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Text-based image retrieval may perform poorly due to the irrelevant and/or incomplete text surrounding the
images in the web pages. In such situations, visual content of the images can be leveraged to improve the
image ranking performance. In this paper, we look into this problem of image re-ranking and propose a system
that automatically constructs multiple candidate “multi-instance bags (MI-bags)”, which are likely to contain
relevant images. These automatically constructed bags are then utilized by ensembles of Multiple Instance
Learning (MIL) classifiers and the images are re-ranked according to the final classification responses. Our
method is unsupervised in the sense that, the only input to the system is the text query itself, without any
user feedback or annotation. The experimental results demonstrate that constructing multiple instance bags
based on the retrieval order and utilizing ensembles of MIL classifiers greatly enhance the retrieval performance,
achieving on par or better results compared to the state-of-the-art.

© 2014 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, there has been an enormous increase in the amount
of data stored on the Web, where an important portion of this data is
images. Retrieving relevant images according to text-based queries
has therefore become an important need. However, text-based image
search may perform poorly; the retrieval results are seriously affected
by various factors, such as irrelevant or incomplete text surrounding
the images, polysemy or synonymy of textual descriptions, and more.
Since most of the current search engines (such as Google or Yahoo
Image Search) make use of such surrounding textual data, the perfor-
mance of image retrieval can be relatively lower than expected.

In order to increase the performance of such text-based image re-
trieval systems, approaches on visual re-ranking have been proposed
in recent years. In visual re-ranking, the idea is to explore the initial
list of returned images by analyzing their visual content and to propose
a new ranking in which more relevant images are ranked higher. Such
methods are also referred as relevance-based re-ranking methods [1].

In this paper, we propose such a re-ranking framework that analyses
the visual content of the images returned by text-based search engines
and improve image retrieval results, by building candidate bags that are
utilized by multiple instance classifiers. Our proposed system is unsu-
pervised, in the sense that, it does not need any explicit manual labeling
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of the images or any user feedback. The only input is a text query, and by
evaluating the visual content retrieved by this query, our approach first
automatically builds multiple classifiers and then re-ranks the images
based on the outputs of these classifiers.

The main idea of the proposed method is to automatically create
“bags” that will be used with Multiple Instance Learning (MIL). In MIL,
the classification is built upon bags as opposed to single instances. In
this respect,Multiple Instance Learning is inherently suitable for retriev-
al problems, since in retrieval, the relevancy of the retrieved images is
unknown. We claim that, by using the initial retrieval order of images,
we can intelligently build candidate bags that can be used within the
MIL framework. The MI-classifiers can then learn the hidden patterns
that are common to those images in these candidate bags. Based on
the resulting classifiers, the images can be re-ranked so that query-
relevant images are ranked higher.

The bag construction step is the key point of the proposed approach.
We propose three different ways for building candidate bags, namely
dynamic, sliding window and dynamic-sliding approaches. The con-
structed candidate bags are then used in building multi-instance
classifiers. Our algorithm operates on multiple-sized candidate bags,
and train classifiers using the visual features extracted from each of
the constructed set of bags. An ensemble ofMI-classifiers is then formed
and the images are re-ranked based on the response of this ensemble.
The proposed framework is illustrated in Fig. 1. It is important to note
that our aim in this paper is not to introduce a novel ensemble learning
method as in [30,31], but to show that with a simple ensemble
of MI-classifiers that is only based on visual content of the retrieved
images and without using any user feedback, we are able to achieve
quite successful re-ranking of the images.
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mailto:fadime.sener@cs.bilkent.edu.tr
mailto:nazli@cs.hacettepe.edu.tr
http://dx.doi.org/10.1016/j.imavis.2014.02.014
http://www.sciencedirect.com/science/journal/02628856


Fig. 1. Our proposed framework for image re-ranking. First, a text query is entered to a web image search engine. Then, multiple size bags are constructed over the initial retrieval
order using one of the proposed bag formation methods. Multiple MI-classifiers are learnt using these bags and consequently, the resultant ensemble classifier is utilized for re-ranking
the images.
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We test our algorithm in Google [2] and Web Queries [3] datasets.
The results show that by simply usingmultiple candidate bags andMul-
tiple Instance Learning in conjunction, our algorithmcan performonpar
with or better than the state-of-the-art.

The rest of the paper is organized as follows: In Section 2, we review
the related literature over the subject. Section 3 introduces the pro-
posed approach of constructing bags for multiple instance classifiers.
Experimental evaluation is provided in Sections 4 and 5 we present
our conclusions and discussions over the subject with possible future
directions.

2. Related work

In this work, we focus on text-based image retrieval and unsuper-
vised re-ranking of images. Our system is based on visual features
only; neither additional features, such as textual features, nor auxiliary
data, such as user click or feedback data is being used. Our proposed
framework relies onmultiple bag construction and the use of ensembles
of weakly supervised MI-classifiers. Below, we review the related liter-
ature, based on the methods and the features in use.

2.1. Image retrieval

In general, image retrieval studies are focused around two main
domains; these are content-based image retrieval and text-based
image retrieval. Content-based retrieval relies on user-provided query
images, where given a query image, visually similar images are
searched. An extensive survey on content-based image retrieval can
be found in [4]. In text-based image retrieval, on the other hand, the
user query is provided in terms of text, as opposed to query images.
The aim is to generate a good ranking of the images based on their
relevancy to the queried textual term(s).

Initial text-based image retrieval efforts consist of applying text-
retrieval techniques to a set of manual annotations that are provided
for each image. Providing thesemanual annotations is a very costly pro-
cedure; therefore, image retrieval community inclined towards more
automatic approaches, and began to benefit from automatic image
annotation and relevance feedback mechanisms. Several automatic
image annotation techniques have been proposed (some recent exam-
ples include [37,34]), where a model for each semantic concept is
learned from a set of captioned images, and consequently the learned
model is used to output textual annotations that can be used for
retrieval.

