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� The multi-modal system consists of a PIR sensor and a regular camera.
� Entry/exit motions and ordinary body movements are distinguished by the PIR sensor.
� Motion types are classified by a Markovian decision algorithm in wavelet domain.
� The camera is turned off, unless the PIR sensor detects an entry/exit type motion.
� Accuracy of the camera-only system is improved and the processing cost is lowered.
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In this paper, a multi-modal solution to the people counting problem in a given area is described. The
multi-modal system consists of a differential pyro-electric infrared (PIR) sensor and a camera. Faces in
the surveillance area are detected by the camera with the aim of counting people using cascaded
AdaBoost classifiers. Due to the imprecise results produced by the camera-only system, an additional dif-
ferential PIR sensor is integrated to the camera. Two types of human motion: (i) entry to and exit from the
surveillance area and (ii) ordinary activities in that area are distinguished by the PIR sensor using a
Markovian decision algorithm. The wavelet transform of the continuous-time real-valued signal received
from the PIR sensor circuit is used for feature extraction from the sensor signal. Wavelet parameters are
then fed to a set of Markov models representing the two motion classes. The affiliation of a test signal is
decided as the class of the model yielding higher probability. People counting results produced by the
camera are then corrected by utilizing the additional information obtained from the PIR sensor signal
analysis. With the proof of concept built, it is shown that the multi-modal system can reduce false alarms
of the camera-only system and determines the number of people watching a TV set in a more robust
manner.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Determining the number of people in a given area is a critical
problem for many surveillance applications. Presence or absence
of an unexpected number of people in an observed area may indi-
cate an unusual situation [1]. A real-time and accurate estimation
of people in a shop or a shopping mall can provide substantial
information for managers. Control systems can manage power
and energy consumption efficiently by correctly estimating the
people count in buildings, e.g. they can adjust climate and lighting
conditions according to the number of people present in the build-
ing [2]. The schedule of a public transportation system may be
arranged according to the number of passengers waiting [3]. TV
ratings are important information for the media industry.
Conventional techniques [4–6] assume a fixed number of popula-
tion (in the location where the measurement is taken) to find out
how many people are watching a certain TV program. The informa-
tion about which programs are being watched, as well as the tun-
ing behaviors during programs and commercial breaks is delivered
to the clients. However, audience measurement may be provided
more accurately if the number of people sitting in front of the
screen is exactly known. Hence, several works have addressed
the problem of estimating the number of people in a definite area,
such as [7–12].
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Fig. 1. Model of the inner structure of a differential PIR sensor.
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In this paper, it is aimed to determine the number of people in
front of a TV set using a pyro-electric infrared (PIR) sensor and a
camera. PIR sensors are low-cost infrared sensors and provide both
differential motion and infrared signature information about an
observed area. This paper focuses on processing continuous-time
PIR sensor signals to improve the counting results of the
camera-only system.

Current PIR sensor based systems have many potential applica-
tions in automation of electrical appliances [13,14], flame detec-
tion systems [15], falling person detection [16], design and
implementation of a home embedded surveillance systems [17],
hand gesture recognition [18], battery-operated presence detec-
tion, etc. and are all based on the on/off decisions of the analog cir-
cuitry of the PIR sensors. There are a number of recent studies
using both the analog circuitry of the PIR sensor and the
continuous-time real-valued signals that the PIR sensor produces
during a motion, but on different tasks other than counting people
[15,19,20].

Yun and Lee [19] have recently developed a PIR sensor based
system to detect the movement direction, speed and identity of a
person. They collect the raw data coming from 3 modules, each
of which consists of 4 PIR sensors, and form a reduced feature
set, i.e. voltage peak value, time of the peak, and passage duration.
Then they feed these features to a list of classifiers.

Wahl et al. [2] use a distributed PIR-based approach for estimat-
ing the people count in office environments. In this approach
movement direction of a person passing through a gateway is
aimed to be discriminated based on the timing of motion events
reported by pairs of PIR sensors. The proposed work here differs
from this study in the sense that it has a multi-modal structure
and uses the continuous-time signal of the PIR sensor rather than
the binary PIR sensors. In addition, the algorithm proposed in [2]
estimates the number of people entering into an area but not the
number of people present at any time in that area.

