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doi:10.3906/elk-1403-110

Turkish Journal of Electrical Engineering & Computer Sciences

http :// journa l s . tub i tak .gov . t r/e lektr ik/

Research Article

Relay sliding mode control based on the input-output model
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Abstract:Uncertainties, parameter changes, and disturbances lie among the most frequently encountered problems in

practical control applications. Sliding mode control (SMC) is one of the robust control methods developed to provide a

certain control performance under such circumstances. SMC can also be achieved in relay control systems. The aim is

to obtain an overall system that is robust to disturbances, noise, and parameter changes by forcing the relay element to

operate in sliding mode. While SMC methods have been traditionally developed in state-space, in relay control systems,

it is possible to define SMC based on the input-output model of a system. This way, sliding motion can be achieved by

only utilizing the output signal, without the need to know or measure the system states.

In this study, the relay sliding mode control method based on the input-output model proposed in previous studies

is revisited. Sliding conditions under ideal operating conditions are reformulated to fortify the theoretical background.

Some additional issues, namely the effects of disturbances and measurement noise on the sliding mode conditions, are

addressed and analyzed in detail. Finally, the theoretical results are put to the test by detailed simulation examples.
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1. Introduction

Variable structure systems (VSS) and sliding mode control (SMC) methods have been widely studied since their

emergence in the 1970s [1–3], resulting in a significant number of publications in the literature. The reader is

referred to [4–9] for some basic and detailed information regarding this approach. SMC still attracts a significant

amount of interest from researchers, mainly due to the fact that it provides a very robust control performance

under the influence of uncertainties, parameter changes, and disturbances.

The basic idea of SMC is to vary the structure of the system by switching between two or more different

structures and forcing the system state to move along a predetermined manifold that determines the desired

closed-loop behavior of the overall system. The resulting behavior is called sliding motion and the manifold

is usually referred to as the sliding manifold or sliding surface. The price being paid for the robust control

performance is the phenomenon called chattering, which is caused by the discontinuous nature of the control

action. Chattering often leads to undesirable results such as energy losses, low control accuracy, wearing of

mechanical parts, and excitation of unmodeled dynamics. Various solutions to reduce the chattering problem

have been proposed in the literature, such as replacing the discrete control action by a continuous function,

adjusting the control signal adaptively to decrease its amplitude, or filtering the control signal by a low-pass

filter before applying it to the system [10–14].

Traditionally, the design of SMC methods has been dominated by the state-space representation; as a
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result, the sliding surface is defined as a function of system states. Hence, the system states need to be either

measured or observed [15–17]. Since generating estimates of unavailable internal states is a complex problem

on its own, a different kind of SMC, called output feedback SMC, has been proposed in the 1990s. This method

requires only output information, restricting the definition of the sliding surface to the states that are available

through measured outputs [18–20].

Relay control systems are considered a type of VSSs that can be controlled using SMC methods. The

objective is to force the relay element to operate in sliding mode in order to obtain a robust control performance

against parameter variations and disturbances. For relay control systems, SMC design can be formulated using

the input-output model, as opposed to the traditional approaches based on state-space models. The relay

sliding mode control method based on the input-output model does not require any knowledge of system

states; only the system’s output is utilized. This approach was most likely first addressed in [21] and [22]; in

these works conditions for sliding motion were given and the control performance of the proposed method was

illustrated via computer simulations and real applications. A more recent study compares the relay sliding mode

control method with adaptive model reference control methods [23]. While both approaches exhibit a similar

performance under the influence of noise, the performance of relay sliding mode control is shown to be superior,

especially when the system’s parameters change rapidly.

The previous studies on relay sliding mode control based on the input-output model have mainly addressed

sliding mode conditions under ideal operating conditions and the analyses appear to be incomplete. This paper

is based on the recent work in [24]. Its purpose is to extend the previous works by providing a more complete

formulation and thorough analysis for sliding mode conditions than those presented in previous works and

address the issues of noise and disturbances, which have not been addressed before.

The paper is organized as follows: Section 2 covers the sliding mode conditions in a relay control system

under ideal operating conditions. The effects of disturbances and parameter changes on the sliding mode

conditions are addressed in Section 3. To demonstrate the control performance of relay sliding mode control

based on the input-output model, various simulation examples are given in Section 4. Section 5 is the conclusion

part.

