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ABSTRACT: We compare the efficiency of multicanonical
and replica exchange molecular dynamics for the sampling of
folding/unfolding events in simulations of proteins with end-
to-end β-sheet. In Go-model simulations of the 75-residue
MNK6, we observe improvement factors of 30 in the number
of folding/unfolding events of multicanonical molecular
dynamics over replica exchange molecular dynamics. As an
application, we use this enhanced sampling to study the
folding landscape of the 36-residue DS119 with an all-atom
physical force field and implicit solvent. Here, we find that the
rate-limiting step is the formation of the central helix that then
provides a scaffold for the parallel β-sheet formed by the two
chain ends.

■ INTRODUCTION

Molecular dynamics and Monte Carlo simulations have become
often used tools for exploring the molecular machinery of cells.
However, their accuracy of predicting experimental observables
is still limited, as the computational costs increase at least
exponentially with the size of system (either a single protein or
a complex of interacting biomolecules). Even with the recent
advances in hardware, the problem remains that biomolecular
motions often cover time scales that exceed the ones achievable
in atomistic simulations. The problem can be alleviated by
using enhanced sampling techniques such as replica exchange
sampling,1,2 also known as parallel tempering3 and first
introduced to protein simulations in ref 4. In this method,
replicas of the protein system evolve in parallel by standard
Monte Carlo or molecular dynamics at different values of a
control parameter, most often temperature. At certain times,
conformations Ci of replicas at neighboring temperatures Ti and
Tj=i+1 are exchanged with a probability
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where βi = 1/kBTi and kB is the Boltzmann constant. For a given
replica, the swap moves induce a random walk from low
temperatures, where relaxation times are long, to high
temperatures, where barriers can be crossed, and back. This
results in a faster convergence at low temperatures. However,
the application of replica exchange techniques is inherently
limited for systems with first-order-like transitions, where

folding/unfolding transitions become rare events and thermo-
dynamic quantities need long times to converge.
In such cases, it may be more appropriate to utilize other

techniques that are designed to maximize sampling of transition
states. One example is multicanonical sampling5,6 where
weights w(E) lead to a distribution

∝ =P E n E w E( ) ( ) ( ) constmu (2)

with n(E) the density of states. From such a multicanonical
simulation, one can calculate the thermodynamic average of any
physical quantity at a temperature T by reweighting:7
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where x labels the configurations and R is the gas constant.
While implementation of the method is straightforward for

Monte Carlo sampling, it is less so for the in protein studies
more commonly used molecular dynamics.7,8 Hence, most
applications of multicanonical sampling in protein science rely
on Monte Carlo updates,9−14 and only a few applications of
multicanonical molecular dynamics exist (see ref 15 and
references therein). Besides the technical difficulties of
implementing multicanonical sampling in molecular dynamics,
application to proteins6,9 has been limited by the need to
determine estimators of the not a priori known weights w(E) by
an iterative procedure.5,6 However, the additional workload
may well be worthwhile for proteins with strong cooperative
transitions. The purpose of the present paper is to investigate

Received: April 17, 2013
Published: July 12, 2013

Article

pubs.acs.org/JCTC

© 2013 American Chemical Society 3816 dx.doi.org/10.1021/ct400312d | J. Chem. Theory Comput. 2013, 9, 3816−3825

D
ow

nl
oa

de
d 

vi
a 

H
A

C
E

T
T

E
PE

 U
N

IV
 o

n 
Ju

ne
 1

6,
 2

02
0 

at
 1

1:
17

:1
7 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

pubs.acs.org/JCTC


systematically the relative efficiency of multicanonical molecular
dynamics and replica exchange molecular dynamics for this
class of systems.
As our test system, we use an all-atom Go-model16 of wild

type and mutant of the 75-residue Menkes protein MNK6
(PDB-code: 1YJV and 1YJT), displayed in Figure 1(left), with
which we are familiar from previous work.17 We demonstrate
that multicanonical molecular dynamics enhances indeed the
efficiency of sampling transition states over replica exchange
molecular dynamics, allowing for a more detailed insight into
the folding mechanism of this protein. In the second part, we
present as an interesting application of multicanonical
molecular dynamics a study of the folding mechanism of the
36-residue protein DS119 (PDB-code: 2KI0), displayed in
Figure 1(right). Unlike MNK6, this protein is studied by
implicit solvent simulations with a physical force field. The
enhanced sampling of folding events allows us to observe that
the rate-limiting step in the folding process is the formation of
the central helix, which serves as a scaffold for the parallel β-
sheet formed by the terminal residues of the βαβ protein.