Dan et al. [8] present a people counting system using a
video-plus-depth-camera mounted on the ceiling. This system is
based on fusing the depth and vision data provided by a camera,
rather than fusing different type of sensors.

Video processing based people counting methods can be catego-
rized into two groups [21]: (i) detection-based and (ii) map-based
methods. Detection-based methods use some form of segmentation
and object detection to first detect people individually and then
count them [9,22,23]. Map-based methods, instead, use the mea-
surement of some feature to count people which does not require
to detect each person in the scene separately [10,11]. Map-based
methods are more suitable for precise measurement of people
counting. Since the goal here is to count the number of people
watching a TV set, a map-based method proposed by Viola and
Jones [23] to detect human faces is used in this paper because it
is computationally efficient enough to run in real-time. It also
works well even in low-resolution video. Other video-based human
detectors which may be more suitable for a given application can
also be incorporated to the multi-modal system.

In this novel multi-modal system a differential PIR sensor is
used in addition to a regular camera to overcome the problems
faced by the camera-only system in counting people. Two types
of human motion; (i) entry to and exit from the observed area
and (ii) ordinary activities in the observed area are distinguished
by the PIR sensor using a Markovian decision algorithm. It is not
possible to differentiate these two motions using an ordinary PIR
sensor providing only binary information. The wavelet transform
of the continuous-time real-valued sensor signal received from
the PIR sensor circuit is used for feature extraction. Wavelet
parameters are then fed to a set of Markov models representing
the two motion classes. The class affiliation of a test signal is deter-
mined according to the model yielding the highest probability.
People counting results produced by the camera are corrected by
the classification results of the PIR sensor signal analysis. It is
experimentally shown that the multi-modal system can reduce
false alarms and determine the number of people in a surveillance
area more accurately. Since the camera is activated only when the
analog decision circuitry of the PIR sensor detects an entry/exit
type motion in the viewing range of the sensor, the resultant sys-
tem is an energy efficient system. As far as is known, this is the first
study on people counting based on the fusion of a PIR sensor and
camera.

The organization of the paper is as follows. Operating principles
of a differential PIR sensor and signal data acquisition are described
in Section 2. The wavelet based sensor signal processing and the
training of the Markov models representing the motion classes
are presented in Section 3. The decision mechanisms of the PIR
sensor and the multi-modal system are described in Section 4.
Experimental results are presented in Section 5.

2. Infrared sensor and data acquisition

A differential PIR sensor basically measures the difference of
infrared radiation density between the two pyro-electric elements
inside. Fig. 1 shows the block diagram of a typical differential PIR
sensor, (s1) and (s2) are the outputs of the pyro-electric elements
and (g) is ground. Normal temperature alterations and changes
caused by airflow are canceled by the two elements connected in
parallel. If these elements are exposed to the same amount of infra-
red radiation, they cancel each other and the sensor produces a
zero-output at (d). Thus the analog circuitry of the PIR sensor can
reject false detections very effectively.

Commercially available PIR motion detector circuits produce
binary outputs. However, it is possible to capture a
continuous-time analog signal representing the amplitude of the
voltage signal which is the transient behavior of the circuit. The
corresponding circuit for capturing an analog output signal from
the PIR sensor is shown in Fig. 2. The circuit consists of four oper-
ational amplifiers (op amps), U1A, U1B, U1C and U1D. U1A and
U1B constitute a two stage amplifier circuit whereas U1C and
U1D couple behaves as a comparator. The very-low amplitude
raw output at the 2nd pin of the PIR sensor is amplified through
the two stage amplifier circuit. The amplified signal at the output
of U1B is fed into the comparator structure which outputs a binary
signal, either 0 V or 5 V. Instead of using binary output in the orig-
inal version of the PIR sensor read-out circuit, the analog output
signal at the output of the 2nd op amp U1B is captured directly.
The analog output signal is digitized using a microcontroller with
a sampling rate of 100 Hz and transferred to a general-purpose
computer for further processing. A typical sampled differential



Fig. 2. The circuit diagram for capturing an analog output signal from a PIR sensor.
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PIR sensor output signal for no activity case using 8 bit quantiza-
tion is shown in Fig. 3.

