPI�WAHPÞ þ ðTWI�WAHPÞ
þ ðLS�WAHPÞÞ

where WAHP is the weightage for the each landslide conditioning factor. The pixel values

obtained are then classified into 4 classes (low, moderate, high, and very high) based on

natural break to determine the class intervals in the landslide susceptibility map (Fig. 4).

Table 4 Scale of preference between two parameters in AHP (Saaty 2000)

Scales Degree of
preference

Explanation

1 Equally Two activities contribute equally to the objective

3 Moderately Experience and judgment slightly to moderately favor one
activity over another

5 Strongly Experience and judgment strongly or essentially favor one
activity over another

7 Very strongly An activity is strongly favored over another and its
dominance is showed in practice

9 Extremely The evidence of favoring one activity over another is of the
highest degree possible of an affirmation

2, 4, 6, 8 Intermediate values Used to represent compromises between the preferences in
weights 1, 3, 5, 7, and 9

Reciprocals Opposites Used for inverse comparison
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For the AHP model, the final result includes the weights of the derived factors, class

weights, and a calculated consistency ratio (CR), as seen in Table 6. In the AHP method,

an index of inconsistency, known as the consistency ratio (CR), is used to indicate the

probability that the matrix judgments were randomly generated (Saaty 1980, 1994).

CR ¼ CI=RIð Þ ð7Þ

where RI is the average of the resulting consistency index depending on the order of the

matrix given by Saaty (1980) and CI is the consistency index and can be expressed as:

CI ¼ ðkmax � nÞ=ðn� 1Þð Þ ð8Þ

where kmax is the largest or principal eigenvalue of the matrix and can be easily calculated

from the matrix and n is the order of the matrix.

The consistency ratio is a ratio between the matrix’s consistency index and random

index, and in general ranges from 0 to 1. A CR of 0.1 or less is a reasonable level of

consistency (Malczewski 1999). A CR above 0.1 requires revision of the judgment in the

matrix due to an inconsistent treatment for particular factor ratings.

With the AHP method, the values of spatial factors weights were defined. Using a

weighted linear sum procedure (Voogd 1983), the acquired weights were used to calculate

the landslide susceptibility. In this study, the CR is 0.066; the ratio indicates a reasonable

level of consistency in the pair-wise comparison that is good enough to recognize the factor

weights. Consequently, the weight corresponding to lithology is large, whereas distance

from faults is lowest (Table 6). For all cases of the gained class weights, the CRs are less

Fig. 4 Landslide susceptibility map based on analytical hierarchy process (AHP) model
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than 0.1, the ratio indicates a reasonable level of consistency in the pair-wise comparison

that was good enough to recognize the class weights. For landslide susceptibility mapping

by AHP, we used the following equation;

LSM ¼
Xn

i¼1

Ri �Wið Þ ð9Þ

where Ri is the rating classes each layer and Wi is the weights for the each of the landslide

conditioning factors.

5 Validation of the landslide susceptibility maps

5.1 Receiver operating characteristics (ROC)

An important point in prediction models is the task of validating the predicted results that

can provides meaningful results. For the purpose of verification, 23 landslide locations

(30 %) were used based on the random selection. In this study, the training set is almost

twice as big as the testing set. Such a relationship between the model development and

testing sets enables representative analytical results (Ayalew et al. 2005). Then, pixel

values obtained are classified into low, moderate, high, and very high susceptibility groups

to determine the class intervals in the landslide susceptibility maps (Figs. 3, 4). For this

purpose, Ayalew et al. (2004) used four types of classifier such as natural breaks, quantiles,

equal intervals, and standard deviation to choose the best method. In this case, the natural

breaks classifier has been selected as this classification scheme is widely used in the

literature. The produced maps were compared with the existing landslide locations. For

validation, we used both success rate and prediction rate curve by comparing the existing

landslide locations with the two landslide susceptibility maps (Bui et al. 2011). The success

rate results were obtained by using the training dataset 70 % (55 landslide locations).

Figure 5 shows the success rate curves for fuzzy and AHP models. The model with fuzzy

logic has the highest area under the curve (AUC) value (0.9194), whereas AHP has 0.8887.

Since the success rate method used the training landslide pixels that have already been used

for building the landslide models, the success rate is not a suitable method for assessing the

Fig. 5 Success rate curves for the susceptibility maps produced in this study; a fuzzy logic, b AHP
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prediction capability of the models. However, the success rate method may help to

determine how well the resulting landslide susceptibility maps have classified the areas of

existing landslides (Bui et al. 2011, 2012).

The prediction rate explains how well the model and predictor variable predicts the

landslide (Lee 2007; Bui et al. 2011). This method is already widely used as a measure

of performance of a predictive rule (Yesilnacar and Topal 2005; Van Den Eeckhaut et al.

2006; Pradhan et al. 2010a; Pourghasemi et al. 2012a, b). The receiver operating

characteristics curve (ROC) plots the different accuracy values obtained against the

whole range of possible threshold values of the functions, and the ROC serves as a

global accuracy statistic for the model, regardless of a specific discriminate threshold.

This curve is obtained by plotting all combinations of sensitivities and proportions of

false negatives (1-specificity), which may be obtained by varying the decision threshold.

The range of values of the ROC curve area is 0.5–1 for a good fit, while values below

0.5 represent a random fit (Swets 1988). The results of the prediction curve are shown in

Fig. 6. From the Fig. 6, it is clear that the susceptibility map using fuzzy logic model,

the AUC is 0.8970, which corresponds to the prediction accuracy of 89.70 %, whereas

susceptibility map using AHP model, the AUC is 0.8110 and the prediction accuracy is

81.10 % (Fig. 6b).