■ METHODS

Multicanonical Molecular Dynamics. In order to
enhance the sampling of otherwise exponentially suppressed
transition states, the weights are chosen in multicanonical
simulations such that the resulting distribution is either flat over
a range of energies (see eq 2)5,6 or peaked around the energies
of transition states.18 The flat distribution of eq 2 is obtained in
Monte Carlo simulations by replacing Boltzmann-weights with
multicanonical weights exp(−E/RT) → exp(−S(E)). The
microcanonical entropy S(E) = 1n n(E) is estimated by an
iterative procedure:

= +−S E S E P E( ) ( ) ln ( )n n n( ) ( 1) ( ) (4)

Here, P(n)(E) is the histogram of energy in the n−th iteration,
and S0 = E/RT.
In the context of molecular dynamics it is convenient to

rewrite the multicanonical weights as

= =− − ̂w E x( ( )) e eS E x E x RT
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where T̂ is a prechosen thermostat temperature. The “effective”
energy Emuca is defined by Emuca = RT̂S(E) and calculated
iteratively by
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( )
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with Emuca
(0) = E, the “physical” potential energy of a given

configuration. With this definition, the forces in multicanonical
molecular dynamics follow as
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where ∇ is the gradient operator and r ⃗ marks the positions of
all atoms in the system. Hence, in multicanonical molecular
dynamics simulations, the regular forces F⃗can(r)⃗ (that one would
integrate in constant temperature simulations) are scaled by an
energy-dependent factor Λ(E) that needs to be calculated
iteratively through

Figure 1. Left: Overlay of the wild type (online color yellow/green) and mutant (online color gray) NMR structure of 75-residue MNK6 (PDB-
identifier 1YJV and 1YJT). Right: NMR structure of the 36-residue protein DS119 (PDB-identifier 2KI0). The online color of the N-terminals is
blue, and that of the C-terminals red.
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In order to get an intuitive picture of how the energy
dependent scaling of forces alters the dynamics, we note that
(because of Newton’s Law) scaling the forces by an energy-
dependent factor Λ(E) is equivalent to scaling all masses in the
system by mi

muca = mi/Λ(E). Hence, in a multicanonical
molecular dynamics simulation, the viscosity (which is
proportional to mass) changes energy-dependent as

η η= ΛE E( ) /( ( ))muca 1/2
(11)

Hence, the effective viscosity of the system is lowered by a
factor 1/(Λ(E))1/2 when at a low energy E and raised by that
factor when in the high-energy region allowing the system to
escape local minima and sample energy space in a diffusive
process. With Λ(E) = RT̂∂S(E)/∂E = T̂/T(E) and assuming
that in first approximation the viscosity η ∝ 1/(T)1/2, the
effective viscosity ηmuca(E) becomes constant in multicanonical
molecular dynamics, leading to a flat distribution in potential
energy E.
Because of bottlenecks and hidden barriers, a simulation that

leads to a flat distribution in energy may still not be the one
that maximizes the number of folding/unfolding transitions. In
order to optimize that number, we further improve on our
weights by using the approach of Trebst et al.18 Its underlying
idea is that the number of round trips between the low-energy
region (in which folded structures are expected) and high-
energy regions (corresponding to unfolded configurations) is a
lower bound for the number of independent folding/unfolding
events. Hence, in order to maximize the number of folding
transitions, one needs to maximizing the current j of
configurations evolving from a low-energy El to high-energy
Eh, and back. For this purpose, a tag t is attached to a
configuration. This tag is set to one when the energy of the
configuration become equal or larger than Eh and is set to zero
when the energy becomes equal or less than El. For energies
between El and Eh, the tag is not changed. Defining now

