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doi:10.3906/elk-1501-181

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Statistical learning approaches in diagnosing patients with nontraumatic acute

abdomen

Gökmen ZARARSIZ1,∗, Hızır Yakup AKYILDIZ2, Dinçer GÖKSÜLÜK3, Selçuk KORKMAZ3,
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Abstract: A quick evaluation is required for patients with acute abdominal pain. It is crucial to differentiate between

surgical and nonsurgical pathology. Practical and accurate tests are essential in this differentiation. Lately, D-dimer

level has been found to be an important adjuvant in this diagnosis and obviously outperforms leukocyte count, which

is widely used for diagnosis of certain cases. Here, we handle this problem from a statistical perspective and combine

the information from leukocyte count with D-dimer level to increase the diagnostic accuracy of nontraumatic acute

abdomen. For this purpose, various statistical learning algorithms are considered and model performances are assessed

using several measures. Our results revealed that the näıve Bayes algorithm, robust quadratic discriminant analysis,

bagged and boosted support vector machines, and single and bagged k-nearest neighbors provide an increase in diagnostic

accuracies of up to 8.93% and 17.86% compared with D-dimer level and leukocyte count, respectively. Highest accuracy

was obtained as 78.57% with the näıve Bayes algorithm. Analysis has been done via the R programming language based

on the codes developed by the authors. A user-friendly web-tool is also developed to assist physicians in their decisions

to differentially diagnose patients with acute abdomen. It is available at http://www.biosoft.hacettepe.edu.tr/DDNAA/.
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1. Introduction

Acute abdomen is a term that refers to the clinical syndromes characterized by the sudden onset of abdominal

pain symptoms and tenderness. These pains are mostly caused by appendicitis, cholecystitis, perforated peptic

ulcer, bowel obstruction, diverticulitis, pancreatitis, urinary colic, and nonspecific and nonsurgical abdominal

pains. It is one of the most common symptoms in emergency departments and requires rapid evaluation. Nearly

5% of the total patients presenting to emergency departments have acute abdominal pain. Deciding whether

the source of the pain is from a surgical or nonsurgical pathology is crucial in the prevention of morbidity and

mortality [1–3].

A brief history and complete physical examination are obligatory for proper diagnosis. The location of the

pain may be an indicator in the diagnosis. Prompt radiographs and laboratory tests are usually helpful in the

differential diagnosis, but are substantially time-consuming. In abdominal surgical pathologies, early diagnosis

and management are the most important factors on the outcome. Unfortunately, there are no precise predictors

of which patients have surgical pathology. In an emergency department with a high load of patients, it is almost
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impossible to have enough time for a rapid and correct differential diagnosis. Due to this lack of time, the

increased use of unnecessary computed tomography (CT) scans with intravenous contrast is a major concern.

CT has some limitations as well as side effects and because of some other reasons like renal insufficiency, contrast

allergy, etc., it cannot be implemented efficiently. Ultrasonography may be another solution. However it is not

highly sensitive for every condition, and it is recommended for use in right upper quadrant pains. Magnetic

resonance imaging (MRI) is an accurate method in the diagnosis of acute abdominal pain. However, its high

cost and lack of immediate availability limit its use in acute care settings. It is obvious that we need alternative

test(s) that is/are easy to perform and has/have high discriminating accuracy of surgical cases from nonsurgical

ones. In the emergency department, once surgical pathology is confirmed with a high accuracy quick test, the

surgeon will be involved in the diagnostic process without considerable time loss [3–9].

Recently, Akyıldız et al. [10] showed the efficiency and usefulness of the D-dimer test, which is also used in

the diagnosis of pulmonary embolism, venous thromboembolism, disseminated intravascular coagulopathy, and

intraabdominal pathologies. The authors demonstrated its performance over leukocyte count in the differential

diagnosis of acute abdomen patients. They reported that D-dimer level provides better predictive performance

than leukocyte count. A different solution may be to combine these two tests in a suitable way to improve

the diagnostic performance. One way is to use “and/or rules” to decrease the number of false positive or false

negative test results [11]. After identifying the cut-off values and assigning the positive or negative results for

each test, the “and rule” defines the combined test results as positive only if both tests give positive results.