2. Relay sliding mode control based on the input-output model (RSMC-IO)

Consider the block diagram of a relay control system given in Figure 1, where G(s) is the transfer function of

the open-loop system and M(s) is the transfer function of the model. w(t), e(t), u(t), and y(t) represent the

set-point (or reference), relay input (also referred to as the error), control input, and closed-loop system output,

respectively. ϕ(t) denotes the system’s output filtered with the inverse of the model. s is either the differential

operator (d/dt) or the Laplace operator depending on the context.

G(s )

M-1(s )

w(t) e (t) u(t) y(t)+

_

r

φ (t)

Figure 1. A relay control system.
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Under the assumption that the relay is symmetric and ideal with amplituder , the control signal can be

given by

u(t) = rsign(e(t)) =

{
r, e(t) ≥ 0

−r, e(t) < 0
. (1)

The inequality

e(t)ė(t) < 0 (2)

is the necessary and sufficient condition for sliding motion to occur in this system [2,25]. In other words, when

the relay input e(t) crosses the threshold (e(t) = 0), it immediately recrosses it, resulting in sliding motion.

The system is said to operate in sliding mode. Here, e(t) = 0 defines the sliding surface. When in sliding mode,

since e(t) = 0, the closed-loop system behavior is given by the following equations:

w − ϕ = 0

w −M−1y = 0

y = Mw

(3)

Eq. (3) states that the system’s behavior is solely governed by the reference model during the sliding mode.

M(0) = 1 is assumed to guarantee that no steady-state error occurs. In practice, as the assumption of e(t) = 0

is unrealistic, the output can be written as

y =Mw −Me. (4)

Since e(t) is a signal with low amplitude and high frequency, its effect on the output will be insignificant after

it is filtered with M(s), and so the term Me can be neglected.

For the system shown in Figure 1, e(t) and ė(t) are given by the following equations (assuming w is

differentiable):

e = w − ϕ

ė = ẇ − ϕ̇

= ẇ − sM−1Gu

= ẇ − (βu+ ϕ̇o)

= ẇ − βu− ϕ̇o

= ẇ − βrsign(e)− ϕ̇o

ė =

{
ẇ − βr − ϕ̇o, e > 0

ẇ + βr − ϕ̇o, e < 0

(5)

Here the signal ϕ̇ (i.e. the term sM−1Gu) is broken down into two signals, βu and ϕ̇o ; the term βu denotes the

instantaneous change in ϕ̇ as a result of a change in u , and the term ϕ̇o is the remaining part. The definition

of β is given below.

β = lim
s→∞

sM−1(s)G(s) (6)

Using Eq. (5) the conditions to satisfy Eq. (2) are found as

βr > ẇ − ϕ̇o, e > 0

βr > −ẇ + ϕ̇o, e < 0
(7)
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or simply

βr > |ẇ − ϕ̇o|. (8)

Note that this is an improved sliding condition compared to the previous works in [21,22] and, to our knowledge,

this is the first occurrence of it in SMC literature.

It is important to point out that the loop transfer function of the system shown in Figure 1 must satisfy

the condition

ρ(M−1G) = 1 (9)

for sliding motion to occur, where ρ indicates relative order. If the relative order is ρ(M−1G) > 1, then β will

be zero and Eq. (8) cannot be satisfied. The condition in Eq. (8) also depends on the sign of β . If β > 0, it is

satisfied when r > 0; if β < 0, the relay needs to be reversed (r < 0).

G(s)

M–1(s )

w(t) e (t) z(t) y(t)r F(s)E(s)
+

_

v(t) u(t)

(t)φ

Figure 2. Extended structure for a relay control system.

If the relative order condition given in Eq. (9) is not satisfied for a given system and a desired model, filters

of appropriate orders can be placed before and/or after the relay element, so that the relative order of the overall

loop transfer function becomes 1 [21]. The resulting structure is shown in Figure 2 [23]. Here E(s) and F (s)

are user defined filters, chosen to make the relative order of the loop transfer function E(s)M−1(s)G(s)F (s)

unity (ρ(EM−1GF ) = 1). For this purpose, either only one of the filters or both may be used. In this structure,

the relay input is denoted by z(t); therefore, the condition for the relay to operate in sliding mode becomes

z(t)ż(t) < 0 (10)

and the system output is given by

y =Mw − M

E
z. (11)

Similar to the previous structure shown in Figure 1, the system’s behavior during the sliding phase is dictated

by the model, since z(t) is a low amplitude signal with a high frequency and the second term can be neglected.

