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1 Introduction

Studies of the recently discovered spin-0 particle h [1–3], with a mass of 125 GeV and

with properties consistent with the standard model (SM) Higgs boson [4], severely con-

strain SM extensions that incorporate scalar sectors [5–7]. There are many well-motivated

models that predict the existence of decays of the Higgs boson to non-SM particles [8].

Without making assumptions about the h(125) couplings to quarks, leptons, and vector
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bosons, other than that the scalar sector is composed only of doublets and singlets, the

ATLAS and CMS collaborations at the CERN LHC exclude at a 95% confidence level

(CL) branching fractions of the Higgs boson to beyond SM (BSM) particles, B(h→ BSM),

greater than 49% and 52%, respectively [5, 6]. Branching fractions as low as 34% can be

excluded at 95% CL by combining the results obtained by the two experiments [4, 9]. The

LHC experiments are expected to be able to constrain branching fractions to new particles

beyond the 5–10% level using indirect measurements [10–12]. In this context, it is inter-

esting to explore the possibility of decays of the SM-like Higgs particle to lighter scalars or

pseudoscalars [8, 13–15].

The SM Higgs boson has an extremely narrow width relative to its mass, because of its

exceedingly small Yukawa couplings to the SM fermions it can decay to. This suggests that

any non-SM final state is likely to have a larger partial width, and therefore a non-negligible

branching fraction, compared to decays to SM particles [8]. Examples of BSM models that

provide such additional decay modes include those in which the Higgs boson serves as a

portal to hidden-sector particles (e.g. dark matter) that can couple to SM gauge bosons

and fermions [16]. Other models have extended scalar sectors, such as those proposed in

two-Higgs-doublet models (2HDM) [17–21], in the next-to-minimal supersymmetric model

(NMSSM) [22, 23], or in other models in which a singlet Higgs field is added to the SM

doublet sector. The NMSSM is particularly well motivated as it provides a solution to

the µ problem associated with supersymmetry breaking, and can provide a contribution to

electroweak baryogenesis [24, 25].

Both 2HDM and NMSSM may contain a light enough pseudoscalar state (a), which

can yield a large h → aa branching fraction. In 2HDM, the mass of the pseudoscalar

boson a is a free parameter, but, if ma < mh/2, fine-tuning of the 2HDM potential is

required to keep the branching fraction B(h → aa) consistent with LHC data [26]. In

NMSSM, there are two pseudoscalar Higgs bosons, a1 and a2. Constraints from the Peccei-

Quinn [27, 28] and R [23, 29] symmetries imply that the lighter a1 is likely to have a mass

smaller than that of the h boson [25], and, since it is typically a singlet, suppression of

B(h→ a1a1) to a level compatible with observations is a natural possibility. The minimal

supersymmetric model (MSSM) contains a single pseudoscalar (A), but the structure of

the MSSM Higgs potential is such that its mass cannot be below about 95 GeV when the

scalar (to be identified with h) has mass close to 125 GeV and is SM-like as implied by the

LHC data [30]. The phenomenology of decays of the observed SM-like Higgs boson to a

pair of lighter Higgs bosons is detailed in refs. [8, 31–38] for 2HDM, in refs. [8, 39–42] in

the context of NMSSM or NMSSM-like, and in refs. [8, 43, 44] in the general case of adding

a singlet field to the SM or to a 2HDM prescription.

The 2HDM contains two Higgs doublet fields, Φ1 and Φ2, which, after symmetry

breaking, lead to five physical states. One of the free parameters in the 2HDM is tan β, the

ratio between the vacuum expectation values for the two doublets, expressed as tan β =

v2/v1. The lightest scalar of the 2HDM is compatible with the SM-like properties of

the discovered boson in the limit where the other scalars all have large masses (decoupling

limit), and also in the alignment limit [45], in which the neutral Higgs boson mass eigenstate

is approximately aligned with the direction of the vacuum expectation values for the scalar
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Type-1 Type-2 Type-3 (lepton-specific) Type-4 (flipped)

Up-type quarks Φ2 Φ2 Φ2 Φ2

Down-type quarks Φ2 Φ1 Φ2 Φ1

Charged leptons Φ2 Φ1 Φ1 Φ2

Table 1. Doublets to which the different types of fermions couple in the four types of 2HDM

without FCNC at lowest order.

Type-1 Type-2 Type-3 (lepton-specific) Type-4 (flipped)

Up-type quarks cotβ cotβ cotβ cotβ

Down-type quarks − cotβ tanβ − cotβ tanβ

Charged leptons − cotβ tanβ tanβ − cotβ

Table 2. Ratio of the Yukawa couplings of the pseudoscalar boson a of the 2HDM relative to those

of the Higgs boson of the SM, in the four types of 2HDM without FCNC at lowest order.

field. Approximate alignment, which is sufficient for consistency with LHC data, is possible

for a large portion of parameter space [45], particularly when the pseudoscalar boson has

sufficiently small mass to make h→ aa decays possible.

At lowest order, there are four types of 2HDM without flavor-changing neutral currents

(FCNC), which can be characterized through the coupling of each fermion to the doublet

structure, as shown in table 1. The ratios of the Yukawa couplings of the pseudoscalar

boson of the 2HDM relative to those of the Higgs boson of the SM are functions of tan β

and of the type of 2HDM, and are given in table 2. Type-1 and type-2 models are the ones

commonly considered, and the latter are required in supersymmetric models. In these two

cases, the leptons have the same couplings as the down-type quarks. In type-3 2HDM, all

quarks couple to Φ2 and all leptons couple to Φ1, with the result that all leptonic or quark

couplings of the pseudoscalar a are proportional to tan β or cotβ, so that for large tan β

the leptonic decays of a dominate.

As implied previously, a complex SU(2)L singlet field S can be added to 2HDM; such

models are called 2HDM+S, and include the NMSSM as a special case. If S mixes only

weakly with the doublets, one of the CP-even scalars can again have SM-like properties.

The addition of the singlet S leads to two additional singlet states, a second CP-odd scalar

and a third CP-even scalar, which inherit a mixture of the fermion interactions of the Higgs

doublets. After mixing among the spin-0 states, the result is two CP-odd scalars, a1 and

a2, and three CP-even scalars, h1, h2, and h3. Of the latter, one can be identified with the

observed SM-like state, h. The branching fraction of the h boson to a pair of CP-even or

CP-odd bosons can be sizeable, leading to a wide variety of possible exotic h decays. In the

2HDM and its extensions, the ratio of the decay widths of a pseudoscalar boson to different

types of leptons depends only on the masses of these leptons. In particular, for decays into

muons and τ leptons, and a pseudoscalar boson of mass ma, we can write [8, 46]:

Γ(a→ µ+µ−)

Γ(a→ τ+τ−)
=
m2
µ

√
1− (2mµ/ma)2

m2
τ

√
1− (2mτ/ma)2

. (1.1)
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This kind of relation can also be written for electrons and muons. In models where the

pseudoscalar boson a decays only to leptons, its branching fraction to τ leptons is greater

than 99% for pseudoscalar boson masses above 5 GeV. This is a good approximation for

pseudoscalar masses below twice the bottom quark mass, or for type-3 2HDM, assuming

loop-induced decays such as a→ gg are ignored. In type-1 and -2, and their extensions, a

similar relation exists between the partial decay widths of the pseudoscalar boson to leptons

and to down-type quarks, for example, for muons and b quarks, we can write [8, 46]:

Γ(a→ µ+µ−)

Γ(a→ bb)
=

m2
µ

√
1− (2mµ/ma)2

3m2
b

√
1− (2mb/ma)2 (1 + QCD corrections)

. (1.2)

The factor of three in the denominator reflects the number of b quark colors, and per-

turbative quantum chromodynamic (QCD) corrections are typically '20% [8]. In models

of type-3 or -4, however, the ratio of the partial decay widths depends on tan β.

Three searches for decays of the 125 GeV Higgs boson to pairs of lighter scalars or

pseudoscalars are described in this paper, where, for notational simplicity, the symbol a

refers to both the light scalar and light pseudoscalar:

• h→ aa→ 4τ ,

• h→ aa→ 2µ2b,

• h→ aa→ 2µ2τ .

