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ABSTRACT: 

 

LiDAR (Light Detection and Ranging) is a routinely employed technology as a 3-D data collection technique for topographic 

mapping. Conventional workflows for analyzing LiDAR data require the ground to be determined prior to extracting other features 

of interest. Filtering the terrain points is one of the fundamental processes to acquire higher-level information from unstructured 

LiDAR point data. There are many ground-filtering algorithms in literature, spanning several broad categories regarding their 

strategies. Most of the earlier algorithms examine only the local characteristics of the points or grids, such as the slope, and elevation 

discontinuities. Since considering only the local properties restricts the filtering performance due to the complexity of the terrain and 

the features, some recent methods utilize global properties of the terrain as well. This paper presents a new ground filtering method, 

Min-cut Based Filtering (MBF), which takes both local and global properties of the points into account. MBF considers ground 

filtering as a labeling task. First, an energy function is designed on a graph, where LiDAR points are considered as the nodes on the 

graph that are connected to each other as well as to two auxiliary nodes representing ground and off-ground labels. The graph is 

constructed such that the data costs are assigned to the edges connecting the points to the auxiliary nodes, and the smoothness costs 

to the edges between points. Data and smoothness terms of the energy function are formulated using point elevations and 

approximate ground information. The data term conducts the likelihood of the points being ground or off-ground while the 

smoothness term enforces spatial coherence between neighboring points. The energy function is optimized by finding the minimum-

cut on the graph via the alpha-expansion algorithm. The resulting graph-cut provides the labeling of the point cloud as ground and 

off-ground points. Evaluation of the proposed method on the ISPRS test dataset for ground filtering demonstrates that the results are 

comparable with most current existing methods. An overall average filtering accuracy for the 15 ISPRS test areas is 91.3%. 

  

 

1. INTRODUCTION 

 

Light Detection and Ranging (LiDAR) is extensively and 

routinely used today in topographic mapping as a direct 3-D 

data collection technique. Most common airborne LiDAR 

sensors emit directed laser pulses at rapid intervals to determine 

the ranges to the objects on the ground in order to calculate 

their coordinates with respect to a mapping coordinate system. 

These calculated locations provide 3-D sampled representations 

of the terrain and the objects on the terrain with varied point 

densities, depending on the operational parameters of LiDAR 

data acquisition. These point locations are acquired with much 

higher point densities than what is usually acquired by 

conventional topographic surveying. However, requirements of 

most applications go beyond raw point locations. Simpler 

representations are needed for practical purposes for many 

applications with respect to more efficient analyses, operability 

and data size.  

 

Extracting meaningful information of the terrain along with 

other natural and man-made features on the ground using 

LiDAR data requires labeling of these unstructured sets of 3-D 

locations which are often called “point clouds”. Point clouds 

are usually subjected to extensive analysis for extracting 

information on the features of interest to derive the final 

product (Biosca and Lerma, 2008; Vosselman et al., 2004). 

 

Automated processing of raw LiDAR point clouds is an 

ongoing challenge. New algorithms and methods are 

established and tested continuously to improve point cloud 

processing. Semi-automatic extraction of ground features from 

LiDAR datasets is among the important areas of research that is 

available for improvement (Cary, 2009; Vosselman, 2009). 

 

Starting with a set of 3-D point locations, the objective of most 

LiDAR data analysis is to extract a simplified representation of 

the features in the scene. Among several feature types in a 

LiDAR dataset including the ground, vegetation and man-made 

structures, modeling the terrain has traditionally been a major 

objective and motivation of topographic laser scanning 

applications (Pfeifer and Mandlburger, 2008). Labeling points 

as “ground” and “non-ground” is commonly called “ground 

filtering”. 

 

Airborne LiDAR point clouds are analyzed by various 

approaches in the literature. Many of these approaches include 

ground filtering as the initial process. Once the ground points 

are filtered, remaining points may be further processed for 

extracting other features including vegetation, man-made 

structures like buildings, and other objects. 

 

Many ground-filtering algorithms exist in literature since it is 

among the most studied problems in LiDAR data analysis. 

Apart from literature reviews carried out by individual 

researchers when introducing their proposed solutions for the 

ground filtering problem, Sithole and Vosselman (2004), Zhang 

and Whitman (2005), Liu (2008), Meng et. al. (2010) also 

provide comparisons and reviews of ground filtering 

approaches in literature. 