Systems that involve user interaction, such as relevance feedback
mechanisms have also evolved [36,35]. In relevance feedback systems,
the user selects a set of images as relevant or non-relevant, and the
system reranks the images based on this human feedback. Since our
work does not require any user intervention or labeled data to train
upon, we omit an extensive review of such systems and refer the inter-
ested readers to recent surveys on these topics [40,41].

2.2. Image re-ranking

Image re-ranking has been a recent topic of interest. Tian and Tao [1]
provide a recent and extensive review over the subject. Mainly, the pro-
posed approaches so far differ in the type of features (such as textual,
high-level visual and low-level visual features), and the type of learning
method (such as clustering, classification, etc.) they utilize.

2.2.1. Clustering-based approaches
Studies [32,39,33] first group visually similar images together and

rerank images based on their distances to thediscovered cluster centers.
Hsu et al. [32] use the information bottleneck principle for discovering
the best grouping, whereas typicality-based reranking [33] explores
the initial ranking as well as cluster membership to select typical
pseudo-positive and pseudo-negative examples. Such approaches may
suffer from irrelevant clusters that can be formed from irrelevant im-
ages. Moreover, the relevant images may be diversified and may not
form dense clusters as required. Similar work by Berg and Forsyth [9]
tries to solve such issues by introducing a bit of human intervention,
by requiring the user to mark each cluster as relevant or non-relevant.

2.2.2. Topic models
A number of methods use probabilistic topic models [2,5] for image

reranking. These studies learn the latent topic amongst the retrieved
image list and rerank the images based on the probability that the
image belongs to the topic. Fritz and Leibe [5] combine clustering
methodswith topicmodels to select the compact subspaces of the latent
space and filter out noises. These methods provide promising results,
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but may fail when the relevant images are not aggregated in the top
retrieval results.

2.2.3. Graph-based models
Graph-based models have also been explored. Hsu et al. [6] propose

a randomwalk based formulation over context graphs for reranking. In
their influential work, Ying and Baluja [7] apply the famous PageRank
algorithm to the visual content exploration of images.

Several recent studies deal with image re-ranking problem by
selecting visually dominant images. Studies [8,28] first remove outliers
and search for a confident image set. Morioka and Wang [28] propose
to find a confident image set based on sparsity and ranking
constraints. These confident images are used as reference points that
are further used in a kernel-based re-ranking approach. Similarly, Liu
et al. [8] use spectral filter to remove outliers and select a confident
set, then apply a graph based re-ranking algorithm.

Although the idea of removing outliers is effective, both of these
methods stuck in one dominant group to achieve outlier removal. For
a text-based image search query, theremay bemore than one dominant
group and methods based on a single confident set may fail to identify
images in different dominant groups. In our work, we do not assume a
single visually dominant group; if there is more than one, those are
explored in the MI-learning framework.

2.2.4. Additional features
Textual features or other auxiliary data has been explored in quite a

number of studies for improving the image re-ranking [9,10]. In [11],
Shroff et al. used multimodal features such as text, metadata and visual
features together to retrieve and build an automatic re-ranking. Geng
et al. [12] propose a content-aware ranking system, in which visual
cues are incorporated to the ranking learning process and jointly utilize
the textual and visual features. A recent work by Jain and Varma [38]
explores user-click data, as well as visual and textual features. Another
recentwork [29] proposes an algorithmbased on deep contexts extract-
ed from textual information surrounding each image. In this work,
additional text queries are formed based on the textual context of an
image and these queries are used for computing the irrelevancy of an
image.

In our approach,we donotmake use of any textual cues or any other
external source of information such as user-click data, we just use the
initial ranking produced by the text query and explore the visual
content.

2.3. Multiple Instance Learning (MIL)

MIL methods [13–15] have large applicability in computer vision
problems, especially in the cases where manual annotations are expen-
sive or difficult to obtain. This weakly supervised learning paradigm has
been used in awide range of applications, such as object recognition and
Fig. 2. Formation of dynamic-size bags from the retrieved images. For the images that returned
larger bags are formed. In this example, the initial k is 2; for the lower ranks of the text-based
detection [16,17], tracking [18,19], image classification [20,21], scene
classification [15] and more. In this work, we adopt MIL techniques for
the problem of image re-ranking.

The work of Li et al. [22,23], which also makes use of MIL for image
re-ranking, is the closest to our work, in the sense that they also apply
Multiple Instance Learning to image re-ranking. In their framework,
they assume that at least a certain portion of a positive bag is of positive
instances, and devise a newMIL approach towork over such constrained
bags. Our proposed framework does not rely on any assumptions about
the MI-bags and the positivity of the instances, and does not pose any
constraints on the amount of positive instances in a bag. We use the
standard definition of MI-learning and therefore, any MI-learning
algorithm can be adopted in our system. In the experimental section,
we compare our method to Li et al.'s work.

3. Image re-ranking with ensemble of MIL classifiers

Wepropose a systemwhich automatically learns the queried textual
concept by exploring the visual content of the noisy set of retrieved
images and produces an improved ranking result. Our formulation is
based on multiple instance classifiers, which treat the retrieved images
as bags of positive instances. The formation of the “multi-instance bags
(MI-bags)” is the key aspect of our algorithm. During this formation,
we do not use any manual labeling of the retrieved images, but only
assume that the retrieved set of images include some relevant images.

In this study, we propose a number of methods for constructing
candidate bags, so that multiple-instance classifiers learned upon
them form discriminative classifiers. These classifiers can then be used
for image re-ranking and consequently improve image retrieval
performance.

We first review Multiple Instance Learning (MIL) paradigm and
discuss why it is suitable for the problem of image re-ranking and
categorization. Then, we present our approach on constructing MI-
bags for MIL classification.

3.1. Overview of Multiple Instance Learning

In image retrieval, once the text query is input to a text-based image
search engine, such as Google or Yahoo Image Search, a set of images is
returned. These returned results are not always perfect, andmost of the
time, irrelevant images occur in higher ranks on the retrieved list. By an-
alyzing the visual content of retrieved images, classifiers for the queried
concept can be learned, and using these classifiers the relevant images
can be ranked higher in an updated retrieval result.