The first analysis focuses on light boson masses above twice the τ mass, using dedicated

techniques to reconstruct the Lorentz-boosted τ lepton pairs. The two other analyses focus

on masses large enough that the decay products are well separated from each other, and

below half of the Higgs boson mass. The production of the Higgs boson is assumed to

be SM-like. The results of these searches are interpreted in the 2HDM and 2HDM+S

contexts, together with the two other analyses described in greater detail in the references

given below:

• h→ aa→ 4µ [47];

• h → aa → 4τ , using a different boosted τ lepton reconstruction technique than the

analysis with the same final state listed above [48].

These analyses are based on proton-proton collision data corresponding to an inte-

grated luminosity of 19.7 fb−1, recorded by the CMS experiment at the LHC at a center-

of-mass energy of 8 TeV. The D0 Collaboration at the Fermilab Tevatron published results

for h → aa → 2µ2τ and h → aa → 4µ searches for pseudoscalar masses ma between

3.5 and 19 GeV [49], while ATLAS reported a search for h → aa → 2µ2τ decays with

ma between 3.7 and 50 GeV, using special techniques to reconstruct Lorentz-boosted τ

lepton pairs [50]. Additionally, CMS performed searches for direct production of light

pseudoscalars with mass between 5.5 and 14 GeV that decay to pairs of muons [51], and

with mass between 25 and 80 GeV that decay to pairs of τ leptons [52].
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2 The CMS detector, event simulation, and reconstruction

The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal

diameter, providing an axial magnetic field of 3.8 T. Within the solenoid volume are a

silicon pixel and strip tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL),

and a brass and scintillator hadron calorimeter (HCAL), each composed of a barrel and

two endcap sections. Extensive forward calorimetry complements the coverage provided by

the barrel and endcap detectors. Muons are detected in gas-ionization chambers embedded

in the steel flux-return yoke outside the solenoid.

The first level of the CMS trigger system, composed of specialized hardware processors,

uses information from the calorimeters and muon detectors to select the most interesting

events in a fixed time interval of less than 4 µs. The high-level trigger processor farm further

decreases the event rate from around 100 kHz to less than 1 kHz, before data storage. A

detailed description of the CMS detector, together with a definition of the coordinate

system used and the relevant kinematic variables, can be found in ref. [53].

Samples of simulated events are used to model signal and background processes.

Drell-Yan, W+jets, tt, and diboson events are simulated with MadGraph 5.1.3.30 [54]

using the matrix element calculation at leading-order (LO) precision in QCD; pythia

6.426 [55] is used for parton showering, hadronization, and most particle decays; and

tauola 27.121.5 [56] is used specifically for τ lepton decays. Single top quark events

produced in association with a W boson are generated using powheg 1.0 r1380 [57–60],

interfaced to pythia for parton showering. Signal samples are generated with pythia

using its built-in 2HDM and NMSSM generator routines. Background and signal sam-

ples use the CTEQ6L [61] parton distribution functions (PDFs). Minimum-bias collision

events generated with pythia are added to all Monte Carlo (MC) samples to reproduce

the observed concurrent pp collisions in each bunch crossing (pileup). The average number

of pileup interactions in 2012 data was 20. All generated events are passed through the

full Geant4 [62, 63] based simulation of the CMS apparatus and are reconstructed with

the same CMS software that is used to reconstruct the data.

Event reconstruction relies on a particle-flow (PF) algorithm, which combines infor-

mation from different subdetectors to reconstruct individual particles [64, 65]: neutral and

charged hadrons, photons, electrons, and muons. More complex objects are reconstructed

by combining the PF candidates. A deterministic annealing algorithm [66, 67] is used to

reconstruct the collision vertices. The vertex with the maximum sum in the squared trans-

verse momenta (p2T) of all associated charged particles is defined as the primary vertex.

The longitudinal and radial distances of the vertex from the center of the detector must

be smaller than 24 and 2 cm, respectively.

Muons are reconstructed by matching hits in the silicon tracker and in the muon

system [68]. Global muon tracks are fitted from hits in both detectors. A preselection

is applied to the global muon tracks, with requirements on their impact parameters, to

suppress non-prompt muons produced from the pp collision or muons from cosmic rays.

Electrons are reconstructed from groups of one or more associated clusters of energy

deposited in the ECAL. Electrons are identified through a multivariate (MVA) method [69]

trained to discriminate electrons from quark and gluon jets [70].
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The muon and electron relative isolation is defined as:

Irel =

 ∑
charged

pT + max

0,
∑

neutral

pT +
∑
γ

pT −
1

2

∑
charged,PU

pT

 /pT, (2.1)

where ΣchargedpT is the sum of the magnitudes of the transverse momenta of charged

hadrons, electrons and muons originating from the primary vertex, ΣneutralpT is the corre-

sponding sum for neutral hadrons and Σγ for photons, and Σcharged,PUpT is the sum of the

transverse momentum of charged hadrons, electrons, and muons originating from other re-

constructed vertices. The particles considered in the isolation calculation are inside a cone

with a radius ∆R =
√

(∆η)2 + (∆φ)2 = 0.4 around the lepton direction, where ∆η and ∆φ

are the differences of pseudorapidity and azimuthal angle in radians between the particles

and the lepton direction, respectively. The factor 1
2 originates from the approximate ratio

of the neutral to charged candidates in a jet. In the search for h → aa→ 4τ , the isolation

criteria are extended to veto the presence of reconstructed leptons within the ∆R = 0.4

cone, as detailed in section 3.

Jets are reconstructed by clustering charged and neutral particles using an anti-kT
algorithm [71] with a distance parameter of 0.5. The reconstructed jet energy is corrected

for effects from the detector response as a function of the jet pT and η. Furthermore,

contamination from pileup, underlying events, and electronic noise is subtracted on a sta-

tistical basis [72]. An eta-dependent tuning of the jet energy resolution in the simulation is

performed to match the resolution observed in data [72]. The combined secondary vertex

(CSV) algorithm is used to identify jets that are likely to originate from a b quark (”b jets”).

The algorithm exploits the track-based lifetime information together with the secondary

vertices associated with the jet to provide a likelihood ratio discriminator for the b jet iden-

tification [73]. A set of pT-dependent correction factors are applied to simulated events to

account for differences in the b tagging efficiency between data and simulation [73].

Tau leptons that decay into a jet of hadrons and a neutrino, denoted τh, are identi-

fied with a hadron-plus-strips (HPS) algorithm, which matches tracks and ECAL energy

deposits to reconstruct τ candidates in one of the one-prong, one-prong + π0(s), and

three-prong decay modes [74]. Reconstructed τh candidates are seeded from anti-kT jets

with a distance parameter of 0.5. For each jet, τ candidates are constructed from the

jet constituents according to criteria that include consistency with the vertex of the hard

interaction and consistency with the π0 mass hypothesis. Two methods for rejecting quark

and gluon jets are employed, depending on the analysis. The first is a straightforward se-

lection based on the isolation variable, while the second uses a multivariate analysis (MVA)

discriminator that takes into account variables related to the isolation, to the transverse

impact parameter of the leading track of the τh candidate, and to the distance between

the τ production point and the decay vertex in the case of three-prong decay modes [74].

MVA-based discriminators are implemented to reduce the rates at which electrons or muons

are misidentified as τh candidates. Muons or electrons from leptonic decays of τ leptons

are indistinguishable from prompt leptonic decay products of W and Z bosons and are

reconstructed as described earlier.
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The missing transverse energy, Emiss
T , is defined as the magnitude of ~pmiss

T , which

is the negative sum of ~pT of all PF candidates. The jet energy calibration introduces

corrections to the Emiss
T measurement. The Emiss

T significance variable, which estimates the

compatibility of the reconstructed Emiss
T with zero, is calculated via a likelihood function

on an event-by-event basis [75].

As part of the quality requirements, events in which an abnormally high level of noise

is detected in the HCAL barrel or endcap detectors are rejected [76].