Combined test results are negative in other cases and this rule is used to decrease the number of false positives.

Conversely, the “or rule” is used to decrease the number of false negatives and defines the combined test results

as negative only if both tests provide negative results. Although decreasing the number of false positives leads to

an increase in specificity, it will decrease the sensitivity of the diagnostic test. Similarly, decreasing the number

of false negatives will improve the sensitivity; however, it will decrease the specificity of the test. Clearly, there

is a trade-off here and this type of combination is useless for the case where a physician considers both positive

and negative results. Thus, it is necessary to use different combinations of approaches increase the general test

performance instead of sensitivity or specificity measures.

In the last decade, statistical learning approaches have been used for this purpose and very successful

results were obtained in the diagnosis of various medical problems. Bardella et al. successfully combined a

serum IgA antigliadin antibodies assay and cellobiose/mannitol sugar permeability tests in a multiple logistic

regression model for the diagnosis and screening of celiac disease [12]. Bozkurt et al. applied several algorithms

and found that distributed time delay networks and probabilistic neural network classifiers performed best in

predicting diabetes [13]. Chen et al. efficiently separated colon cancer and normal tissues using a random

forests algorithm coupled with near-infrared spectroscopy [14]. Hundreds of similar examples in other medical

examples can be found by a PubMed search using any of the following keywords: “statistical learning”, “data

mining”, and “machine learning”.

In this study, we applied various statistical learning algorithms to combine both leukocyte count and

D-dimer level measures for the purpose of improving the diagnostic accuracy of nontraumatic acute abdomen.

We also developed a decision support tool to assist physicians in this differential diagnosis.

2. Methodology
2.1. Data collection

We used the data set from Akyıldız et al. [10] that contains data from patients admitted to the Erciyes

University Medical Faculty’s General Surgery Department with the complaint of abdominal pain. Data include
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the leukocyte counts and D-dimer levels of 225 patients (115 females, 110 males) belonging to two groups. The

first group had 115 (51.1%) patients who needed immediate laparotomy and the second group had 110 (49.9%)

patients who did not need immediate laparotomy. Conventional treatment is assessed in this grouping and the

patients operated on based on their postoperative pathologies are assigned to the first group, while the patients

with a negative laparotomy are assigned to the second group. A scatter plot of the data is given in Figure 1. As

seen from the plot, data are nested within each other and no simple rule is present to successfully discriminate

the groups.
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Figure 1. A scatter plot indicating the D-dimer levels and leukocyte counts of patients who need or do not need

immediate laparotomy.

2.2. Statistical learning approaches

To discriminate the groups in a more advanced way, we benefited from the capabilities of various statistical

learning algorithms. In this context, we used a number of discriminant classifiers, decision tree models, kernel-

based classifiers, ensemble classification models, and some other models including logistic regression, näıve Bayes,

neural networks, and k-nearest neighbors. We also considered leukocyte count and D-dimer tests separately to

see the accuracy increase in the single diagnostic performances. In this section, we give a brief overview of these

statistical learning models.

Discriminant classifiers aim to find class posterior probabilities for optimal classification. For this purpose,

they use Bayes’ theorem as follow:

Pr (C = k |X = x ) =
fk(x)πk

k∑
c=1

fl(x)πc

(1)

Here, fk(x) is the class-conditional density function and πk is the prior probability for class k . As

a density function, linear discriminant analysis (LDA) uses multivariate Gaussian distribution such that,

fk (x) =
1

(2π)p/2|Σk|1/2
e−

1
2 (x−µk)

TΣ−1
k (x−µk) . Here, p is the number of variables, µk is the sample mean vector,
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Σk is the sample covariance matrix for class k , and LDA uses a common covariance matrix for each class. The

discriminating function can be obtained by introducing the Gaussian density function into Eq. (1) and new test

data will be assigned to the class based on this function or the posterior probabilities [15].

