V = 1742.3 (2) Å³

Mo $K\alpha$ radiation $\mu = 2.01 \text{ mm}^{-1}$

Z = 2

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dichlorido-1 κ Cl,3 κ Cl-bis{ μ -2,2'-[propane-1,3-diylbis(iminomethylene)]diphenolato}-1:2 κ ⁶O,N,N',O':O,O';-2:3 κ ⁶O,O':O,N,N',O'-tricopper(II)

Bürke Meltem Ateş,^a Filiz Ercan,^a Ingrid Svoboda,^b Hartmut Fuess^b and Orhan Atakol^c*

^aDepartment of Engineering Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, ^bDarmstadt University of Technology, Institute of Materials Science, Petersenstrasse 23, D-64287 Darmstadt, Germany, and ^cDepartment of Chemistry, Ankara University Science Faculty, 06100 Ankara, Turkey Correspondence e-mail: burke.ates@taek.gov.tr

Received 27 November 2007; accepted 28 January 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.029; wR factor = 0.076; data-to-parameter ratio = 15.8.

The title linear trinuclear copper(II) complex, $[Cu_3(C_{17}H_{20}-N_2O_2)_2Cl_2]$, was obtained from *N,N'*-bis(2-hydroxybenzyl)-1,3-propanediamine and CuCl₂. The overall charge of the three Cu²⁺ ions is balanced by four deprotonated phenol groups and two Cl⁻ ligands. The complex is centrosymmetric with the central Cu²⁺ occupying a special position ($\overline{1}$). This Cu²⁺ ion is coordinated by the four phenolate O atoms in a square-planar fashion. The second Cu²⁺ occupies a general position in a square-pyramidal fashion. Two phenolate O atoms and two amine N form the basal plane, with Cl⁻ ligands occupying the fifth coordination site.

Related literature

For related literature, see: Addison *et al.* (1984); Atakol *et al.* (1999); Cremer & Pople (1975); Ercan *et al.* (2002); Fukuhara *et al.* (1990); Gerli *et al.* (1991); Mikuriya *et al.* (2001); Song *et al.* (2003, 2005); Spek (2003); Uhlenbrock *et al.* (1996); Yıldırım & Atakol (2002).

Experimental

Crystal data

Ν

$Cu_3(C_{17}H_{20}N_2O_2)_2Cl_2$
$A_r = 830.25$
Aonoclinic, $P2_1/c$
= 11.0189 (7) Å
e = 15.3861 (8) Å
= 10.7441 (8) Å
$B = 106.959 \ (7)^{\circ}$

Data collection

Oxford Diffraction Xcalibur diffractometer Absorption correction: analytical (*CrysAlis RED*; Oxford Diffraction, 2002) $T_{\rm min} = 0.531, T_{\rm max} = 0.766$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.029$	
$vR(F^2) = 0.075$	
S = 1.10	
3481 reflections	
220 parameters	

T = 100 (2) K $0.36 \times 0.22 \times 0.14 \text{ mm}$

12067 measured reflections 3481 independent reflections 2969 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.025$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.57 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

Cu2-Cl1	2.5092 (7)	O2-Cu1	1.9108 (16)
Cu2-Cu1	2.9138 (3)	O2-Cu2	1.9632 (16)
D1-Cu1	1.9191 (15)	N1-Cu2	1.995 (2)
D1-Cu2	1.9825 (16)	N2-Cu2	1.995 (2)
D2-Cu1-O1	80.93 (7)	O2-Cu2-N2	93.17 (7)
D2-Cu1-Cu2	41.91 (5)	O1-Cu2-N2	168.74 (8)
D1-Cu1-Cu2	42.52 (5)	O2-Cu2-Cl1	89.92 (5)
O2-Cu2-O1	78.09(7)	O1-Cu2-Cl1	88.09 (5)
D2-Cu2-N1	163.99 (8)	Cu1-O1-Cu2	96.62 (7)
D1-Cu2-N1	92.91 (7)	Cu1-O2-Cu2	97.54 (7)

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2002); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2002); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2003); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

OA is grateful to DAAD for support and acknowledges the financial support of the Ankara University Research Fund (grant No. 20050705105).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FI2056).

