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ABSTRACT: 

 

Transportation agencies require up-to-date, reliable, and feasibly acquired information on road geometry and features within 

proximity to the roads as input for evaluating and prioritizing new or improvement road projects. The information needed for a 

robust evaluation of road projects includes road centerline, width, and extent together with the average grade, cross-sections, and 

obstructions near the travelled way. Remote sensing is equipped with a large collection of data and well-established tools for 

acquiring the information and extracting aforementioned various road features at various levels and scopes.  Even with many remote 

sensing data and methods available for road extraction, transportation operation requires more than the centerlines. Acquiring 

information that is spatially coherent at the operational level for the entire road system is challenging and needs multiple data 

sources to be integrated. In the presented study, we established a framework that used data from multiple sources, including one-foot 

resolution color infrared orthophotos, airborne LiDAR point clouds, and existing spatially non-accurate ancillary road networks. We 

were able to extract 90.25% of a total of 23.6 miles of road networks together with estimated road width, average grade along the 

road, and cross sections at specified intervals. Also, we have extracted buildings and vegetation within a predetermined proximity to 

the extracted road extent. 90.6% of 107 existing buildings were correctly identified with 31% false detection rate.  

 

 

1. INTRODUCTION 

 

There is abundant research focused on the extraction of roads, 

road networks, and their related environment and information. 

Scopes involved in existing literature span from land cover 

classification of  road class to extracting  road centerlines, from 

extracting road networks by exploiting semantic, contextual, 

topological relationships to road geometric modeling.  Datasets 

utilized include high resolution satellite images, aerial photos, 

and LiDAR (Light Detection and Ranging), as well as ancillary 

data, like existing road networks as contextual aid. The range of 

algorithms employed is also vast. Transportation agencies 

greatly benefit from this research effort since they require up-

to-date road information with highest possible geometric 

reliability to perform operational tasks.  

 

Such operational needs would include the examination of all 

cross section elements: lane width, median, shoulder, clear 

zones, etc. Some of these elements may be readily available as 

part of an inventory database. However, some information such 

as embankment slopes and height, ditch dimensions, and 

obstructions near the travelled way may not be included in such 

databases. One potentially feasible way of acquiring the 

missing information is using remote sensing techniques. 

  

Even though there are many remote sensing methods for road 

extraction, transportation operation requires more than the 

centerlines. Acquiring information that is coherent in space at 

the operational level is difficult and needs the integral use of 

multiple data sources.  The information required for a robust 

project evaluation includes cross-section dimensions with side 

slopes, longitudinal grades along the road, boundaries of the 

right of way (strip of land administered by the road 

administration), and obstructions near the traveled way such as 

trees and large man-made structures. The requirement for 

spatial coherence, for example, arises from the fact that one 

needs to identify the roadside areas with designed clear zones to 

extract the obstructions and estimate the slopes therein.  

  

Ideally, it is possible to identify the clear zones via spatially 

accurate road network and information on the roadway such as 

the lane width and the number of lanes. However, road network 

datasets with planimetric accuracy that will allow such 

identifications, or spatially related lane information may not be 

available consistently for large road networks. In that case, the 

travelled way (and its centerline), and the roadside areas need 

to be extracted with geometric reliability via remote sensing to 

acquire all other related information. 

 

We propose a framework for extracting abovementioned 

information to be employed within a robust project evaluation 

methodology using remote sensing datasets. We employ 

orthophotos and LiDAR point clouds for extracting the required 

features with sophisticated and operationally feasible remote 

sensing methods. 

 

2. RELATED WORK 

 

The wide range of literature on road extraction involves 

consideration of many aspects. Researchers focus on various 

problem definitions, use a variety of data sources, and apply 

methods spanning a large collection of algorithms. Mena 

(2003) and Mayer et. al. (2006) provide detailed reviews on the 

state-of-the-art on road extraction. Here, we will refer to part of 

the existing research in literature in order to highlight several 

important aspects. 

 

Aerial or satellite images are the most common datasets used 

for road extraction. Images acquired at different spatial and 

spectral resolutions are employed (Quackenbush, 2004). 