=
∑
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where H(E) is the number of times that the system has taken
energy E, one can calculate the current as

=j D E P E
f E

E
( ) ( )

d ( )
d (13)

with the energy-dependent diffusion coefficient D(E). Max-
imizing the current j leads to the following iterative scheme for
optimized multicanonical weights:
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or in terms of the effective “multicanonical energies” Emuca
employed in multicanonical molecular dynamics:
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Hence, assuming N iterations to generate a flat distribution
and M further iterations to maximize the number of folding/
unfolding events, we choose as final effective “multicanonical
energies” in our multicanonical simulation:
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From a multicanonical molecular dynamics simulation with
forces scaled by the resulting energy-dependent factors Λ(E) =
∂Emuca/∂E, one can calculate now the average of a physical
quantity at a temperature T by reweighting:
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where x labels the configurations and T̂ is again the thermostat
temperature.

Systems and Simulation Protocol. In order to evaluate
the efficiency of multicanonical molecular dynamics, we have
studied the following proteins with mixed αβ-topology: wild
type and mutants of the sixth domain MNK6 of Menkes
protein (PDB: 1YJV and 1YJT), and the de novo designed
peptide DS119 (PDB: 2KI0).19 These proteins were chosen
because they allow us a comparison with previous work by us or
other groups,17,20 but they are at the same time of a complexity
that makes the simulations nontrivial.
In case of wild type and mutant of MNK6, we use the Go-

model developed by the Onuchic group,16 modified in such a
way that takes into account protein flexibility in the
construction of the energy function by utilizing all structures
of an NMR ensemble17 instead of only a single structure. In the
case of MNK6, this modification is important as the first
models of wild type and mutant differ by only ≈2 Å,
comparable to the differences within the respective NMR
ensembles. Using this modified Go-model, we have described
recently the differences in the folding pathways of wild type and
mutant, and we have presented evidence for a possible
mechanism in the pathology of Menkes disease.17 However,
our analysis suffers from low statistics, as the number of
folding/unfolding transitions was small in our replica exchange
molecular dynamics simulations of wild type and mutant.
Comparing our previous results with such from multicanonical
molecular dynamics simulations of the same system therefore
allows us to quantify the gain in efficiency by the later
approach.
The shorter peptide DS119 is build from 36 amino acids and

adopts in solution a βαβ structure,19 making it a simple model
for proteins with end-to-end β-sheet. Previous work using
canonical molecular dynamics suggests that DS119 is a
downhill folder with only moderate cooperativity.20 However,
this study relies only in part on all-atom simulations with a
“physical” force field (AMBER ff03 and a GB/SA implicit
solvent model), while the folding cooperativity is studied by
Go-model simulations. In contrast, our investigation relies
solely on simulations with a “physical” all-atom force field. This
is because we expect that multicanonical molecular dynamics
will enable us to sample a number of folding/unfolding events
that is sufficiently large to probe the folding mechanism of this
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peptide. Note that we use the same energy function as ref 20 to
allow for a comparison with previous work.
All simulations are performed in double precision GRO-

MACS 4.5.5.21 The subroutine do_force is modified to
implement the energy dependent scaling of forces in multi-
canonical simulations. A lookup table of force-scale factors (λE)
is included in the source file sim_util.c and has to be updated for
each iteration. The time step in the molecular dynamics runs is
2 fs. Hydrogen atoms are constrained to their bonded heavy
atoms by LINCS algorithm.22 van der Waals and Coulomb
energy are calculated with twin range cut-offs. Temperature is
kept constant by a Nose−́Hoover thermostat.23

