COMMUNICATIONS

ISSN 2056-9890

Received 31 March 2017
Accepted 12 April 2017

Edited by T. J. Prior, University of Hull, England

Keywords: crystal structure; cobalt(II); transition metal complex; benzoic acid derivative.

CCDC reference: 1543701

Supporting information: this article has supporting information at journals.iucr.org/e

OPEN \bigodot ACCESS

Crystal structure of catena-poly[[[diaquabis(2,4,6-trimethylbenzoato- κO)cobalt(II)]- μ-aqua- $\kappa^{2} O: O$] dihydrate]

Tuncer Hökelek, ${ }^{\text {a* }}$ Nurcan Akduran, ${ }^{\text {b }}$ Safiye Özkaya ${ }^{c}$ and Hacali Necefoğlu ${ }^{\text {c,d }}$

${ }^{\text {a }}$ Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey, ${ }^{\text {b }}$ SANAEM, Saray Mahallesi, Atom Caddesi, No. 27, 06980 Saray-Kazan, Ankara, Turkey, ${ }^{\text {c }}$ Department of Chemistry, Kafkas University, 36100 Kars, Turkey,
 merzifon@hacettepe.edu.tr

The asymmetric unit of the title one-dimensional polymeric compound, $\left\{\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, contains one $\mathrm{Co}^{\mathrm{II}}$ cation situated on a centre of inversion, one-half of a coordinating water molecule, one 2,4,6-trimethylbenzoate (TMB) anion together with one coordinating and one noncoordinating water molecule; the TMB anion acts as a monodentate ligand. In the anion, the carboxylate group is twisted away from the attached benzene ring by 84.9 (2) ${ }^{\circ}$. The $\mathrm{Co}^{\text {II }}$ atom is coordinated by two TMB anions and two water molecules in the basal plane, while another water molecule bridges the $\mathrm{Co}^{\mathrm{II}}$ atoms in the axial directions, forming polymeric chains running along [001]. The coordination environment for the $\mathrm{Co}^{\mathrm{II}}$ cation is a slightly distorted octahedron. The coordinating and bridging water molecules link to the carboxylate groups via intra- and intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, enclosing $S(6)$ ring motifs, while the coordinating, bridging and non-coordinating water molecules link to the carboxylate groups and the coordinating water molecules link to the non-coordinating water molecules via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, enclosing $R_{2}^{2}(8)$ and $R_{3}^{3}(8)$ ring motifs. Weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions may further stabilize the crystal structure.

1. Chemical context

Transition metal complexes with ligands of biochemical interest, such as imidazole and some N-protected amino acids, show interesting physical and/or chemical properties, through which they may find applications in biological systems (Antolini et al., 1982). Some benzoic acid derivatives, such as 4 -aminobenzoic acid, have been extensively reported in coordination chemistry, as bifunctional organic ligands, due to the varieties of their coordination modes (Chen \& Chen, 2002; Amiraslanov et al., 1979; Hauptmann et al., 2000).
The structure-function-coordination relationships of the arylcarboxylate ion in $\mathrm{Zn}^{\text {II }}$ complexes of benzoic acid derivatives change depending on the nature and position of the substituted groups on the benzene ring, the nature of the additional ligand molecule or solvent, and the pH and temperature of the synthesis (Shnulin et al., 1981; Nadzhafov et al., 1981; Antsyshkina et al., 1980; Adiwidjaja et al., 1978). When pyridine and its derivatives are used instead of water molecules, the structure is completely different (Catterick et al., 1974).
The solid-state structures of anhydrous zinc(II) carboxylates include one-dimensional (Guseinov et al., 1984; Clegg et al., 1986a), two-dimensional (Clegg et al., 1986b, 1987) and
three-dimensional (Capilla \& Aranda, 1979) polymeric motifs of different types, while discrete monomeric complexes with octahedral or tetrahedral coordination geometry are found if water or other donor molecules coordinate to the $\mathrm{Zn}^{\mathrm{II}}$ cation (van Niekerk et al., 1953; Usubaliev et al., 1992).

The structures of some mononuclear polymeric complexes obtained from the reactions of transition metal(II) ions with nicotinamide (NA) and/or some benzoic acid derivatives as ligands have been determined, e.g. $\left\{\mathrm{Mn}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right.$-$\left.2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}[(\mathrm{II})$; Hökelek et al., 2009) $]$, $\left[\mathrm{Mn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{FO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ [(III); Necefoğlu et al., 2011)], $\left\{\left[\mathrm{Pb}\left(\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}\right)\right]\right.$-$\left.\mathrm{H}_{2} \mathrm{O}\right\}_{n}\left[(\mathrm{IV}) ;\right.$ Hökelek et al., 2011)], $\left\{\left[\mathrm{Pb}\left(\mathrm{C}_{7} \mathrm{H}_{5} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{6}\right.\right.\right.$. $\left.\left.\left.\mathrm{N}_{2} \mathrm{O}\right)\right] \mathrm{H}_{2} \mathrm{O}\right\}_{n}[(\mathrm{~V}) ;$ Zaman et al., 2012) $]$ and $\left\{\left[\mathrm{Zn}\left(\mathrm{C}_{7} \mathrm{H}_{4} \mathrm{ClO}_{2}\right)_{2^{-}}\right.\right.$ $\left.\left.\left(\mathrm{H}_{2} \mathrm{O}\right)\right]\right\}_{n}[(\mathrm{VI})$; Bozkurt et al., 2013)], where the transition metal(II) cations are bridged by water molecules in (II), 4-fluorobenzoate anions in (III), nicotinamide ligands in (IV), 3-hydroxybenzoate anions in (V) and 3-chlorobenzoate anions in (VI). The synthesis and structure determination of the title compound, (I), a one-dimensional polymeric cobalt(II) complex with two 2,4,6-trimethylbenzoate (TMB)