Methods developed usually target the type of images that they 

are expected to perform well on. Using stereo pairs for road 

extraction (Zhang, 2004; Dal Poz et. al., 2012), for example, 
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requires different approaches than using single images. Apart 

from imagery, SAR (Gamba et. al., 2013; Hedman et. al., 2006) 

and LiDAR (Hu et. al., 2014; Yang et. al., 2013; Kumar et. al., 

2013; Boyko and Funkhouser, 2011) data are also exploited for 

road extraction. 

 

The main body of literature focuses on the extraction of the 

road centerlines either for identifying the road network or 

updating an existing one. Among them, a group of methods first 

determine the linear features on the image by using edge 

detection algorithms (Steger, 1998; Lacroix and Aceroy, 1998) 

and then identify the roads by evaluating the extracted lines by 

various criteria (Bacher and Mayer, 2005). Another way to 

determine the linear features is by using a semi-automatic 

approach. The road is tracked initiating from interactively or 

automatically selected seed points (Baumgartner et. al., 2002; 

Zhao et. al., 2002). Some of such methods employ active 

contour models for tracing the roads (Mayer et. al., 1997; 

Laptev et. al., 2000). 

 

In a distinct track of algorithms, mathematical morphology is 

used to determine the roads (Soille and Pesaresi, 2002; Valero 

et. al., 2010; Naouai et. al., 2010; Mohammadzadeh et. al.; 

2006; Amini et. al., 2002). Formal morphological operations 

are mostly utilized in a sequential manner to perform 

simplification, thinning, gap filling or noise removal for 

extracting the road centerlines. Initial classification of the roads 

from the images may be carried out using pixel-based or object 

oriented classification approaches. In an object-oriented 

approach, road segments are first determined then to be further 

evaluated (Zhang and Coulognier, 2006; Miao et. al., 2013). 

 

Exploitation of the images at multiple scales is frequently 

considered as a contributing factor to the overall success of the 

road extraction process. Various implementations of scale-

space processing are presented in Mayer et. al. (1997), 

Baumgartner et. al. (1999), Laptev et. al. (2000), Hinz and 

Baumgartner (2003), Naouai et. al. (2010). Information 

extracted at coarse scales are usually used to avoid the negative 

effects of obstacles and noise, e.g., shadows and vehicles on the 

roads. Most road extraction research concentrate on and suited 

for rural or semi-urban areas for extracting road centerlines 

while research targeting urban and suburban areas (Hinz and 

Baumgartner, 2003; Poullis, 2010; Das et. al., 2011; Shi et. al., 

2014) are comparatively less but growing. The complexity of 

the road extraction problem requires the research to look into 

ways of using all available information to contribute to a better 

solution. Frequently, multiple input datasets are employed for 

road extraction. 

 

3. STUDY AREA AND DATA 

 

We selected a study area of approximately five by two miles in 

the Union township, Clinton County, IN, USA for 

implementing the proposed framework. The remote sensing 

datasets we used are the most recent ones available by the time 

of the study from the 2011-2013 Indiana Orthophotography, 

LiDAR and Elevation Project. The data we employed include 

one-foot resolution CIR (Color Infrared) orthophotos, LiDAR 

point clouds, and the LiDAR derived DEMs (Digital Elevation 

Model, bare ground model) at a resolution of five feet. We also 

generated a DSM (Digital Surface Model) and an nDSM 

(normalized DSM) using the LiDAR point clouds of the study 

area. We used the existing road network dataset acquired from 

INDOT (Indiana Department of Transformation) database to 

generate an approximate buffer around the road lines. This 

buffer is then used as a mask for limiting the amount of data 

involved in the process to the parts of the datasets that are 

relevant.  

 

4. METHODOLOGY 

 

Our framework consists of multiple integral processes. First, 

there is a preprocessing step for preparing the datasets to be 

analyzed. Then, these datasets are employed in feature 

extraction, paved surface classification, medial axis extraction, 

paved surface reconstruction, and cross section information 

extraction processes. Figure 1 shows the overall flowchart for 

the framework. 