Each of the three systems is studied with the same simulation
protocol. The starting point is an initial (short) replica
exchange molecular dynamics run covering the temperature
range of interest. In the case of MNK6, 14 replicas are spread
between 107 u to 115 u for the wild type, and 109 u to 114 u
for the mutant. Here, temperatures are given in arbitrary units
“u” instead of Kelvin, as the Go-model is not a physical force
field. On the other hand, simulations of DS119 rely on a
physical force field, and the 13 replicas cover a temperature
range from 280 to 600 K. From these simulations, we can
extract over a large range of energies an initial estimate of the
microcanonical entropy S(E). In a second step, we run several
short multicanonical molecular dynamics runs to iterate the
weights (i.e., the factors Λ(E) by that the forces are scaled)
using eq 16, choosing as the temperature of the thermostat T̂ =
120.3 u for MNK6 (leading in our units to β = 1), and T̂ = 300
K for DS119. Such combination of a short replica exchange run
with succeeding multicanonical iterations results in faster
convergence to the target distribution than starting from a
single high temperature canonical simulation. Note that, in the
case of MNK6, we start the multicanonical iterations the data
from the 100 ns replica exchange molecular dynamic run of ref
17. Likely, a shorter run would have been sufficient for priming
the iteration of multicanonical weights: we have needed only 25
ns in the case of DS119.
During each iteration, five independent simulations are

performed in parallel, starting from either folded, unfolded, or
partially unfolded states. This distribution of start config-
urations, with energies distributed over the whole energy range
considered by us, accounts for the problem that in the first
iteration folding/unfolding events are rare events. As the
iterations progress, the energy histogram becomes approx-
imately flat, and folding/unfolding transitions occur more often.
In the final iteration, we used the optimization procedure of eq
14 to maximize the transition rate. While this step can be
repeated as often as needed, we found one iteration sufficient.
The multicanonical weights obtained by the above-described

iterations are used in long simulations from which physical
quantities at the desired temperatures are calculated by
reweighting (eq 17). Note that for each system we perform

multiple data-production run to ensure multiple independent
data sets. Table 1 summarizes the utilized simulation resources.

■ RESULTS AND DISCUSSIONS
Efficiency of Multicanonical and Replica Exchange

Molecular Dynamics. The first purpose of the present paper
is to compare the efficiency of replica exchange and
multicanonical molecular dynamics in simulations of proteins
with strong folding transitions. While such transitions are
observed experimentally for many fast folding proteins, they are
also a hallmark of Go-models, which by construction exhibit
strong cooperativity. For this reason, we chose to compare the
two methods in a Go-model simulations of the sixth domain of
Menkes protein (MNK6) with which we are familiar from
previous work. This polypeptide is at the cytosolic N-terminus
of a copper-transporting transmembrane ATPase encoded by
the ATP7A gene on the X chromosome.24 Various mutations in
this gene are associated with Menkes disease, a copper
deficiency disease that in most cases leads to death in early
childhood. One example is the single mutation A69P on the 75-
residue MNK6 domain. Both wild type and mutant MNK6
adopt a ferredoxin-like fold (βαββαβ) with a root-mean-square
deviation between wild type and mutant of around 2 Å,
comparable to the deviations within the respective NMR
ensembles; see Figure 1(left).
Our simulations of MNK6 rely on the structure-based model

SMOG (Structure-based MOdels in Gromacs), developed by
the Onuchic group.16,25,26 Using the SMOG@ctbp server, we
have prepared topology and coordinate files of the wild type
and mutants as described in the method section and employed
these in molecular dynamics simulations with the GROMACS
4.5.5 software package.21 Utilizing our data from a previous
replica exchange molecular dynamics run of 100 ns, we
obtained an initial estimate of multicanonical parameters, which
we improve iteratively with the procedure described.
The resulting probability distributions P(E) of each iteration

are shown in Figure 2. Already after the second iteration

Table 1. Breakdown of Computational Resources Required in Multicanonical Simulations of Wild Type (WT) and Mutant
(MT) of MNK6, and of DS119a

system REMD preproduction production total (ns)

MNK6(WT) 1400 ns (100 ns × 14)b 300 ns (20 ns × 5 × 3)c 250 ns (50 ns × 5)d 900
MNK6(MT) 1400 ns (100 ns × 14)b 300 ns (20 ns × 5 × 3) 250 ns (50 ns × 5) 900
DS119 325 ns (25 ns × 13) 750 ns (50 ns × 5 × 3) 720 ns (120 ns × 6) 1795

aThe resources for the initial replica exchange molecular dynamics run are listed under REMD. bThe replica exchange run of ref 17 was used to
prime the multicanonical simulation; hence, this is an overestimation of required resources. cSimulation length of one multicanonical simulation ×
number of parallel runs × number of preproduction iterations. dSimulation length of one multicanonical simulation × number of production runs.