3. Sensor signal processing and Markov models

Wavelet transform is used to extract features from the PIR sen-
sor signal. Wavelet domain analysis provides robustness to varia-
tions in the sensor signal caused by temperature changes in the
environment.

Let x[n] be a sampled version of the signal received from the PIR
sensor with a sampling frequency of 100 Hz. Wavelet coefficients
w[k] corresponding to [25 Hz, 50 Hz] frequency band information
of x[n] are obtained after a two-stage sub-band decomposition. In
the decomposition process, the input signal is filtered with integer
arithmetic filters corresponding to Lagrange wavelets followed by
resolution halving. The transfer functions of the low-pass and the
high-pass filters are given by:

HlðzÞ ¼
1
2
þ 1

4
ðz�1 þ zÞ ð1Þ

and

HhðzÞ ¼
1
2
� 1

4
ðz�1 þ zÞ; ð2Þ

respectively.
The wavelet transforms of the two sample signals of four sec-

onds duration in the training set are shown in Fig. 4. Fig. 4(a) is
for a person entering to the observed area and Fig. 4(b) is for sim-
ple hand/arm movements of a person in the observed area. The two
wavelet signals both have peaks at around index 30. The wavelet
signal obtained due to the entry motion of a person to the viewing
range of the PIR sensor has a greater peak height at the time of the
main motion compared to the arm movement and it also has
follow-up oscillations. The amplitude of the peaks and the duration
of the motions make the difference in Markov models representing
the ordinary activities and entry/exit motions.

Two three-state Markov models are trained in the wavelet
domain to represent the two types of motion: (i) entry to and exit
from the surveillance area and (ii) ordinary activities such as hand,
arm and leg motions in the surveillance area. First, states are
defined. Let A and B be the training signal sequences formed by
concatenating many sample signals in the ‘‘entry/exit motions’’
and ‘‘ordinary activities’’ classes, respectively. Each wavelet coeffi-
cient in A and B is mapped to a state by investigating the relation of
the absolute value of the current wavelet coefficient, |w[k]|, to two
non-negative thresholds, T1 and T2. The state of w[k] is labeled as
S0, if |w[k]|<T1. If T1<|w[k]|<T2, state S1 and if |w[k]|>T2, state S2 is
attained. The procedure to determine the thresholds will be intro-
duced in the next subsection.

Next, the state sequences CA and CB are formed and the number
of every possible transition in each state sequence is counted. Let
aij and bij denote the number of transitions from state Si to Sj in
CA and CB. Since the peak height of a wavelet signal in the ‘‘en-
try/exit motions’’ class is greater than the one in ‘‘ordinary activi-
ties’’ class, it is expected that a22 will be greater than b22.
Moreover, more transitions between different states are supposed
to occur in the entry/exit type signal because of the follow-up
oscillations. The two three-state Markov models are shown in
Fig. 5.

The training of the Markov models ends with the computation
of the state transition probabilities for each class. If LA and LB are
the lengths of CA and CB, then the state transition probabilities
are computed as follows:

pa;b
ði; jÞ ¼ 1=LA;Bða; bÞij; ð3Þ

where pa,b(i,j) is the probability of a transition from state Si to state
Sj in CA,B.
3.1. Threshold estimation

When there is no activity in the viewing range of the PIR sensor,
the corresponding sensor output signal is a noise signal. In order to
characterize the no activity case, the wavelet coefficients of the
noise signal are mapped to the state S0. In other words, T1 is set
to a value such that almost all absolute valued wavelet coefficients
of the noise signal are below it. This value is chosen to be greater
than l + 2r due to the well-known 68-95-99.7 rule, where l is
the mean and r is the standard deviation of the training no activity
signal in the wavelet domain, respectively.

In addition, the outputs of the training process �paand,�pb each of
which is a function of T1 and T2, are supposed to reflect the



Fig. 3. A typical differential PIR sensor output signal when there is no activity within its viewing range. Sampling frequency is 100 Hz.