3 Search for h → aa → 4τ decays

This analysis considers 4τ final states arising from h → aa → 4τ decay, where the Higgs

boson is produced via gluon fusion (ggh), in association with a W or Z boson (Wh or Zh),

or via vector boson fusion (VBF). Light boson masses are probed in the range 5−15 GeV,

where the branching fraction of the light boson to τ leptons is expected to be large in

certain 2HDM models. To illustrate the performance of the analysis, a mass of 9 GeV is

chosen as a benchmark model throughout this section; it represents a type-2 2HDM variant

in which the pseudoscalar branching fraction to τ leptons is dominant. The large Lorentz

boost of the a boson at such light masses causes its decay products to overlap. To maximize

the sensitivity to overlapping τ leptons, a special boosted ττ pair reconstruction technique

is employed, based on the specific final state in which one τ lepton decays to a muon. This

analysis is performed in two search regions based on the transverse mass (mT) formed from

a high-pT muon and the pmiss
T . These two regions are designed to distinguish between the

Wh production mode and other modes (primarily ggh) without significant Emiss
T .

3.1 Event selection

Events considered in this search are selected with a single muon trigger that requires the

presence of an isolated muon with pT > 24 GeV and |η| < 2.1. This analysis specifically

targets the event topology with one isolated high pT muon, and at least one boosted ττ

pair in which one τ lepton decays to a muon and neutrinos (τµ). No assumption is made

on the decay of the second τ lepton in the boosted ττ pair. Because of the features of

this topology, it is convenient to define the “trigger muon” candidate, µtrg, referring to the

isolated high pT muon triggering the event, and the “τµτX object”, aiming to reconstruct

the decay products of the boosted ττ pair. This topology is characteristic of two classes of

signal events:

1. The Higgs boson is produced through gluon fusion or vector boson fusion and decays

as h→ a(→ τµτX)a(→ τµτX). When the τµ from the decay of one a has both a high

pT and is well separated from the τX arising from the same decay, it will satisfy the

trigger muon criteria. The other ττ pair is reconstructed as a τµτX object.

2. The Higgs boson is produced through associated production with a W or a Z boson

that then decays to isolated muons. The Higgs boson decay considered here is h →
a(→ τµτX)a(→ τXτX). The muon from the W or Z decay is required to pass the trigger

– 7 –



J
H
E
P
1
0
(
2
0
1
7
)
0
7
6

criteria, one of the ττ pairs is reconstructed as a τµτX object, and no requirement is

applied to the second ττ pair.

The remainder of this subsection describes selection and reconstruction criteria for the

muon that fires the trigger, and for the τµτX object.

The reconstructed µtrg object must be located within ∆R < 0.1 of the isolated muon

reconstructed in the trigger system. It is also required to have pT > 25 GeV, |η| < 2.1,

be well reconstructed in both the muon detectors and the silicon tracker, have a high-

quality track fit, and be consistent with originating from the primary pp interaction in

the event. In addition, it must be isolated from other photons, hadrons, and leptons in

the detector. Isolation from photons and hadrons is enforced by requiring that the muon

relative isolation, as defined in eq. (2.1), is less than 0.12. To be isolated from other leptons,

the trigger muon is required to have no identified electrons (pT > 7 GeV, |η| < 2.5), muons

(pT > 5 GeV, |η| < 2.4, passing τµ criteria below), or τ leptons (pT > 10 GeV, |η| < 2.3,

passing modified HPS criteria, as described below) reconstructed within ∆R = 0.4 of the

trigger muon direction. The requirement of isolation from nearby leptons, in addition to

the isolation requirement of eq. (2.1), ensures that a trigger muon originating from a τ

lepton decay, where the τ lepton originates from a pseudoscalar decay, is well isolated from

the other τ lepton in the pseudoscalar decay pair. In this way, the high level trigger and

“trigger muon” identification criteria are efficient for low-pT τ decay muons expected to

pass the trigger in the ggh and VBF production modes, provided that τ leptons from the

pseudoscalar decay are well separated or one of the τ leptons has pT low enough not to affect

the isolation of the other τ lepton. The isolation requirements are also efficient for high-pT
isolated muons from W boson decays expected in the Wh associated production mode.

The muon from the τ lepton decaying via the muon channel (τµ) is required to have pT
> 5 GeV and |η| < 2.4, be well reconstructed in the silicon tracker, have a high-quality track

fit, be consistent with originating from the primary vertex in the event, and be separated

by at least ∆R = 0.5 from the trigger muon. Because no isolation requirement is placed

on the τµ candidate, it can be identified with high efficiency in the presence of a nearby

τ lepton. Overall, the trigger and τµ quality criteria are similar, but the τµ criteria are

optimized for low-pT non-isolated muons, while the trigger muon criteria are optimized for

high-pT isolated muons.

Since the final state in this analysis includes a pair of boosted τ leptons from pseu-

doscalar decay, the HPS algorithm is modified to maintain high efficiency for overlapping

τ leptons. All jet constituents are checked for the presence of τµ candidates as defined

above. Only jets that have at least one muon candidate passing the τµ criteria among

their constituents are used to seed the HPS reconstruction. Within these selected jets, the

muon is excluded from the set of jet constituents before running the HPS reconstruction

algorithm. The HPS reconstruction then proceeds as described in section 2, and the re-

sulting τ lepton is required to have pT > 20 GeV and |η| < 2.3. The combination of the

τµ and isolated HPS τ candidates resulting from this selection form the τµτX object as it

is designed to reconstruct boosted a → τµτX decays. The HPS τ candidate is referred to

as τX because no anti-electron or anti-muon discriminators are applied to it; although τ

– 8 –
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leptons decaying to electrons and muons can thus pass the HPS selection, the vast majority

('97%) of selected τ candidates in simulated h → aa samples are hadronically decaying

τ leptons. The modified HPS τ lepton reconstruction and isolation requirements have a

similar efficiency for h → aa decays as the standard HPS and isolation requirements have

for Z→ ττ decays.

This analysis requires at least one τµτX object, which reconstructs a single a → ττ

decay, per event. The τµτX object consists of a muon, one or three other charged particle

tracks, and zero or more neutral hadrons, and could therefore arise from misidentifying the

decay products of a bottom quark jet. To further distinguish τµτX objects from background,

the seed jet of the HPS reconstructed τX (excluding any identified τµ candidate) is required

not to be identified as a b jet.

3.2 Signal and background estimation

The main background contributions to this search arise from Drell-Yan dimuon pairs pro-

duced in association with jets, (W → µν) + jets, tt with muons in the final state, and

QCD multijet events. In order to reduce the Drell-Yan background, the trigger muon and

τX candidates are required to have the same sign (SS) of electric charge. To minimize back-

grounds with jets misidentified as τ candidates, the τµ and τX objects are required to have

opposite sign. The signal region is defined by events passing all the requirements described

above, as well as mµ+X ≥ 4 GeV, where mµ+X is the invariant mass calculated from the

four-vectors of the two components of the τµτX object. The choice of 4 GeV reduces the

expected background contribution by about 95%, while keeping approximately 75% of the

expected events in the case of the ggh benchmark 9 GeV pseudoscalar mass sample. Signal

acceptance is calculated from the simulated samples for masses between 5 and 15 GeV.

The expected signal acceptance is corrected using pT- and |η|-dependent scale factors to

account for known differences in the b veto efficiency between data and simulation [73].

Events are classified into two analysis bins depending on the value of the transverse

mass between the trigger muon momentum and the ~pmiss
T , defined as

mT =
√

2p
µtrg
T Emiss

T [1− cos ∆φ(µtrg, ~pmiss
T )], (3.1)

where ∆φ(µtrg, ~p
miss
T ) is the azimuthal angle between the trigger muon position vector and

~pmiss
T vector. The contribution of signal events for the different production modes in the

low-mT and high-mT bins for a representative pseudoscalar mass of 9 GeV, and assuming

B(h→ aa)B2(a→ τ+τ−) = 0.1, is given in table 3. For mT ≤ 50 GeV, ggh fusion produc-

tion accounts for about 85% of the expected signal, VBF accounts for another 10%, and

associated production accounts for the rest. For mT > 50 GeV, ggh and Wh productions

each account for about 40% of the expected signal and Zh and VBF productions account

for the rest. Dividing selected events in two mT categories increases the sensitivity to mod-

els (for example ref. [77]) where the ggh production rate would be modified with respect

to the SM expectation because of different Yukawa couplings of the fermions appearing in

the loop, whereas the Wh and Zh production rates would be similar as in the SM in the

case of the alignment limit of 2HDM.
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mT ≤ 50 GeV mT > 50 GeV

ggh 4.6± 0.3 0.8± 0.1

Wh 0.27± 0.02 0.70± 0.03

Zh 0.068± 0.005 0.19± 0.01

VBF 0.51± 0.03 0.09± 0.01

SM background 5.4± 1.0 (stat)+4.2
−4.6 (syst) 6.1± 1.6 (stat)+3.7

−3.6 (syst)

Observed 7 14

Table 3. Expected signal yields for the h → aa → 4τ process for a representative pseudoscalar

mass of 9 GeV, in both mT bins, assuming SM cross sections and B(h→ aa)B2(a→ τ+τ−) = 0.1,

in the context of the h→ aa→ 4τ search. Expected background yields as well as observed numbers

of events are also quoted. Only the statistical uncertainty is given for signal yields.