Figure 1
The asymmetric unit of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2
Partial view of the polymeric chain of the title compound. H atoms of the 2,4,6-trimethylbenzoate (TMB) anions have been omitted for clarity.
ligands and four coordinating and two non-coordinating water molecules, was undertaken in order to compare the results obtained with those reported previously. Its crystal structure is reported herein.

2. Structural commentary

The asymmetric unit of the title one-dimensional polymeric compound, (I), contains one $\mathrm{Co}^{\mathrm{II}}$ cation situated on a centre of inversion, one-half of a coordinating water molecule, one 2,4,6-trimethylbenzoate (TMB) anion together with the one coordinating and one non-coordinating water molecules; the TMB anion acts as a monodentate ligand (Fig. 1).

The $\mathrm{Co}^{\mathrm{II}}$ atom is coordinated by two TMB anions and two water molecules in the basal plane while another water molecule bridges the $\mathrm{Co}^{\mathrm{II}}$ atoms in the axial directions, resulting in a slightly distorted octahedral coordination sphere around each Co^{2+} cation, and forming polymeric chains (Fig. 2) running along [001] (Figs. 3 and 4). The cobalt cation is formally Co^{2+} within the structure, in line with the presence of

Figure 3
A partial packing diagram of the title one-dimensional polymeric compound in a view approximately along the b axis, where the c axis is horizontal and the a axis is vertical. H atoms have been omitted for clarity.

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ is the centroid of the $\mathrm{C} 2-\mathrm{C} 7$ ring.

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 31 \cdots \mathrm{O} 1^{\text {i }}$	0.80 (2)	1.90 (2)	2.697 (3)	170 (5)
$\mathrm{O} 3-\mathrm{H} 32 \cdots \mathrm{O}$	0.82 (3)	1.91 (3)	2.724 (5)	174 (3)
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 2^{\text {ii }}$	0.83 (3)	1.82 (3)	2.622 (3)	164 (4)
$\mathrm{O} 5-\mathrm{H} 52 \cdots \mathrm{O} 2^{\text {iii }}$	0.82 (3)	1.98 (4)	2.726 (4)	151 (6)
$\mathrm{C} 10-\mathrm{H} 10 \mathrm{C} \cdots \mathrm{O}^{\text {iv }}$	0.96	2.59	3.466 (7)	152
C6-H6 . . Cg $1^{\text {v }}$	0.93	3.28	4.063 (4)	143
C9-H9A \cdots Cg1 ${ }^{\text {v }}$	0.96	3.40	3.961 (7)	120

Symmetry codes: (i) $-x+1, y,-z+\frac{1}{2}$; (ii) $x,-y+1, z-\frac{1}{2}$; (iii) $-x+1, y,-z+\frac{3}{2}$; (iv) $-x+1,-y+1,-z+1 ;(\mathrm{v})-x+\frac{1}{2}, y+\frac{3}{2},-z-\frac{1}{2}$.
bridging water molecules rather than bridging hydroxide groups. This is confirmed by softness-sensitive BVS calculations (Adams, 2001), which identify the BVS for the Co atom to be 2.05 (5).

The two carboxylate O atoms (O 1 and O^{i}) of the two symmetry-related TMB anions and the two symmetry-related water O atoms (O 3 and O^{i}) around the $\mathrm{Co}^{\mathrm{II}}$ cation form a slightly distorted square-planar arrangement with an average $\mathrm{Co} 1-\mathrm{O}$ bond length of 2.058 (2) \AA. The slightly distorted octahedral coordination is completed by the symmetry-related bridging O atoms (O 4 and $\mathrm{O} 4^{\mathrm{i}}$) with a $\mathrm{Co} 1-\mathrm{O} 4$ bond length of 2.2060 (11) \AA in the axial directions (Fig. 2) [symmetry code: (i) $1-x, 1-y, 1-z]$. The $\mathrm{Co}-\mathrm{O}$ bond lengths are in the range of 2.041 (2)-2.2060 (11) A. Among the $\mathrm{Co}-\mathrm{O}$ coordinations the $\mathrm{Co} 1-\mathrm{O} 3$ bond [2.041 (2) \AA] is the shortest and the $\mathrm{Co} 1-\mathrm{O} 4$ bond $[2.2060(11) \AA$] is the longest, probably as a result of the bidentate bridging coordination of O 4