Other discriminant classifiers used in this study are extensions of LDA. In quadratic discriminant analysis,

covariance matrices are assumed to be unequal for each class. Robust linear and robust quadratic discriminant

analysis (RLDA, RQDA) use minimum covariance determinant robust estimators to estimate µk and Σk instead

of using sample group means and covariance matrices. In mixture discriminant analysis, each class is modeled

by a mixture of two or more Gaussian functions with different centroids. Flexible discriminant analysis (FDA)

recasts the LDA problem as a nonparametric form of a linear regression problem. FDA uses scoring functions

θ to assign discrimination scores to the classes and transformed class labels are predicted from linear regression

on predictors X, such that XTβ . The scores are chosen to minimize the average squared residuals given in Eq.

(2):

ASR =
1

N

K∑
k=1

[
N∑
i=1

(
θk (yi)−XTβk

)2]
(2)

where θk(y) is the discrimination score for class k and XTβk is the regression mapping. FDA has the

power of replacing regression fits with nonparametric alternatives to get more flexible classifiers than LDA

[16–18].

Decision tree classifiers partition the feature space into a set of rectangles, apply simple models in each

one, and display the results in a flowchart-like structure. In this structure, internal nodes correspond to features

(diagnostic test), branches represent test results, and leaf nodes represent each class label. Classification rules

can be obtained by these decision trees following the paths from root to leaf. Let p̂mk be the proportion of

class k in node m as given in Eq. (3):

p̂mk =
1

Nm

∑
xi∈Rm

I(yi = k) (3)

where Nm is the number of observations in node mand Rm represents the region of the node. The observations

in node mare classified into the class with maximum probability satisfying the condition k (m) = argmaxkp̂mk .

The splitting and stopping rule is determined by the impurity of the corresponding node. The measure of

impurity can be specified with several measures including the misclassification error, Gini index, and cross

entropy or deviance. For binary classification problems, these measures simplify to 1−max (p, 1− p), 2p (1− p),

and plogp − (1 − p)log?(1−p), respectively [15]. The CART and J48, also called C4.5, algorithms are among

the commonly used algorithms to build the decision tree. Both algorithms grow the full tree and then prune

it back to control overfitting. A considerable difference between these two algorithms is that CART uses a

holdout method to build the tree and allows only binary splitting rules, while C4.5 uses the entire data set

to build the final tree and uses multiple splitting rules. C5.0 is an improved version of the J48 algorithm

with several advantages: it is faster, it provides smaller decision trees, it is more memory-efficient, it supports

boosting to improve the performance, it allows the user to weight cases, and it winnows the useless features

automatically. Conditional inference trees (CTrees) avoid the variable selection bias and use significant testing

instead of maximizing the information gain or Gini coefficient [15,17,19].

Kernel-based classifiers are preferred approaches when the data classes are not linearly separable. The
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aim here is to use kernel functions and map the data into a high-dimensional feature space to make linear

models work in nonlinear settings. Support vector machines (SVMs) are one of popular statistical learning

tools due to various advantages: having a strong mathematical background based on statistical learning theory,

an accurate performance in problems from various fields, and the capacity to handle high-dimensional data. The

SVM aims to find the optimal separating hyperplane, which maximizes the margin between classes. The closest

data points to this hyperplane are called support vectors and the margin is the distance between these support

vectors. Quadratic programming and Lagrange multipliers (Ψi) are used to find the optimal hyperplane. For

nonlinear classification problems, the SVM uses kernel functions Φ(.) such as the radial-basis function (RBF)

and polynomial functions. The classification function of a SVM is given in Eq. (4):

f (x) = sgn

(
n∑

i=1

ΨiyiΦ(xi)Φ (x) + b

)
(4)