References

- Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
- Atakol, O., Arıcı, C., Ercan, F. & Ülkü, D. (1999). Acta Cryst. C55, 511–513. Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Ercan, F., Atakol, O., Arici, C., Svoboda, I. & Fuess, H. (2002). *Acta Cryst.* C58, m193–m196.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Fukuhara, C., Tsuneyoshi, K., Matsumoto, N., Kida, S., Mikuriya, M. & Mori, M. (1990). J. Chem. Soc. Dalton Trans. pp. 3473–3479.

Gerli, A., Hagen, K. S. & Marzilli, L. G. (1991). *Inorg. Chem.* 30, 4673–4676.
 Mikuriya, M., Ikenove, S., Nukada, R. & Lim, J. W. (2001). *Bull. Chem. Soc. Jpn*, 74, 101–102.

Oxford Diffraction (2002). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd., Poland.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Song, Y., Gomez, P., Roubeav, O., Lutz, M., Spek, A. L. & Reedijk, J. (2003). *Eur. J. Inorg. Chem.* pp. 2924–2928.

Song, Y., Gomez, P., Roubeav, O., Mutikainen, I., Turpeinen, U. & Reedijk, J. (2005). Inorg. Chim. Acta, 358, 109–115.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Uhlenbrock, S., Wegner, R. & Krebs, B. (1996). J. Chem. Soc. Dalton Trans. pp. 3731–3736.

Yıldırım, L. T. & Atakol, O. (2002). Cryst. Res. Technol. 37, 1352-1359.

Acta Cryst. (2008). E64, m481-m482 [doi:10.1107/S1600536808003048]

Dichlorido-1*Cl*,3*Cl*-bis{-2,2'-[propane-1,3-diylbis(iminomethylene)]diphenolato}-1:2⁶O,N,N',O':O,O';2:3⁶O,O':O,N,N',O'-tricopper(II)

B. M. Ates, F. Ercan, I. Svoboda, H. Fuess and O. Atakol

Comment

Bis-*N*,*N*'-bis(2-hydroxybenzyl)-1,3-propane-diamine is an ONNO type Schiff base and there have been various polynuclear complexes synthesized since 1990 (Fukuhara *et al.*, 1990; Gerli *et al.*, 1991; Uhlenbrock *et al.*, 1996, Mikuriya *et al.*, 2001).

In this study, $N_{i}N_{i}$ -bis(salicylidene)-1,3-propane-diamine was reduced into a symmetrical phenol-amine compound by the help of NaBH₄. A trinuclear Cu(II) complex was prepared by the reaction of the ligand obtained with CuCl₂ and its molecular structure was determined. Previously, this complex had been prepared in MeOH solution and crystallized in its tetra-solvated form (Song *et al.*, 2005). The trinuclear complex obtained in this structure is not solvated and has different crystallographic details.

As can seen from *PLATON* (Spek, 2003), the terminal Cu(II) ion has a square pyramidal coordination formed by the two phenolic oxygen and two iminic nitrogen atoms of the ligand and a chloride ion. There has been a T factor defined for five membered coordination sphere (Addison *et al.*, 1984). This factor is given as T=a-b/60, where a and b correspond to two largest angles around the metal atom. If T=0 the coordination is an ideal square pyramid and if T=1 the coordination is ideal trigonal bipyramid. If the values listed in molecular geometry are employed the T value is found as 0.078 indicating that the terminal Cu(II) atoms has a near ideal square pyramidal symmetry. The Cu—Cl bond is longer than other coordination bonds (2.509 Å). The bond length in the square base are very close to each other (1.963 Å). The chalate ring (Cu2, N1, N2, C8, C9, C10) formed by the terminal Cu(II) ions has an almost ideal chair conformation. The conformation of the ring was analysed using *PLATON*. The Cremer-Pople puckering parameters are $Q_T=1.374$ (6), $\theta=-38.9$ (2), $\varphi=120.34$ (12)° (Cremer *et al.*, 1975).