 

 
Figure 1.Overall flowchart of the proposed framework 

 

4.1. Classification of the Road Surface 

 

4.1.1. Classification of the Paved Surface 

 

We applied SVM (Support Vector Machine) classifiers as part 

of a pixel based approach for the classification of the paved 

surface. SVM classification creates a maximum-margin hyper-

plane in a transformed input space and splits the classes by 

maximizing the distance to the nearest clean split samples. This 

search for the optimal separating hyper-plane is performed after 

the original training data are transformed into a higher 

dimension. There is always a separating hyper-plane if the new 

dimension is sufficiently high and the transformation is 

appropriate. This hyper-plane is found with the aid of the 

“support vectors” (Han et. al., 2012). Details on SVMs may be 

found in Han et.al. (2012) or Theodoris and Koutroumbas 

(2009). We used a C-Support Vector Classification type of 

SVM with a linear kernel as implemented in ORFEO toolbox of 

CNES (2013). After training the SVM classifier, we classified 

the study area tile by tile using the same trained model for each 

tile. Classification results were then validated using randomly 

selected test samples. The confusion matrix for part of the 

dataset tested is provided in Table 1. An overall accuracy of 

97.3% is achieved for road/non-road binary classification with 

a kappa value of 0.90. Figure 2 shows an example of the SVM 

classification result from part of the study area.  

 

 Non-road Road ∑ 

Non-

road 

210 

P:97.7%-U:99.0% 
2  212 

Road 5 
39 

P:95.1%-U:88.6% 
44 

∑ 215 41 256 

Table 1. Confusion matrix for road/non-road classification of 

CIR orthophotos. (P: Producer’s accuracy, U: User’s accuracy)  

LiDAR Orthophoto Road Network

Preprocessing

Classification of the Road 
Surface from Orthophotos

Extraction of Buildings 
and Trees from LiDAR

Building Delineation

Building Filtering

Medial Axis Extraction

Cross-section
Information Extraction

Road Reconstruction
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Figure 2. A sample from the road surface classification results 

using SVM 

 

4.1.2. Filtering Buildings 

 

A very common misclassification that occurs while extracting 

the paved road surface by classifying CIR orthophotos is the 

classification of some of the buildings contagious to the roads 

due to their spectral similarity. Additional information is 

required to avoid such misclassification. Ideally, having up-to-

date building outlines would be sufficient to exclude the 

buildings. However, such building databases are not commonly 

available. Hence, one needs to determine the building outlines 

to use them as a mask for acquiring just the road  surfaces out 

of the classification result. Several options are available for this 

purpose. Using the nDSM as an additional source of 

information is one remedy. A common alternative approach is 

to employ NDVI (Normalized Difference Vegetation Index) to 

mask the nDSM so that only high objects that are not 

vegetation remain to be used to filter the image classification 

results. Both methods have their own issues. Using the nDSM 

directly as a filter to remove high objects may cause problems 

if the trees are hanging over the road and the road is already 

correctly classified from the orthophotos. Also, some artifacts 

are introduced when the NDVI is applied in this fashion. NDVI 

reflects the high resolution nature of the CIR images acquired 

often in a leaf-off season, commonly manifesting non-

homogenous distribution within the area covered by tree 

foliage. In order to avoid such artifacts, building outlines may 

be obtained as a result of the feature extraction process using 

3D LiDAR point cloud. We employed the graph-cut 

optimization based approach for the classification of building 

points from the LiDAR point clouds as described in section 

3.4.2. Having these building outlines extracted by classifying 

the LiDAR point clouds, buildings are easily excluded from the 

paved surface classification results. In case there is no LiDAR 

point clouds available, one may also prefer to follow an object 

based classification approach including the trees as an 

additional class to enforce smoothness within the tree patches. 

 

4.2. Reconstruction of the Road Surface 

 

Classification results provide an irregularly shaped noisy raster 

sampling of the road surface. The road extent needs to be 

defined in order to determine the clear zones within which the 

features will be extracted. It is not possible to obtain such a 

definition of the road extent with the irregular nature of the 

classification results as they are. We proposed to apply a series 

of processes to reconstruct the road based on the raster 

classification results. First one is a cleaning and generalization 

procedure followed by an extraction of the medial axis of the 

paved surface using morphological operations. Based on this 

medial axis as the centerline and the boundary of the classified 

road surface, reconstruction of its extent is achieved. 