There are several mechanisms that result in τµτX misidentification, for example jets

with semileptonic decays, jets with double semileptonic decays, or resonances in b or light-

flavor jet fragmentation. It is impractical to simulate all backgrounds to the required

statistical precision. Therefore, the number of background events in the low-mT (high-

mT) signal region, denoted N
low-mT (high-mT)
bkg (mµ+X ≥ 4 GeV), is estimated independently

from three event samples. In each background estimation sample, the isolation energy

around the τX candidate is required to be between 1 and 5 GeV, as opposed to the signal

sample requirement of isolation energy less than 1 GeV. The three samples are:

1. Observed events passing all other signal selections;

2. Simulated Drell-Yan, W+jets, tt, and diboson events passing all other signal selec-

tions;

3. Observed events passing all other signal selections, but with inverted µtrg relative

isolation.

The background estimate from each sample is normalized to match the observed data

yield in the signal-free region with mµ+X < 2 GeV. The final background prediction in

the low-mT (high-mT) bin is taken as the arithmetic mean of the estimates from the three

background estimation samples with mT ≤ 50 GeV(mT > 50 GeV). The positive (negative)

systematic uncertainty is taken as the difference between the largest (smallest) of the three

plus (minus) its statistical uncertainty and the average. In the low-mT bin, the background

yield is estimated to be 5.4 ± 1.0 (stat)+4.2
−4.6 (syst) events, while in the high-mT bin it is

estimated to be 6.1± 1.6 (stat)+3.7
−3.6 (syst) events. The uncertainty on the background yield

is dominated by the limited statistical precision in the control samples, owing to the rare

final state being probed. This uncertainty is the dominant source of systematic error in

the interpretation of the results of this search in terms of an upper limit on the branching

fraction of the Higgs boson to light pseudoscalar states.

The relaxed τX isolation requirement common to each sample implies that these back-

ground estimation samples should be enriched in events with jets. Simulated samples of
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Figure 1. Comparison, for the h → aa → 4τ search, of mµ+X distributions for data (black

markers) and the misidentified jet background estimate (solid histogram) in the low-mT (left)

and high-mT (right) bins. Predicted signal distributions (dotted lines) for each of the four Higgs

boson production mechanisms are also shown; the distributions are normalized to an integrated

luminosity of the data sample of 19.7 fb−1, assuming SM Higgs boson production cross sections

and B(h → aa)B2(a → τ+τ−) = 0.1. The last bin on the right contains all the events with

mµ+X ≥ 4 GeV, which correspond to the numbers reported in table 3.

W+jets and tt events, in which the τµτX candidate arises from misidentified jets, have

been used to check that events with nonisolated τX candidates have the same kinematic

properties as those of the signal sample.

Figure 1 shows the estimated misidentified jet background, the search region data, and

simulations of the four signal production models for both mT bins. Seven and fourteen

events are observed in the low- and high-mT bins, respectively.

4 Search for h → aa → 2µ2b decays

The search for a new scalar in h → aa → 2µ2b decays is restricted to masses between 25

and 62.5 GeV. The upper bound is imposed by the kinematic constraint of mh = 125 GeV,

while there is a sensitivity loss for this search below the lower bound due to overlap between

the two b jets or the two muons arising from an increased boost of the pseudoscalars [78]. A

slightly wider pseudoscalar mass range is however used for the selection, the optimization

aiming at maximum expected signal significance, and the eventual background modeling.

In particular, the wider mass range ensures a good description of the background distribu-

tion over the entire search region, including regions near the boundaries. Events with an

invariant mass mµµ outside the range 20-70 GeV are discarded.

4.1 Event selection

In the search for h→ aa→ 2µ2b decays, events are triggered based on the presence of two

muons with pT > 17 GeV and pT > 8 GeV. For the offline selection, the leading muon pT
threshold is increased to 24 GeV, while the subleading muon pT must exceed 9 GeV. The

two muon candidates are required to have opposite electric charges and to be isolated. If
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Z/γ∗+jets (m`` > 10 GeV) tt (``) Other

Backgrounds 210± 35 22± 1 3± 1

Total 235± 35

Data 252

ma = 30 GeV ma = 40 GeV ma = 50 GeV ma = 60 GeV

Signal 1.18 0.97 1.11 1.49

Table 4. Expected signal and background yields, together with the number of observed events, for

the h→ aa→ 2µ2b search, in the range 20 ≤ mµµ ≤ 70 GeV. Signal yields are evaluated assuming

B(h → aa) = 10% and B(aa → µ+µ−bb) = 1.7 × 10−3, with the latter obtained in the context of

type-3 2HDM+S with tan β = 2.

more than one muon is found for a given sign, the one with the highest pT is selected. At

least two jets with pT > 15 GeV and |η| < 2.4 are required to satisfy b-tag requirements

that allow only O(1%) of the light quark jets to survive, for an efficiency of '65% for

genuine b jets. The Emiss
T significance of the event has to be less than 6. Events outside

the |mµµbb − 125 GeV| < 25 GeV window are discarded.

4.2 Signal and background estimation

As presented in table 4, the expected background yield estimated from simulation over

the whole mass range considered is 235± 35 events, dominated by Drell-Yan events in the

dilepton final state, followed by tt in dilepton decays, tt (``). This should be compared

with 252 events observed in data. To evaluate the signal yield, only the gluon fusion

Higgs boson production mechanism with the next-to-leading-order (NLO) cross section of

σggh ' 19.3 pb [79] is considered. Other SM Higgs production modes are found to contribute

less than 5% to the signal yield and are neglected. Assuming a branching fraction of 10%

for h → aa together with tan β = 2 in the context of type-3 2HDM+S, one can obtain

2B(a → bb)B(a → µ+µ−) = 1.7× 10−3 for ma = 30 GeV, where no strong dependence on

ma is expected for B(a→ ff), with f being a muon or a b quark [8]. In this scenario, about

one signal event is expected to survive the event selection discussed earlier.

The signal yield is extracted using a fit to the reconstructed mµµ distribution in data.

The signal shape is modeled with a weighted sum of Voigt profile [80] and Crystal Ball [81]

functions with a common mass parameter ma,

S(mµµ|w, σ, γ, n, σcb, α,ma) ≡ wV(mµµ|σ, γ,ma) + (1− w) CB(mµµ|n, σcb, α,ma). (4.1)

The Voigt profile function, V(mµµ|σ, γ,ma), is a convolution of Lorentz and Gaussian

profiles with γ and σ being the widths of the respective functions, both centered at ma.

The Crystal Ball function, CB(mµµ|n, σcb, α,ma), has a Gaussian core centered at ma with

a width of σcb together with a power-law low-end tail A (B − (mµµ −ma)/σcb)
−n below a

certain threshold α. The combination introduced in eq. (4.1) is found to describe well the

mµµ distribution in the simulated signal samples.
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The initial values for the signal model parameters are extracted from a simultaneous fit

of the model to simulated signal samples with different pseudoscalar masses. All parameters

in the signal model are found to be independent of ma except σ and σcb, which show a

linear dependence. The only floating parameter in these linear models are the slopes, sσ
and sσcb for σ and σcb, respectively. The signal model with the three free parameters, ma,

sσ and sσcb , is interpolated for mass hypotheses not covered by the simulated samples. The

validity of the interpolation is checked within the [25, 62.5] GeV range of the dimuon mass,

and towards the boundaries.