In our problem, we considered the three cases of SVM with linear, RBF, and polynomial kernels as

SVMlin, SVMrbf, and SVMpoly, respectively. Least squares support vector machines (lsSVM) are a modified

form of SVM. The difference is that lsSVM solves a linear system instead of quadratic programming in the

parameter optimization process. We included lsSVM with linear and RBF kernel functions in this study as

lsSVMlin and lsSVMrbf, respectively. Conversely to the SVM algorithm, partial least squares (PLS) projects

the data down to a few principal factors, explaining the maximum variance of both independent variables and

the response simultaneously. After the projection, PLS classifies the data using linear classifiers [15,20,21].

Like discriminant classifiers, the näıve Bayes (NB) classifier also uses Bayes’ theorem to estimate the

posterior probabilities for each sample to determine which class to assign. However, this algorithm considers

each feature independently to contribute to classification. The joint probability density function that is used in

Bayes’ formula for a given class k is found as in Eq. (5).

fk (X) =

p∏
i=1

fkj(Xj) (5)

Posterior probabilities for each class are obtained by introducing Eq. (5) into Bayes’ formula and subjects

are assigned into one of the classes with respect to posterior class probabilities. Logistic regression (LR) is also a

probabilistic model that uses a logistic function to discover the relationship between dependent and independent

variables. A multiple logistic regression model can be written as in Eq. (6).

Pr (C = k |X = x ) =
e(β0+β1X1+β2X2+...+βpXp)

1 + e(β0+β1X1+β2X2+...+βpXp)
(6)

The maximum-likelihood approach is usually preferred to estimate model parameters with both NB and

LR classifiers. The neural network (NN) classifier is an algorithm inspired by the central nervous system and

brain and similarly the algorithm structure consists of interconnected neurons. NN takes the input data as

input neurons and uses some functions to weight and transform the data. Activation is passed from one to

another neuron until an output neuron is activated. The NN is specified by weights wi and bias b :

y =
M∑
i=1

wixi + b (7)
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The k-nearest neighbor (KNN) classifier is a lazy learner where the input contains the kclosest training

data in the feature space and the output consists of the class labels. In the classification process, training data

are classified into the class that is most common in its k-nearest neighbors [15]. One of the most commonly

used distance measures is Euclidean distance, such that dij = ∥xi − xj∥ , i.e. the norm of the vector. It is

recommended to standardize each of the features to have zero mean and variance 1 before obtaining Euclidean

distances since each feature might be measured in different units. The decision function of the KNN classifier

is as follows:

y (di) = argmaxk

∑
xj∈kNN

y(xj , ck) (8)

Ensemble methods apply multiple models instead of using a single model in order to improve the diagnostic

accuracy. Bagging and boosting are among the most common types of ensembles. Bagging, also known as

bootstrap aggregating, generates multiple bootstrap data sets from the training data, trains the data using a

classifier, and combines the results of each model in a convenient way such as majority voting technique. The

analogy of the bagging algorithm is given in Figure 2. The random forest (RF) algorithm is an example of a

bagging ensemble that combines single decision tree models to achieve higher diagnostic accuracy. Similarly to

bagging, boosting also resamples the data, creates an ensemble of single classifiers, and aggregates the results

using majority voting. The difference is that boosting sequentially produces multiple models by giving higher

weights to misclassified cases. Similarly to random forests, decision tree classifiers can be ensembled with the

boosting approach as well. A boosted tree (boostTree) is used in such cases. Accordingly, bagged logistic

regression (bagLR), bagged support vector machines (bagSVM), and bagged k-nearest neighbors (bagKNN) are

bagging ensembles of LR, SVM, and KNN classifiers; boosted logistic regression (boostLR) and boosted support

vector machines (boostSVM) are boosting ensembles of LR and SVM, respectively [15,17,22,23]. Further details

about these algorithms can be found in the referenced papers.

Figure 2. Pseudocode of bagging algorithm.