 

Research on ground filtering can be categorized into several 

main tracks (Hu et. al., 2015; Meng et. al., 2010; Mongus et. 

al., 2014; Bartels and Wei, 2010; Sithole and Vosselman, 2004; 

Zhang and Whitman, 2005; Liu, 2008). These broad categories 

may practically be identified as: 

 

1) slope-based directional scanning algorithms (Vosselman, 

2000; Shan and Sampath, 2005; Meng et. al., 2009; 
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Susaki, 2012; Meng, 2005; Wang and Tseng, 2010; 

Sithole, 2001; Tarsha-Kurdi et. al., 2006);  

2) interpolation based linear prediction algorithms (Kraus and 

Pfeifer, 1998; Pfeifer et. al., 1999; Lee and Younan, 2003; 

Lohmann et. al., 2000; Kraus and Pfeifer, 2001; Brovelli 

et. al., 2004);  

3) methods employing mathematical morphology (Zhang et. 

al., 2003; Chen et. al., 2007; Mongus et. al., 2014; Arefi 

and Hahn, 2005; Lohmann and Schaeffer, 2000; Mongus 

and Zalik, 2012; Zhang and Whitman, 2005; Pingel et. al., 

2013; Chen et. al., 2013); 

4) Triangulated Irregular Network (TIN) algorithms 

(Axelsson, 1999; Axelsson 2000; Sohn and Dowman, 

2002; Kang et. al., 2014);  

5) segmentation (Sithole and Vosselman, 2005; Tovari and 

Pfeifer, 2005; Tolt et. al., 2006; Ma, 2005; Filin and 

Pfeifer, 2006; Jacobsen and Lohmann, 2003; Filin, 2002).  

Apart from these, methods which consider the issue from a 

point classification perspective using machine learning 

algorithms may be included as a separate category as well 

(Niemeyer et. al., 2013; Lodha et. al., 2007; Lu et. al., 2009).  

 

All methods have their own advantages and disadvantages with 

respect to computational efficiency, ease of implementation, 

overall accuracy, or ability to perform well for different types 

of terrain. In general, many of the existing algorithms perform 

well on flat terrain whereas problems usually arise for terrain 

with variable topography, terraces, cliffs, sharp ridges, steep 

terrain mixed with vegetation or man-made structures etc. 

 

Ground filtering methods using global optimization techniques 

have also emerged in order to avoid some of the problems 

above that may arise due to the local nature of many algorithms 

(Elmqvist, 2002; Mongus and Žalik, 2014; Zhou and Neumann, 

2013). Such methods take global features of the terrain into 

consideration as well as the local ones. They try to avoid the 

undesired consequences of relying solely on the local features 

for the cases when they are actually manifestations of the global 

ones. 

 

In this study, we deal with the ground filtering problem from a 

global optimization point of view. The relationships of the 

points in close proximity are evaluated together with the global 

features in order to avoid the pitfalls of limiting the evaluation 

aspects to local features only. The next section introduces the 

methodology used. We describe the filtering task as a labeling 

problem, whose optimum solution is found by searching a 

minimum cut of a graph formed by the point clouds. Section 3 

describes the procedure of ground filtering. In particular, we 

discuss the formation of the graph and the calculation of the 

data costs and smoothness costs for the minimization. Section 4 

presents test results and their evaluation on 15 ISPRS 

benchmark examples for ground filtering studies.  Section 5 

concludes the study by summarizing the properties of the 

proposed graph-cut filtering approach.  

 

2. GRAPH OPTIMIZATION 

 

2.1. Filtering as Graph Optimization 

 

In this study, we consider ground filtering as a labeling 

problem. The labeling problem deals with assigning a label 

from a set of labels to each of the points. Each point is labeled 

as ground or off-ground. Energy minimization is a powerful 

way to formalize the labeling problem. An optimum labeling is 

achieved by assigning each point a label from the label set to 

minimize an objective function (Delong et. al., 2010). The 

objective function maps a solution to a measure of quality by 

means of a goodness or a cost (Li, 2009). 

 

A graph G = V(G), E(g), tG(.) consists of a pair of sets V(G) 

and E(g), and an incidence relation tG(.) which maps pairs of 

elements of V(G), to elements of E(g). V(G) contains elements 

that are called vertices or nodes, E(g) contains the elements 

which are called the edges of the graph G (Kropatsch et. al., 

2007). 