The background is evaluated through a fit to the mµµ distribution in data. The shape

for the background is modeled with a set of analytical functions, using the discrete profiling

method [9, 82, 83]. In this approach the choice of the functional form of the background

shape is considered as a discrete nuisance parameter. This means that the likelihood

function for the signal-plus-background fit has the form of

L(data|µ, θµ, bµ), (4.2)

where µ is the measured quantity of signal, θµ are the corresponding nuisance parame-

ters, and bµ are the different background functions considered. Therefore, the uncertainty

associated with the choice of the background model is treated in a similar way as other

uncertainties associated with continuous nuisance parameters in the fit. The space of the

background model contains multiple candidate models: different parametrizations of poly-

nomials together with 1/Pn(x) functions where Pn(x) ≡ x +
∑n

i=2 αix
i. The degree of

polynomials in each category is determined through statistical tests to ensure the suffi-

ciency of the number of parameters and to avoid overfitting the data [83]. Starting from

the lowest degree for every candidate model, the necessity to increase the degree of the

polynomial is examined. The model candidate with the higher degree is fit to data and

a p-value is evaluated according to the number of degrees of freedom and the relative

uncertainty of the parameters. Candidates with p-values below 5% are discarded.

The input background functions are used in the minimization of the negative logarithm

of the likelihood with a penalty term added to account for the number of free parameters

in the background model. The profile likelihood ratio for the penalized likelihood function

can be written as

− 2 ln
L̃(data|µ, θ̂µ, b̂µ)

L̃(data|µ̂, θ̂, b̂)
. (4.3)

In this equation the numerator is the maximum penalized likelihood for a given µ, at

the best-fit values of nuisance parameters, θ̂µ, and of the background function, b̂µ. The

denominator is the global maximum for L̃, achieved at µ = µ̂, θ = θ̂, and b = b̂. A

confidence interval on µ is obtained with the background function maximizing L̃ for any

value of µ [82].

The analysis of data yields no significant excess of events over the SM background

prediction. Figure 2 shows the mµµ distribution in data together with the best fit output

for a signal-plus-background model at ma = 35 GeV. The relative difference between

the expected limit of the best-fit background model and that of the unconditional fit is

about 40%.
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Figure 2. The best fit to the data for a signal-plus-background model with ma = 35 GeV, including

profiling of the uncertainties, in the search for h → aa→ 2µ2b events.

5 Search for h → aa → 2µ2τ decays

Five final states are studied in the h → aa → 2µ2τ channel, depending on whether the τ

leptons decay to electrons (τe), to muons (τµ), or to hadrons (τh): µ+µ−τ+e τ
−
e , µ+µ−τ±e τ

∓
µ ,

µ+µ−τ±e τh
∓, µ+µ−τ±µ τh

∓, or µ+µ−τh
+τh

−. The µ+µ−τ+µ τ
−
µ final state is not considered

due to the difficulty of correctly identifying the reconstructed muons as either direct pseu-

doscalar or τ decay products, which results in low sensitivity. Given the 2% dimuon mass

resolution for the muons originating promptly from one of the a bosons arising from the

h boson decay, an unbinned likelihood fit is performed to extract the results, using mµµ

as the observable. Pseudoscalar boson masses between 15 and 62.5 GeV are probed; the

lower bound corresponds to the minimum mass that ensures a good signal efficiency with

selection criteria that do not rely on boosted lepton pairs, and an expected background

large enough to be modeled through techniques described below.

5.1 Event selection

Events are selected using a double muon trigger relying on the presence of a muon with

pT > 17 GeV and another one with pT > 8 GeV. For the offline selection, the leading

muon pT threshold is increased to 18 GeV, while the subleading muon pT must exceed 9

GeV. To reconstruct the dimuon pair from the a → µ+µ− decay, two isolated muons of

opposite charge, pT > 5 GeV, and |η| < 2.4 are selected. In the µ+µ−τ+e τ
−
e , µ+µ−τ±e τh

∓

and µ+µ−τh
±τh

∓ final states, where these are the only muons, their pT thresholds are

raised to 18 and 9 GeV to match the trigger requirements. If there are more than two

muons in the final state, the highest-pT muon is required to pass a pT threshold of 18 GeV,

and is considered as arising from the prompt decay of the light boson. It is then paired

with the next highest-pT muon of opposite charge. The other muons are considered to

arise from leptonic decays of the τ lepton. The second highest-pT muon is required to

have pT greater than 9 GeV. Muons are paired correctly in about 90% of the events for all
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masses. The ττ pair is reconstructed from a combination of oppositely charged identified

and isolated muons, electrons, or τh, depending on the final state. The muons are selected

with pT > 5 GeV and |η| < 2.4, the electrons with pT > 7 GeV and |η| < 2.5, and the τh
candidates with pT > 15 GeV and |η| < 2.3. The contribution from h→ ZZ∗ → µ+µ−e+e−

events is suppressed, in the µ+µ−e+e− final state, by excluding events with visible invariant

mass of the four leptons inside a 30 GeV-wide window around 125 GeV, the Higgs boson

mass. The signal efficiency of this selection criterion is high since the four lepton invariant

mass in µ+µ−τ+e τ
−
e events is significantly reduced due to the presence of neutrinos in τ

lepton decays.

The four objects are required to be separated from each other by at least ∆R = 0.4.

Events are discarded if they contain at least one jet that satisfies a b-tag requirement that

allows O(0.1%) of the light quark jets to survive, while the tag efficiency for genuine b jets

is about 50%. This reduces the contribution from backgrounds with top quarks. To prevent

a single event from contributing to different final states, events containing other identified

and isolated electrons or muons in addition to the four selected objects are rejected; less

than 1% of signal events are rejected because of this veto. Two selection criteria with a

high signal efficiency are designed to reduce the contribution of the backgrounds to the

signal region: the invariant mass of the µµττ system is required to lie close to the Higgs

boson mass (|mµµττ − 125 GeV| < 25 GeV), and the normalized difference between the

masses of the di-τ and dimuon systems is required to be small (|mµµ −mττ |/mµµ < 0.8).

The ττ mass, mττ , used to define both variables, is fully reconstructed with a maximum

likelihood algorithm taking as input the four-momenta of the visible particles, as well as

the Emiss
T and its resolution [84]. This method gives a resolution of about 20% and 10%,

for the ττ mass mττ and four-lepton mass mµµττ , respectively. Finally, only events with a

reconstructed dimuon mass between 14 and 66 GeV are considered in the study.

5.2 Signal and background estimation

Two types of backgrounds contribute to the signal region: irreducible ZZ production,

and reducible processes with at least one jet being misidentified as one of the final-state

leptons, mainly composed of Z+jets and WZ+jets events. The ZZ → 4` contribution,

where ` denotes any charged lepton, is estimated from MC simulations, and the process

is scaled to the NLO cross section [85]. The normalization and mµµ distribution of the

reducible processes are determined separately, using control samples in data. To estimate

the normalization, the rates for jets to be misidentified as τh, electrons, or muons are

measured in dedicated signal-free control regions, defined similarly to the signal region

except that the τ candidates (electrons, muons, or τh) pass relaxed identification and

isolation conditions and have SS charge. All misidentification rates are measured as a

function of the pT of the jet closest to the τ candidate, and are fitted using a decreasing

exponential in addition to a constant term. Events with τ candidates passing the relaxed

identification and isolation conditions, but not the signal region criteria, are scaled with

weights that depend on the misidentification rates, to obtain an estimate of the yield of the

reducible background in the signal region. The mµµ distribution of reducible backgrounds
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is taken from a signal-free region in data, where both τ candidates have SS charge and pass

relaxed identification and isolation criteria.

The dimuon mass distribution in signal events in final states with two muons is param-

eterized with a Voigt profile. In final states with three muons, the Gaussian component

of the profile is found to be negligible, and the signal distributions are parameterized with

Breit-Wigner profiles. A fit is performed for every final state and every generated a. To

interpolate the signal distributions to any a boson in the studied mass range, the parame-

ters of the fit functions are parameterized as a function of ma by fitting with a third-degree

polynomial the parameters of the Voigt or Breit-Wigner profiles obtained from the individ-

ual fits. A similar technique is used to interpolate the signal normalization to intermediate

mass points; the parameterization leads to yield uncertainties for the signal between 5 and

8% depending on the final state. A closure test that consists of removing a signal sample

corresponding to a given mass point from the parameterization of the Voigt and Lorentz fit

parameters as a function of the mass, then comparing the parameterization interpolation

to the direct fit to this sample, has demonstrated the validity of this technique. The ZZ

irreducible background and reducible backgrounds are parameterized with Bernstein poly-

nomials with five and three degrees of freedom respectively. The degrees of the polynomials

are chosen to be the lowest that allow for a good agreement between the fit functions and

the predicted backgrounds, according to f-tests. Uncertainties in the fit parameters of

the Bernstein polynomials for reducible processes are taken into account in the statistical

interpretation of results. They dominate over uncertainties associated with the choice of

the fitting functions, which are neglected. Uncertainties in the ZZ background distribu-

tion are neglected given the low expected yield for this process relative to the reducible

background contribution.