2.3. Model building and performance assessment

A logarithmic transformation (base 10) is applied to leukocyte counts. Next the data are centered and scaled

using z-score transformation. Before applying the algorithms, data are randomly split into two parts as 75%

and 25%, respectively. The first part is called the training set, which includes 169 patients and is used for model

building and parameter optimization. The second part is called the validation set; it includes 56 patients and is

used for performance assessment. In the training set, 10-fold cross-validation is used and repeated 10 times to

find the optimal parameters of each algorithm with a grid search and to generalize the results. In detail, first
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the training data are partitioned into ten equal parts (17 samples exist in each part), next the first nine folds

(153 samples) are used for model building and the last fold is used to test the model, and finally this process

is repeated ten times with each fold used exactly once as test data. The validation set is considered as an

unknown separate data set. Trained statistical learning models are applied to this data set and the performance

of each model is assessed here. All model building processes are applied in the caret package of R software

(http://www.R-project.org/) version 3.1.1 [24].

Bootstrap and boosting numbers are set at 100 for ensemble models. The RBF kernel function is used

in bagSVM models. In RF modeling, 500 trees are used in model building. The number of neighbors is defined

as 5 and the Euclidean distance metric is used in KNN modeling. Probability threshold value is set at 0.5 in

LR models. Complexity parameter is obtained as 0.398 in optimal CART modeling. Sigma and complexity

parameters are optimized to 1.38 and 0.25 for SVM models, respectively. The J48 confidence parameter is

identified as 0.25. In FDA modeling, product degree and number of terms are identified as 1 and 3, respectively.

Numbers of hidden layers and weight decay values for the NN were 15 and 0.316%, respectively.

To assess the performance of each model, several statistical diagnostic measures are calculated including

accuracy rate (true classification rate), sensitivity, specificity, positive predictive value, negative predictive value,

detection rate, balanced accuracy rate, F-score, Matthews correlation coefficient, and Kappa statistic. Details

of the calculation of these statistics are given in Tables 1 and 2. For a better diagnostic test performance, each

measure should be maximized.

Table 1. A 2 × 2 classification contingency table (confusion matrix).

Diagnostic test result
Actual result (gold standard)

Total
Positive Negative

Positive TP FP TP+FP
Negative FN TN FN+TN
Total TP+FN FP+TN n

Table 2. Calculation of diagnostic measures used in this study.

Diagnostic measure Calculation
Accuracy rate ACC = (TP + TN)/n
Sensitivity SEN = TP/(TP + FN)
Specificity SPE = TN/(FP + TN)
Positive predictive value PPV = TP/(TP + FP )
Negative predictive value NPV = TN/(TN + FN)
Detection rate DR = TP/n
Balanced accuracy rate bACC = (SEN + SPE)/2
F-score F1S = 2TP/(2TP + FP + FN)

Matthews correlation coefficient MCC = TPxTN−FPxFN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

Kappa statistic κ = (ACC − pe)/(1− pe)
where, pe = ((TP + FN) (TP + FP ) + (FP + TN)(FN + TN))/n2

After calculating the diagnostic performances of each algorithm, a hierarchical clustering method is also

applied to cluster the used algorithms based on their diagnostic performances. Here, the calculated diagnostic

measures for each algorithm, as shown in Table 2, were taken as input to the hierarchical clustering method.

The Euclidean distance metric and Ward method are used in this clustering process. Furthermore, area under
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receiver operating characteristic (AUROC) curves were also calculated to identify the best performing algorithms

in the differential diagnosis of acute abdomen patients.