 

Graph-cuts are successfully employed as an optimization 

method in many vision problems based on global energy 

formulations (Boykov and Veksler, 2006). Graph-cut based 

methods are preferred to be used in pixel labeling problems in 

images due to the computational efficiency of solutions based 

on energy minimization framework for such problems (Szeliski 

et. al., 2008). 

 

2.2. Minimum cut 

 

The “minimum cut” on a directed graph with two special nodes, 

source (s), and sink (t), finds a cut as depicted in Figure 1 such 

that the graph is separated into two subsets with the minimum 

cost where s is in one subset and t is in the other subset. The 

cost of a cut is defined as the sum of all the weights of the 

graph edges with one node in one subset, and the other node in 

the other subset. 

 

 
Figure 1.A graph-cut (Adapted from Boykov and Veksler, 

2006) 

 

In this study, we adapt Boykov et. al.’s (2001) minimum cut 

optimization algorithm by establishing a graph model 

formalizing the ground filtering problem. Each point in the 

point cloud is a node in the graph. Each node is connected to its 

3-D Voronoi neighbors with the edges of the graph. All points 

are also connected to the auxiliary nodes which represent the 

labels, i.e., ground and off-ground.  

 

The energy function for the labeling problem is defined as 

 

𝐸(𝑓) = 𝜆 𝐸𝑑𝑎𝑡𝑎(𝑓) + 𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑓)    (1) 
 

𝐸𝑑𝑎𝑡𝑎(𝑓) = ∑ 𝐷(𝑓𝑖)𝑖       (2) 
 

𝐸𝑠𝑚𝑜𝑜𝑡ℎ(𝑓) = ∑ 𝑉𝑖,𝑗(𝑓𝑖 , 𝑓𝑗)𝑖,𝑗      (3) 

 

Costs for assigning ground or off-ground label to each point are 

called data costs of the energy function. They are calculated as 

the weights for the edges that connect the points to the auxiliary 

ground and off-ground nodes of the graph. The edges 

connecting points with each other have the weights 

corresponding to the smoothness term of the energy function. 

Data costs are calculated as a function of the feature vector f 

which is identified to formulate the likelihood of a point 

belonging to ground or off-ground classes. Smoothness costs 

are calculated as a function of the feature vectors of the pairs of 
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points connected with an edge. The constant λ controls the 

relative contribution of the data costs in comparison with the 

smoothness costs to the total energy.   

 

3. GROUND FILTERING 

 

3.1. Preprocessing 

 

Lidar point clouds contain significant amount of noise and 

outliers that affect the information acquired when left untreated. 

In order to assure the reliability of the point cloud dataset 

before proceeding with any attempt to process, a preprocessing 

step is applied. For each point, we check the number of points 

that fall into a rectangular prism centered at the point and 

remove the ones that have less than a certain number of points 

contained by the prism. This step assures that only the lidar 

points with sufficient neighboring points are included in the 

process. 

 

3.2. Data Costs 

 

The data costs are defined as a function of the height ℎ𝑖  of each 

point with respect to an approximate coarse ground calculation. 

In order to calculate the approximate ground, it is first assumed 

that there is at least one ground point within radius R proximity 

of each point. Initial ground approximation is then the lowest 

point within this radius around the point. Then, we gradually 

reduce R with a reduction rate and pick the lowest point within 

the reduced neighborhood of the point until the slope between 

the last approximate ground point and the point of inquiry 

exceeds a slope threshold. We calculate the ground data costs 

for each point as  

 

𝐷(ℎ𝑖) = {
               𝑚1ℎ                    𝑖𝑓ℎ𝑖 < 𝑡ℎ

𝑚2ℎ + 𝑚1𝑡ℎ − 𝑚2𝑡ℎ    𝑖𝑓ℎ𝑖 ≥ 𝑡ℎ
    (4) 

 

where 𝑚1, 𝑚2 are the slopes of the piecewise linear data cost 

function 𝐷(ℎ𝑖) with a slow ascent up to the point height 

threshold and a steep ascent for higher points. This is used for 

allowing points that are closer to the ground be associated with 

the ground much stronger than the points that are above this 

threshold. Later we scale the calculated data costs between 0-

100 by. Figure 2 below shows an example visualization of the 

ground data costs. 

 

 
Figure 2. Example of data costs for ground points. 