Working on single image instances and building supervised classi-
fiers using each image would require the availability of user feedback
data or large scale annotation effort. When there is no such data avail-
able, which is the case with the traditional text-based query system,
the text-based retrieval order can provide an initial cue on the relevancy
earlier in the list, smaller bags are formed, and for the images that return later in the list,
retrieval order k value is incremented by 1 and larger bags are formed.

image of Fig.�2


Fig. 3. Slidingwindow approach for formation offixed-size bags from the retrieved images. Here k isfixed (k=5) and step sizeM= ceil(k/2). Slidingwindow approach generatesmultiple
overlapping bags and provides a dense sampling of the possible bag candidates for MI learning.
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of the images to the queried concept. Text-based retrieval order ismost-
ly formed using textual information surrounding the images, user click
data, etc., and is likely to contain a certain number of in-class images.
Based on this observation, we can assume that in-class images are
returned throughout the retrieved list, although these in-class images
can be ranked lower in the list or scattered throughout the list.

Since the exact labels for the class of the individual images are un-
known, working over single images using supervised classification
methods is not possible. However, if we assume that the in-class images
are present throughout the list, we can form “bags” of the images and
assume that each bag contains at least one positive example for the
query. By this way, we can utilize Multiple Instance Learning over
bags of images.

As opposed to traditional supervised learning, where the learning
procedure works over instances xi and their corresponding labels yi,
Multiple Instance Learning operates over bags of instances, where
each bag Bi is composed of multiple instances xij. This form of learning
is referred as “semi-supervised” (or “weakly supervised”), since the
labels for the individual instances are not available, and only labels for
the bags are given. A bag Bi is labeled as positive, if at least one of the
instances xijwithin the bag is known to be positive, whereas it is labeled
as negative, if all the instances are known to be negative.

As discussed above, Multiple Instance Learning is particularly suit-
able for our problem. Multiple candidate positive bags can be formed
by using the text-based retrieval order of the images and thereon,
Multiple Instance Learning classifiers can be used to learn the queried
concept.

A problem with the static and non-overlapping construction of the
bags (as in [22]) is that the positivity assumption of the bags may not
Fig. 4.Dynamic-slidingwindow approach for formation of candidate bags from the retrieved im
necessarily hold. From the nature of the image retrieval, we can assume
that some of the bags contain positive images which are related to the
queried concept. However, since we do not use explicit user feedback
data, we do not know exactly which bags are indeed positive and
which bags are negative in training. In order to deal with this issue,
we generate multiple hypotheses for candidate bags from the ordered
set of retrieved images and learn multiple MIL classifiers over each
hypothesis. Our approach then combines multiple classifiers and re-
ranks the images based on their classification scores.

3.2. Constructing candidate bags

Candidate bag generation is the key aspect of our approach.We eval-
uate different ways for constructing candidate multiple instance bags
(MI-bags) which will be used in learning multiple instance classifiers.
These different schemes are namely fixed-size bags, dynamic-size
bags, sliding window and dynamic-sliding approaches. We now
describe each of these approaches in detail.

3.2.1. Fixed-size bag construction
The simplest way to build candidate bags for employing Multiple

Instance Learning is to use fixed-size bags. In this approach, the initial
list of images is divided into small subsets, i.e. bags, in which each bag
contains k images. Then, these bags are utilized inMIL setting as positive
instance bags. This approach is similar to the initial bag formation of
[22], with the exception that there is no random subset selection from
the initial retrieval order.

More formally, given ranking R, the set of retrieved images is divided
into equal k-sized bags, so that each bag contains k images based on R. In
ages. Here k is dynamic (initial k=2and increase rateσ=1) and step size isM= ceil(k/2).

image of Fig.�3
image of Fig.�4


a) Fixed-size bag construction b) Dynamic-size bag construction

c) Sliding window bag construction d) Dynamic-size Sliding window bag construction

Fig. 5.Effect of choosing different bag sizes k using the four proposedMI-bag constructionmethods. The results presentedhere are the averageprecision (AP) values achievedon the Fergus
dataset [2]. We observe that the fixed-size bags are affected very much from the choice of k and produces rather unstable results, whereas the sliding window (SW) and dynamic-size
sliding window (DSW) approaches are less affected from the change in k. From this figure, we also observe that there is no global optimal choice of k that produces the best results for
all the queries.
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this construction phase, first k images that have ranks r1 to rk are
assigned to bag B1, images from rk + 1 to r2k are assigned to bag B2 and
so on.

In the Experiments section, we present results with different k
values, and see how the choice of k affects image retrieval performance.
Since we do not have an explicit information on the positivity of the
retrieved images, the best choice for k can be determined empirically.
However this would require the availability of manually labeled set of
images. In order to overcome this issue, we generatemultiple candidate
bags with varying k, and train classifiers using each of the constructed
set of bags. Using the ensemble of these classifiers, we utilize the
outputs of multiple candidate bags of varying sizes, thus bypass the
selection of the optimal k value. This approach is further discussed in
Section 3.3.2.
3.2.2. Dynamic-size bag construction
As discussed in the introduction, text-based search engines use sur-

rounding text information accompanying images to retrieve relevant
image data.While this text information is mostly noisy and incomplete,
it can be seen as an initial point of reference for evaluating the images. In
this context, we observe that, while the image search engine perfor-
mance is far from perfect, the images returned earlier in search ranking,
tend to bemore relevant to the queried concept. Based on this observa-
tion, in order to increase the likelihood of each bag to contain an in-class
image, we can form relatively smaller bags for the top ranks of the
retrieved list and relatively larger bags from the lower ranks of the list.
We call this procedure “dynamic-size bags”.

Assuming that the relevancy of the images decreases as the rank of
the image increases, we can increase the bag size gradually at each γ in-
terval of received images. More formally, given ranking R = r1 … rN,
where N is the size of the image set, the set of retrieved images
that have ranks r1 to rγ are divided into k-sized bags, images with
ranks rγ + 1 to r2γ are divided into (k + σ)-sized bags, where k is the
initial bag size, and σ is the amount of size increment. This procedure
is illustrated in Fig. 2.