3. Results

Classification results and the computational costs for the related models (MacOS, 2.7 GHz quad-core CPU

with 16 GB memory) are given in Table 3. D-dimer level outperformed leukocyte count with a 20.00% increase

in sensitivity and 8.93% increase in accuracy. The performance of decision tree algorithms was not obviously

better than a single D-dimer level diagnostic test. Only the CART algorithm made a slight improvement of

3.23% in specificity and 1.79% in accuracy compared to D-dimer level. Discriminant and kernel-based classifiers

performed sufficiently well compared to single tests. Using robust estimates made a low increase in QDA

and a decrease in the LDA classifier. Quadratic analysis (QDA and RQDA) gave the highest accuracies in

discriminant analysis and least square SVMs (lsSVMlin and lsSVMrbf) gave the highest accuracies in kernel-

based classifiers. SVMpoly’s performance was poor because of its very low sensitivity results. LR’s performance

was similar to D-dimer level, but LR’s sensitivity was lower and its specificity was higher. The NN made a

tolerable improvement with 73.21% accuracy, 72.00% sensitivity, and 74.19% specificity. Performances of KNN

and NB were satisfactory with 77.50% and 78.57% accuracy rates. Diagnostic accuracy of ensemble classifiers

varies depending on the method used. It is seen that SVM ensembles perform quite well and improve the

performance of single SVM learners. BoostLR’s results were the same, while bagLR made a very slightly

increase in the performance of LR. Bagging also worked for the KNN algorithm and made a 1.19% improvement

in sensitivity and 0.59% improvement in accuracy. Conversely, bagging did not work, but boosting improved

the diagnostic accuracy for decision tree classifiers. A 73.93% accuracy rate was obtained for the boostTree

algorithm, which was superior to CART’s 71.43% and RF’s 67.86% accuracy results. Results were similar for

other general performance measures.

A dendrogram of clustering results is given in Figure 3a and AUROC curves of each classifier are given

in Figure 3b. Here, we defined six clusters by examining the dendrogram. One can see that the best performing

diagnostic tests, NB, RQDA, bagSVM, boostSVM, bagKNN, and KNN, are grouped in cluster V. Accordingly,

cluster IV tests (QDA and lsSVMlin) performed second best, cluster II tests (MDA, boostTree, lsSVMrbf, and

NN) performed third best, cluster III tests (CART, FDA, CTree, D-dimer, C5.0, J48, and SVMrbf) performed

fourth best, and cluster I tests (PLS, RF, bagLR, boostLR, LR, LDA, RLDA, and SVMlin) performed fifth

best in the differential diagnosis of nontraumatic acute abdomen. It is seen that all decision tree classifiers are

grouped in cluster III. Leukocyte count and SVMpoly tests gave the worst performances and were grouped in

cluster VI. As seen from Figure 3b, the best performing classifiers in cluster V have the highest AUROC values.

Algorithms in cluster V are found to be the best performing classifiers with 76.79%–78.57% accuracy and

0.536–0.562 kappa statistics. When compared to D-dimer level and leukocyte count, they made an increase in

diagnostic accuracies of 7.15%–8.93% and 16.08%–17.86%, respectively. ROC curves indicating the predictive

performance of the two best performers, NB and bagSVM, and also single D-dimer level and leukocyte count

tests are given in Figure 4. AUROC curves and 95% binomial exact confidence intervals were 0.88 (0.81–

0.92), 0.87 (0.80–0.91), 0.82 (0.75–0.87), and 0.63 (0.55–0.71), respectively, and all pairwise comparisons except

between NB and bagSVM were found as statistically significant based on the z test (P <0.05).

Moreover, for the applicability of the best performing statistical learning approaches, we have developed

the DDNAA web-tool to assist physicians’ decisions in the differential diagnosis of nontraumatic acute abdomen.

DDNAA can be accessed from http://www.biosoft.hacettepe.edu.tr/DDNAA/. A snapshot of the DDNAA is
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Figure 3. (a) Clustering results for statistical learning algorithms based on their diagnostic performance measures.

