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E
very year, millions of people
experience serious—and
sometimes fatal—health prob-
lems following consumption of
unsafe or contaminated food.

The contamination may involve food-
borne disease or chemical hazards.
Furthermore, billions of dollars are lost
annually in the food industry to insect
damage and inefficient production and
inspection processes. The goal of this
article is to introduce the signal process-
ing community to the challenges that
arise in food inspection. We briefly
describe both traditional food-inspection
technologies, which rely on sample col-
lection and subsequent offline analysis in
a laboratory, and newer approaches that
use nondestructive methods to measure
various quality parameters of food prod-
ucts in real time. We focus on four spe-
cific examples to illustrate the breadth of
technologies currently in use in food
inspection and the challenges that
remain to be addressed. In each case, we
describe the problem setting and its eco-
nomic and health aspects; the techniques
that are used, including the physical
principles on which these techniques are
based; and their performance and cost. 

PISTACHIO SORTING
Food inspection in pistachio sorting
involves identifying the closed-shell pis-
tachio nuts. Although the characteristic
split in pistachio nuts occurs on the tree
well before harvest, approximately 20%
of the harvest contains nuts with closed
shells. These nuts are of much lower
value than the open-shell nuts, which are
sold as snack foods. In some countries,
separation of open- and closed-shell nuts
is mostly performed by manual labor,
which poses an obvious sanitary prob-
lem. However, in many countries, closed-

shell pistachio nuts are removed by
mechanical devices that are known as
“pinpickers.” A pinpicker is a large drum
lying on its side, the inside of which is
lined with needles. Pistachios are placed
into a rotating pinpicker where the nee-
dles slip into the open shell and lift them
away while closed-shell nuts fall out the
end. These devices have low classification
accuracy and can damage kernels in
open-shell pistachios by pricking them
with the needle. Also, the needle hole can
give the appearance of an insect tunnel
and cause rejection by the consumer. 

To address these problems, acoustics
(already used in agriculture to measure
fruit firmness and watermelon quality)
has been considered for rapid monitor-
ing of tree nut qualities [1], [2]. An
impact-acoustics-based sorting system
has been developed to separate pistachio
nuts with closed shells from those with
open shells. The sorting system, shown
in Figure 1, consists of a microphone,
digital signal processing hardware, mate-
rial-handling equipment, and an air
reject mechanism. Upon impact with a
steel plate, nuts with closed shells emit
different sounds than nuts with open
shells and can be rejected. In the sorting
system, mel-cepstrum and principal
component analysis (PCA) procedures
are used to produce features extracted
from the microphone signal during the
first 1.4 ms after impact [3]. A classifica-
tion accuracy of 99% is achieved for the
closed-shell nuts on the test set, which
did not include the training set. An
important property of the algorithm is
that it is easily trainable, as are many
speech-recognition algorithms. This
acoustic sorting system is noninvasive,
highly adaptable, and provides 10% high-
er sorting accuracy than mechanical sort-
ing systems with lower-cost hardware.

SIGNAL PROCESSING CHALLENGES 
Noise from adjacent machines can some-
what reduce the classification accuracy.
Thus, there is a need for noise canceling
algorithms to improve accuracy in noisy
environments, such as food processing
facilities. A flexible training scheme will
be a very important feature for a plant
because pistachios differ from region to
region, and training the machine just
before classifying a new load increases
the classification accuracy.

WHEAT INSPECTION
Food inspection in wheat involves the
identification of internal insect infesta-
tion of wheat kernels, which degrades
quality and value of wheat and is one of
the most difficult defects to detect.
Wheat kernels become infested when an
adult female insect chews a small hole,
(about 0.05 mm in diameter), into the
kernel, deposits an egg, and then seals
the egg with a mixture of mucus and
wheat that was chewed out. The egg plug
is the same color as the wheat surface, so
it is nearly impossible to detect by exter-
nal examination. When the egg hatches,
the insect larvae develops and consumes
tunnels inside the wheat kernel until it
reaches maturity. Finally, the insect
exits the kernel by chewing an exit tun-
nel. Wheat millers usually specify that
wheat loads must contain fewer than
five insect-damaged kernels (IDK) per
100 g (approximately 3,000 kernels).
Inspecting for IDKs is labor intensive
and may miss most of the infested ker-
nels where an immature insect has not
emerged from the kernel.