The parameterized dimuon mass distributions and the observed events after the com-

plete selections are shown in figure 3 for the combination of the five final states. In this

figure, the signal sample is normalized based on the Higgs boson cross section, σh, predicted

in the SM. A branching fraction of 10% is assumed for h→ aa. The a boson is assumed to

decay only to leptons (B(a→ τ+τ−) +B(a→ µ+µ−) +B(a→ e+e−) = 1), using eq. (1.1).

Combining all final states, 19 events are observed while 20.7 ± 2.2 are expected in the

absence of signal. The expected signal yield, assuming the normalization described above,

ranges from 3.1 to 8.2 events over the probed mass range, as detailed in table 5.

6 Systematic uncertainties

The statistical interpretation of the analyses takes into account several sources of systematic

uncertainties, included in the likelihood function as nuisance parameters following log-

normal distributions in the case of yield uncertainties. Uncertainties related to the modeling

of backgrounds estimated from data have already been discussed for the three independent

analyses in sections 3, 4, and 5, and will only be partially described here. Other systematic

uncertainties are detailed in the following subsections, and summarized in table 6.
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Figure 3. Background and signal (ma = 35 GeV) models, scaled to their expected yields,

for the combination of all final states (µ+µ−τ+e τ
−
e , µ+µ−τ±e τ

∓
µ , µ+µ−τ±e τh

∓, µ+µ−τ±µ τh
∓, and

µ+µ−τh
+τh
−) in the search for h → aa → 2µ2τ decays. The two components of the background

model, ZZ and reducible processes, are drawn. The signal sample is scaled with σh as predicted

in the SM, assuming B(h → aa) = 10%, and considering decays of the pseudoscalar a boson to

leptons only (B(a → τ+τ−) + B(a → µ+µ−) + B(a → e+e−) = 1) using eq. (1.1). The results are

shown after a simultaneous maximum likelihood fit in all five channels that takes into account the

systematic uncertainties described in section 6.

Signal Backgrounds
Obs.

ma = 20 GeV ma = 60 GeV ZZ Reducible Total

µ+µ−τ+e τ
−
e 0.20±0.02 0.58±0.06 4.71±0.47 2.56±1.06 7.27±1.16 8

µ+µ−τ±e τ
∓
µ 0.58±0.08 1.42±0.16 0.10±0.01 1.68±0.70 1.78±0.70 2

µ+µ−τ±e τh
∓ 0.74±0.08 2.02±0.20 0.16±0.02 5.66±1.48 5.82±1.48 5

µ+µ−τ±µ τh
∓ 0.96±0.10 2.30±0.22 0.13±0.02 0.91±0.28 1.14±0.29 1

µ+µ−τh
+τh

− 0.60±0.06 1.90±0.18 0.06±0.02 4.64±0.94 4.70±0.94 3

Combined 3.08±0.31 8.22±0.82 5.09±0.39 15.47±2.41 20.71±2.23 19

Table 5. Expected and observed yields in the search for h → aa→ 2µ2τ decays. The signal samples

are scaled with the production cross section for the SM h boson, assuming B(h → aa) = 10% and

considering decays of the pseudoscalar a boson to leptons only. Background yields are obtained

after a maximum likelihood fit to observed data, taking into account the systematic uncertainties

detailed in section 6.
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6.1 Systematic uncertainties common to all analyses

Systematic uncertainties common to all analyses include the uncertainties in the trigger

efficiency (between 0.2 and 4.2% depending on the analysis and on the process), the lep-

ton identification and isolation efficiencies (6% for every τh [74], between 0.5 and 1.5% for

muons, 2% for electrons), all evaluated with tag-and-probe methods [86] in Drell-Yan data

and simulated samples. The uncertainties associated with the data-to-simulation correc-

tion factor for the b tagging efficiencies and misidentification rates are also propagated as

systematic uncertainties to the final results [73]. Uncertainties in the knowledge of the par-

ton distribution functions [87, 88] are taken into account as yield uncertainties, and do not

affect the shape of signal mass distributions. The uncertainty in the integrated luminosity

amounts to 2.6%.

6.2 Systematic uncertainties for the h → aa → 4τ search

The leading systematic uncertainty in the h → aa → 4τ analysis comes from imperfect

knowledge of the background composition in the signal region; it amounts to up to 90% of

the background yield, as discussed in section 3. Other sources of systematic uncertainty

specific to this search affect the expected signal yield only. When added in quadrature to

the background uncertainty, signal yield uncertainties account for at most 6 (10)% of the

total uncertainty for mT ≤ (>) 50 GeV. These minor uncertainties include an additional

uncertainty of up to 10% related to the muon isolation if the trigger muon comes from

a boosted τµτX topology, as in the ggh, Zh, and VBF production modes, rather than an

isolated W leptonic decay, as in the Wh mode. The signal yield is further affected by an

asymmetric uncertainty in the τ charge misidentification probability of −1% and +2%. Up

to 9.3% uncertainty in the signal yield is considered to account for uncertainties in the mT

computation because of uncertainties in the Emiss
T measurements. The b veto on the seed jet

of the τX object introduces a maximum of 9.4% uncertainty in the signal yield. Finally, it

should be noted that the full MC simulation and event reconstruction were only performed

for the ggh and Wh samples with ma = 5, 7, 9, 11, 13, and 15 GeV, and for the VBF and

Zh samples with ma = 9 GeV. The yields for the VBF (Zh) samples with ma = 5, 7, 11, 13,

and 15 GeV were extrapolated from the ggh(Wh) simulated samples at the corresponding

pseudoscalar mass, which have similar final state kinematics. An uncertainty between 19%

and 25%, depending on the production mode and mT bin, is assigned to cover imperfect

knowledge of the acceptance for the signals that were not simulated.

6.3 Systematic uncertainties for the h → aa → 2µ2b search

For the h → aa → 2µ2b analysis, the energy of jets is varied within a set of uncertainties

depending on the jet pT and η. This amounts to a 7% variation of the expected signal

yield. The jet smearing corrections are altered within their uncertainties [72] to account for

the uncertainty arising from the jet energy resolution, which has an effect on the process

yield of about 1%. Furthermore, the uncertainty in the amount of pileup interactions per

event is estimated by varying the total inelastic pp cross section [89] by ±5%. All sources

of uncertainties including those associated with the muon energy scale and reconstruction
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and identification efficiencies are found to have a negligible effect on the signal modeling.

The signal shape parameters are therefore left floating within their statistical uncertainties

in the fit. The systematic uncertainty related to the discrete profiling method is small

compared to the statistical uncertainty.

6.4 Systematic uncertainties for the h → aa → 2µ2τ search

The effect of the τh energy scale in the h→ aa→ 2µ2τ analysis is propagated to the mass

distributions, and leads to uncertainties in the yields of the signal and of the irreducible

background between 0 and 10%, depending on the final state. The muon energy scale

uncertainty, amounting to 0.2%, is found to shift the mean of the signal distributions

by up to 0.2%; this is taken into account as a parametric uncertainty in the mean of

the signal distributions. Statistical uncertainties in the parameterization of the signal are

accounted for through the uncertainties on the fit parameters describing the signal shape.

The uncertainty in the normalization of the reducible background is obtained by varying

the fit functions of the misidentification rates within their uncertainties. Uncertainties in

background yields lie between 25 and 50%; uncertainties related to a given misidentification

rate are correlated between corresponding final states. The number of events in the MC

simulation of the ZZ background passing the full signal selection is small, and a statistical

uncertainty ranging between 1 and 15% depending on the final state is considered to take

this effect into account. This uncertainty is uncorrelated across all final states.