By this way, since the images returned later in text-based search
ranking tend to be less relevant than the images returned earlier in
the search, by increasing the bag size, the probability for each positive
bag to include a positive instance is likely to be increased. In the
Experiments section, we evaluate how varying k, γ and σ affect the
retrieval performance.

3.2.3. Sliding window bag construction
Since the retrieved images do not have explicit labels, we cannot

make sure that the candidate positive bags indeed include a positive
instance for the MIL training. In order to deal with this issue, we can
generate multiple overlapping bags. By following a sliding window
approach, we can generate multiple bags, where at least a portion of
these bags are assured to include positive instances. By dense sampling
of bags in thisway, wemake sure that a large portion of the possible bag
combinations are evaluated.

image of Fig.�5


a) airplane

b) guitar

c) motorbike

Fig. 6. Example retrieval list andMI-bags constructed via fixed-size bag constructionmethod using k=3. Each k=3 images form a bag, and themark on upper corner showswhether the
bag is an actual positive. With fixed size bag construction, the optimal k for each query can be varying.
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The sliding window procedure for building bags is shown in Fig. 3.
This approach is analogous to the sliding window approach for object
detection, where a window is slid over an image to search for particular
occurrences of an object. In our context, by sliding a window over the
sets of image instances, we consider each set of instances that falls
within the same window as a candidate bag that will be used in MIL
procedure.

More formally, given a ranking R of image set I = {i1, …, iN},
starting from image ranked in R1, we create a k-size bag where
images from R1 … Rk are assigned to B1. At each sampling step, we
increase the index by step size M = ceil(k/2) and create a new bag,
so that each new bag is composed of the images within retrieval
rank {R(i − 1 + M) … R(i − 1 + M + k)}.

3.2.4. Dynamic-sliding bag construction
This bag construction procedure is the combination of sliding win-

dow and dynamic-size bag construction approaches. In this approach,
a window is slid over the initial retrieval list of the image instances,
Fig. 7. Mean average precision at 15% recall for the dynamic-size bag construction
where σ = 1 and k changing in Fergus [2] dataset.
and each set of instances that falls in the same window is taken as a
candidate bag. As opposed to using a fixed-size window, the size of
the sliding window is gradually increased as the window is moved
down the retrieval list.

More formally, given a ranking R of image set I = {i1, …, iN},
starting from image ranked in R1, we create a k-size bag where
images from R1 … Rk are assigned to B1. At each sampling step, we
increase the index by step size M = ceil(k/2) and create a new bag,
so that each new bag is composed of the images within retrieval
rank {R(i − 1 + M) … R(i − 1 + M + k)}. In dynamic-sliding procedure,
the bag size k is increased gradually with a rate of σ at each γ interval
of retrieved images. This process is depicted in Fig. 4.

We evaluate all of these aforementioned bag construction proce-
dures in detail in the Experiments section.
3.2.5. Constructing negative bags
In order to use negative bag constraints of Multiple Instance Learn-

ing, itmust bemade sure that the constructed negative bags do not con-
tain any positive instances. For this reason, while constructing negative
bags, we use the images returned for queries other than the search
query. We apply a similar scheme that sequentially forms the MI-bags
based on the order of the images. However, it is possible that for non-
relevant queries, some negative image pattern may emerge amongst
the retrieved set for negative queries. In order to refrain from such a
pattern, we first cluster the images returned for non-relevant queries
by using k-means. Then, the cluster center order is randomized and
the images are re-ordered based on the distances to these cluster
centers. Then, this new order is used as the negative image set order.
By this way, it is made sure that the order of images is randomized
and the similar images are not scattered through the list of negative
images, to avoid misleading patterns. Once the randomized list of
negative images are established, we form fixed-sized bags over this
negative image set.



a) airplane b) car_rear c) face

d) guitar e) leopard f) motorbike

g) wristwatch

Fig. 8. The effect of choosing different bag sizeswith different bag construction approaches and varying initial bag sizes k on the Fergus Google dataset [2]. Here, the precisions at 15% recall
level are shown.
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3.3. Classification

Once the positive and negative bags are formed via one of the
proposed schemes, Multiple Instance Learning algorithms can be ap-
plied using the constructed MI-bags. We now present the details of
this classification stage.
Table 1
Precision at 15% recall for the dynamic-size bag construction where γ = N/2 and k = 2
for the first interval. The highest precision is shown in bold.

σ Airplane Car_rear Face Guitar Leopard Motorbike Wrist
watch

Mean

1 100 93.18 88.64 72.88 71.14 94.29 100 88.59
2 100 93.18 65.00 76.79 69.81 91.67 100 85.21
4 89.64 95.35 97.50 69.35 68.52 91.67 100 87.43
6 100 93.18 95.12 60.56 71.15 85.71 100 86.53
8 100 93.18 88.64 72.88 68.52 74.16 97.56 85.00
10 100 97.62 84.78 66.15 71.15 90.41 97.56 86.81
3.3.1. MIL classification
OurMI-bag formation procedure is independent of the choice of the

multiple instance classifier, therefore any multiple instance classifier
can be used with our framework. In this study, we utilized Multiple
Instance Learning with Instance Selection [13] (MILES) algorithm as
theMI-classifier.MILES [13] algorithmworks by embedding the original
feature space x, to the instance domainm(B). Each bag is represented by
its similarity to each of the instances in the dataset. The similarity
between bag Bi and concept cl is defined as

s cl;Bið Þ ¼ max
j

exp −
D xij; cl
� �

σ

0
@

1
A; ð1Þ

whereD(xij, cl)measures the distance between a concept instance cl and
a bag instance xij and σ is the bandwidth parameter. For D(.), any stan-
dard distance measure that is suitable for the feature space can be used.
In our case, since all the features are histogram-based,we can use theχ2

image of Fig.�8


a) Precision 15% Recall b) Average Precision

Fig. 9.Mean performance of the four different MI-bag construction methods on the Fergus Google dataset [2] with respect to changing bag size k. To the left, the precisions at recall 15%
are shown, and to the right, the average precision values are given. Sliding window (SW) based MI-bag construction methods are more likely to produce better results.
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distance D xij; cl
� �

¼ χ2 xij; cl
� �

¼ 1
2∑d

xij dð Þ−cl dð Þ
� �2

xij dð Þ þ cl dð Þ , where d is a

feature dimension of the instance feature vector. We evaluate the effect
of choosing different distance functions in the experimental evaluation.