Fig. 4. Wavelet transformed PIR sensor training signal obtained due to (a) a person entering to the surveillance area and (b) the hand/arm movements of a person in the
surveillance area.
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distinction between the two classes. Thus, (T1, T2) is chosen such
that they maximize the dissimilarity

DðT1; T2Þ ¼ jj�pa � �pbjj2; ð4Þ

where jj�x� �yjj is the L2 distance between the points �x and �y. A
typical plot of the dissimilarity function in Eq. (4) is shown in
Fig. 6. It is obvious from the figure that the dissimilarity function
is non-differentiable and highly nonlinear. Therefore, it is maxi-
mized by using a genetic algorithm with the objective function
D(T1, T2).
4. Decision mechanism

The PIR sensor by itself cannot count the number of people in a
surveillance area, but it can differentiate if the motion is an
entry/exit type motion or just a hand/arm gesture. The class affili-
ation of a test signal is decided using a probabilistic approach. The
test signal is first divided into windows of 300 samples covering a
3 s time interval and then wavelet transformation is carried out on
each window. Since the resolution is halved in each stage of the
wavelet decomposition tree, the resulting wavelet signal window
is of length 75. Then the corresponding state sequence is



Fig. 5. The two three-state Markov models corresponding to the (a) ‘‘entry/exit motions’’ and (b) ‘‘ordinary activities’’ classes.

Fig. 6. A typical plot of the dissimilarity function D(T1,T2).
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generated. Let C be the state sequence of a test window. The prob-
abilities of belonging to the ‘‘entry/exit motions’’ and ‘‘ordinary
activities’’ classes for that window are calculated as follows:

Pa;bðCÞ ¼
YL�1

i¼0

pa;bðCi;Ciþ1Þ; ð5Þ

where L is the length of C and pa,b(Ci, Ci+1) is the probability of a
transition from the ith element to the (i + 1)th element in C calcu-
lated in the training phase of each model.

If tij denotes the number of transitions from Si to Sj in C, then Eq.
(5) can be rearranged as follows:

Pa;bðCÞ ¼
Y2

i¼0

Y2

j¼0

pa;bði; jÞ
tij : ð6Þ

The model yielding the higher probability for the current test
signal window is reported as the class affiliation of that window.
Since the class affiliation decision is based on the magnitude of
the probabilities, taking the logarithm of both sides in Eq. (6) does
not affect the result. This leads to a reduction in the computational
cost of the decision mechanism, because multiplication is replaced
by summation in the probability equations after taking the loga-
rithm. The new probability equations become:

P0a;bðCÞ ¼
X2

i¼0

X2

j¼0

tijlog10ðpa;bði; jÞÞ: ð7Þ
In the classification process, just two models representing the
‘‘entry/exit motions’’ and ‘‘ordinary activities’’ classes are used. It
is not necessary to form a model for the ‘‘no activity’’ case. The
‘‘no activity’’ case is easily detected when 90% or more of the ele-
ments of C are S0.

Classification algorithm of a test signal window producing a
state sequence C of length L can be summarized as in Algorithm
I. In the next subsection video based face detection is described.

Algorithm 1. Markov models based classification algorithm.

if, test window 2 ‘‘no activity’’ class
else
if, P0aðCÞ > P0bðCÞ test window 2 ‘‘entry/exit motions’’ class
else, test window 2 ‘‘ordinary activities’’ class
end
4.1. Video processing

Faces in front of a TV set are detected by the camera with the
aim of counting people. As pointed out in Section 1, the method
proposed by Viola and Jones [23] is used for this purpose because
of its good performance in real-time. The errors of the camera-only
system are then debugged by the PIR sensor signal analysis. Any
other face detection algorithm satisfying the real-time constraints
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may also be used to implement the proposed idea. But, the contri-
bution generated by introducing the PIR sensor is independent of
which vision-based method is used since all have to overcome sim-
ilar challenges such as occlusion and lighting variances.

The method [23] for face detection is briefly reviewed here. It
uses Haar-like features for feature extraction. A small number of
these visual features are selected from a larger set by an
AdaBoost based learning algorithm to create efficient classifiers.
An image representation called ‘‘Integral Image’’ is used to scan
the whole image and detect the presence of the features in
sub-regions of that image very quickly. Each classifier looks for a
set of features and if the result is positive, a rectangular region is
selected for each potential face region. Then, largely overlapping
rectangular regions are labeled and their intersections are reported
as the locations of the faces in the image. The classifiers are cas-
caded according to their weights determined by the AdaBoost
algorithm.