Figure 2. Probability of potential energies P(E) calculated after each of
the four multicanonical iterations. From the first to the fourth
iteration; the online colors are black, red, green, and blue.
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(online color red), the energy histogram is reasonably flat in
both low and high energies, but transition states at intermediate
energies are still suppressed. This gap is filled in the third
iteration (online color green). This more flat distribution
results from a diffusive walk in energy that enhances also the
number of observed folding/unfolding transitions by a factor 5
over the number observed in the previous replica exchange
molecular dynamics simulation, which itself already relied on an
optimized temperature distribution.27 In order to maximize the
number of folding/unfolding events, we utilize in the fourth
iteration the approach of Trebst el al.18 to obtain a final
distribution P(E) (online color blue) where transition states are
now no longer suppressed but instead enhanced. This last
iteration increases further the rate of transitions, raising
improvement to a factor of 30. Computational resources
(which include time spent for iterating the weights) and
transition rates are summarized in Table 2 demonstrating for all

our studied systems that multicanonical simulations lead to
higher rates of transitions while requiring less resources. This is
exemplified for MNK6 in Figure 3.
At the top of Figure 3, we show the time evolution of the

potential energy (Figure 3A) and the number of native contacts
NC (Figure 3B), as observed during 50 ns of a randomly
chosen multicanonical trajectory, while the bottom panels
display the corresponding time series of potential energy

(Figure 3C) and number of native contacts (Figure 3D) for the
replica with most transitions (i.e., the best case) in the replica
exchange molecular dynamics simulation of ref 17. Because of
the small number of transitions we had to choose a interval of
double length (i.e. 100 ns). Note that the walk in energy space
in the multicanonical simulation does indeed correspond to a
walk in configurational space, moving between folded structures
(the number NC of native contacts being a large number) and
unfolded structure (NC being a small number).
The high transition rate in the multicanonical run guarantees

that the relative frequencies of folded and unfolded states are
correct (i.e., allows one to calculate reliable estimators of their
free energy difference). This made us revisit the folding
mechanism of MNK6, which we have studied earlier by replica
exchange molecular dynamics. In the previous investigation,17

we projected the free-energy landscape of the protein on the
normalized number Nt of native contacts as primary reaction
coordinate and the normalized number Ns of native contacts in
a given secondary structure element as secondary reaction
coordinate. Because of insufficient sampling of transition states,
we had to approximate the main folding path by a smoothened
curve. The increased statistics of the multicanonical simulation
allows us now to draw this landscape in a much higher
resolution, see Figure 4, which displays the folding landscape of
the three β-ladders β23, β13, and β14. The higher statistics of the
multicanonical molecular dynamics runs allows us a more
detailed analysis of these landscapes, especially in the transition
state region defined by us as the range where Nt = 0.2−0.56 for
the wild type and Nt = 0.2−0.68 for the mutants. These ranges
correspond to regions where the frequency of configurations
P(Nt) is smaller than 2% after reweighting, and that clearly
exclude folded and completely unfolded configurations.
For the wild type, the only elements that grow strongly

within this transition region are the β-ladders β13 and β14
(Figure 4B and C). The β23 ladder emerges before the
formation of transition states (i.e., for Nt > 0.2). The growth of
β13 and β14 dominates the transition from unfolded to folded

Table 2. Summary of Computational Resources and
Transition Rates (TS) in Multicanonical (MuCa) and
Replica Exchange Molecular Dynamics (REMD) Simulations

system
total

(MuCa)
total

(REMD/MD)

TS per 1
μs

(MuCa)

TS per 1
μs

(REMD)

MNK6 WT 0.90 μs 1.96 μs (140 ns × 14) 268 9
MNK6 MT 0.90 μs 3.78 μs (270 ns × 14) 196 5
DS119 1.80 μs 5.00 μsa 240 0.2b

aData from ref 17. bData from ref 20.