 

3.3. Smoothness Costs 

 

The smoothness cost function that we use for ground filtering is 

an exponential function of the slope 𝑠𝑒 of the graph edges with 

respect to the approximate coarse ground.  

𝑉𝑖,𝑗(𝑓𝑖 , 𝑓𝑗) = exp (−
𝑠𝑒

2

2𝜎𝑓
2)    (5) 

 

Slopes of the graph edges serve as an indication of similarity of 

point pairs. A high slope value suggests that the points on two 

sides of an edge are not on the same surface while a low slope 

suggests otherwise. The parameter 𝜎𝑓 regulates a slope range to 

consider the pair different. Smoothness cost penalizes 

discontinuity between two neighboring sites. A large penalty 

applies to the edge in case two nodes of the edge are close to 

each other with respect to the slope feature, but they are labeled 

differently. In the case of labeling one of the nodes as ground 

and the other node as off-ground will increase the overall 

energy while labeling them the same will have the opposite 

effect. Hence, the optimization algorithm will prefer to keep 

these nodes labeled the same due to lower energy. Figure 3 

shows a visualization of smoothness costs by color coding the 

edges of the graph. 

 

 
Figure 3. Example of smoothness costs for ground points. 

 

The parameter 𝜎𝑓 is determined in terms of slope difference. It 

limits the extent of the difference in slope an edge connecting 

two points to be considered on the same surface. The higher the 

parameter 𝜎𝑓, the more likely two points with more slope 

differences will be assigned a high penalty. Figure 4 below 

demonstrates the change of smoothness costs with respect to 

the change in the parameter 𝜎𝑓.  

 

 
 Figure 4. Ground smoothness cost change with respect to 𝜎𝑓.  

    

3.4. Min-cut Optimization for Ground Filtering 

 

Once the graph is constructed, the data and smoothness costs 

are calculated for each point and each edge. The point cloud is 

then assigned an arbitrary labeling to initiate the min-cut 

optimization. Then, an alpha expansion graph-cut optimization 

is carried out based on the algorithms in Boykov et. al. (2001), 

Kolmogorov and Zabih (2004), and Boykov and Kolmogorov 

(2004) using the implementation provided by Veksler and 

Delong (http://vision.csd.uwo.ca/code/). Figure 5 below 
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presents an overall workflow of the entire ground filtering 

process. 

 

 
Figure 5. Workflow for min-cut ground filtering of airborne 

lidar data. 

 

4. TEST RESULTS AND EVALUATION 

 

The dataset used to evaluate our algorithm is the test samples 

provided as benchmark by the International Society of 

Photogrammetry and Remote Sensing (ISPRS) for determining 

the performance of ground filters. It consists of 15 samples with 

different landscape characteristics including steep slopes, 

discontinuities, bridges, complex scenes, outliers, vegetation on 

slopes, low number of bare earth points (Sithole and 

Vosselman, 2004).  

 

Since the characteristics of the sample test sites were varied, we 

have applied our ground filtering algorithm with different 

parameters for each sample for optimum performance. Type I 

and Type II errors, together with the total errors calculated for 

each test sample are presented in Table 1. 

 
Test 

Site 

Total Error 

(%) 

Type I Error 

(%) 

Type II Error 

(%) 

S11 19.8 27.5 14.0 

S12 7.3 9.1 5.5 

S21 3.9 16.1 0.5 

S22 10.4 10.1 10.6 

S23 13.9 9.0 18.3 

S24 11.8 19.7 8.8 

S31 6.6 14.0 0.3 

S41 11.7 4.1 19.2 

S42 4.1 5.1 1.7 

S51 8.0 14.4 6.1 

S52 5.2 33.8 1.9 

S53 11.6 39.9 10.4 

S54 5.7 9.3 1.6 

S61 2.4 44.4 0.9 

S71 7.5 5.0 7.8 

Average 8.7 17.4 7.2 

Table 1. Type I, Type II and total errors for the ground filtering 

of 15 ISPRS test sites 

Even though the sample with the lowest total error is S61, this 

is misleading since this sample has the highest Type I error. 

The algorithm performed very poorly to identify the off-ground 

points on this sample. Since the number of these off-ground 

points were too little compared to the number of ground points, 

Type I error is high while Type II error is the second lowest 

among all samples. The second and third best results with 

respect to the total error are S21 and S42 with S21 having a 

slightly large Type I errors. 