A camera-only system is not very reliable for counting people
because lighting conditions, illumination and face-camera angle
variations may give rise to false negative detections. This situation
is illustrated in Fig. 7(a). Although there are two people in the
surveillance area, only one is detected. Furthermore, there may be
also specific problems due to the video analysis algorithm chosen.
For example, rectangular regions turned by individual classifiers
of the Viola–Jones face detector may largely overlap in a location
other than the face region and this situation may lead to a false pos-
itive detection as shown in Fig. 7(b). In this case there is only one
person in the surveillance area, but there are two detections.
Fig. 7. An example of (a) a false negative, and (b) a false positive detection by the
camera-only system using the Viola–Jones face detector [14]. Each rectangle
indicates a separate detection.
To reduce the number of false detections produced the
camera-only system, classification results of the PIR sensor signal
analysis are used. The multi-modal system operates as follows. It
starts counting faces in the surveillance area by using only the
camera. If the result of counting remains fixed for a number of
frames, it is assumed that the number of people present in that
area is counted accurately and the camera is turned off. Then the
PIR sensor is activated to analyze the motions in the surveillance
area. As long as no activity or just an ordinary activity is detected,
the camera stays in standby mode and does not count people
again. The multi-modal system assumes that there is the same
number of people in the surveillance area, which is the case indeed.
Since the camera does not count people continuously unless there
is an entry or exit motion, false negative and positive detections of
the camera-only system are significantly reduced. In addition, the
unnecessary image processing is avoided. Whenever the motion
in the surveillance area is interpreted as an entry/exit type motion
by the PIR sensor, the camera is activated again to count people
and the same process is repeated.
5. Experiments and results

People counting experiments with the proposed multi-modal
system are carried out in a 7 m � 7 m room. The PIR sensor and
the camera are placed on top of a TV set. The distance between
the door and the TV set is about 2.5 m. There are 2–6 people in
the room at any time and they sit at a distance of 2–5 m to the
TV set. The subjects present in the room continue with their ordi-
nary activities such as hand/arm or head movements while watch-
ing the TV. Others are asked to enter to the room, have a seat
immediately and watch the TV or leave the room randomly. 12 test
video clips each of length 7 min on the average are recorded at
640 � 280 pixels and with a rate of 12 frames per second. Each
video clip includes 24–28 entry/exit motions. The number of peo-
ple in the room is counted by the camera-only and the
multi-modal system.

Success rates of the camera-only system in counting people are
presented in Table 1. A false positive detection indicates that there
are less people, and a false negative detection indicates there are
more people in the room than detected. The success rate is the
ratio of the number of frames in which the number of people is
estimated correctly to the number of total frames. The average suc-
cess rate for the 12 test video clips using the camera-only system is
83.1%.

Performance of the camera-only system is improved by inte-
grating a PIR sensor to the system. The PIR sensor signal is recorded
in synchronization with the video in each test. During the training
of the Markov models, 120 sample signals, each of which covers a
Table 1
People counting results of the camera-only system for 12 test video clips.

Test
video

Number of
frames

False
positives

False
negatives

Success rate
(%)

#1 5040 74 756 83.5
#2 5053 36 1095 77.6
#3 5012 78 654 85.3
#4 5082 92 483 88.6
#5 5040 99 735 83.4
#6 5020 53 657 85.8
#7 5022 111 489 88.0
#8 5072 88 1003 78.4
#9 5064 44 939 80.5
#10 5110 67 774 83.5
#11 5089 40 1018 79.2
#12 5004 79 814 82.1
Avg 5050.6 71.7 777.2 83.1



Table 2
Results for the Markov models based classification of the entry/exit type motions
using the PIR sensor.

Test sequence Number of test motions Detections Success rate (%)

#1 27 27 100
#2 26 25 96.1
#3 25 25 100
#4 25 25 100
#5 27 27 100
#6 24 24 100
#7 26 25 96.1
#8 26 26 100
#9 27 27 100
#10 28 27 96.4
#11 25 25 100
#12 28 28 100
Avg 26.1 25.9 99.2

Table 3
People counting results of the multi-modal system for 12 test video clips.