Figure 3. Time evolution of potential energies and number of native contacts (NC) in multicanonical molecular dynamics (top) and replica
exchange molecular dynamics (bottom). The multicanonical trajectory of 50 ns length is randomly chosen, while the 100 ns trajectory of the replica
exchange simulation is for the replica with most transitions.
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states. States with the two well-formed β ladders (Nt > 0.56)
have low free energy, indicating that the formation of the two
elements β13 and β14 are the rate-limiting steps in the folding of

the wild type of MNK6. On the other hand, the order by which
the ladders β23 and β13 are formed is switched in the mutant. In
our previous work,17 we have conjectured that competition for

Figure 4. Folding landscapes of three β-ladders. Two reaction coordinates of folding used to construct the folding landscape are Nt, the normalized
number of native contacts of the whole protein, and Ns, the number of native contacts of each β-ladder, β23 (A and D), β13 (B and E), and β14 (C and
F). Subfigures A−C are for wild type, and D−F are for mutant.

Figure 5. Folding landscapes of three β-ladders in the transition state ensemble. See Figure 4 for notations.
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the shared β-strand in the four-strand β-sheet is responsible for
the difference in folding pathway. In Figure 5, where we focus
on the part of the free energy landscapes that corresponds to
the transition region, we can now verify this conjecture. As the
multicanonical simulation leads to an enhanced sampling of

transition states, we find by comparing the formation of each β-
ladder in mutant and wild type that only a small part of mutant
configurations have β14 contacts when Nt is between 0.2 to 0.3.
As a result, the loosely connected strand β1 is able to form
steady contacts with strand β3, leaving β23 less contacts to form.

Figure 6. Potential energy (A) and root-mean-square deviation (RMSD) to the native structure (B) as function of time for a randomly selected
trajectory. Distribution of potential energy without reweighting (dashed line) and after reweighting to nine different temperatures between 280 and
600 K (solid lines) (C). Specific heat capacity as a function of temperature (D).

Figure 7. Free energy landscape at 300 K projected on the helicity of the central helix and the distance between residues 7THR−30ARG as reaction
coordinates. Ten minima are identified, and the lowest energy structure corresponding to each minimum shown together with the corresponding
value of the free energy. The structure (online color blue) enclosed by the square is the one with the lowest RMSD (2.4 Å) and shown overlaid on
the first model of the NMR ensemble (online color green).
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Folding of the βαβ Protein DS119. Our comparison of
the efficiency of multicanonical and replica exchange molecular
dynamics did rely on Go-model simulations. However, Go-
models can lead to wrong conclusions on the folding dynamics
of proteins if folding involves intermediates with non-native
contacts.29 More accurate are energy functions that describe the
physical interactions between the atoms in a protein, and
between the protein and its surrounding. As such simulations
are computationally more costly than Go-model simulations,
we have chosen as our second system the 36-residue DS119,
which also has an end-to-end-β-sheet topology forming a βαβ
motif. While this protein is smaller than the 75 residue MNK6,
the computational cost for simulation of both proteins is
similar, as DS119 is simulated with a physical all-atom force
field and implicit solvent instead of a Go-model. Our aim here
is not to compare sampling techniques but to utilize
multicanonical molecular dynamics for exploring the folding
mechanism of DS119.
The de novo designed DS119 is characterized by a central

helix of 12 residue length and N-terminal and C-terminal
strands that together form a parallel β-sheet19 stabilized by a
contact between residues 9TRP and 34TRP. Previous Go-
model simulation led to the claim that the protein is more
cooperative than downhill folder, but less cooperative than two-
state folder.20 Canonical molecular dynamics simulations of the
peptide seem to indicate that folding starts with a collapse into
amorphous state, followed by formation of an N-terminal helix,
which afterward elongates to C-terminus. The last step is the
reorganization of the terminal residues and their folding into a
β-sheet.
Our simulations rely on the same physical force field and