Each bag can then be represented in terms of its similarities to each
of these target concepts and this mapped representation m(Bi) can be
written as

m Bið Þ ¼ s c1;Bið Þ; s c2;Bið Þ;…; s cN ;Bið Þ½ �T : ð2Þ

We then use an SVM classifier over this embedded representation.
The original MILES formulation incorporates an L1-regularized linear
SVM, which enforces some sparsity on the data. In our case, since
the retrieval data can have multiple modes, we experience that using
L2-regularized SVM is better suited for this purpose.

3.3.2. Ensemble of MIL classifiers
While forming the positive bags for the MIL framework, the most

crucial parameter is the bag size k. The optimal k depends mostly on
the order of initial retrieval. Since our algorithm does not make use of
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Fig. 10. How many of the constructed bags are indeed positive? Number and percentage of p
on the Fergus Google dataset [2]. While for larger k, percentage of positive bags increases, the
MI-learning phase.
any explicit user feedback or labeled data, determining the optimal k
value that is generic and optimal for each query is not possible.

We have empirically observed that the performance is largely
dependent on the selection of k parameter and the optimal choice of k
is largely query dependent. Since there is no strongly supervised
training set by definition of the reranking problem, it is difficult to reli-
ably optimize k in a query-specific manner. To overcome this issue, we
learn an ensemble of MI classifiers, each of which works on multiple
bags formed using different k values. The final ranking is obtained by
model averaging, where the score of a retrieved image is the average
of all MI classifier responses.

Our simple yet effective ensemble scheme not only bypasses the
problem of choosing k, but also results in stronger classifiers. We have
observed that ensemble based reranking typically outperforms any
particular choice for the k parameter. In Section 4, we experimentally
evaluate ranking performance based on particular k values and en-
semble of MIL classifiers.

4. Experiments

In this section, we evaluate the proposed MI bag construction
approach and ensemble classification.
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a) Precision 15% Recall b) Average Precision

Fig. 11. Using ensemble of MI classifiers with different bag sizes k and different bag construction schemes over Google dataset. Vote (k1, k2) shows that k∈ k1 … k2. In this dataset, using
slidingwindow (SW)with fixed size bags produces the best result, whereas using SWwith dynamic size windows is the second best. According to these results, using classifierswith bags
built with k ∈ 1 … 5 gives the highest precision.
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4.1. Datasets

In order to evaluate the performance of our method, we use two
benchmark datasets. The first is the Fergus dataset [2] and the second
is the Web Queries [3] dataset.

Fergus Google dataset [2] has been collected via text queries from
the Google Image Search. This dataset consists of 7 categories (airplane,
cars rear, face, guitar, leopard, motorbike, and wrist watch) and each of
these categories includes about 600 images on average. For each catego-
ry, labeling is done with 0 = “Junk”, 1 = “Intermediate” and 2 =
“Good” for each image. On average there are 30% “Good” images with-
out major occlusion, but no constraints on viewpoints, scaling and
orientations, 20% “Intermediate” images have lower quality when com-
pared to “Good” images, have extensive occlusion and image noise, and
50% “Junk” images that are irrelevant to the category.

Web Queries [3] is a recently compiled dataset, which includes 353
web image search queries. These queries are selected among the
frequent terms submitted to image search engines. There are more
than 200 images for 80% of the images, and the dataset has 71,478
images in total. The images have been scaled to fit within a 150 × 150
square, keeping the original aspect ratio. Some example topics in this
dataset are maps, animals, celebrities from TV, flags, logos, buildings,
and so on.

4.2. Feature extraction

To capture the visual content, each image is represented via its bag-
of-words (BoW) histograms. First, dense SIFT descriptors [24] are
extracted from each image using VLFeat library [25]. We then cluster
these descriptors using k-means (where we set k = 1000 in our
experiments) and form the visual codebook. Then, each image is repre-
sented with its histogram of codewords. While forming the image
Table 2
Precision at 15% recall level is shown. D corresponds to the distance function used in Eq. (1) fo
Hellinger-kernelized form.

D BoW Airplane Car_rear Face

euc normal 100 95.35 95.12
euc Hellinger 100 97.62 100
chi Normal 100 100 97.5
chi Hellinger 100 100 92.86
representation, 2 × 2 spatial tiling is applied to account for coarse spatial
information. Each of the local spatial histogram is concatenatedwith the
global BoW histogram of the whole image. The resulting feature vector
size is therefore 5000 (1000 for the overall image histogram, 1000 for
each spatial quadrant).

4.3. Evaluation of the bag-size and bag construction approaches

We first investigate whether there is a fixed bag size k that produces
effective results for each dataset. Extensive evaluation of choosing the
bag-size k and different MI-bag construction approaches over the
Google dataset [2] are given in Figs. 5 and 8. Below, we describe each
of the experiments in greater detail.