The central Cu(II) ion is coordinated between four phenolic oxygen donors. The Cu1—O2 and Cu1—O1 distances are 1.911 Å and 1.919 Å, respectively. The phenolic O atoms act as bridging ligands between the central and the terminal Cu ions. The distance between Cu2 and an L·S. plane through O1, N1, N2 and O2 is 0.1894 (3) Å... That is why the six membered chelate ring conformation of Schiff base complexes was reported as almost ideal (Yıldırım *et al.*, 2002). The smallest Cu—Cu distance determined in similar complexes was reported as 2.914 Å (Song *et al.*, 2005; Song *et al.*, 2003). The Cu2—Cu1 distance in the title compound is 2.9138 (3) Å and thus close to the shortest reported distances. In complexes containing *m*-bonds such as AcO– and HCOO– this distance is bigger than 3.0 Å (Ercan *et al.*, 2002; Atakol *et al.*, 1999).

Experimental

N,N-bis(salicylidene)-1,3-propane-diamine was dissolved by slightly heating in MeOH (80 ml). NaBH₄ was added into this solution in its solid form with small portions and the resulting mixture was rigorously stirred. The addition of NaBH₄ was continued unless the solution became completely colorless. The colorless solution was mixed with ice (300 g) and kept on the bench for 24 h. The white precipitate was the reduced product of N,N-bis(2-hydroxybenzyl)-1,3-propane-diamine (m.p.

379-380 K, yield % 87, the N—H streching band is observed at 3273 cm⁻¹). *N*,*N*-bis (2-hydroxybenzyl)-1,3-propane-diamine (0.285 g, 1 mmole) was dissolved in dmf (dimethyl-formamide)(20 ml) by heating and a solution of CuCl₂·2H₂O (0.255 g, 1.5 mmole) in hot dmf (20 ml) was added to it and the resulting mixture was kept on the bench for 4–5 d. The resulting crystals were filtered off, washed with EtOH and dried in oven at 353 K.

Refinement

H1A and H2A (for NH) were located in a Fourier map and only their positions refined [N—H = 0.82 (3) and 0.86 (3) Å, $U_{iso}(H) = 0.028$ and 0.028 Å²]. The remaining H atoms were positioned geometrically, with C—H = 0.95 and 0.99 Å for aromatic and methylene H atoms, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level [symmetry code: (i) -x, -y, 1 - z].

Dichlorido-1 κ Cl,3 κ Cl-bis{ μ -2,2'-[propane-1,3- diylbis(iminomethylene)]diphenolato}-1:2 κ^{6} O,N',O':O,O';2:3 κ^{6} O,O':O,N,N',O'-tricopper(II)

Crystal data

$[Cu_{3}(C_{17}H_{20}N_{2}O_{2})_{2}Cl_{2}]$	$F_{000} = 850$
$M_r = 830.25$	$D_{\rm x} = 1.583 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 4076 reflections
a = 11.0189 (7) Å	$\theta = 2.4 - 26.4^{\circ}$
<i>b</i> = 15.3861 (8) Å	$\mu = 2.01 \text{ mm}^{-1}$
c = 10.7441 (8) Å	T = 100 (2) K
$\beta = 106.959 \ (7)^{\circ}$	Prism, dark green
$V = 1742.3 (2) \text{ Å}^3$	$0.36 \times 0.22 \times 0.14 \text{ mm}$
Z = 2	

Data collection

Oxford Diffraction Xcalibur diffractometer	3481 independent reflections
Radiation source: fine-focus sealed tube	2969 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.025$
T = 100(2) K	$\theta_{\rm max} = 26.4^{\circ}$

φ and ω scans	$\theta_{\min} = 4.1^{\circ}$
Absorption correction: analytical (CrysAlis RED; Oxford Diffraction, 2002)	$h = -13 \rightarrow 13$
$T_{\min} = 0.531, T_{\max} = 0.766$	$k = -18 \rightarrow 18$
12067 measured reflections	$l = -7 \rightarrow 13$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.029$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.075$	$w = 1/[\sigma^2(F_o^2) + (0.0379P)^2 + 1.1376P]$ where $P = (F_o^2 + 2F_c^2)/3$
S = 1.10	$(\Delta/\sigma)_{\rm max} = 0.019$
3481 reflections	$\Delta \rho_{max} = 0.57 \text{ e} \text{ Å}^{-3}$
220 parameters	$\Delta \rho_{min} = -0.32 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cu1	0.0000	0.0000	0.5000	0.01443 (11)
Cu2	0.02986 (3)	0.187585 (17)	0.48593 (3)	0.01380 (10)
Cl1	0.04255 (6)	0.16106 (4)	0.71982 (6)	0.02363 (16)
01	-0.10643 (15)	0.09894 (10)	0.43769 (17)	0.0170 (4)
O2	0.12675 (15)	0.08066 (10)	0.48475 (17)	0.0187 (4)
N1	-0.09257 (18)	0.28603 (13)	0.4363 (2)	0.0153 (4)
H1A	-0.080 (3)	0.3050 (19)	0.369 (3)	0.028*
N2	0.18192 (18)	0.26353 (13)	0.5115 (2)	0.0158 (4)
H2A	0.180 (3)	0.2855 (19)	0.437 (3)	0.028*
C1	-0.2034 (2)	0.10818 (15)	0.3275 (2)	0.0153 (5)
C2	-0.2429 (2)	0.04128 (16)	0.2376 (2)	0.0185 (5)
H2	-0.2027	-0.0139	0.2531	0.022*