(b) Area under ROC curves for each classifier. PLS: partial least squares, RF: random forests, bagLR: bagged logistic

regression, boostLR: boosted logistic regression, LR: logistic regression, LDA: linear discriminant analysis, RLDA: robust

linear discriminant analysis, SVMlin: support vector machines with linear kernel function, MDA: mixture discriminant

analysis, boostTree: boosted tree, lsSVMrbf: least squares support vector machines with radial-based kernel function, NN:

neural networks, CART: classification and regression trees, FDA: flexible discriminant analysis, C-Tree: conditional trees,

SVMrbf: support vector machines with radial-based kernel function, QDA: quadratic discriminant analysis, lsSVMlin:

least squares support vector machines with linear kernel function, NB: näıve Bayes, RQDA: robust quadratic discriminant

analysis, bagSVM: bagged support vector machines, boostSVM: boosted support vector machines, bagKNN: bagged k-

nearest neighbors, KNN: k-nearest neighbors, logL: log10 (leukocyte count), SVMpoly: support vector machines with

polynomial kernel function.
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Figure 4. A ROC curve demonstrating the predictive performances of näıve Bayes, bagged support vector machines,

D-dimer level, and leukocyte count in differential diagnosis of nontraumatic acute abdomen.
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given in Figure 5. Users can simply enter the patient’s data and get multiple results from the best performing

diagnostic tests mentioned in this study. They can also see the results for uncombined leukocyte count and

D-dimer level tests.

Figure 5. A snapshot of the DDNAA web-tool.

4. Discussion and conclusions

The decision of whether the source of acute onset of abdominal pain symptoms is a surgical or nonsurgical

pathology is vital in surgery and emergency departments and requires rapid evaluation. Prompt radiographs,

laboratory tests, and CT scans are useful in the differential diagnosis. However, prompt radiographs and

laboratory tests are time-consuming and CT scans have several limitations including side effects, contrast

allergy, and renal insufficiency, which are frequent in city hospitals. A fast, easy-to-use, and accurate diagnostic

test is strongly required in this diagnosis.

D-dimer level is a simple and noninvasive triage test that measures the concentration of fibrin degradation

products. This test is a good marker for many conditions including venous thromboembolism, sudden arterial

occlusion of lower extremities, acute aortic dissection, pulmonary embolism, acute ischemic stroke, symptomatic

abdominal aortic aneurysm, pregnancy, eclampsia, severe trauma, liver disease, cancer, and recent surgery.

Akyıldız et al. showed that it can also be a better marker than leukocyte count in differential diagnosis of

nontraumatic acute abdomen [10]. Even though D-dimer level is a simple-to-use test and performs better than

leukocyte count, its accuracy is not quite good enough. Even a 1% increase in diagnostic accuracy is vital

when the prevention of diseases and mortality is considered. With the purpose of increasing the diagnostic

accuracy, we investigated the use of statistical learning approaches in this problem and obtained good results.

These statistical learning approaches are multivariate methods with different mathematical backgrounds and

they gain information from each single diagnostic test.

Statistical learning approaches have received great interest from the research community in the diagnosis

of various health problems. Silva et al. applied various statistical learning approaches to combine spectral
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domain OCT (SD-OCT) and standard automated perimetry (SAP) for glaucoma diagnosis. The authors

obtained the highest predictive performance with the RF classifier and improved the sensitivity and specificity

of single tests [25]. Shankle et al. applied these approaches to combine cognitive and functional skills to

improve dementia screening. For this purpose, the authors applied statistical learning approaches and gained

13%–24% accuracy increase over the single Functional Activities Questionnaire (FAQ) and the Six-Item Blessed,

Orientation, Memory and Concentration Exam (BOMC) tests [26].

We found that D-dimer level is superior to leukocyte count in differential diagnosis of nontraumatic acute

abdomen, as consistent with [10]. Additionally, combining the information from D-dimer level and leukocyte

count diagnostic tests from a statistical perspective, statistical learning approaches made an increase in the

accuracy of up to 8.93% as compared to D-dimer level. Besides accuracy rates, ROC analysis showed that

the predictive performances of best performing classifiers NB and bagSVM were significantly higher than both

D-dimer level and leukocyte counts. Thus, we think that using combined tests with statistical learning is more

reliable and accurate for a better diagnosis. We also think that adding other diagnostic tests to these statistical

learning models may give more accurate results.