4.3.1. Fixed-size bag construction
We first evaluate the simplest bag construction method, i.e. using

fixed-size bags. For each category, we show the effect of using various
bag sizes k = 1, 2, …, 15 in terms of average precision (AP) in
Fig. 5(a). The results show that fixed-size bag construction is quite de-
pendent on the choice of k. We observe that the average precision is
mostly higher for the lower values of k (such as k = 1, …, 3), however,
there is no optimal valuewhich performs best for each of the categories.
Moreover, the performance fluctuates quite rapidly based on the choice
of k. This is not surprising, since for each image query, the relevancy of
the initial retrieved ranking list is quite versatile and dependent on
many factors of used text-based retrieval scheme. Example initial rank-
ing lists and fixed-size bags formedwith k=3 can be seen in Fig. 6. We
see that for some choice of k, the re-ranking performance increases, this
is due to the generation of more suited MI-bags. On the contrary, for
some choice of k, the performance decreases and this is due to the
increased noise content in the MI-bags or decreased number of bags
that is used as an input to the MIL algorithm. Since there are no explicit
r MIL instance embedding step, and BoW representations are used either in standard or in

Guitar Leopard Motorbike Wrist watch Mean

78.18 71.15 90.41 100 90.0
89.58 62.71 95.65 100 92.2
82.69 75.51 97.06 100 93.3
84.31 67.27 95.65 100 91.4



Table 3
Average Precision: Parameter optimization and bestmethod. ed: Euclidean distance forMILES, ed-sqrt: Euclidean distance forMILESwith sqrt of BoWhistograms, chi: chi-square distance
for MILES, and chi-sqrt: chi-square distance for MILES with sqrt of BoW histograms.

D BoW Airplane Car_rear Face Guitar Leopard Motorbike Wrist watch Mean

euc normal 71.56 80.78 70.31 66.56 64.58 83.05 90.75 75.38
euc Hellinger 68.19 82.22 74.39 71.81 60.62 86.56 92.16 76.56
chi normal 68.40 83.03 73.49 72.02 64.10 87.00 92.72 77.25
chi Hellinger 72.11 83.05 73.04 73.04 61.81 85.46 92.95 77.35
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labels or user feedback, it is not possible to select the optimal k for each
query.

4.3.2. Dynamic-size bag construction
In dynamic bag construction,we divide the retrieved list ofN images

to subsets of size N/2 and for each subset, the size of the MI-bag is
incremented by 1 (i.e. γ = N/2 and σ= 1). Fig. 5(b) shows the perfor-
mance of this method using varying k. In this figure, as with the case of
fixed-size bags, the performance is highly sensitive to the choice of k.
However, especially for some values of k, the results are better than
using fixed-size bags. This result is in accordance with our initial obser-
vation that the retrieved list of images tends to contain relevant images
ranked higher in the list, whereas the lower portions of the retrieval list
contain images that are less relevant. Since the frequency of seeing rel-
evant images decreases aswemove down the list, increasing theMI-bag
size affects the performance positively.

For dynamic-size bag construction, we evaluate the choice of σ
(amount of increase in each subinterval) and γ (the interval size). The
results are given in Table 1 and in Fig. 7, respectively. In Table 1, we
look into the effect of increasing the bag sizes as we move further
down the initial retrieval list. As these results show, in our experiments,
we observe no significant trend related to the choice of σ. Overall, in-
creasing the bag size is more effective compared to using fixed-size
bags, whereas using gradual increments is likely to be more promising.
Based on this observation, we set σ=1 for the rest of the experiments.

In Fig. 7, we show the effect of varyingγ intervals, where the retriev-
al list is divided into N/2, N/3 and N/4 intervals and in each interval the
bag size is incremented by 1.We observe that,γ=N/2 produces slightly
better results, thus set γ = N/2 for the rest of the experiments.

4.3.3. Sliding window bag construction
Sliding window (SW) approach for constructing MI-bags can be

used with both fixed-size bags and dynamic-size bags. For the case
with the fixed-size bags, the results are given in Fig. 5(c). From this fig-
ure, we observe that SW approach is less affected from the choice of k
compared to fixed-size or dynamic-size bag construction methods. On
the other hand, still, there is no global k that is optimal for every
query. In Fig. 5(d), the results when sliding window approach is used
with dynamic-size (dynamic-SW) bags are presented. We observe a
similar trend in these results.

Fig. 8 compares the performance of all the four bag construction
methods on different queries in Google [2] dataset. As it can be seen,
amongst all four bag construction approaches, the fixed-size bag
Table 4
Clustering-based MI-bag construction performance on Fergus [2] is given. Here, precisions (%)
with k = 15. Overall, using ensemble of MI-classifiers that are learned upon bags of different s

Airplane Car_rear Face Guitar

k = 5 64.8 91.1 86.7 45.8
k = 10 77.8 95.4 90.7 47.8
k = 15 83.3 95.4 88.6 71.7
k = 20 81.4 93.2 95.1 37.7
Ensemble 94.6 95.4 100 45.3
construction performs the worst. The best performance is achieved by
SW approach either with fixed or dynamic-size bags. Fig. 9 shows the
mean performance of those methods with respect to varying k. Again,
for different choices of k, either SW or dynamic-SW approach performs
the best. We also observe that the performance is relatively higher for
lower k values. This implies that, as the bag size increases, the amount
of noise present in each bag becomes more dominant and this situation
affects classification performance in a negative way.

In order to investigate the bag construction process in more detail,
we also present the percentage (Fig. 9) and the total number of bags
(Fig. 9) that are indeed positive. For small k, the ratio of actual positive
bags to the total number of constructed positive bags is also small. As
the bag size increases, more of the constructed bags become positive
since it is more likely for a large bag to be positive — e.g., if there is
only one bag that includes all the retrieved images, the bag will be pos-
itive even if the returned images contains only one relevant image.
However, in our experiments we observe that our algorithm is much
successful using smaller kwhere k= 1… 5. For small k, the total num-
ber of bags, as shown in Fig. 9 is higher, and MILES algorithm benefits
from using a large number of positive bags in training.

4.3.4. Using ensembles of MIL classifiers
The results show that the re-ranking performance is quite affected

by the choice of k parameter. Choosing the optimal k parameter is not
feasible, since our method does not use any supervision or user feed-
back. In order to deal with this issue, we propose to train multiple MI
classifiers that work on bags of varying sizes. Ultimately, the responses
of these classifiers are combined for final decision. In this way, we
bypass the need of choosing the bag size and reduce the number of
parameters that needs to be tuned.