C3	-0.3414 (2)	0.05583 (17)	0.1253 (3)	0.0214 (5)
Н3	-0.3684	0.0102	0.0639	0.026*
C4	-0.4010 (2)	0.13600 (17)	0.1012 (3)	0.0222 (6)
H4	-0.4680	0.1455	0.0236	0.027*
C5	-0.3617 (2)	0.20233 (16)	0.1919 (2)	0.0198 (5)
H5	-0.4021	0.2574	0.1753	0.024*
C6	-0.2644 (2)	0.18960 (15)	0.3063 (2)	0.0159 (5)
C7	-0.2269 (2)	0.25755 (16)	0.4097 (2)	0.0188 (5)
H7A	-0.2831	0.3086	0.3828	0.023*
H7B	-0.2396	0.2344	0.4910	0.023*
C8	-0.0623 (2)	0.35758 (15)	0.5329 (3)	0.0202 (5)
H8A	-0.0640	0.3349	0.6186	0.024*
H8B	-0.1282	0.4031	0.5063	0.024*
C9	0.0669 (2)	0.39773 (15)	0.5461 (3)	0.0216 (6)
H9A	0.0678	0.4190	0.4594	0.026*
H9B	0.0771	0.4489	0.6041	0.026*
C10	0.1804 (2)	0.33853 (16)	0.5985 (3)	0.0208 (5)
H10A	0.2590	0.3728	0.6105	0.025*
H10B	0.1798	0.3163	0.6848	0.025*
C11	0.3017 (2)	0.21331 (16)	0.5631 (2)	0.0191 (5)
H11A	0.3026	0.1874	0.6477	0.023*
H11B	0.3744	0.2539	0.5792	0.023*
C12	0.3198 (2)	0.14203 (15)	0.4743 (2)	0.0160 (5)
C13	0.4258 (2)	0.13781 (16)	0.4284 (2)	0.0198 (5)
H13	0.4855	0.1840	0.4470	0.024*
C14	0.4451 (2)	0.06791 (17)	0.3567 (3)	0.0226 (6)
H14	0.5182	0.0658	0.3268	0.027*
C15	0.3588 (2)	0.00111 (16)	0.3285 (2)	0.0205 (5)
H15	0.3731	-0.0473	0.2797	0.025*
C16	0.2508 (2)	0.00332 (15)	0.3702 (2)	0.0178 (5)
H16	0.1911	-0.0429	0.3494	0.021*
C17	0.2309 (2)	0.07401 (15)	0.4429 (2)	0.0152 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0114 (2)	0.0123 (2)	0.0181 (2)	-0.00059 (15)	0.00195 (17)	0.00469 (16)
Cu2	0.01222 (16)	0.01216 (15)	0.01634 (17)	0.00004 (10)	0.00307 (12)	0.00049 (11)
Cl1	0.0282 (3)	0.0268 (3)	0.0169 (3)	0.0022 (3)	0.0081 (3)	0.0001 (3)
O1	0.0138 (8)	0.0133 (8)	0.0197 (9)	-0.0007 (6)	-0.0016 (7)	0.0035 (7)
O2	0.0151 (9)	0.0141 (8)	0.0297 (10)	-0.0003 (6)	0.0110 (8)	0.0025 (7)
N1	0.0147 (10)	0.0151 (10)	0.0164 (11)	-0.0005 (8)	0.0049 (9)	0.0001 (8)
N2	0.0157 (10)	0.0145 (10)	0.0157 (11)	-0.0019 (8)	0.0022 (9)	-0.0001 (9)
C1	0.0096 (11)	0.0198 (12)	0.0169 (13)	-0.0009 (9)	0.0047 (10)	0.0066 (10)
C2	0.0146 (12)	0.0189 (12)	0.0228 (13)	-0.0008 (9)	0.0067 (10)	0.0034 (11)
C3	0.0182 (12)	0.0244 (13)	0.0213 (14)	-0.0060 (10)	0.0053 (11)	-0.0019 (11)
C4	0.0167 (12)	0.0304 (15)	0.0182 (14)	-0.0028 (10)	0.0030 (11)	0.0053 (11)
C5	0.0132 (12)	0.0218 (13)	0.0246 (14)	0.0018 (9)	0.0057 (11)	0.0070 (11)