 

4.2.1. Morphological Operations 

 

We performed cleaning and generalization operations directly 

on the raster surface classification results using consequent 

morphological operations. Mathematical morphology is a 

technique which studies form, shape and structure. In image 

processing, morphological operations provide means for 

simplification of images by preserving the main characteristics 

of shape and form, and reducing irrelevant deviations from the 

overall structure of the shapes (Haralick et. al., 1987). 

Mathematical morphology is used to perform tasks like 

filtering, thinning, pruning, image enhancement, restoration, 

segmentation, defect identification, object recognition etc. 

Morphological operations modify the original input image 

which is also known as the active image, by probing it with 

structuring elements of varying sizes and shapes (Najman and 

Talbot, 2010). The basic morphological operators are dilation 

and erosion operators. Dilation operator results in the filling, 

expansion, or growth of the active image while the erosion 

operator has a shrinking effect. These basic operators may be 

combined to establish more complex operators like opening and 

closing operators or hit-or-miss transformation. More complex 

algorithms may also be designed by combining these basic 

operators for tasks like boundary extraction, region filling, 

extraction of connected components, convex hull, thinning, 

thickening, skeletonization, pruning and edge detection 

(Haralick et. al., 1987).  

 

4.2.2. Cleaning and Generalization 

 

Classification results of the paved road surface do not directly 

provide a topologically consistent, complete, accurate 

geometric model of the road extent. Initial classification results 

need to go through multiple-step post-classification cleaning 

and generalization process to be able to acquire the intended 

information from the classification of the paved road surface. 

We employed morphological operations on classification 

results to perform these tasks. 

  

Using morphological operations is very well suited for the post-

processing tasks that are introduced following the classification 

of the paved surface. For example, when we consider the issue 

of completing the missing parts of the paved surface 

classification, parts that are missing as holes are completely 

surrounded by the road polygon or by foreground (road) class 

in the raster case. In order to complete the missing holes, 

morphological reconstruction (Soille, 1999) was performed 

where the holes (background pixels in a binary classification) 

that could not be reached from the edge of the image were 

filled. Filling such holes mostly due to color change or vehicles 

on the road surface followed by a morphological opening 

operation provides more complete road surface with less noise. 

  

4.2.3. Medial Axis Extraction  

 

Deviations in the paved surface classification results from the 

roads still exist at this stage due to parking lots and driveways 

that are connected to the roads. Instead of attempting to detect 

and compensate for these deviations by dealing with the 

polygonal structure of the classification results, we proposed to 

first extract the medial axis of the paved surface. Such a 

reduction allows more flexibility to apply further methods to 

extract the road structure. After thinning, we employed 

morphological operators to remove the excessive irregular 

branches that are not part of the main roads, estimate the 

surface width from the surface boundary, and finally 

reconstructed the surface based on this medial axis and the 
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estimated road width. There are many algorithms developed for 

morphological thinning. We employed an implementation of 

the algorithm in (Lam et. al., 1992). Apart from the main 

skeleton of the actual road surface, branches corresponding to 

any extension to the roads or due to any non-uniformity were 

generated as well. We also removed these branches using 

morphological pruning.  

 

After pruning the centerline, we performed a connected 

component analysis to ensure that small pieces that are 

classified as paved surfaces but are irrelevant are cleaned. Once 

the medial axis was extracted, a simplification process was 

applied to obtain a smooth estimate of this noisy centerline. 

This step was performed after the pruned centerline is 

converted to vector format. We applied the Douglas-Peucker 

(1973) simplification algorithm for this purpose. Figure 3 

shows an example of thinning and pruning stages on part of the 

study area as well as the road centerline after cleaning process 

in the whole study area. 

 

 
Figure 3. Example of the results after morphological thinning 

(middle left) and pruning (bottom left) applied to the cleaned 

paved surface classification raster (upper left) in part of the 

study area. Pruned centerline after cleaning and generalization 

for the whole study area (right). 