The results of using such ensemble classifiers are shown in Fig. 11.
From these results, we observe that combining multiple classifiers pro-
duces more effective re-ranking results, and on average, 1% to 5% point
precision gain is achieved as opposed to using single MI-classifiers with
a particular choice of bag size. The best performing method in Google
dataset is using sliding window with fixed-size bags, where the bag
size is k ∈ 1 … 5. Using this range seems to perform the best for all
methods in our experiments, therefore, we construct multiple bags of
size 1 to 5 in the rest of the experiments.

4.3.5. Evaluation of distance function and BoW representation
We further evaluate the effect of the distance function used in

instance embedding step of the MILES classifier, i.e. D function in
at 15% recall rate are reported. The best performance of single sized MI-bags are achieved
izes gives better performance.

Leopard Motorbike Wrist watch Mean

66.1 94.3 100 78.4
61.7 90.4 95.2 79.8
52.1 85.7 93.1 81.4
60.7 85.7 83.3 76.7
60.7 94.3 97.6 83.9



Table 5
Comparison to state-of-the art on Google dataset [2]. In this table, precisions (%) at 15% recall are reported. The “good” and “intermediate” images are treated as positive, whereas the
“junk” images are considered as negative. The highest performance is shown in bold.

Airplane Car_rear Face Guitar Leopard Motorbike Wrist watch Mean

Google 70.0 69.5 43.8 56.6 66.1 72.5 88.9 66.8
SVM [11] 58.5 N/A N/A 70.0 49.6 74.8 98.1 70.2
WsMIL [27] 100 81 57 52 66 79 95 75.7
MIL-CPB [23,22] – – – – – – – 85.6
PMIL [22] 100 75.3 89.9 82.7 86.2 76.6 95.7 86.6
Ours 100 100 97.5 82.7 75.5 97.1 100 93.3

Table 6
Comparison to state-of-the art on Google dataset [2]. In this table, precisions (%) at 15% recall are reported. Here, only images with “Good” label are treated as positive, whereas the
“intermediate” and “junk” labeled images are considered as negative. The best performance is shown in bold.

Airplane Car_rear Face Guitar Leopard Motor bike Wrist watch Mean

Google 50 41 19 31 41 46 70 43
SVM [11] 35 – – 29 50 63 93 54
LogReg [3] 65 55 72 28 44 49 79 56
WsMIL [27] * * * * * * * 58.9
[2] 57 77 82 50 59 72 88 69
[8] 86 100 75 58 63 79 100 80
LDA [5] 100 83 100 91 65 97 100 91
Ours 100 100 97.5 82.7 47.1 89.8 100 88.2

Table 7
Comparisons to state-of-the art on Web Queries dataset [3] with
respect to the mean average precisions (MAPs).

Method MAP

Search engine 56.99
[3](Visual only) 64.9
BLVS [28] 67.0
[3](Visual + textual) 67.3
Deep contexts [29] 70.5
SpecFilter + MRank [8] 73.76
Ours 71.08
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Eq. (1). The precisions at recall 15% and average precisions are present-
ed in Tables 2 and 3, respectively. The experiments show that when
Euclidean distance is used, using the square rooted BoW feature vector,
which is equivalent to Hellinger kernel over BoWvectors [26], produces
better results. Using chi-square distance with standard BoW represen-
tation yields the highest precision value at recall 15%. Note that using
chi-square distance with square rooted BoW features yields slightly
higher average precision.

4.4. Comparison to state-of-the-art

In order to evaluate our method's performance with respect to the
existing approaches in the literature, we first compare our algorithm
to the clustering-based bag formation method, since a number of stud-
ies [23,5] have benefitted from clustering to find the most dominant
pattern amongst the retrieval list. For this evaluation, in a similar setting
to [23], we set number of clusters tom= ⌈(T/k)⌉where k=5, 10, 15, 20
represents the bag size and T is the total number of images for a text
query. Using this setting, we applied k-means clustering over the initial
retrieval list and use the clusters that includes ≥k images as the MI-
bags. Over these bags, we learned MILES classifiers. Finally, we employ
ensemble learning using three classifiers obtained for different bag
sizes. In our evaluation, we have used the same negative set and best
settings that are used in our best method.

The clustering-based results are given in Table 4. The best results are
achieved when the k= 15, i.e., when the clusters that have 15 or more
elements are used as MI-bags. As it can be seen, using ensembles that
are formed with different bag sizes outperform using single MI-
classifiers, achieving a precision of 83.9 as opposed to 81.3. Ourmethod,
on the other hand, achieves a precision of 93.3 on this dataset, signifi-
cantly outperforming the clustering-based bag formation. This may be
due to the small number of bags presented to the MI-learning as the
result of clustering. FromMIL perspective, clusteringmany good images
togethermay decrease the applicability of aMI-learner. If all positive in-
stances of a query is clustered together into a single good cluster, then
there would be a single bag to train upon. This may reduce the effect
of the MIL classifier, as it would look for a consistent pattern between
bags. We also observe this case in Fig. 10, when the bag size k is small,
i.e. in the presence of more training bags, the performance of our learn-
ing framework is higher.

Next, we compare our approach to state-of-the-art approaches both
on Fergus and on Web Queries datasets. In Tables 5 and 6, the
comparisons for the Fergus dataset are given. In this table, Ours indi-
cates the results ensembles of MI classifiers with k = 1 … 5 where the
MI-bags are constructed via sliding window (SW) with fixed size bags,
since this method performs the best amongst the four alterna-
tives. Chi-square distance is used for MIL instance embedding
stage and L2-regularized linear SVMs are used over the embedding
space.

In the literature, there are two different evaluation setups for this
dataset. In the first setting (results in Table 5), both the “Good” and
“Intermediate” images are taken to be positive, and “junk” images are
considered to be negative, whereas in the second setting (results in
Table 6), only “Good” images are considered to be positive. We believe
that, both “Good” and “Intermediate” images should be considered as
positive, since “Intermediate” images are also related to the keyword
category as described in [2]; they just contain lower quality images
with possible occlusions and substantial image noise.