   

The results with the highest total errors are S11 and S23. S11 

has a landscape on a steep slope with buildings, road, and 

vegetation. S23 on the other hand, has a very complex structure 

on a multi layered landscape. Type I error is higher in S11 

while Type II error is the higher one in S23. Figure 6 shows the 

filtered ground for the samples with the highest two and lowest 

two total errors while Figure 7 shows the filtered ground for 

several selected samples. 

 

 
Figure 6. Original (top) and ground-filtered (bottom) data for 

the highest two (left) and lowest two (right) total errors. 

 

 
Figure 7. Original (top) and ground-filtered (bottom) data for 

selected samples. 

 

When the results are evaluated, it is observed for all samples 

with a total error lower than 10% that Type I errors are much 

higher than Type II errors with the exception of S71. This 

indicates a trend of off-ground points being misclassified as 

ground for these samples. A quick look at the misclassified 

points reveals that they mostly correspond to low vegetation 

points as it can be also observed in the filtered grounds 

presented in Figures 6 and 7. 

 

Misclassification of low vegetation is mainly due to the 

preference of the m1 and th parameters of the data cost function. 

The accuracy of the point heights calculated from the 

approximate ground are dependent on the performance of the 

multiscale coarse ground approximation.  

 

There is a trade-off for how close a ground point can initially be 

approximated. The farther the approximate ground point is to 

the point of interest, the higher the point’s initial height may be. 

On the other hand, closing in too much may result with off-

ground points incorrectly being considered as the ground 

approximation. This may be the case especially with large but 

low building roofs. The parameters m1 and th are selected with 

this balance in mind. As a result, low vegetation points are 
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assigned data costs in the lower range and the optimization 

favors them incorrectly as ground points.  

 

In order to remedy this problem, we are planning on an 

improvement on our approach for approximating the initial 

ground for calculating the data costs and iterating it with the 

optimization as future work. 

 

The contribution of the data cost in comparison with the 

smoothness cost becomes critical for the terrain with steep 

slopes. In order to compensate for the high ground data costs of 

the points on slopes, in contrast with their actual label being 

ground, the importance of the data cost is reduced via λ 

parameter of the smoothness function.  

 

5. CONCLUSION 

 

In this study, we have proposed and implemented a ground 

filtering algorithm based on the graph-cut optimization of an 

energy function which takes both the local and the global 

features into account. Overall, the proposed algorithm is able to 

handle variations in the landscape and outliers considerably 

well. However, it doesn’t perform as good for low vegetation 

and high discontinuities. The test results show that an average 

accuracy of 91.3% can be achieved with an average Type I 

error of 17.4% and average Type II error of 7.2%.  

 

As mentioned previously, a superior approach for 

approximating and iteratively improving the initial ground is a 

fundamental enhancement required for the better performance 

of our algorithm.  

 

Sensitivity of the data cost function to the change in the terrain 

is another issue that needs to be addressed. Even though it is 

possible to adjust the parameters of the data cost function for 

terrain type in case of monotonous landscape, variations in the 

topography requires the data cost function to adapt to different 

parts of the dataset simultaneously. One of the areas that we 

will focus our efforts on is to develop the data energy to 

conform to the topographic properties of the terrain. 

 

Current graph structure in our algorithm considers only the 

immediate Voronoi neihgbors of each point to calculate the 

smoothness costs. More complex local relationships may better 

represent the local smoothness of the ground instead of 

depending only on the immediate neighbors of the points. 

 

Our current approach for determining the weight of the data 

cost with respect to the smoothness cost is carried out more by 

experience and intuition on the terrain types than an objective 

calculation. Future efforts will also focus on the investigation of 

the appropriate weight assignment for balancing data and 

smoothness costs for a particular area.  

 

REFERENCES 

 

Arefi, H., & Hahn, M. (2005). A morphological reconstruction 

algorithm for separating off-terrain points from terrain points in 

laser scanning data. International Archives of Photogrammetry 

and Remote Sensing, 120–125. 

Axelsson, P. (1999). Processing of laser scanner data–

algorithms and applications. ISPRS Journal of Photogrammetry 

and Remote Sensing, 54(2-3), 138–147. 

Axelsson, P. (2000). DEM generation from laser scanner data 

using adaptive TIN models. International Archives of 

Photogrammetry and Remote Sensing, XXXIII, 110–117.  