With advantages such as being fast (less than 1s), easy to use, and containing statistical learning

algorithms that have strong mathematical backgrounds and accurate performances, the DDNAA web-tool will

assist physicians in their decision to differentially diagnose nontraumatic acute abdomen, and this decision

support will lead to better treatments and decrease in morbidity and mortality.

An important point here is the presence of various commercial D-dimer assays such as AMAX, AutoDimer,

D-Dimer Plus, IL Test, Miniquant, MDA, NycoCard, and VIDAS. Thus, results may show variability based on

the assay used and other hospital settings. Researchers should note that D-dimer concentration in our data

was obtained with the quantitative immunofiltration assay method (MDA R⃝D-dimer, bioMérieux, Durham, NC,

USA, normal value >0.6 µ g fibrinogen equivalent units (FEU)/mL). In the case of the presence of other assays,

they should standardize the D-dimer levels based on the calibrators provided by manufacturers. We leave the

diagnostic effect of other D-dimer assays along with leukocyte count as a further research topic.
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[18] Öztürk A, Özdamar K. Comparison of linear, quadratic and flexible discriminant analysis by using generated and

real data. Erciyes Med J 2008; 30: 266-277.

[19] Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J Comp Graph

Stat 2006; 15: 651-674.

[20] Vapnik V. The Nature of Statistical Learning Theory. 2nd ed. New York, NY, USA: Springer-Verlag, 1995.

[21] Pochet N, Smet FD, Suykens JAK, De Moer BLR. Systematic benchmarking of microarray data classification:

assessing the role of non-linearity and dimensionality reduction. Bioinformatics 2004; 20: 3185-3195.

[22] Breiman L. Bagging predictors. Mach Learn 1996; 24: 123-140.

[23] Dietterich TG. Ensemble methods in machine learning. In: Proceedings of the 1st International Workshop on

Multiple Classifier Systems; 21—23 June 2000; Cagliari, Italy. pp. 1-15.

[24] Kuhn M. Building predictive models in R using the caret package. J Stat Soft 2008; 28: 1-26.

[25] Silva FR, Vidotti VG, Cremasco F, Dias M, Gomi ES, Costa VP. Sensitivity and specificity of machine learning

classifiers for glaucoma diagnosis using spectral domain OCT and standard automated perimetry. Arq Bras Oftalmol

2013; 76: 170-174.

[26] Shankle WR, Datta P, Dillencourt M, Pazzani M. Improving dementia screening tests with machine learning

methods. Alzheimer’s Res 1996; 2: 1-15.

3697

http://dx.doi.org/10.2307/2531772
http://journals.tubitak.gov.tr/elektrik/issues/elk-14-22-4/elk-22-4-17-1209-82.pdf
http://journals.tubitak.gov.tr/elektrik/issues/elk-14-22-4/elk-22-4-17-1209-82.pdf
http://dx.doi.org/10.1016/j.saa.2014.07.005
http://dx.doi.org/10.1016/j.saa.2014.07.005
http://dx.doi.org/10.18637/jss.v032.i03
http://dx.doi.org/10.1198/106186006X133933
http://dx.doi.org/10.1198/106186006X133933
http://dx.doi.org/10.1093/bioinformatics/bth383
http://dx.doi.org/10.1093/bioinformatics/bth383
http://dx.doi.org/10.1007/BF00058655
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.1007/3-540-45014-9_1
http://dx.doi.org/10.18637/jss.v028.i05
http://dx.doi.org/10.1590/S0004-27492013000300008
http://dx.doi.org/10.1590/S0004-27492013000300008
http://dx.doi.org/10.1590/S0004-27492013000300008

	Introduction
	Methodology
	Data collection
	Statistical learning approaches
	Model building and performance assessment

	Results
	Discussion and conclusions