To derive the sliding mode conditions for this structure, consider the relay input and its derivative.

z = E(w − ϕ)

ż = E(ẇ − ϕ̇)

= Eẇ − sEM−1GFv

= Eẇ − (βv + ϕ̇o)

= Eẇ − βrsign(z)− ϕ̇o

ż =

 Eẇ − βr − ϕ̇o, z > 0

Eẇ + βr − ϕ̇o, z < 0

(12)
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From Eq. (12), sliding mode conditions are found as

βr > Eẇ − ϕ̇o, z > 0

βr > −Eẇ + ϕ̇o, z < 0
(13)

which can also be expressed in a single inequality as

βr > |Eẇ − ϕ̇o|. (14)

It can be seen in Eq. (12) that the term sEM−1GFv was split into two signals βv and ϕ̇o as before, where β

is defined as

β = lim
s→∞

sE(s)M−1(s)G(s)F (s) (15)

Once again, the sign of β is important. The relay amplitude r needs to be selected appropriately, so that βr

is positive. Moreover, the relative order of the loop transfer function must satisfy the condition

ρ(EM−1GF ) = 1, (16)

otherwise Eq. (14) cannot be satisfied. If the necessary filter to satisfy Eq. (16) consists of only derivatives, it

should be chosen as E(s) and placed before the relay. Otherwise, it can be chosen as either E(s) or F (s) and

can be placed before or after the relay. However, it is recommended to place it after the relay element as F (s)

in order to filter out the high frequency components of the signal generated at the relay output. By doing so,

the chattering problem can be alleviated and the plant is protected from rapidly changing inputs at the same

time.

3. Robustness analysis of RSMC-IO

SMC methods are known to be robust against parameter variations and disturbances. In this section, the

robustness of RSMC-IO is investigated.

3.1. Parameter variations

One of the most commonly encountered problems in control applications is parameter variations, mainly caused

due to the system structure or operating conditions that may change in time. As explained at the beginning

of Section 2, once the sliding mode conditions are met and the system operates in sliding mode, the system’s

behavior becomes independent from the open-loop system and is solely dictated by the reference model (Eq.

(3)). As long as the effects of these parameter variations on ϕ̇o are small and the conditions in Eq. (8) hold,

the control performance will not be affected. This can be assured by choosing a large enough relay amplitude

r . A simulation example with varying plant parameters will be presented in Section 4.

3.2. Disturbances and measurement noise

In this section, the effects of disturbance acting on the output and measurement noise on the sliding mode

conditions are investigated, neither of which have been addressed in a previous study on RSMC-IO. Consider

the block diagram of a relay control system shown in Figure 3, where n(t) and m(t) represent disturbance on

the output and measurement noise, respectively.
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G(s )

M–1(s)

w(t) e(t) u(t) y(t)+

_

r

n(t)

++

φ (t)

m(t)+

+

Figure 3. Relay control system with disturbance acting on its output and measurement noise.

Three frequently encountered types of disturbance signals are addressed in this work; these are step

function, sinusoidal, and white noise. m(t) is assumed to be zero when the effect of the disturbance is

investigated. From Figure 3, the error can be written as

e = w − ϕ

= w −M−1(Gu+ n)

= w −M−1Gu− ψ

, (17)

where ψ is defined as ψ =M−1n . Considering the error derivative

ė = ẇ − sM−1Gu− ψ̇

ė = ẇ − (βrsign(e) + ϕ̇o)− ψ̇

ė =

{
ẇ − βr − ϕ̇o − ψ̇, e > 0

ẇ + βr − ϕ̇o − ψ̇, e < 0

(18)

sliding mode conditions are obtained as

βr > ẇ − ϕ̇o − ψ̇, e > 0

βr > −ẇ + ϕ̇o + ψ̇, e < 0
(19)

or

βr > |ẇ − ϕ̇o − ψ̇|. (20)

Eqs. (19) and (20) suggest that, depending on |ψ̇| , a larger relay amplitude r might be required to satisfy

the conditions to obtain sliding motion under the influence of noise when compared to the ideal case with no

disturbance (see Eq. (7)). Note that the output of the system in Figure 3 is given as

y =Mw −Me, (21)

which means that n(t) has no effect on the system’s behavior while the system is operating in sliding mode. In

other words, the system is robust against disturbance.