7 Results

7.1 Results of the search for h → aa → 4τ decays

The number of events observed in the signal window is compatible with the SM background

prediction for the h → aa → 4τ analysis. Results are interpreted as upper limits on

the production of h → aa relative to the SM Higgs boson production, scaled by B(h →
aa)B2(a → τ+τ−) ≡ B(h → aa → 4τ). SM production cross sections are taken for ggh,

Wh, Zh, and VBF processes [90]. Upper limits are calculated using the modified CLs

technique [91–94], in which the test statistic is a profile likelihood ratio. The asymptotic

approximation is used to extract the results. In figures 4, 5, and 6, the green (yellow) band

labeled “±1(2)σ Expected” denotes the expected 68 (95)% C.L. band around the median

upper limit if no data consistent with the signal expectation were to be observed.

The expected limits and the observed limit for the combination of the low- and high-mT

bin as a function of ma are shown in figure 4. The sharp decrease in sensitivity between 5

and 7 GeV results from the 4 GeV mµ+X signal requirement, which is less efficient for lower

mass pseudoscalars.

7.2 Results of the search for h → aa → 2µ2b decays

The analysis of the mass spectrum for the h → aa → 2µ2b search does not show any

significant excess of events over the SM background prediction either, as seen in figure 2.

Upper limits on the production of h → aa relative to the SM Higgs boson ggh production
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Source of uncertainty
Uncertainty in acceptance (%)

4τ 2µ2b 2µ2τ

Luminosity 2.6 2.6 2.6

Trigger efficiency 0.2-4.2 1.5 1

e identification 1 — 0-4

µ identification 0.5-1.5 3.5 2-3

+ for boosted τµτX objects 10 — —

τh identification 6 — 0-12

b tagging 0.2-9.4 0.1-4.5 1

Data-driven background estimation 59-84 discrete profiling 25-50 + shape unc.

Tau charge misidentification 2 — —

Emiss
T scale 1-9 — —

VBF and Zh extrapolation 19-25 — —

Jet energy scale — 7 —

Jet energy resolution — 0.10-0.15 —

Tau energy scale — — 0-10

Muon energy scale — 3.5 Shape unc. only

ZZ simulation size — — 1-15

ZZ cross section — — 5+6

Table 6. Sources of systematic uncertainties, and their effects on process yields, for the three

different searches.
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Figure 5. Observed and expected upper limits at 95% CL on the h boson production normalized

to the SM prediction times B(h→ aa→ 2µ2b).

mode, scaled by B(a → bb)B(a → µ+µ−), are obtained at 95% CL with the asymptotic

CLs method. The observed and expected limits, together with the expected uncertainty

bands, are illustrated in figure 5. The oscillations in the observed limit arise from the

narrow dimuon mass resolution predicted for signal events.

7.3 Results of the search for h → aa → 2µ2τ decays

For the h→ aa→ 2µ2τ analysis, upper limits on the production of h→ aa relative to the

SM Higgs boson production (including ggh, VBF, Wh, Zh, and tth production modes),

scaled by B(a → τ+τ−)B(a → µ+µ−), are set. An unbinned maximum likelihood fit to

data is performed, and upper limits are set at 95% CL using the modified CLs method,

taking into account the different yield and shape systematic uncertainties described previ-

ously. The asymptotic approximation is not used in this case because of the low predicted

background yields. The limits are shown in figure 6. Considering the large look-elsewhere

effect [95] caused by the good dimuon mass resolution (about 2%), the wide mass range

probed, and the number of studied final states, none of the observed events corresponds

to an excess of more than two standard deviations in global significance. In particular,

the deviation of the observed limit with respect to the expected limit in the µ+µ−τ±e τ
∓
µ

final state comes from the presence of two observed events with a dimuon mass of 18.4 and

20.7 GeV, respectively, which lead to an excess of events with a maximum local significance

of 3.5 standard deviations. Over the full mass range considered, the observed yield in this

final state is compatible with the expected background yield of 1.80 ± 0.74 events. The

uncertainty bands at low mass for most final states are narrow because of the low expected

background yield.

7.4 Interpretation of h → aa searches in 2HDM+S

Searches for non standard decays of the SM-like Higgs boson to a pair of light pseudoscalar

bosons are interpreted in the context of 2HDM+S. In addition to the analyses presented
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Figure 6. Expected and observed upper limits at 95% CL on the h boson production normalized

to the SM prediction times B(h→ aa→ 2µ2τ) in the µ+µ−τ+e τ
−
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∓
µ (upper

right), µ+µ−τ±e τ
∓
h (middle left), µ+µ−τ±µ τh

∓ (middle right), and µ+µ−τh
+τh
− (lower left) final

states, and for the combination of these five final states (lower right). None of the event excesses

exceed two standard deviations in global significance.
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for various exotic h boson decay searches performed with data collected at 8 TeV with the CMS

detector, assuming that the branching fractions of the pseudoscalar boson to muons, τ leptons and

b quarks follow eqs. (1.1)–(1.2). This assumption implies that the limit shown for h → aa→ 2µ2b

is valid only in type-1 and -2 2HDM+S.

in this paper, the results of two other searches are interpreted in this context: the h →
aa→ 4µ search covers pseudoscalar boson masses between 0.25 and 3.55 GeV [47], whereas

another h→ aa→ 4τ search covers pseudoscalar masses between 4 and 8 GeV with different

boosted τ lepton reconstruction techniques [48]. In 2HDM+S, the branching fractions of

the light pseudoscalar a to SM particles depend on the model type and on tan β. In

type-1 2HDM+S, the fermionic couplings all have the same scaling with respect to the SM,

whereas in type-2 2HDM+S (NMSSM-like), they are suppressed for down-type fermions for

tanβ < 1 (and enhanced for tan β > 1). In type-3 2HDM+S (lepton specific), the decays

to leptons are enhanced with respect to the decays to quarks for tan β > 1, and in type-4

2HDM+S (flipped), the decays to up-type quarks and leptons are enhanced for tan β < 1.

Because B(a → τ+τ−) is directly proportional to B(a → µ+µ−) in any type of

2HDM+S as per eq. (1.1), as is B(a → bb) in type-1 and -2, the results of all analyses

can be expressed as exclusion limits on σ(h)
σSM
B(h→ aa)B2(a→ µ+µ−). This assumption is

applied to obtain the results shown in figure 7. The exact value of B(a→ µ+µ−) depends

on the type of 2HDM+S, on tan β and on the pseudoscalar boson mass. No significant

excess of events is observed for any of the five analyses. Under type-1 and -2 2HDM+S

hypothesis, the h→ aa→ 2µ2b search is about one order of magnitude more sensitive than

the h → aa → 2µ2τ search, but does not cover the pseudoscalar mass range between 15

and 25 GeV. Both h→ aa→ 4τ searches have a comparable sensitivity, in slightly different

mass ranges.

In 2HDM+S, the values of the branching fractions of the pseudoscalar boson to SM

particles can be computed precisely, except for pseudoscalar boson masses between approx-
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imately 3 and 5 GeV and 9 and 11 GeV because of decays to quarkonia, and for pseudoscalar

boson masses less than 1 GeV because of large QCD uncertainties in the hadronic final

states [8]. We compute them following the prescriptions in refs. [8, 46]. The branching

fractions used to interpret the results in the four particular 2HDM+S scenarios described

below are given in table 7. Figure 8 (top left) shows the 95% CL in (σh/σSM)B(h → aa)

in type-1 2HDM+S, for which there is no tan β dependence. Figure 8 (top right) shows

corresponding limits in type-2 2HDM+S with tan β = 2; the sensitivity of the h→ aa→ 4τ

analyses is improved for ma < 2mb because of the enhancement of the couplings to leptons.