 

4.2.4. Road Reconstruction 

 

Once the road centerline is extracted, it was used as a reference 

to reconstruct the paved surface upon which the clear zones are 

to be established. We proposed to achieve this by first, 

extracting the boundary of the paved surface from the 

classification results; then, finding the distance of each 

boundary pixel to the centerline; and after that estimating an 

average road width for each centerline segment of 50 ft 

intervals for piecewise reconstruction of the paved surface. As 

mentioned previously, mathematical morphology provides 

algorithms for the purpose of boundary extraction. We 

extracted the boundary of the paved surface using 

morphological operations. This boundary raster still includes 

the irrelevant branches since the branches have only been 

removed over the medial axis previously. We removed these 

branches by masking the boundary raster with large enough 

buffers generated around branch lines. Next, we generated a 

boundary distance raster in which each boundary pixel holds its 

distance to the centerline. The average distance to this boundary 

is then assigned to the corresponding centerline segment. This 

allows for the reconstruction of the paved surface extent based 

on the average width of each centerline segment. Figure 4 

shows examples of reconstructed paved surface with branches 

removed. 

 

 
Figure 4. Examples of reconstructed paved surface and 

excluded branches 

 

4.3. Extraction of Cross-section Information 

 

Reconstruction of the paved surface extent provided the means 

to define the clear zones based on this extent. We established 

the clear zones around the reconstructed paved surface. Then, 

we generated cross-section lines corresponding to the center of 

each centerline segment starting from the extent of the 

reconstructed paved surface to the extent of the clear zones. 

Using the DEM, we were able to calculate the slopes along 

these cross-section lines. Figure 5 shows samples from the 

cross-section lines from which the side slopes were  calculated.  

 

4.4. Extraction of Buildings and Trees  

 

With defined clear zones, the study area is confined to the area 

from which the features will be extracted. We utilized 3D 

airborne LiDAR point clouds to extract the features within clear 

zones. LiDAR datasets available for the study area don’t have a 

high point density. Detecting small features which cannot be 

captured by the airborne LiDAR within the clear zones is not 

possible. However, buildings and trees, which are the main 

obstacles in the clear zones are detectable using the airborne 

LiDAR dataset. 
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Figure 5. Samples from the 20 ft clear zone and the cross 

sections along the roads  
 

4.4.1. Ground Filtering 

 

Ground filtering, taken as the initial step before labeling surface 

and non-surface points significantly reduced the number of 

points for which the point feature histograms would be 

calculated. Number of points was reduced from 2,029,115 

points to 238,923 points, approximately to 12% of the dataset 

for this particular study area. We employed the LAStools 

(Isenburg et. al., 2006) implementation of the iterative TIN 

densification method of Axelsson (2000) for filtering the 

ground points.  

 

Calculated point density in the study area is 1.08 pts/m2. We 

determined the spherical neighborhood radius as 12 ft based on 

this calculated point density. We applied k-d tree partitioning 

for the neighborhood range search of off-ground points. 

Occasionally there were either individual points or small groups 

of points which were not part of any surface or object. We 

regarded such points as noise and removed them by applying a 

threshold for the minimum number of points in their 

neighborhood. 

 

4.4.2. Local Descriptive Features and Graph Cut 

Optimization (GCO)  

 

The next step for identifying the objects within the clear zones 

along the roads was to differentiate between the points that lay 

on a planar or curved surface and the points that are part of an 

object which constitutes a 3D manifold. The latter requires the 

points that are sampled inside the 3D objects instead of just 

their surfaces. Objects with such sampling are usually the trees 

and other vegetation since the laser pulse penetrates through the 

branches and reflections from within the crown are acquired by 

the LiDAR sensor. Objects that we will refer to as surfaces are 

usually the planar and curved surfaces of man-made structures 

excluding the ground since we are only dealing with off-ground 

points at this stage. 

 

Similar to the work in Ural and Shan  (2012), we implemented 

a min-cut based optimization framework (Boykov et. al., 2001) 

for labeling 3D off-ground LiDAR points as buildings and 

trees, this time using point feature histograms instead of feature 

vectors. We labeled points by GCO (graph-cut optimization) 

after calculating the point feature histograms (PFH) for each 

point. 