C6	0.0104 (11)	0.0176 (12)	0.0213 (13)	-0.0012 (9)	0.0072 (10)	0.0029 (10)
C7	0.0129 (11)	0.0194 (12)	0.0254 (14)	0.0031 (9)	0.0075 (11)	0.0021 (11)
C8	0.0238 (13)	0.0155 (12)	0.0207 (14)	0.0045 (10)	0.0053 (11)	-0.0033 (10)
C9	0.0266 (14)	0.0148 (12)	0.0228 (14)	0.0011 (10)	0.0061 (12)	-0.0037 (10)
C10	0.0210 (13)	0.0153 (12)	0.0233 (14)	-0.0041 (10)	0.0020 (11)	-0.0055 (11)
C11	0.0133 (12)	0.0212 (12)	0.0209 (14)	-0.0010 (9)	0.0019 (10)	0.0012 (10)
C12	0.0138 (11)	0.0181 (12)	0.0140 (12)	0.0012 (9)	0.0010 (10)	0.0034 (10)
C13	0.0136 (12)	0.0247 (14)	0.0198 (13)	-0.0014 (10)	0.0028 (10)	0.0046 (11)
C14	0.0167 (12)	0.0313 (14)	0.0222 (14)	0.0048 (11)	0.0094 (11)	0.0085 (12)
C15	0.0239 (13)	0.0205 (13)	0.0177 (13)	0.0079 (10)	0.0067 (11)	0.0023 (10)
C16	0.0170 (12)	0.0169 (12)	0.0178 (13)	0.0004 (9)	0.0026 (10)	0.0036 (10)
C17	0.0125 (11)	0.0185 (12)	0.0139 (12)	0.0023 (9)	0.0027 (10)	0.0060 (10)

Geometric parameters (Å, °)

Cu2—Cl1	2.5092 (7)	С7—Н7В	0.9900
Cu2—Cu1	2.9138 (3)	C8—N1	1.483 (3)
Cu1—O2 ⁱ	1.9108 (16)	C8—C9	1.520 (4)
Cu1—O1 ⁱ	1.9191 (15)	C8—H8A	0.9900
Cu1—Cu2 ⁱ	2.9138 (3)	C8—H8B	0.9900
O1—Cu1	1.9191 (15)	C9—C10	1.517 (3)
O1—Cu2	1.9825 (16)	С9—Н9А	0.9900
O2—Cu1	1.9108 (16)	С9—Н9В	0.9900
O2—Cu2	1.9632 (16)	C10—N2	1.488 (3)
N1—Cu2	1.995 (2)	C10—H10A	0.9900
N1—H1A	0.82 (3)	C10—H10B	0.9900
N2—Cu2	1.995 (2)	C11—N2	1.490 (3)
N2—H2A	0.86 (3)	C11—C12	1.505 (3)
C1—O1	1.351 (3)	C11—H11A	0.9900
C1—C2	1.392 (3)	C11—H11B	0.9900
C1—C6	1.408 (3)	C12—C13	1.394 (3)
C2—C3	1.386 (3)	C12—C17	1.406 (3)
С2—Н2	0.9500	C13—C14	1.376 (4)
C3—C4	1.386 (4)	С13—Н13	0.9500
С3—Н3	0.9500	C14—C15	1.373 (4)
C4—C5	1.390 (4)	C14—H14	0.9500
C4—H4	0.9500	C15—C16	1.389 (3)
C5—C6	1.389 (3)	C15—H15	0.9500
С5—Н5	0.9500	C16—C17	1.393 (3)
C6—C7	1.493 (3)	C16—H16	0.9500
C7—N1	1.489 (3)	C17—O2	1.353 (3)
С7—Н7А	0.9900		
O2—Cu1—O2 ⁱ	180.00 (10)	C3—C4—C5	119.2 (2)
O2—Cu1—O1	80.93 (7)	C3—C4—H4	120.4
O2 ⁱ —Cu1—O1	99.07 (7)	C5—C4—H4	120.4
02—Cu1—O1 ⁱ	99.07 (7)	C6—C5—C4	121.3 (2)
O2 ⁱ —Cu1—O1 ⁱ	80.93 (7)	С6—С5—Н5	119.4