Test
video

Number of
frames

False
positives

False
negatives

Success rate
(%)

#1 5040 0 287 94.3
#2 5053 0 673 86.6
#3 5012 0 306 93.8
#4 5082 0 191 96.2
#5 5040 0 212 95.6
#6 5020 0 303 95.7
#7 5022 0 385 92.3
#8 5072 0 201 96.0
#9 5064 0 294 94.1
#10 5110 0 542 89.3
#11 5089 0 334 93.8
#12 5004 0 266 93.4
Avg 5050.6 0 332.8 93.4
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3 s time interval, are recorded first for each class. The sample sig-
nals of the same class are then concatenated to estimate the
parameters of each Markov model. The results for the Markov
models based classification of the entry/exit type motions by using
the PIR sensor are presented in Table 2. The test set consists of
about 72 minutes-long records in total, including 314 entry and
exit motions. Table 2 shows that the entry/exit motions can be dis-
tinguished from the ordinary activities with an overall success rate
of 99.2% on the average. Only 3 of a total of 314 entry/exit motions
are missed. Besides, during 72 minutes-long testing only 7 false
alarms due to the unusual body movements (such as waving hands
or arms) are produced. A false alarm does not lead to deterioration
in the counting results, it just triggers the camera unnecessarily
and causes power consumption.

People counting results of the multi-modal system for the same
test set are presented in Table 3. In the multi-modal system, the
camera does not count people unless the PIR sensor detects an
entry motion. Thus, the multi-modal system does not produce
any false positive detection. Similarly, since the camera stays idle
unless an exit motion is detected, the false negatives, which are
mainly caused by the changes in the face-camera angle, are signif-
icantly reduced. The multi-modal system achieves an average
improvement of about 10% in comparison to the camera-only sys-
tem. The improvements are lower in cases #2, #7 and #10;
because an entry/exit motion is missed by the PIR sensor in these
cases and consequently the number of people in the surveillance
area is not updated by the camera. Nevertheless the overall perfor-
mance of the multi-modal system is better.

Dan et al. [8] report a 98% accuracy, which is better than it is
reported in this paper, for people counting by using both the depth
and vision data of a 3D camera. It is obvious that it is possible to
achieve higher success rates using different vision-based methods.
But this paper aims to show that the accuracy of a camera-only
system for people counting can be increased by adding a PIR sensor
to the system. The validity of the proposed idea is independent of
which vision-based method is being employed, because all of them
suffer from similar problems such as occlusion, and illumination.

A test setup with a camera and a PIR sensor is used to estimate
the computational gain by using the multi modal approach pre-
sented in this paper with respect to a camera only approach.
Following a detection of an entry/exit type motion by the PIR sen-
sor, it takes 5 seconds on the average to satisfy the condition to
ensure that the camera detects the number of people correctly.
By considering the 12 test sequences which include 314 entry/exit
type motions, this duration approximately corresponds to 26 min-
utes in total. This means that the camera is turned off for 46 min-
utes in the 72 minutes-long testing. On the other hand, the PIR
sensor is on for this period. But the cost of processing the 1-D
PIR sensor signals is much lower than that of the images captured
by the camera. If a camera was used by itself, the camera would be
on for the entire test duration. As a result, the multi-modal system
is more efficient than the camera-only system in terms of compu-
tation and power consumption.
6. Conclusion

A novel multi-modal system consisting of a low-cost PIR sensor
and a regular camera to count people in a given area is successfully
demonstrated. As far as is known, this is the first study on people
counting based on the fusion of PIR sensors and cameras. It is
shown that the entry/exit type motions can be discriminated from
the ordinary body motions of a person by processing the
continuous-time real-valued signals of a PIR sensor using a
Markovian decision algorithm. The camera of the multi-modal sys-
tem does not count people unless the PIR sensor detects an
entry/exit type motion and it is assumed that the number of people
in the surveillance area remains the same. Thus, the multi-modal
system estimates the number of people in a more robust manner
than the camera-only system. In addition, since the camera is trig-
gered by the PIR sensor, the resulting multi-modal system con-
sumes less power than a camera-only system.
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