 

Point features calculated for each neighborhood represent 

geometric properties of the neighborhood. Classification of the 

points with GCO as proposed requires the calculation of the 

total energy for each labeling, which consists of a smoothness 

term and data term as  

 

     ,
,

,i j i j
i j

smoothE f V f f     (1) 

 

      data i
i

E f D f     (2) 

 

where Vij is the smoothness prior, fi, fj the feature vectors at 

sites i, and j, and D the data cost. The data term may be 

described as a cost value based on the proximity measure 

between the PFH of the point to be classified and the PFH 

representing each class. We used the Jeffreys-Matusita (JM) 

distance in this study. Point features, for which the histograms 

are to be calculated, are the structure tensor planarity (S.T.P.) 

and structure tensor sphericity (S.T.S.) features (West et. al., 

2004) given as 

 

    2 3 1. . .   / S T P         (3) 

 

   . . . 1 . . .S T S S T P      (4) 

 

where λ1 > λ2 > λ3 > 0 are the eigenvalues of the covariance 

matrix of the point’s local neighborhood.  

 

While the data term of the energy function is calculated in the 

feature domain, the smoothness term of the energy function is 

subject to the spatial domain as well as the feature domain. It 

determines how much a specific labeling of two connected sites 

needs to be penalized based on the similarity of their features as 

well as their spatial proximity. It is adjusted by the smoothness 

parameter σ. The smoothness function  

 

   
2

( , )
(- )

2  

,

1
,

( , )

fd p q

i j i jV f f e
d p q

      (5) 

 

penalizes the discontinuity between two neighboring sites. The 

Euclidean distance between points p and q in the spatial domain 

is d(p,q), and df(p,q) is the feature histogram distance in the 

spectral domain. Figure 6 visualizes a sample of calculated data 

costs for off-ground points for part of the study area.   

 

Once the energy terms are calculated, the remaining task is to 

find the labeling configuration with the minimum energy. We 

employed the fast approximate energy minimization algorithm 

proposed in (Boykov et. al., 2001) via graph cuts over the graph 

that we established for the point cloud. We set the smoothness 

parameter σ as 0.8 and α parameter as 1 which defines the 

relative importance of the data cost.  

 

As the result of the GCO classification, we obtained the class 

labels for all points in the point cloud as either building or trees. 

Figure 7 below shows samples of classified points in parts of 

the study area. 
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Figure 6. Examples of data costs of off-ground points 

calculated for the building (top) and tree (bottom) classes 

 

 

 
Figure 7. GCO classification results for ground, building and 

tree classes in parts of the study area (top), and the whole study 

area (bottom) 

 

4.4.3. Building Delineation 

 

Ideally, the information regarding detected buildings and 

vegetation is to be attributable to relevant road segments via 

spatial queries for the purposes of this study. Dealing with large 

amount of unstructured points is not an efficient way of storing 

and querying such information in an operational geographic 

information database. Hence, a more suitable representation of 

the extracted information is required. In order to delineate 

individual buildings, one needs to first determine the points that 

belong to the same building. It is possible to identify points that 

belong to individual buildings via connected component 

analysis. We labeled the points of individual buildings via 

connected component analysis using octree partitioning. 

 

After the groups of points from individual buildings were 

segmented by connected component analysis, we delineated the 

building outlines using α-shape algorithm (Edelsbrunner et. al., 

1983). “α-shape” is a generalization of the convex hull of a 

finite set of points in the plane. We used Pateiro-Lopez and 

Rodriguez-Casal’s (2010) R implementation of the α-shape 

algorithm. 

 

 
Figure 8. Examples of delineated buildings using the α-shape 

algorithm 

 

Once the classification results were delineated, we performed 

the second step filtering for low points which were not to be 

considered as buildings. Figure 8 shows samples of delineated 

buildings from parts of the study area. We evaluated building 

detection results by comparing the classification results with 

manually digitized building outlines from orthophotos. A total 

of 140 buildings were delineated from the points classified as 

buildings. Among these, 43 were  false positives including 36 

of them being parts of vegetation and seven being either bridges 

or parts of the roads. 97 buildings out of 107 ground truth 

buildings were correctly identified. Among these true positives, 

some building outlines had parts missing since some points that 

were actually part of the building roofs were classified as 

vegetation. This happened due to the trees that are too close to 

the roofs. When compared with the area of the ground truths, 

seven buildings had more than 50% of their total area missing, 

while four buildings lost between 30-50% of their total areas 

and nine of them less than 30%. Table 2 provides a summary of 

the building detection results and error rates showing false 

negative (FN), true positive (TP), false positive (FP), false 

discovery rate (FDR), and false negative rate (FNR) values. 