Several methods have been used, or
are currently under development, to
detect insect damage inside whole wheat
kernels. Previously developed methods
for IDK detection fall into two categories:
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bulk sample analysis and single kernel
inspection. While bulk sample analysis is
less labor intensive and usually less cost-
ly, it cannot detect insect infestations at
low levels such as five or ten kernels per
100 g. The only method to detect IDK at
these low levels is by inspecting single
kernels very rapidly. Bulk methods that
have been developed include flotation
methods, acoustic detection of larval
movement and chewing [5], carbon diox-
ide measurements, and staining of amino
acids specific to insect body fluids. Single
kernel methods include x-ray imaging
[6], near-infrared spectroscopy [7], signal
processing of forces exerted on the kernel
as it is being crushed and, more recently,
impact-acoustic techniques where the
acoustic signal generated when kernels
impact a metallic plate is processed [4].
Of all of the single kernel methods, x-ray
imaging is the most accurate and is not
greatly affected by different types of wheat
while all the other methods are affected.
However, for x-ray imaging, good image
segmentation methods have not yet been
developed to isolate wheat kernels that
may be touching or overlapping. X-ray
imaging is also costly, with the equip-
ment costing US$100,000 or more. 

SIGNAL PROCESSING CHALLENGES 
The impact-acoustic method can inspect
wheat at high rates, as with the acousti-
cal pistachio sorting method. However,
more research is needed to improve its
accuracy. The current classification rate
is about 80% [4]. This has to reach above
90% for a practical system. 

MYCOTOXIN DETECTION 
Food inspection for mycotoxin detection
involves screening agricultural products
to identify a class of powerful carcino-
gens produced by natural molds preva-
lent throughout the world. The two most
common mycotoxins are aflatoxin and
fumonisin, produced by the molds
Aspergillus flavus and Fusarium verticil-
lioides, respectively. Mycotoxins are
found in many raw agricultural products,
especially corn, peanuts, tree nuts, cot-
ton seed, and figs. To reduce the risks to
animal and human health, the United
States Food and Drug Administration

(FDA) requires that foods intended for
consumption and for use in feeding of
dairy animals, and of immature animals
contain less than 20 parts per billion
(ppb) aflatoxin and 2.0 parts per million
(ppm) fumonisin. Regulations in Europe
are more stringent. Incidence of myco-
toxin contamination increases if grain is
not properly dried and stored after har-
vest, and with drought stress; thus,
almost every year, some isolated farming
locations produce corn containing myco-
toxins exceeding FDA limits. 

For corn loads contaminated with
mycotoxins beyond FDA limits, only a very
small percentage (less than 1%) of individ-
ual corn kernels actually contains myco-
toxins. However, these are contaminated
at such high levels that they can cause a
large sample to contain, on average, levels
of mycotoxins beyond regulated levels. As
such, the food industry is in need of meth-
ods to detect and remove kernels that are
contaminated by mycotoxins. If the small
percentage of contaminated kernels is sep-
arated, then corn-based food products will
become safer, with a minimal loss of prod-
uct due to sorting. Currently, loads con-
taining moderate amounts of aflatoxin are
blended with uncontaminated corn to
lower the concentration of aflatoxin. This
grain is then fed to livestock. Loads with
high amounts of aflatoxin must be
destroyed, costing the industry millions of
dollars in some years.

There are high-speed optical sorters
available that can sort corn at rates up to
10,000 kg/h; examples include those pro-
duced by Satake USA Inc., Sortex, and
Key Technology. These machines sort by
measuring light reflectance at two or
three spectral bands in the visible or
near-infrared region (NIR) of the spec-
trum, between 400 and 1,700 nm. To uti-
lize these sorters for a given application,
one must determine which two or three
spectral bands are optimal for discrimi-
nating the product that is to be accepted
and rejected. 