Assume that the disturbance is modeled as

n(t) = d (22)

i.e. a step function. When the steady-state response is considered, the signal ψ and its derivative will be given
as

ψ = M−1(0)d = d

ψ̇ = 0.
(23)
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Using Eq. (23) the sliding mode condition given in Eq. (20) takes the following form:

βr > |ẇ − ϕ̇o| (24)

Eq. (24) states that the sliding mode conditions are the same as in the ideal case with no disturbances.

However, during the transient response, that is, when the step function disturbance jumps to a new level, ψ̇

will be different from zero ( ψ̇ ̸= 0) and its magnitude ( |ψ̇|) will be very large. Hence, at these points in time,

the inequality βr > |ẇ − ϕ̇o − ψ̇| may not be satisfied, but this is an instantaneous event and the condition is

immediately satisfied again. At these points in time the system may move away from sliding mode, but as soon

as the error reaches zero it continues to operate in sliding mode.

When the disturbance is modeled as a sinusoidal signal with amplitude A and frequency ω , the following

equations can be written:

n(t) = Asin(ωt)

ṅ(t) = Aωcos(ωt)

ψ̇(t) = M−1ṅ(t)

(25)

It is clear that |ψ̇| is proportional to the frequency (ω) of the disturbance. Hence, the higher ω is, the larger

would be the necessary relay amplitude to satisfy the condition in Eq. (20).

Modeling the disturbance signal n(t) as white noise would result in the need for an even larger relay

amplitude to satisfy sliding mode conditions, since |ψ̇| would be larger when compared to the sinusoidal

noise model. Studies have shown that this relay amplitude is usually too large, which makes it impossible

or impractical to be realized in real applications. As seen in Figure 3, the output y is filtered with the inverse

of the model M−1 . To filter out the high frequency components of the noise, the inverse of the model transfer

function can be modified as

M ′−1(s) =
M−1(s)

D(s)
, (26)

where M(s) is the actual model and D(s) is the filter polynomial. The bandwidth of the filter 1/D(s) must

be properly chosen to eliminate the unwanted effects of the noise. M ′(s) is now the modified model including

the filter. It is important to point out that the steady-state gain of the modified model transfer function is kept

as M ′(0) = 1. With the introduction of D(s) into the model, the relative order condition given in Eq. (9) is

no longer maintained. At higher frequencies where n(t) is more effective, D(s) will be chosen such that

1

D(jω)
≈ 0 ⇒M ′−1(jω) ≈ 0. (27)

However, at lower frequencies, such as the operating frequency of the plant, D(s) will be chosen as

1

D(jω)
≈ 1 ⇒M ′−1(jω) ≈M−1(jω) (28)

According to Eqs. (27) and (28) the relative order conditions cannot be maintained at high frequencies, but

they can still be maintained at lower frequencies and thus it is possible to obtain sliding motion. This way, a

small relay amplitude can be found to satisfy the sliding mode condition given in Eq. (20).
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To assess the effect of measurement noise on the sliding mode conditions, consider the system in Figure 3.

This time the disturbance at the output is assumed to be zero (n(t) = 0). Writing the error and its derivative
as

e = w − ϕ

= w −M−1(y +m)

= w −M−1Gu−M−1m

= w −M−1Gu− µ

(29)

and

ė = ẇ − sM−1Gu− µ̇

= ẇ − βu− ϕ̇o − µ̇

= ẇ − βrsign(e)− ϕ̇o − µ̇

ė =

 ẇ − βr − ϕ̇o − µ̇, e > 0

ẇ + βr − ϕ̇o − µ̇, e < 0
,

(30)

where µ is defined as µ =M−1m , results in the sliding mode conditions given below.

βr > ẇ − ϕ̇o − µ̇, e > 0

βr > −ẇ + ϕ̇o + µ̇, e < 0

}
⇒ βr > |ẇ − ϕ̇o − µ̇| (31)

Note that the inequalities given in Eq. (31) are similar to those in Eq. (19). However, considering the output

during the sliding phase (i.e. when e = 0)

w −M−1(y +m) = 0

y = Mw −m
(32)

it is obvious that the measurement error is added directly to the output signal. In other words, while SMC is

robust to parameter changes and disturbances on the output signal, it is sensitive to measurement noise, a fact

that is often disregarded in SMC literature. Hence, the choice of the sensory equipment plays an important role

in the control performance of RSMC-IO.