implicit solvent as the above canonical simulations, but
multicanonical molecular dynamics allows for an enhanced
sampling of folding events and therefore can lead to deeper
insight into the folding mechanism of this protein. Using the
protocol described in the method section, we have generated
multicanonical weights that we then employe for data
generation in six independent multicanonical molecular
dynamics runs. As a consequence, our analysis relies on an
accumulated simulation time of 720 ns. The resulting energy
distribution is shown Figure 6C (dashed curve). Note that the
curve is centered around energies of ≈ −3500 kJ/mol, which
we identified as the transition region, corresponding to a
transition temperature of T ≈ 420 K (see Figure 6D). The
small standard deviation in the specific heat values of (Figure
6D) indicates the convergence of all six multicanonical

production runs. The total accumulated simulation time,
including the time needed to generate the multicanonical
weights, is 1.9 μs (see Figure 2). On the other hand, the
accumulated simulation time of the four constant temperature
simulations of ref 20 is 5 μs. In only one of these four canonical
molecular dynamics runs was a single folding event observed.
The oscillations in energy and root-mean-square-deviation to
the native structure (PDB-Identifier: 2KI0) in Figure 6A and B
demonstrate the much higher rate of folding transitions in
multicanonical molecular dynamics. The best configuration
differs by only 2.4 Å from the first model of the NMR ensemble
and is overlaid on this structure in Figure 7. At T = 300 K about
70% of the configurations are native-like, compared with 86% in
the NMR experiments of ref 19. A direct comparison with the
constant temperature molecular dynamics runs of ref 20 is
difficult, as only one out of four runs led to a folded structure.
In this specific run, about 60% of configurations are native-like.
These results show again that, unlike simple constant
temperature simulations, the enhanced sampling of folding
events of multicanonical molecular dynamics leads to a correct
representation of the ensemble of configurations in which a
protein exist at biologically relevant temperatures.
The βαβ fold of DS119 suggests as order parameters for the

folding of the peptide, the degree by which the central helix is
formed and the degree by which the terminal segments form a
β-sheet. The later is characterized by two quantities, the
distance between residues 9TRP and 34TRP and the distance
between residues 7THR and 30ARG. Both contacts have to be
formed for the β-sheet. However, from circular dichroism
measurements it is known that the 9TRP−34TRP contact is
very stable and observed for temperature up to 360 K (i.e., is
also observed in the ensemble of unfolded configurations).19

Hence, we project in Figure 7 the folding landscape of the
protein on the helicity and the 7THR−30ARG distance as
reaction coordinates. Ten minima are identified, and the lowest
energy structure corresponding to each minimum is shown
together with its free energy. The global free energy minimum
(set to zero) is given the index one. Note that the strong
correlation between the degree by that the central helix is
formed, and the formation of the 7THR−30ARG contact. The
distance between the two residues diverges once the helix
length becomes fewer than ten residues. Hence, a fully formed
helix build out of the central 12−13 residues seems to precede
and to be necessary for formation of the β-sheet build out of
the terminal segments. A cluster consisting of minima 3−7 is
separated from the native minimum (index 1) and each other

Figure 8. Free energy landscapes using the same coordinates as in Figure 7. The temperatures are 380 K (A), 420 K (B), and 460 K (C), with 420 K
the folding temperature. The evolution of three plots from high to low temperature indicates what are the predominating events that are occurring
doing the transition.
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by only small barriers. Minima 3 and 4 have a longer helix (ten
residues long) than the minima 5−7 (a total of eight residues).
In addition, the helix in minima 5−7 is split into two short
segments. We do not observe any preference for either the N-
terminus or the C-terminus for the helical segments to form
earlier. Hence, we conclude that the central helix growth
together from segments forming independently at the terminals
rather than nucleating in the middle of the peptide and growing
toward the ends.
In order to investigate these transition states in more detail,