As the results indicate, our method achieves superior performance
and is able to identify images of the queried concept in “Intermediate”
quality images as well as in “Good” images. This demonstrates that,
our method is able to identify queried concept in spite of the noise,
low quality or occlusions. In Table 6, when only “Good” images are con-
sidered to be positive, the performance is slightly lower; this is probably
due to the related patterns discovered in some “Intermediate”-labeled
images being ranked higher.

InWeb Queries dataset, we also employ ensembles of MIL classifiers
learned over multiple bags, constructed by sliding window approach,
where k = 1 … 5. Euclidean distance is used for MIL embedding stage.
In this dataset, since the modalities within the queries are higher,



a) Average Precision of Google vs Ours b) Average Precision Intervals

Fig. 12. a) Comparison of ourmethodwrt search engine in terms of individual query APs inWebQueries dataset.We observe that formost of the queries, ourmethod provides higher APs.
b) In the result of our method, the distribution of the query APs are shown. Approximately half of the queries have APs ≥ 80.
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SVMswithRBF kernel tend to bemore effective. Table 7 shows the over-
all results. Our method achieves a MAP of 71.08% on this dataset, which
is comparable to state-of-the-art.

We further evaluate our method's performance with respect to
the initial search engine ranking in Fig. 12. Fig. 7 shows the average
precisions (AP) of our re-ranking method as opposed to their coun-
terpart search engine ranking APs. Out of 353 queries of Web Queries
dataset, the AP has degraded in only 14 queries when using our re-
ranking method, andmost of the time, our method provides superior
ranking compared to the search engine. For some queries that have
APs as low as 0.2 or 0.3 in the initial search engine ranking, our meth-
od is able to improve the AP to 0.80 and 0.90. Note that, our method
does not make use of any auxiliary data, textual data or explicit de-
tector/classifier; it relies solely on the visual content and the initial
Fig. 13.Ourmethod's average precision vs. the percentage of positive images returned by the sea
very low for some query (shown in yellow), the classifiers are not able to form reliablemodels f
not include many examples, the AP can also be low (queries shown in green). Another interes
red), the multiple instance learners can focus on the unintended dominant set, and as a result,
ranking of the images. From Fig. 7, we also observe that most of the
queries fall into the high precision range, approximately half of the
queries have APs greater than 0.8. In Fig. 14, some qualitative exam-
ples for the re-ranked retrieval lists are given for the Web Queries
dataset. Note that our method is able to successfully re-rank various
images of queried concept.

4.4.1. Cases of failure
In order to gain further insight about our method's performance, we

look at the individual query performance with respect to the positive
instance percentage for the queries. Fig. 13 depicts this evaluation. The
linear correlation between the two axes in this graph is rather expected
for all methods, since as the percentage of positives increases in the set,
the average precision also increases. We observe that our method
rch engine.When thenumber of actual positive instances returned by the initial retrieval is
or the queried concepts. Similarly, if the returned image list is relatively sparse, i.e. if it does
ting observation is that, when the queries include more than one dominant set (shown in
the re-ranked list can have a lower AP.



Fig. 14. Examples of the retrieval order obtained by ourmethod. Top 10 images for each query are shown. The queries are (from top to bottom): 4 × 4 (1st row), Mickey (2nd row), Times
Square (3rd row), Italy map (4th row), arc de triomphe (5th row), tomato (6th row), piano (7th row), cat (7th row), dollar (8th row), Dome Florence (9th row), Leonardo di Caprio (10th
row), crocodile (11th row), and shark (12th row). The irrelevant images for each query are marked with red.

360 F. Sener, N. Ikizler-Cinbis / Image and Vision Computing 32 (2014) 348–362
performs poorly when the ratio of positive instances in the ranking is
very small; the AP is especially low when the number of positive
instances falls below 3. In this case, the MI classifiers cannot perform
well, since there are relatively very few examples to learn from.

We also observe that, for queries that have one or more dominant
groups, the performance can be relatively poor. For example, in “Jack
Black” query, the dominant set is the black jack table and the multiple
instance bags are dominated by such images. Similarly, for “Orsay
Museum” query, most of the images show the interior of the museum,
whereas only the exterior of the museum is labeled as positive. Our
approach tends to rank the interior set of images higher in the retrieval
list, and therefore the performance of those queries is inferior. More
examples of such cases, where there are more than one dominant
group in the query are shown in Fig. 15.
5. Conclusion

In this work, we propose a simple yet effective approach based on
Multiple Instance Learning for the problemof image re-ranking. Our ap-
proach relies on the construction of multiple candidate MI-bags based
on the retrieval order of the images. Assuming that the initial retrieval
list contains images of interest, our approach constructs multiple bags
and learns multiple MI-classifiers over these bags. Then, the images
are re-ranked based on the decision scores of the resulting ensemble
of MI-classifiers. Our approach is shown to perform quite successfully
compared to the state-of-the-art and significantly outperforms the
initial ranking list of produced by the search engines.

Our approach does notmake use of any explicit feedback, or auxiliary
data such as surrounding text or additional training data. The presented

image of Fig.�14


Fig. 15. Examples for the cases in which our method performs relatively poor. For each query, the positive example is given to the left of the list, and to the right is the re-ranked order
obtained by our algorithm. The queries are (from top to bottom): Jack Black (1st row), Donald Duck (2nd row), leeks (3rd row), logo apple (4th row), Orsay museum (5th row), and
Parc des Princes (6th row). As it can be seen, in these queries, there is more than one dominant visual case in the retrieval list, and our method focuses on the more frequent one. For
example, forOrsaymuseumquery, the images returned aremostly from the inside of themuseum,which are labeled as negative for that query. Similarly, for the “leek” query, the returned
images mostly consist of dishes made with leek, which is also another dominant visual occurrence and also labeled as negative.
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method only relies on the visual content of the retrieved images. Given
the simplicity of the approach, it can easily be incorporated to more
sophisticated schemes, where more complex learning algorithms
or more complex visual features are utilized. Considering additional
modalities of data can also be explored as a future direction.
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