Considering disturbance and measurement noise together, the general conditions for sliding motion are

given as

βr > ẇ − ϕ̇o − ψ̇ − µ̇, e > 0

βr > −ẇ + ϕ̇o + ψ̇ + µ̇, e < 0

 ⇒ βr > |ẇ − ϕ̇o − ψ̇ − µ̇| (33)

4. Simulations

To demonstrate the performance of RSMC-IO, some simulation examples are presented in this section. The

simulations were performed using MATLAB running on a personal computer. The sampling interval is chosen

as 1ms .

The system and model considered in the first group of examples are

G1(s) =
1

s2 + s+ 1
,M1(s) =

1

0.25s+ 1
. (34)
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Note that the relative order of the closed loop system is ρ(M−1
1 G1) = 1 and β can be calculated as β = 0.25.

Since β is positive, a positive relay amplitude is required to satisfy the sliding mode conditions given in Eq. (7).

Simulation results with r = 3 are provided in Figure 4. Here the first graph includes the set-point w (sinusoidal

wave), the model output ym (dashed line), and the system response y (solid line). The control input u , i.e.

the relay output, is plotted in the second graph and the relay input (error) e is given in the third graph. The

third graph also includes the signal |ẇ − ϕ̇o| and the term βr . It is clear that the condition βr > |ẇ − ϕ̇o|
holds during the entire simulation. Therefore, the error is zero at all times and the relay output is oscillating

between ±r at high frequency. In other words, the relay is operating in sliding mode. Note that the system

output tracks the model perfectly in Figure 4.a.

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5
w, ym  and y

(a)                                                    t
0 2 4 6 8 10 12 14 16 18 20

−6

−4

−2

0

2

4

6
u

(b)                                                    t

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

βr

|ω̇− φ̇o|

e

(c)                                                    t

Figure 4. Simulation results for G1(s) and M1(s) with r = 3.

In order to illustrate what happens when the sliding mode conditions are not satisfied at certain times,

the system in Eq. (34) is simulated with r = 0.8 and the results are given in Figure 5. While the first two

graphs show the same signals as in the previous example, the third graph includes the signal ẇ − ϕ̇o when the

error is positive (e > 0) and −ẇ + ϕ̇o when e is negative (e < 0). As seen from the figure, the system is

not in sliding mode throughout all the simulation time; instead, at certain times it is not operating in sliding

mode. Figure 5.a shows that model tracking is not achieved until t ≈ 4s . The control input is observed to be

constant at u = r = 0.8 in the first few seconds of the run (Figure 5.b). This behavior can be easily understood

by examining Figure 5.c. At the start of the simulation the error is positive and increasing, i.e. the necessary

condition for sliding motion (eė < 0) is not satisfied. Consequently, the condition βr > ẇ − ϕ̇o is also not met

(see Eq. (7)). This condition is satisfied at t ≈ 1.3s , at which point the error is still positive but decreasing,

i.e. eė < 0. As soon as the error signal reaches e = 0 the relay starts operating in sliding mode and the system

output begins to track the response of the model. This behavior continues until t ≈ 6s when Eq. (7) no longer
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holds and the error becomes negative and decreasing (i.e. eė > 0). As a result, the relay stops operating in

sliding mode and the input signal takes the value u = −r = −0.8, since e < 0. At t ≈ 7.5s , the condition

βr > −ẇ + ϕ̇o is satisfied and the error starts increasing. When the error reaches e = 0 sliding motion is

achieved again until the next instant when the conditions in Eq. (7) are no longer satisfied. It is essential to

point out that the purpose of this example was to demonstrate the system’s behavior when the relay amplitude

is not sufficiently large. Since this is not the intended or the preferred way of implementing the RSMC-IO

method, the relay amplitudes in the remaining examples given in this section will be chosen large enough to

satisfy the sliding mode conditions.

0 2 4 6 8 10 12 14 16 18 20
−1.5

−1

−0.5

0

0.5

1

1.5
w, ym  and y

(a)                                                     t
0 2 4 6 8 10 12 14 16 18 20

−1.5

−1

−0.5

0

0.5

1

1.5
u

(b)                                                    t

0 2 4 6 8 10 12 14 16 18 20
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

βr

e

(c)                                                     t

11 12 13
0.8

0.9

1

ẇ− φ̇o,e> 0

−ẇ+ φ̇o,e< 0

Figure 5. Simulation results for G1(s) and M1(s) with r = 0.8.