O1—Cu1—O1 ⁱ	180.0	С4—С5—Н5	119.4
O2—Cu1—Cu2	41.91 (5)	C5—C6—C1	118.5 (2)
Ω^{2i} —Cu1—Cu2	138.09 (5)	C5—C6—C7	122.3 (2)
01— $Cu1$ — $Cu2$	42,52,(5)	C1 - C6 - C7	119.1 (2)
$O1^{i}$ $Cu1$ $Cu2$	137 48 (5)	N1-C7-C6	113 15 (19)
$c_1 = c_1 = c_2$	139.00 (5)	N1 C7 U7A	102.0
02—Cu1—Cu2 ⁻	138.09 (3)		108.9
$O2^{i}$ —Cu1—Cu2 ⁱ	41.91 (5)	С6—С7—Н7А	108.9
O1—Cu1—Cu2 ⁱ	137.48 (5)	N1—C7—H7B	109.0
O1 ⁱ —Cu1—Cu2 ⁱ	42.52 (5)	С6—С7—Н7В	108.9
Cu2—Cu1—Cu2 ⁱ	180.000 (11)	H7A—C7—H7B	107.8
O2—Cu2—O1	78.09 (7)	N1—C8—C9	112.4 (2)
O2—Cu2—N1	163.99 (8)	N1—C8—H8A	109.1
O1—Cu2—N1	92.91 (7)	С9—С8—Н8А	109.1
O2—Cu2—N2	93.17 (7)	N1—C8—H8B	109.1
O1—Cu2—N2	168.74 (8)	С9—С8—Н8В	109.1
N1—Cu2—N2	93.87 (8)	H8A—C8—H8B	107.9
O2—Cu2—Cl1	89.92 (5)	C10—C9—C8	116.0 (2)
O1—Cu2—Cl1	88.09 (5)	С10—С9—Н9А	108.3
N1—Cu2—Cl1	103.12 (6)	С8—С9—Н9А	108.3
N2—Cu2—Cl1	99 10 (6)	C10—C9—H9B	108.3
Ω_{2} — Cu_{2} — Cu_{1}	40 55 (5)	C8—C9—H9B	108.3
$01-Cu^2-Cu^1$	40.86 (4)	H9A-C9-H9B	107.4
$N1 - Cu^2 - Cu^2$	133 49 (6)	N_{2} (10)	1131(2)
$N_2 - C_{11}^2 - C_{11}^2$	132 54 (6)	N2H10A	109.0
Cl1-Cu2-Cu1	76 178 (16)	C9-C10-H10A	109.0
C1 - O1 - Cu1	129 48 (14)	N2_C10_H10B	109.0
$C1 - O1 - Cu^2$	129.48(14) 120.13(13)	C_{0} C_{10} H_{10B}	109.0
$C_1 = 0_1 = C_{12}$	96 62 (7)	$H_{10A} - C_{10} - H_{10B}$	107.8
$C_{11} = O_1 = C_{12}$	122.74(15)	N2 C11 C12	107.0
$C_{17} = O_{2} = C_{11}^{2}$	135.74(13) 125.52(14)	N2 = C11 = H11A	114.1(2)
C_{1} C_{2} C_{2} C_{2}	125.55(14)	12 - 11 - 111A	108.7
$C_{1} = C_{2} = C_{1}$	37.34(7)	N2 C11 H11P	108.7
$C_{0} = N_{1} = C_{1}^{2}$	111.10(19) 112.24(15)	$N_2 = C_{11} = H_{11}B$	108.7
C_{0} N1 C_{1}	112.54(15)		108.7
C^{2} N1 H1A	112.03(13)		107.0
C_{0} NI IIIA	107(2)	$C_{13} = C_{12} = C_{11}$	118.5(2)
C/—NI—HIA	110 (2)	C13 - C12 - C11	122.5 (2)
Cu2-NI-HIA	103(2) 100.87(10)	C1/-C12-C11	118.8(2)
C10 - N2 - C11	109.87 (19)	C14 - C13 - C12	121.1 (2)
C10-N2-Cu2	112.19 (15)	C14—C13—H13	119.4
CII—N2—Cu2	111.40 (15)	C12C13H13	119.4
C10-N2-H2A	100.1 (19)	C15-C14-C13	119.9 (2)
C_{11} N_2 H_2A	109.0 (19)	C15—C14—H14	120.1
Cu2—N2—H2A	108 (2)	C13—C14—H14	120.1
OI - CI - C2	122.5 (2)	C14—C15—C16	120.9 (2)
OI - CI - C6	117.0 (2)	C14—C15—H15	119.5
C2—C1—C6	120.5 (2)	C16—C15—H15	119.5
C3—C2—C1	119.5 (2)	C15—C16—C17	119.3 (2)