The h → aa → 4τ and h → aa → 2µ2τ analyses have low sensitivity in type-1 2HDM+S

and type-2 2HDM+S with tan β = 2 for ma > 2mb, because, in these scenarios, decays to

b quarks dominate over decays to τ leptons and muons. The results in type-3 2HDM+S

with tan β = 5 are depicted in the bottom left part of figure 8; this scenario provides high

sensitivity for the various analyses because of the enhancement of the couplings to leptons

over those to quarks. Finally, the limits obtained in type-4 2HDM+S for tan β = 0.5 are

shown in the bottom right part of figure 8; the choice of tan β < 1 ensures large couplings

to leptons. Regions where the theoretical predictions for the branching fractions of the

pseudoscalar boson to SM particles are not reliable are indicated with grey shaded areas

in the figure. To obtain the exclusion limit for h → aa → 4µ in these hypotheses, the

model-independent limit shown in figure 7 is extrapolated from three mass points (0.25,

2.00, 3.55 GeV) to intermediate masses with a third degree polynomial, before being di-

vided by the square of B(a → µ+µ−). The variation of the limit around ma = 1.5 GeV,

visible in figure 8, is related to an increase of the pseudoscalar boson decay width to gluons

because of the change in the number of active flavors in the QCD corrections and in the

computation of the running of the strong coupling constant at a renormalization scale equal

to ma. The bbh production is neglected in this study. Its yield corresponds to less than

3% of the total production cross section for tan β < 5, but could be larger for higher tan β

values, or due to other new physics effects.

The h → aa → 2µ2b and h → aa → 2µ2τ analyses are complementary over the tan β

spectrum in type-3 and -4 2HDM+S, where the ratio of the branching fractions of the

pseudoscalar boson to τ leptons and b quarks depends on tan β. The former search is more

sensitive in type-3 2HDM+S for tan β . 2.2 and in type-4 2HDM+S for tan β & 0.8, as

shown in figure 9.

The best limits on σh
σSM
B(h → aa) are obtained in type-3 2HDM+S with large tan β

values for the h → aa → 4τ and h → aa → 2µ2τ analyses. As shown in figure 8 (bottom

left), upper limits at 95% CL as low as 17% for the h → aa→ 4τ analysis and 4% for the

h → aa → 2µ2τ analysis can be set for tan β = 5. Similarly low limits are achieved at

higher tan β. The best limit for the h → aa → 2µ2b analysis is 16%, and is obtained in

type-3 2HDM+S too, but with tan β = 2 as shown in figure 9 (left).

8 Summary

Searches for the decay of the SM-like Higgs boson to pairs of light scalar particles have been

performed using 19.7 fb−1 of pp collisions at a center-of-mass energy of 8 TeV, collected by
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ma ∈ [1, 3.5] GeV ma ∈ [5, 15] GeV ma ∈ [20, 62.5] GeV

Type-1

B(a→ µ+µ−) 4.6× 10−3 – 4.0× 10−2 2.1× 10−4 – 1.8× 10−3 2.0× 10−4 – 2.2× 10−4

B(a→ τ+τ−) 0 5.7× 10−2 – 3.6× 10−1 5.5× 10−2 – 6.3× 10−2

B(a→ bb) 0 — 8.3× 10−1 – 8.8× 10−1

Type-2

tanβ = 2

B(a→ µ+µ−) 2.5× 10−2 – 3.8× 10−2 2.2× 10−4 – 4.0× 10−3 2.1× 10−4 – 2.5× 10−4

B(a→ τ+τ−) 0 6.0× 10−2 – 7.9× 10−1 5.8× 10−2 – 7.0× 10−2

B(a→ bb) 0 — 9.2× 10−1 – 9.3× 10−1

Type-3

tanβ = 5

B(a→ µ+µ−) 7.4× 10−1 – 9.6× 10−1 3.5× 10−3 – 5.0× 10−3 3.4× 10−3 – 3.5× 10−3

B(a→ τ+τ−) 0 9.1× 10−1 – 9.9× 10−1 9.7× 10−1

B(a→ bb) 0 — 2.0× 10−2 – 2.5× 10−2

Type-4

tanβ = 0.5

B(a→ µ+µ−) 4.5× 10−3 – 1.4× 10−1 1.2× 10−3 – 1.8× 10−3 1.1× 10−3 – 1.2× 10−3

B(a→ τ+τ−) 0 3.2× 10−1 – 3.5× 10−1 3.0× 10−1 – 3.3× 10−1

B(a→ bb) 0 — 2.5× 10−1 – 3.2× 10−1

Table 7. Branching fractions of the pseudoscalar boson a to muons, τ leptons, and b quarks, in

the four 2HDM+S scenarios considered in figure 8, as a function of the light boson mass. The

branching fraction B(a→ bb) is not indicated in the mass range ma ∈ [5, 15] GeV because it is not

used to interpret the results.

the CMS experiment at the LHC, in final states with τ leptons, muons, or b quark jets. Such

signatures are motivated in light of the non-negligible branching fraction provided in recent

experimental constraints for non-SM h decays. The data were found to be compatible with

SM predictions. Whereas indirect measurements from the combination of data collected

by the ATLAS and CMS collaborations at the LHC at 8 TeV center-of-mass energy set

an upper limit of 34% on branching fraction of the Higgs boson to BSM, direct limits

provide complementarity and improve the sensitivity to the 2HDM+S models for particular

scenarios and pseudoscalar masses. Upper limits at 95% CL on (σh/σSM)B(h → aa),

assuming SM production of the 125 GeV Higgs boson, are as low as 17, 16, and 4%, and

have been determined for the h → aa → 4τ , h → aa → 2µ2b, and h → aa → 2µ2τ

analyses, respectively.
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Figure 8. Expected and observed 95% CL limits on (σh/σSM)B(h → aa) in 2HDM+S type-1

(top left), type-2 with tan β = 2 (top right), type-3 with tan β = 5 (bottom left), and type-4 with

tanβ = 0.5 (bottom right). Limits are shown as a function of the mass of the light boson, ma.

The branching fractions of the pseudoscalar boson to SM particles are computed following a model

described in ref. [8]. Grey shaded regions correspond to regions where theoretical predictions for

the branching fractions of the pseudoscalar boson to SM particles are not reliable.
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RWTH Aachen University, III. Physikalisches Institut B, Aachen, Germany
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INFN Sezione di Bari a, Università di Bari b, Politecnico di Bari c, Bari, Italy

M. Abbresciaa,b, C. Calabriaa,b, C. Caputoa,b, A. Colaleoa, D. Creanzaa,c, L. Cristellaa,b,

N. De Filippisa,c, M. De Palmaa,b, L. Fiorea, G. Iasellia,c, G. Maggia,c, M. Maggia,

G. Minielloa,b, S. Mya,b, S. Nuzzoa,b, A. Pompilia,b, G. Pugliesea,c, R. Radognaa,b,

A. Ranieria, G. Selvaggia,b, L. Silvestrisa,16, R. Vendittia,b, P. Verwilligena

INFN Sezione di Bologna a, Università di Bologna b, Bologna, Italy
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Università della Basilicata c, Potenza, Italy, Università G. Marconi d, Roma,
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Trento c, Trento, Italy

P. Azzia,16, N. Bacchettaa, L. Benatoa,b, D. Biselloa,b, A. Bolettia,b, R. Carlina,b, A. Car-

valho Antunes De Oliveiraa,b, P. Checchiaa, M. Dall’Ossoa,b, P. De Castro Manzanoa,

T. Dorigoa, U. Dossellia, F. Gasparinia,b, U. Gasparinia,b, A. Gozzelinoa, S. Lacapraraa,

M. Margonia,b, A.T. Meneguzzoa,b, J. Pazzinia,b, N. Pozzobona,b, P. Ronchesea,b,

F. Simonettoa,b, E. Torassaa, M. Zanetti, P. Zottoa,b, G. Zumerlea,b

INFN Sezione di Pavia a, Università di Pavia b, Pavia, Italy
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INFN Sezione di Pisa a, Università di Pisa b, Scuola Normale Superiore di

Pisa c, Pisa, Italy

K. Androsova,31, P. Azzurria,16, G. Bagliesia, J. Bernardinia, T. Boccalia, R. Castaldia,

M.A. Cioccia,31, R. Dell’Orsoa, S. Donatoa,c, G. Fedi, A. Giassia, M.T. Grippoa,31,

F. Ligabuea,c, T. Lomtadzea, L. Martinia,b, A. Messineoa,b, F. Pallaa, A. Rizzia,b, A. Savoy-

Navarroa,32, P. Spagnoloa, R. Tenchinia, G. Tonellia,b, A. Venturia, P.G. Verdinia

– 40 –



J
H
E
P
1
0
(
2
0
1
7
)
0
7
6

INFN Sezione di Roma a, Università di Roma b, Roma, Italy
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