we compare the folding landscape at the transition temperature
420 K (Figure 8B with the landscapes either 40 K lower in
temperature or 40 K higher in temperature (Figure 8A and C).
Comparing these three landscapes, one finds that decreasing
the temperature from 460 to 380 K does not significantly
change the distance between residues 7THR−30ARG, as the
free energy minima do not move in this coordinate. More
dramatic are the changes along the second coordinate, the
length of helical segments. Configurations with a short helix
(length = 4 residues) become less frequent, while config-
urations with two short helices of total length 10 emerge. The
maximum frequency of such configurations is observed at the
transition temperature 420 K. Below that, at 380 K, their
frequency has decreased, and configurations with a single long
extended helix of length of at least ten residues do now
dominate. Such long helices are not observed at 460 K. We
conclude that transition states are characterized by partially
folded short helical segments at the terminals. These are often
stabilized by salt bridges of 6ARG and/or 30ARG with lysine
side chains (see Figure 9A), as such salt bridges hinder merging
of the two helices. Both residues can form such non-native salt
bridges with a probability of 60%, while the other arginines in
the peptide have a much smaller probability (20%) of forming
non-native salt bridges (Figure 9B and C).
One could argue that the occurrence of these non-native salt

bridges, formed by 6ARG and 30ARG with lysine side chains, is
due to the implicit solvent model used in our simulations.28 In
turn, this assumption would imply that the observed folding
mechanism is an artifact of the implicit solvent model. In order
to exclude this possibility, we have taken the ten representative
configurations of Figure 8 and immersed them in explicit
solvent (TIP3), minimized the resulting system, and allowed it
to thermalize at 300 K during a 40 ns of constant temperature
molecular dynamics. Analyzing these auxiliary simulations we
find that the residues 6ARG and 30ARG do not form well-
defined and stable salt bridges but take part in a network of 2
−11 salt bridges that are transiently formed and dissolved while
the network itself persists throughout the simulation. Hence,
we believe that the occurrence of such salt bridges, which slow

down the formation of the central helix, are not an artifact of
the implicit solvent model. While in the design of DS119,
6ARG was chosen to reduce self-aggregation, and design
experiments switching 5VAL and 6ARG were unsuccessful, our
results suggest to mutate the two residues 6ARG and 30ARG
into ones that inhibit such non-native salt bridges as a way to
enhance folding of DS119. Note that the crucial role of such
non-native salt bridges in defining the rate-determining
transition states could not be detected in the earlier Go-
model simulations as by construction Go-models bias against
the formation of non-native contacts.

■ CONCLUSIONS
Simulating proteins with end-to-end β-sheet, we have
demonstrated the efficiency of multicanonical molecular
dynamics in sampling folding/unfolding events. In the case of
the 75-residue MNK6, simulated by us with an all-atom Go-
model, we find improvements of factors 30 over replica
exchange. This demonstrates that despite the additional efforts
needed to generate the weights multicanonical molecular
dynamics is a suitable alternative to the more common replica
exchange molecular dynamics, especially in cases where there is
a strong cooperative transition between folded and unfolded
states. The method may also be advantageous in cases where
the transition is less strong. For instance, using our protocol for
generating multicanonical weights, we have studied the folding
landscape of the 36-residue DS119 with a physical all-atom
force field and an implicit solvent. Here, our focus was not on a
comparison of sampling techniques, but on probing the folding
mechanism of this protein. We find that the rate-limiting step in
the folding of this protein is the formation of the central helix
which serves as a scaffold for the parallel β-sheet formed by the
terminal residues. Identifying this bottleneck is again only
possible because multicanonical protein simulations are
designed to sample a large number of folding/unfolding events.
While the overhead in generating multicanonical weights is
considerably (about 60% of the computational resources went
into this step), the gain in sampling efficiency outweighs the
costs. Including the time needed to generate the multicanonical
weights, the multicanonical simulation of DS119 required less
than half of the accumulated times of previous constant
temperature simulations resulting in a single folding event, but
with 432 folding/unfolding transitions to orders of magnitude
better statistics.
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