С3—С2—Н2	120.3	C15—C16—H16	120.3
C1—C2—H2	120.3	C17—C16—H16	120.3
C2—C3—C4	121.0 (2)	O2—C17—C16	122.2 (2)
С2—С3—Н3	119.5	O2—C17—C12	117.6 (2)
С4—С3—Н3	119.5	C16—C17—C12	120.2 (2)
O1—C1—C2—C3	-178.7 (2)	C1	-84.8 (4)
C6—C1—C2—C3	1.3 (3)	Cu1—O1—Cu2—N2	59.1 (4)
C1—C2—C3—C4	0.1 (4)	C1	145.23 (16)
C2—C3—C4—C5	-0.5 (4)	Cu1—O1—Cu2—Cl1	-70.93 (6)
C3—C4—C5—C6	-0.4 (4)	C1	-143.8 (2)
C4—C5—C6—C1	1.7 (4)	C8—N1—Cu2—O2	-168.1 (2)
C4—C5—C6—C7	-175.4 (2)	C7—N1—Cu2—O2	65.5 (3)
O1—C1—C6—C5	177.8 (2)	C8—N1—Cu2—O1	136.78 (16)
C2—C1—C6—C5	-2.1 (3)	C7—N1—Cu2—O1	10.33 (17)
O1—C1—C6—C7	-5.0 (3)	C8—N1—Cu2—N2	-52.22 (17)
C2-C1-C6-C7	175.0 (2)	C7—N1—Cu2—N2	-178.67 (17)
C5-C6-C7-N1	-119.7 (2)	C8—N1—Cu2—Cl1	48.06 (16)
C1—C6—C7—N1	63.2 (3)	C7—N1—Cu2—Cl1	-78.39 (16)
N1—C8—C9—C10	-64.3 (3)	C8—N1—Cu2—Cu1	131.34 (14)
C8—C9—C10—N2	63.9 (3)	C7—N1—Cu2—Cu1	4.9 (2)
N2-C11-C12-C13	122.6 (2)	C10—N2—Cu2—O2	-143.06 (16)
N2-C11-C12-C17	-61.6 (3)	C11—N2—Cu2—O2	-19.41 (17)
C17-C12-C13-C14	-1.6 (4)	C10—N2—Cu2—O1	178.2 (3)
C11—C12—C13—C14	174.2 (2)	C11—N2—Cu2—O1	-58.1 (5)
C12-C13-C14-C15	0.5 (4)	C10—N2—Cu2—N1	51.32 (17)
C13-C14-C15-C16	0.7 (4)	C11—N2—Cu2—N1	174.98 (17)
C14-C15-C16-C17	-0.7 (4)	C10—N2—Cu2—Cl1	-52.64 (16)
C15—C16—C17—O2	179.0 (2)	C11—N2—Cu2—Cl1	71.02 (16)
C15-C16-C17-C12	-0.4 (3)	C10—N2—Cu2—Cu1	-132.18 (14)
C13—C12—C17—O2	-177.9 (2)	C11—N2—Cu2—Cu1	-8.5 (2)
C11—C12—C17—O2	6.1 (3)	C17—O2—Cu1—O1	-139.7 (2)
C13-C12-C17-C16	1.5 (3)	Cu2—O2—Cu1—O1	20.00 (8)
C11—C12—C17—C16	-174.5 (2)	C17—O2—Cu1—O1 ⁱ	40.3 (2)
C9—C8—N1—C7	-170.9 (2)	Cu2—O2—Cu1—O1 ⁱ	-160.00 (8)
C9—C8—N1—Cu2	61.9 (2)	C17—O2—Cu1—Cu2	-159.7 (3)
C6—C7—N1—C8	176.1 (2)	C17—O2—Cu1—Cu2 ⁱ	20.3 (3)
C6—C7—N1—Cu2	-56.8 (2)	Cu2—O2—Cu1—Cu2 ⁱ	180.0
C9—C10—N2—C11	174.7 (2)	C1—O1—Cu1—O2	118.85 (19)
C9—C10—N2—Cu2	-60.8 (2)	Cu2—O1—Cu1—O2	-19.76 (8)
C12—C11—N2—C10	-173.3 (2)	C1—O1—Cu1—O2 ⁱ	-61.15 (19)
C12—C11—N2—Cu2	61.7 (2)	$Cu2 - O1 - Cu1 - O2^{i}$	160.24 (8)
C2—C1—O1—Cu1	0.6 (3)	C1—O1—Cu1—Cu2	138.6 (2)
C6—C1—O1—Cu1	-179.40 (15)	C1—O1—Cu1—Cu2 ⁱ	-41.4 (2)
C2—C1—O1—Cu2	131.2 (2)	Cu2—O1—Cu1—Cu2 ⁱ	180.0
C6—C1—O1—Cu2	-48.8 (3)	01—Cu2—Cu1—O2	150.01 (11)
C16—C17—O2—Cu1	15.6 (3)	N1—Cu2—Cu1—O2	158.32 (12)
C12—C17—O2—Cu1	-164.97 (17)	N2—Cu2—Cu1—O2	-16.86 (11)