Bartels, M., & Wei, H. (2010). Threshold-free object and 

ground point separation in LIDAR data. Pattern Recognition 

Letters, 31(10), 1089–1099. 

Biosca, J., & Lerma, J. (2008). Unsupervised robust planar 

segmentation of terrestrial laser scanner point clouds based on 

fuzzy clustering methods. ISPRS Journal of Photogrammetry 

and Remote Sensing, 63(1), 84–98. 

Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate 

energy minimization via graph cuts. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 23(11), 1222–1239. 

Boykov, Y., & Kolmogorov, V. (2004). An experimental 

comparison of min-cut/max-flow algorithms for energy 

minimization in vision. IEEE Transactions on Pattern Analysis 

and Machine Intelligence, 26(9), 1124–37. 

Boykov, Y., & Veksler, O. (2006). Graph Cuts in Vision and 

Graphics: Theories and Applications. In N. Paragios, Y. Chen, 

& O. Faugeras (Eds.), Handbook of Mathematical Models in 

Computer Vision (pp. 79–96). New York: Springer US. 

Brovelli, M. A., Longoni, U. M., & Cannata, M. (2004). 

LIDAR data filtering and DTM interpolation within GRASS. 

Transactions in GIS, 8(2), 155–174. 

Cary, T. (2009). New Research Reveals Current and Future 

Trends in Lidar Applications. Earth Imaging Journal, 

(February), 8-9. 

Chen, Q., Gong, P., Baldocchi, D., & Xie, G. (2007). Filtering 

Airborne Laser Scanning Data with Morphological Methods. 

Photogrammetric Engineering Remote Sensing, 73(2), 175–

185. 

Chen, C., Li, Y., Li, W., & Dai, H. (2013). A multiresolution 

hierarchical classification algorithm for filtering airborne 

LiDAR data. ISPRS Journal of Photogrammetry and Remote 

Sensing, 82, 1–9.  

Delong, A., Osokin, A., Isack, H., & Boykov, Y. (2010). Fast 

Approximate Energy Minimization with Label Costs. In IEEE 

Conference on Computer Vision and Pattern Recognition 

(2008) (pp. 1–8). 

Elmqvist, M. (2002). Ground surface estimation from airborne 

laser scanner data using active shape models. International 

Archives of Photogrammetry Remote Sensing and Spatial 

Information Sciences, 34(3/A), 114–118. 

Filin, S. (2002). Surface clustering from airborne laser scanning 

data. International Archives of Photogrammetry Remote 

Sensing and Spatial Information Sciences, 34(3/A), 119–124.  

Filin, S., & Pfeifer, N. (2006). Segmentation of airborne laser 

scanning data using a slope adaptive neighborhood. ISPRS 

Journal of Photogrammetry and Remote Sensing, 60(2), 71–80. 

Jacobsen, K., & Lohmann, P. (2003). Segmented Filtering of 

Laser Scanner Dsms. WG III/3 3-D Reconstruction from 

Airborne Laserscanner and InSAR Data, XXXIV, 6.  

Kang, X., Liu, J., & Lin, X. (2014). Streaming Progressive TIN 

Densification Filter for Airborne LiDAR Point Clouds Using 

Multi-Core Architectures. Remote Sensing, 6(8), 7212–7232. 

Kolmogorov, V., & Zabih, R. (2004). What energy functions 

can be minimized via graph cuts? IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 26(2), 147–59.  

Kraus, K., & Pfeifer, N. (2001). Advanced Dtm Generation 

From Lidar Data. International Archives of Photogrammetry 

and Remote Sensing, XXXIV, 22–24. 

Kropatsch, W., Haxhimusa, Y., & Ion, A. (2007). 

Multiresolution Image Segmentations in Graph Pyramids. In A. 

Kandel, H. Bunke, & M. Last (Eds.), (Vol. 52, pp. 3–41). 

Springer Berlin / Heidelberg. 

Lee, H. S., & Younan, N. H. (2003). DTM extraction of lidar 

returns via adaptive processing. IEEE Transactions on 

Geoscience and Remote Sensing, 41(9 PART I), 2063–2069. 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-395-2016

 
399



Lohmann, P., Koch, A., & Schaeffer, M. (2000). Approaches to 

the filtering of laser scanner data. International Archives of 

Photogrammetry and Remote Sensing, 33(B3/1; PART 3), 540–

547. 