From this point on, the reference signals in the simulations are in the form of a square wave, a type of

signal that is widely used in practical applications. The simulation results for the system in Eq. (34) using

a square wave set-point are presented in Figure 6. The results show that the condition βr > |ẇ − ϕ̇o| is met

throughout the simulation except the instances at which the value of the set-point changes. At these instances

the signal |ẇ| takes a very large value; therefore, a larger relay amplitude is required to maintain the sliding

mode condition, which is usually impossible or impractical to realize in practice. Note that the sliding mode

condition is disrupted for only an instant and it is satisfied again, and so the error reaches e = 0. Recall

that the value of the relay amplitude determines the duration of the reaching phase. As the relay amplitude is

increased, the duration of the reaching phase becomes shorter. Figure 6.a indicates that perfect model following

is achieved during the steady state. Model following during the transient phase can be improved by further

increasing the relay amplitude.
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0 2 4 6 8 10 12 14 16 18 20
−1.5
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(a)                                                 t
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Figure 6. Simulation results for G1(s) and M1(s) with r = 15.

The examples presented so far have confirmed the accuracy of the sliding mode conditions derived in

Section 2. Simulations carried out using a sinusoidal reference signal indicate that the system operates in

sliding mode over the course of the entire run as long as a sufficiently large relay amplitude is chosen. Sliding

motion stops and the control performance deteriorates whenever the conditions in Eq. (7) are not met. Similar

to the sinusoidal case, a large enough relay amplitude assures a good control performance when a square wave

is used as reference. Sliding motion is only interrupted when the set-point jumps to another value, provided

that Eq. (8) is satisfied during the remaining time of the run. The relay amplitude determines the duration of

the reaching phase after a set-point change. Therefore, the aim is to determine a large enough relay amplitude

for sufficiently short reaching phases.

To summarize, the condition βr > |ẇ − ϕ̇o| is essential for sliding motion to occur. If this condition is

satisfied for all t ≥ 0, the system starts operating in sliding mode from the beginning. For this scenario, the

sliding mode condition can also be expressed as βr > sup|ẇ − ϕ̇o| . The term βr is expected to be as large

from the term |ẇ − ϕ̇o| as possible. Since β is constant for a given system, it is concluded that |r| has to be

sufficiently large.

Two simulations are presented next to provide examples for the use of the filters E(s) and F (s) covered

in Section 2. The first of these simulations was carried out using the system and model in Eq. (35).

G2(s) =
s+ 0.5

2s2 + 2s+ 1
,M2(s) =

1
1
3s+ 1

, F (s) =
1

0.2s+ 1
(35)

Here the relative order of the loop transfer function is ρ(M−1
2 G2) = 0. Since the condition in Eq. (9)

is not satisfied, a filter F (s) is used. The relative order of the resulting loop transfer function becomes
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ρ(M−1
2 G2F ) = 1, satisfying the condition in Eq. (16). The simulation results presented in Figure 7 consist

of four graphs. As in the previous examples, the first graph shows the set-point w (square wave), the model

output ym (dashed line), and the system response y (solid line), and the second graph shows the control input

u . Note that this system has the extended structure shown in Figure 2. Therefore, the control input is no

longer the signal at the output of the relay, but the filtered version of it by F (s). The relay output v is plotted

in the third graph and the relay input (error) e can be seen in the last graph. The relay amplitude is chosen as

r = 15. It can be observed that initially the error is positive but reaches e = 0 quickly. It stays at e = 0 and

the relay keeps operating in sliding mode until the set-point changes. The sliding mode conditions are satisfied

at every point in time except when the set-point jumps to another value. The system starts operating in sliding

mode after short reaching phases, since the relay amplitude is chosen large enough. Aside from satisfying the

relative order condition, the filter F (s) leads to a smoother control input by filtering out the high frequency

components of the relay output; hence the chattering problem is also overcome. Model following is successfully

achieved as is evident in Figure 7.a.
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Figure 7. Use of filterF (s) . Results for G2(s) and M2(s) with r = 15.

Figure 8 provides the results of a simulation carried out using the system and model in Eq. (34). Although

the loop transfer function satisfies the relative order condition (ρ(M−1
1 G1) = 1), the aim here is to obtain a

smoother control input in order to eliminate the chattering problem. For this purpose the filters in Eq. (36)

were utilized.