5.2 Validation of susceptibility maps by frequency ratio model

Additionally, to test the reliability of the landslide susceptibility maps produced by the

fuzzy logic and AHP methods, frequency ratio was carried out on the classified suscep-

tibility maps and landslide validation data in the first stage. In these comparisons, the

distribution of the actual landslide areas is determined according to the landslide sus-

ceptibility zones. All of the landslide grid cells were overlaid on four landslide suscepti-

bility zones, and frequency ratio was calculated for each of the susceptibility zones

(Pradhan 2010a, b). Theoretically, the frequency ratio value should increase from very low

to very high susceptibility zones (Pradhan and Lee 2010b). Figure 7a shows frequency

ratio plots of four landslide susceptibility zones for both fuzzy logic and AHP models.

Generally, there is a gradual increase in the frequency from the very low susceptible zone

to the very high susceptible zone for the study area.

Fig. 6 Prediction rate curves for the susceptibility maps produced in this study; a fuzzy logic, b AHP

Nat Hazards (2012) 63:965–996 989

123



In the second stage, a separate comparison was made between the two susceptibility

maps (produced by fuzzy logic and AHP) according to the landslide susceptibility zones.

For evaluation, the two susceptibility maps were first divided into four classes based on

natural break of the corresponding histograms (Bui et al. 2011) (Fig. 7b).

6 Discussions and conclusion

In this study, both fuzzy logic-based approach and analytical hierarchy process (AHP) have

been used for identifying the areas susceptible to landslides in the Haraz Mountains in Iran.

A total of 78 landslide locations were mapped using aerial photographs and field surveys.

For susceptibility analysis, twelve landslide conditioning factors were used such as slope

degree, aspect, altitude, plan curvature, lithology, land use, distance from rivers, distance

from roads, distance from faults, SPI, LS, and TWI. A fuzzy logic approach and AHP were

applied to analyze the landslide susceptibility using above-mentioned twelve factors. For

this purpose, fuzzy membership values are assigned based on frequency ratio model and

then normalized. Finally, the fuzzy sets were used to express the input parameters in

linguistic forms. The outputs of each parameter have been classified into groups in terms of

landslide susceptibility. Considering the fuzzy if–then rules, the fuzzified index maps for

each conditioning factors are produced. Grid-based analysis is used to combine the

fuzzified index maps and the landslide susceptibility map.

The frequency ratio result (Fig. 7) between the susceptibility zones produced by fuzzy

logic and AHP model showed that the high and very high susceptibility zones 3 and 4

contain 19.95, 30.35 (AHP), 46.14, and 25.16 % (fuzzy logic) of the landslide zones,

respectively. Approximately 29.18 (AHP) and 26.89 % (fuzzy logic) of the landslide zones

coincide with the moderate susceptibility (2) class of two susceptibility maps. In the case of,

the low susceptibility class contains approximately 20.52 and 1.8 % of the landslide zones.

In Fig. 8, it is indicated that the extent of the landslide zones located in the very high

susceptibility class is higher in the map produced by the fuzzy logic than the AHP map.

Fig. 7 A histogram showing the percentage of landslide zones that fall into the various classes of the fuzzy
logic and AHP susceptibility maps
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Whereas in the case of high and moderate zones produced by fuzzy logic, the percentage is

slightly decreased as compared to the AHP model. This is also true when the low suscep-

tibility class is considered. Looking at Fig. 8, it is easy to conclude that the very high and

high susceptibility classes of the fuzzy logic (71.32 %) map together captured the locations

better than the corresponding counterparts of AHP model (50.3 %). This might be due to the

AHP’s approach to take the pair-wise comparison as inputs, because the comparison scores

are determined on the basis of subjective judgments (Ayalew et al. 2005).

AHP model is conventionally based on a rating system provided by expert opinion. In

fact, expert opinion is very useful in solving complex problems like landslides. However,

to some extent, opinions may change for every individual expert and thus may be subjected

to cognitive limitations with uncertainty and subjectivity. Another aspect is that data-

driven methods are also powerful in landslide susceptibility mapping and contain less

subjectivity. Therefore, it is important to analyze the spatial relationship between the

landslide conditioning factors and landslide locations. The fuzzy logic-based model allows

users to order parametric importance before the landslide susceptibility analyses applica-

tion. It is based on two similarity relation values depicting parametric relationships (by

parametric pair wises) on landslide occurrences and landslide locations individually (by

each landslide conditioning factor and landslide locations). The first one defines the

landslide susceptibility relationships among the parameter pairs, while the second one

reflects the relationship between the conditioning factors and landslide locations.

The ROC validation result showed that the fuzzy logic model has better predication

accuracy of 8.60 % (89.70–81.10 %), which is better than the AHP model. Here, the

authors can conclude that the results of the fuzzy logic model have shown the best pre-

diction accuracy in landslide susceptibility mapping in the study area. Both ROC curve and

frequency ratio validation confirmed that overall fuzzy logic model has higher prediction

accuracy than the AHP model. Although the AHP method is fundamentally based on

expert opinion, it is thought that the selection of landslide conditioning factors on landslide

occurrences alloys the subjectivity concept in this method leading to poor result. Even

though models employed in this study produced reasonable result, however, it should be

noted that the reliability of the results is directly affected by the landslide location data,

that is, the landslide inventory map.

Fig. 8 Frequency ratio plots of four landslide susceptibility zones of the fuzzy logic and AHP models
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In summary, the results of this study suggest that landslide susceptibility mapping for

the Haraz watershed of Iran is viable. The maps results may be helpful for planners,

decision makers, and engineers in slope management and land use planning in the study

area. This map is produced in a regional scale, so further study need be carried out at the

site-specific level to determine the exact extent site of the slope instability.
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