Liu, X. (2008). Airborne LiDAR for DEM generation: some 

critical issues. Progress in Physical Geography, 32(1), 31–49.  

Li, S. Z. (2009). Markov Random Field Modeling in Image 

Analysis (p. 357). London: Springer-Verlag. 

Lodha, S. K., Fitzpatrick, D. M., & Helmbold, D. P. (2007). 

Aerial Lidar Data Classification using AdaBoost. Sixth 

International Conference on 3-D Digital Imaging and Modeling 

(3DIM 2007), (3dim), 435–442. 

Lohmann, P., Koch, A., & Schaeffer, M. (2000). Approaches to 

the filtering of laser scanner data. International Archives of 

Photogrammetry and Remote Sensing, 33(B3/1; PART 3), 540–

547. 

Lu, W. L., Murphy, K. P., Little, J. J., Sheffer, A., & Fu, H. 

(2009). A hybrid conditional random field for estimating the 

underlying ground surface from airborne LiDAR data. IEEE 

Transactions on Geoscience and Remote Sensing, 47(8), 2913–

2922. 

Ma, R. (2005). DEM Generation and Building Detection from 

Lidar Data. Photogrammetric Engineering & Remote Sensing, 

71(7), 847–854. 

Meng, X. (2005). A slope and elevation-based filter to remove 

non-ground measurements from airborne LIDAR data. In 

Proceedings of ISPRS WG III/3, III/4, V/3 Workshop “Laser 

Scanning 2005”, The Netherlands, p.23. 

Meng, X., Wang, L., Silvancardenas, J., & Currit, N. (2009). A 

multi-directional ground filtering algorithm for airborne 

LIDAR. ISPRS Journal of Photogrammetry and Remote 

Sensing, 64(1), 117–124. 

Meng, X., Currit, N., & Zhao, K. (2010). Ground Filtering 

Algorithms for Airborne LiDAR Data: A Review of Critical 

Issues. Remote Sensing, 2(3), 833–860. 

Mongus, D., & Žalik, B. (2012). Parameter-free ground 

filtering of LiDAR data for automatic DTM generation. ISPRS 

Journal of Photogrammetry and Remote Sensing, 67(1), 1–12. 

http://doi.org/10.1016/j.isprsjprs.2011.10.002 

Mongus, D., & Žalik, B. (2014). Computationally Efficient 

Method for the Generation of a Digital Terrain Model from 

Airborne LiDAR. IEEE Journal of Selected Topics in Applied 

Earth Observations and Remote Sensing, 7(1), 340–351. 

Mongus, D., Lukač, N., & Žalik, B. (2014). Ground and 

building extraction from LiDAR data based on differential 

morphological profiles and locally fitted surfaces. ISPRS 

Journal of Photogrammetry and Remote Sensing, 93, 145–156.  

Niemeyer, J., Rottensteiner, F., & Soergel, U. (2013). 

Classification of urban LiDAR data using conditional random 

field and random forests. In Urban Remote Sensing Event 

(JURSE), 2013 Joint (pp. 139–142).  

Niemeyer, J., Rottensteiner, F., & Soergel, U. (2014). 

Contextual classification of lidar data and building object 

detection in urban areas. ISPRS Journal of Photogrammetry and 

Remote Sensing, 87, 152–165.  

Pfeifer, N., Reiter, T., Briese, C., & Rieger, W. (1999). 

Interpolation of high quality ground models from laser scanner 

data in forested areas. International Archives of 

Photogrammetry and Remote Sensing, 32(3/W14), 31–36. 

Pfeifer, N., & Mandlburger, G. (2008). LiDAR data filtering 

and DTM generation. In J. Shan & C. Toth. (Eds.), 

Topographic laser ranging and scanning: Principles and 

processing (pp. 307–334). Boca Raton, FL: CRC Press. 

Pingel, T. J., Clarke, K. C., & McBride, W. a. (2013). An 

improved simple morphological filter for the terrain 

classification of airborne LIDAR data. ISPRS Journal of 

Photogrammetry and Remote Sensing, 77, 21–30.  

Shan, J., & Sampath, A. (2005). Urban DEM Generation from 

Raw Lidar Data: A Labeling Algorithm and its Performance. 

Photogrammetric Engineering & Remote Sensing, 

2051(February), 217–226. 