E(s) = 0.1s+ 1, F (s) =
1

0.1s+ 1
(36)

The relative orders of the filters E(s) and F (s) were chosen appropriately to ensure that the condition in Eq.

(16) is met (ρ(EM−1
1 G1F ) = 1). In Figure 8, the first three graphs are similar to the previous figure. In the

fourth graph the relay input z is shown and e is plotted in the fifth graph. The relay amplitude is determined

as r = 25. Note that z is a signal with high frequency and low amplitude oscillating around zero. As a result,

the relay is operating in sliding mode and model following is achieved.

It is important to emphasize that, in the last two examples, the relay elements are not used as actuators.

Instead, the control inputs are obtained by filtering the relay outputs with F (s). Therefore, physical limitations
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Figure 8. Use of filters E(s) andF (s) . Results for G1(s) and M1(s) with r = 25.

on the actuators are no longer relevant for the choice of the relay amplitude and as a result larger relay amplitudes

can be chosen when compared to the case when the relay is used as the actuator element.

It is a well-known fact that parameters of a system are usually not constant and may change in time,

mainly due to variations in operating conditions and uncertainties in the system structure. The following

example aims to demonstrate the performance of RSMC-IO under such circumstances. The system and model

given in Eq. (35) are considered. The transfer function of the plant can be shown as

G2(s) =
s+ 0.5

2s2 + 2s+ 1
=

s+ 0.5

a2s2 + a1s+ a0
(37)

The changes in the values of the plant parameters during the simulation are as follows: at t = 17 sa1 is

instantaneously changed from a1 = 2 to a1 = 4. The parameters a0 and a2 are arranged to vary sinusoidally

as a0(t) = 1+ sin(2πt/T0) and a2(t) = 2+ sin(2πt/T2) with T0 = 5s and T2 = 25s throughout the simulation.

The simulation results with r = 5 are shown in Figure 9. The signals ẇ− ϕ̇o , −ẇ+ ϕ̇o and the product βr are

plotted alongside the error. The set-point jumps set aside, this graph shows that the parameter variations do

not disrupt the sliding mode conditions. Since the system structure is constantly changing due to the variations

in the system parameters, the resulting control action is not repeated in each period like in previous examples.

Moreover, the durations of the reaching phases that occur after set-point changes are different from each other

as a result of the dynamical system structure. The relay stops operating in sliding mode at t = 17s for a short

time because the error takes a negative value due to the sudden parameter change. Since the sliding mode

condition holds, the error returns to e = 0 after a reaching phase and sliding motion occurs again. The results

of this simulation confirm that RSMC-IO performs well when the system’s parameters are not constant, as

long as the sliding mode conditions are not disrupted. This can be achieved by choosing an appropriate relay

amplitude.
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Figure 9. Parameter variations. Results for G2(s) and M2(s) with r = 5.

In practice, control systems are always under the influence of disturbances such as noise. The following

example demonstrates how RSMC-IO performs when a disturbance signal in the form of a step function is

effective on the output. The system and model given in Eq. (34) are simulated with a relay amplitude of r = 20

and the results are presented in Figure 10. The initial value of the disturbance is zero (d = 0). At t = 7.5s and

t = 21s it takes the values d = 0.75 and d = −0.2, respectively. The disturbance’s effect on the output is clear

from Figure 10.a. Figure 10.c shows that at t = 7.5s the sliding mode conditions are disrupted for an instant,
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ẇ − φ̇o,e> 0
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Figure 10. Constant additive disturbance. Results for G1(s) and M1(s) with r = 20.
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but immediately satisfied again. The error, however, is no longer zero due to the disturbance; as a result sliding

motion is interrupted. When the error returns to zero the relay continues to operate in sliding motion. On the

other hand, the change in the disturbance signal does not disrupt the sliding mode conditions at t = 21s . As

soon as the error returns to zero after a reaching phase, the system continues to operate in sliding mode. Note

that when the disturbance jumps to a different value the derivative of the term ψ in Eq. (23) becomes very

large. As a result, the necessary relay amplitude to prevent the relay from leaving sliding mode may be too

large to realize in practical applications. Furthermore, the disturbance causes the error to instantly take a value

other than zero and a reaching phase follows until it reaches zero again. Therefore, the suggested course of

action is to increase the relay amplitude as much as possible in order to shorten the durations of these reaching

phases.