SIGNAL PROCESSING CHALLENGES
Instead of arbitrarily selecting two spec-

tral bands, every combination of two
spectral bands in the spectra for optimal
separation of aflatoxin-contaminated ker-
nels can be searched exhaustively [8].
This method was tested in a high-speed
sorter for its performance in reducing
aflatoxin and fumonisin and was shown
to reduce both mycotoxin levels by
85–90%, while removing only 5% of the
incoming product. Another approach is
to design a sorting device based on the
decay rate of the NIR spectrum around
750 nm, as shown in Figure 2. The NIR
spectra of good kernels have a much
sharper decay around 750 nm compared
to contaminated kernels. Similar proce-
dures have been applied to separating
defects in pistachio nuts, and this

[FIG1] Block diagram of a pistachio sorter. The device is able to feed, process, and sort
nuts with the air valve at rates up to 40 nuts/s.
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method is also being studied for its effi-
cacy in removing aflatoxin-contaminated
hazelnuts and mold-damaged wheat [9].

ACRYLAMIDE DETECTION 
Food inspection for acrylamide detec-
tion involves the detection of this well-
known neurotoxin in French fries and
fried potato chips using image process-
ing. Acrylamide is classified as a proba-
ble human carcinogen by the
International Agency for Research on
Cancer (IARC). In 2002, Swedish
researchers [10] found that potato chips
and French fries contain levels of acry-
lamide that are hundreds of times high-
er than those considered safe for
drinking water by the Environmental
Protection Agency (EPA) and the World
Health Organization (WHO). Currently,
chemical methods are used to estimate
acrylamide levels in baked or fried foods.
These methods usually entail extraction
of acrylamide from food and purification
of the extract prior to analysis by liquid
chromatography or gas chromatography
coupled with mass spectrometry. The
associated analytical systems are very
expensive and not common in food
inspection laboratories. 

On the other hand, chemical reac-
tions on the surface of foods are
responsible for the formation of color
and acrylamide, giving them an oppor-
tunity to correlate with each other. A
simple color-measurement device
measuring CIE Lab parameters cannot
be used to estimate meaningful param-
eters for acrylamide levels in a given
food item because the color is not
homogenously distributed over the sur-
face of the food item. 

Fortunately, the image of a food item
can be analyzed in real time, and mean-
ingful features correlated with the acry-
lamide level can be estimated from the
image of the food item. After the frying
process, bright yellow, brownish yellow,
and dark brown regions are clearly visi-
ble in potato images. We experimentally
observed a high correlation between the
normalized acrylamide level and the nor-
malized ratio of brownish yellow regions
to the total area in a fried potato chip.
Specifically, we can segment a given
potato image into three regions using an
image segmentation algorithm. The
higher the number of brownish yellow
pixels, the higher the acrylamide level in
a fried potato chip. This observation indi-

cates that, by installing cameras in pack-
aging lines, and analyzing potato chip
images in real time, one can detect and
remove potato chips with brownish yel-
low regions from a production line, sig-
nificantly reducing the acrylamide levels
that people consume. 

SIGNAL PROCESSING CHALLENGES
Unsupervised image segmentation with
automated feature selection capability is
needed to solve future image-based food
inspection problems. Food items can also
be imaged using UV and IR cameras or
even X-ray imaging systems. Typically, a
plant manager simply wants to train the
signal and image processing system with
faulty items and regular items and would
like the system to figure out the classifi-
cation by itself. 

CONCLUSIONS
There are several applications in agriculture
waiting for innovative signal processing
methods [1]–[9]. Since applications in agri-
culture must be performed quickly and at
low cost, there is a need to develop simple
and effective methods for extracting useful

[FIG2] Near-infrared region of the spectrum of good corn kernels (in blue) and contaminated corn kernels (in red). The decay rate
around 750 nm can be used to classify the kernels.
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and effective methods for extracting useful
features from signals and images captured
from food samples and for classification of
large sets of features. In particular, it is
expected that food inspection will require
more automated equipment to perform
these tasks, for which machine learning
and classification algorithms with auto-
mated feature selection are good can-
didates. Therefore, there are many
opportunities for the signal processing
community to contribute to food inspec-
tion and other agriculture applications.
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