Sithole, G. (2001). Filtering of laser altimetry data using a slope 

adaptive filter. International Archives of the Photogrammetry, 

Remote Sensing and Spatial Information Sciences, XXXIV((Pt. 

3/W4)), 203-210. 

Sithole, G., & Vosselman, G. (2004). Experimental comparison 

of filter algorithms for bare-Earth extraction from airborne laser 

scanning point clouds. ISPRS Journal of Photogrammetry and 

Remote Sensing, 59(1-2), 85–101. 

Sithole, G., & Vosselman, G. (2005). Filtering of airborne laser 

scanner data based on segmented point clouds. The 

International Archives of the Photogrammetry, Remote Sensing 

and Spatial Information Sciences, 36(Part 3/W19). 

Sohn, G., & Dowman, I. (2002). Terrain surface reconstruction 

by the use of tetrahedron model with the MDL criterion. 

International Archives of Photogrammetry and Remote 

Sensing, 34(3A), 336–344. 

Susaki, J. (2012). Adaptive slope filtering of airborne lidar data 

in urban areas for Digital Terrain Model (DTM) generation. 

Remote Sensing, 4(6), 1804–1819. 

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., 

Kolmogorov, V., Agarwala, A., … Rother, C. (2008). A 

comparative study of energy minimization methods for Markov 

random fields with smoothness-based priors. IEEE 

Transactions on Pattern Analysis and Machine Intelligence, 

30(6), 1068–80. 

Tarsha-Kurdi, F., Landes, T., Grussenmeyer, P., & Smigiel, E. 

(2006). New approach for automatic detection of buildings in 

airborne laser scanner data using first echo only. In Workshop 

of the ISPRS Com. III, Photogrammetric Computer Vision PCV 

’06 (pp. 1–6). 

Tolt, G., Persson, Å., Landgård, J., & Söderman, U. (2006). 

Segmentation and classification of airborne laser scanner data 

for ground and building detection. Proc. SPIE. 

Tóvári, D., & Pfeifer, N. (2005). Segmentation based robust 

interpolation-a new approach to laser data filtering. In 

International Archives of Photogrammetry, Remote Sensing 

and Spatial Information Sciences (Vol. 36, pp. 79–84).  

Ural, S., and Shan, J., 2012. Min-cut based segmentation of 

airborne lidar point clouds. In: International Archives of 

Photogrammetry, Remote Sensing and Spatial Information 

Sciences. Vol. XXXIX, Part B3, pp. 167-172. 

Vosselman, G., 2000. Slope based filtering of laser altimetry 

data. International Archives of the Photogrammetry, Remote 

Sensing and Spatial Information Sciences XXXIII (Pt. B3), 

935–942. 

Vosselman, G. (2009). Advanced Point Cloud Processing. In D. 

Fritsch (Ed.), Photogrammetric Week ’09 (pp. 137–146). 

Heidelberg: Wichmann. 

Vosselman, G., Gorte, B. G. H., Sithole, G., & Rabbani, T. 

(2004). Recognizing structure in laser scanner point clouds. The 

International Archives of Photogrammetry Remote Sensing and 

Spatial Information Sciences, 46(8), 33–38. 

Wang, C. K., & Tseng, Y. H. (2010). Dem Generation From 

Airborne Lidar Data By an Adaptive Dual- Directional Slope 

Filter. In International Archives of Photogrammetry Remote 

Sensing and Spatial Information Sciences (Vol. XXXVIII, pp. 

628–632). 

Zhang, K., Chen, S. C., Whitman, D., Shyu, M. L., Yan, J., & 

Zhang, C. (2003). A progressive morphological filter for 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-395-2016

 
400



removing nonground measurements from airborne LIDAR data. 

IEEE Transactions on Geoscience and Remote Sensing, 41(4 

PART I), 872–882. 

Zhang, K., & Whitman, D. (2005). Comparison of Three 

Algorithms for Filtering Airborne Lidar Data. Photogrammetric 

Engineering Remote Sensing, 71(3), 313–324. 

Zhou, Q. Y., & Neumann, U. (2013). Complete residential 

urban area reconstruction from dense aerial LiDAR point 

clouds. Graphical Models, 75(3), 118–125. 

 

 

 

 

 

 

 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B3, 2016 
XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic

This contribution has been peer-reviewed. 
doi:10.5194/isprsarchives-XLI-B3-395-2016

 
401