Figure 11 presents the results obtained by simulating the system and model in Eq. (34) under the influence

of a zero mean additive white noise with variance σ = 0.01. As explained in Section 3.2, the derivatives of the

noise are added to the error derivatives, thus making it impossible to satisfy the sliding mode condition (Eq.

(20)) with realizably small relay amplitudes. For that reason the model transfer function is modified as below,

so that its inverse acts as a low-pass filter to filter out the high frequency components of the noise.

M ′
1(s) = D(s)M1(s) =

(0.01s+ 1)2

0.25s+ 1
(38)

Because of this change, the relative order condition is no longer satisfied (ρ(M ′−1
1 G1) = 3) over the entire

frequency spectrum, but it is still valid in the operating frequency range of the system. Evidentially, sliding

mode is achieved and the system output tracks the reference model in the first graph (Figure 11.a). Figure 11.c

shows that the unfiltered components of the disturbance appear to be added to the error signal as expected.

Recall that the system output is given by y = Mw −Me . In other words, the error along with the unfiltered

components of the noise is filtered by the model and is effective on the output. This can be clearly observed in

Figure 11.a.

0 5 10 15 20 25 30
−1.5

−1

−0.5

0

0.5

1

1.5
w, ym  and y

(a)                                                     t

0 5 10 15 20 25 30
−40

−20

0

20

40
u

(b)                                                     t

0 5 10 15 20 25 30
−3

−2

−1

0

1

2

3
e

(c)                                                     t

Figure 11. Additive white noise. Results for G1(s) and M1(s) with r = 20.
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Note that the choice of D(s) is made based on the operating frequency of the controlled system. If the

bandwidth of 1/D(s) is too narrow, i.e. close to the system’s operating frequency, the relative order condition

cannot be satisfied in this frequency range and sliding motion cannot be achieved. If the bandwidth is too wide,

on the other hand, the noise signal is not sufficiently filtered and sliding motion does not occur in this case

either.

In the following example, the system in Eq. (34) is utilized to examine the effect of measurement

noise on the control performance. A high frequency noise originating from the output sensor in the form

m(t) = 0.05sin(4000πt)+0.1 is assumed to be present in the system. The results provided in Figure 12 indicate

that, even though the relay element is operating in sliding mode, model following is not achieved due to the

measurement error, which is directly added to the system output.
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Figure 12. Measurement noise. Results for G1(s) and M1(s) with r = 20.

5. Conclusion

The relay sliding mode control method based on the input-output model has been presented in this paper.

Conditions to obtain sliding motion are derived in both ideal and nonideal operating conditions. An extended

control structure is introduced to eliminate the chattering problem. Provided theoretical results are then tested

extensively via simulations.

The condition for sliding mode can be expressed as a simple inequality. As it is usually not possible

to change or modify the system to be controlled, as long as the relative order of the overall open loop system

meets a certain condition, the relay amplitude is the decisive parameter for this method. In other words, it is

shown that an appropriate relay amplitude is required for sliding motion to occur and the control performance

improves as the relay amplitude is increased. However, in practice, physical constraints on the actuator elements

may limit the choice of the relay amplitude.

If the system in question does not satisfy the relative order condition, the control structure can be

extended by introducing filters of appropriate orders to satisfy this condition. When placed after the relay

element, these filters can also be used to obtain a smoother control input rather than the high frequency signal
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at the relay output. As a result, not only is chattering reduced, but also the physical constraints limiting the

choice of the relay amplitude and sampling period are bypassed.

Analyses involving nonideal operating conditions such as parameter variations and disturbances indicate

that a larger relay amplitude needs to be chosen to satisfy the sliding mode condition when compared to the ideal

case. An additional precaution has to be taken if a high frequency disturbance such as white noise is effective on

the system. The inverse of the model transfer function is modified by introducing a low pass filter to eliminate

the high frequency components of the disturbance. Simulations and application results have confirmed that,

this way, sliding motion can be achieved with relay amplitudes small enough to be realized in practice. Further,

it is shown that RSMC-IO is not robust against measurement noise, a fact that is often disregarded in SMC

literature.

In conclusion, RSMC-IO is a simple yet very effective and robust control method. It can be used for the

control of both linear and nonlinear systems. It needs only the knowledge of the system’s relative order as a

priori information; a complete system model is not required.
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