C16—C17—O2—Cu2	-139.41 (19)	Cl1—Cu2—Cu1—O2	-106.58 (8)
C12—C17—O2—Cu2	40.0 (3)	O2—Cu2—Cu1—O2 ⁱ	180.0
C17—O2—Cu2—O1	142.55 (19)	O1—Cu2—Cu1—O2 ⁱ	-29.99 (11)
Cu1—O2—Cu2—O1	-19.52 (7)	N1—Cu2—Cu1—O2 ⁱ	-21.68 (12)
C17—O2—Cu2—N1	85.7 (3)	N2—Cu2—Cu1—O2 ⁱ	163.14 (11)
Cu1—O2—Cu2—N1	-76.4 (3)	Cl1—Cu2—Cu1—O2 ⁱ	73.42 (8)
C17—O2—Cu2—N2	-30.28 (19)	O2—Cu2—Cu1—O1	-150.01 (11)
Cu1—O2—Cu2—N2	167.64 (8)	N1—Cu2—Cu1—O1	8.31 (11)
C17—O2—Cu2—Cl1	-129.39 (18)	N2—Cu2—Cu1—O1	-166.86 (11)
Cu1—O2—Cu2—Cl1	68.54 (6)	Cl1—Cu2—Cu1—O1	103.41 (8)
C17—O2—Cu2—Cu1	162.1 (2)	O2—Cu2—Cu1—O1 ⁱ	29.99 (11)
C1—O1—Cu2—O2	-124.44 (17)	O1—Cu2—Cu1—O1 ⁱ	180.0
Cu1—O1—Cu2—O2	19.40 (7)	N1—Cu2—Cu1—O1 ⁱ	-171.69 (11)
C1—O1—Cu2—N1	42.19 (17)	N2—Cu2—Cu1—O1 ⁱ	13.14 (11)
Cu1—O1—Cu2—N1	-173.97 (8)	Cl1—Cu2—Cu1—O1 ⁱ	-76.59 (8)
Symmetry codes: (i) $-x$, $-y$, $-z+1$.			