 

FN TP FP FDR FNR 

10 97 43 0.31 0.09 

Table 2. Building detection rates  

 

The ground patches that were incorrectly classified as buildings 

occur since they were initially regarded as off-ground points 

during ground filtering. Bridges and road surfaces with very 

steep slopes are easily confused with buildings since they show 

similar geometric properties. They are considered as elevated 

structures in comparison with their local environment. These 

polygons may be filtered in case the road network is available 

with the assumption that they are within the extent of the paved 

road surface. We were able to remove five of these patches by 
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using the medial axis of the road which we extracted from the 

orthophotos as contextual enforcement. Two of them were not 

detected since they coincided with the parts of the road which 

were not successfully reconstructed from the orthophotos due to 

vegetation cover. Figure 9 shows examples of bridges that were 

classified as buildings. 

 

 
Figure 9. Examples of bridges that were classified as buildings, 

removed from classification results by contextual information. 

 

5. EVALUATION AND CONCLUSION 

 

Despite abundant research efforts, practical and operational 

capabilities for automated road as well as roadside feature 

extraction are very limited. We have proposed and 

implemented a framework for the reconstruction of the road 

horizontal alignment, the longitudinal grades, the roadway 

lateral dimensions and the cross slopes, and the roadside areas 

with obstructions within the identified clear zones. Our 

contribution considers the extraction of these features relating 

to road geometry as well as roadside obstructions as an integral 

and necessary input for a possible road project evaluation 

system. It is one step forward towards real life transportation 

planning, construction and operation.  

  

Substantially, we were able to extract 21.3 miles of the road 

network out of a total length of 23.6 miles in the study area. 

The nearly 10% difference was due to the portion of the paved 

surface misclassified and other components removed during the 

cleaning, simplification and generalization process. Existing 

road network is not included in any further processing in our 

framework other than directing to the areas of concern. In case 

the existing road network is not reliable enough to 

approximately cover the road surface within a buffer, one 

would need to perform the road classification task for the entire 

area covered by the image.  

 

Based on the identified road centerlines, travelled way cross-

sections, and roadside areas, we were able to estimate the 

average grade, identify the cross-section lines, and estimate the 

cross slopes along these lines at the required longitudinal 

spacing. Even though we have not encountered steep slopes in 

the study area, such a situation may happen depending on the 

topography and the road design. In that case, the resolution of 

the DEM may limit the accuracy of the calculated slope.  

 

We could extract the obstructions including buildings and trees 

within a proximity to the road – the important information 

when evaluating road safety. However, it was not possible to 

extract vertical features such as fences, walls, posts, signs, etc. 

due to the limitations of the LiDAR data collected in the study 

area. In order to extract such features, mobile, terrestrial, or to 

some extent, very low altitude airborne LiDAR acquisition 

would be more suitable. Also, we did not extract individual 

trees out of a group of trees that are close to each other. 

Individual trees may be acquired by further processing the 

points classified as trees. LiDAR dataset with higher point 

density would be helpful for this purpose.  

 

False positives occurred in two cases of classifying the LiDAR 

point clouds as buildings or trees. The first group of false 

positives happened due to the bridges or the road segments with 

steep side slopes. Such components of roads may be classified 

as buildings due to their similarity, i.e. high planar surface with 

respect to the local ground elevation. The second group 

occurred when the points on the upper parts of the trees formed 

a planar area similar to the building roofs. This may be filtered 

out using the NDVI generated from the CIR orthopotos since 

the spectral response from the trees is different than the 

response from the buildings. 

 

One challenge in the urban areas was the irregular shape of the 

roads due to many access points from parking lots, driveways, 

ramps, etc. We were able to deal with most irregularities via 

morphological pruning, cleaning, and generalization. We 

believe that having 90% of the roads extracted together with 

complementary information as described  in mostly suburban 

and countryside settings provides a feasible semi-automatic 

data input for  practical road project evaluation. It is evident 

that an additional effort is required to achieve similar results in 

a dense urban area. 
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