Figure 5
Part of the crystal structure. Intramolecular and intermolecular O $\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, enclosing $S(6), R_{2}^{2}(8)$ and $R_{3}^{3}(8)$ ring motifs, are shown as dashed lines. H atoms not involved in classical hydrogen bonds have been omitted for clarity.
with a very wide $\mathrm{Co} 1-\mathrm{O} 4-\mathrm{Co} 1^{\mathrm{ii}}$ bond angle of $132.95(13)^{\circ}$ [symmetry code: (ii) $1-x, y, \frac{1}{2}-z$]. The Co1 atom lies 0.2077 (1) A above the carboxylate ($\mathrm{O} 1 / \mathrm{O} 2 / \mathrm{C} 1$) group, which makes a dihedral angle of $84.9(2)^{\circ}$ with the adjacent benzene (C2-C7) ring.

Neighboring $\mathrm{Co}^{\mathrm{II}}$ atoms are bridged by $\mathrm{H}_{2} \mathrm{O}$ molecules (Fig. 2) and they are also coordinated by monodentate carboxylate groups. The non-coordinating oxygen atoms of the carboxylate groups interact with the bridging water molecules via short hydrogen bonds (Table 1 and Fig. 5),

Figure 4
View of the hydrogen bonding and packing of the title one-dimensional polymeric compound along the c axis. H atoms not involved in classical hydrogen bonds have been omitted for clarity.
increasing the Lewis basicity of the bridging water molecules by attracting the protons of the water molecules to the oxygen atoms of the carboxylate groups. Intramolecular $\mathrm{O}-$ $\mathrm{H}_{\text {brdw }} \cdots \mathrm{O}_{\mathrm{c}}$ and intermolecular $\mathrm{O}-\mathrm{H}_{\text {coordw }} \cdots \mathrm{O}_{\mathrm{c}}$ (brdW $=$ bridging water, coordW $=$ coordinating water and $\mathrm{c}=$ carboxylate) hydrogen bonds (Table 1) link the bridging and coordinating water molecules to the carboxylate oxygen atoms, enclosing $S(6)$ ring motifs (Fig. 5).

3. Supramolecular features

In the crystal, $\mathrm{O}-\mathrm{H}_{\text {coordw }} \quad \cdots \quad \mathrm{O}_{\mathrm{c}}$ and $\mathrm{O}-$ $\mathrm{H}_{\text {coordw }} \cdots \mathrm{O}_{\text {noncoordW, }}, \quad \mathrm{O}-\mathrm{H}_{\text {noncoordw }} \cdots \mathrm{O}_{\mathrm{c}}, \quad \mathrm{O}-\mathrm{H}_{\text {brdw }} \cdots \mathrm{O}_{\mathrm{c}}$ (noncoordW $=$ non-coordinating water) hydrogen bonds (Table 1) link the molecules, enclosing $R_{2}^{2}(8)$ and $R_{3}^{3}(8)$ ring motifs, respectively (Fig. 5). $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1) also link the hydrogen-bonded polymeric chains running along [001] into networks parallel to (011) (Fig. 4). The crystal structure is further stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 1).

4. Comparison with related structures

In the crystal structure of a similar complex, catena-poly-[[[diaquabis[4-(diethylamino)benzoato- $\left.\kappa O^{l}\right]$ manganese(II)]-μ-aqua $]$ dihydrate $],\left\{\left[\mathrm{Mn}\left(\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2\left(\mathrm{H}_{2} \mathrm{O}\right)\right\}_{n}$, (II), (Hökelek et al., 2009), the two independent $\mathrm{Mn}^{\mathrm{II}}$ atoms are located on a centre of symmetry and are coordinated by two 4-(diethylamino)benzoate (DEAB) anions and two water molecules in the basal plane, while another water molecule bridges the Mn atoms in the axial directions, forming polymeric chains as in the title compound, (I). In (II), the $\mathrm{Mn}-\mathrm{O}$ bond lengths are in the range 2.1071 (14)-2.2725 (13) \AA. The $\mathrm{Mn}-\mathrm{O}$ bond lengths [2.2725 (13) and 2.2594 (13) \AA] for the bridging water molecule are the longest with an $\mathrm{Mn}-\mathrm{O}-\mathrm{Mn}$ bond angle of 128.35 (6$)^{\circ}$.

In the crystal structure of catena-[bis(μ_{2}-aqua)tetraaqua-tetrakis(2,4,6-trimethylbenzoato-O)dinickel(II) tetrahydrate, $\left\{\left[\mathrm{Ni}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, [(VII; Indrani et al., 2009)], the two independent $\mathrm{Ni}^{\mathrm{II}}$ atoms are located on a centre of symmetry and are coordinated by two 2,4,6-trimethylbenzoate (TMB) anions and two water molecules in the basal plane, while another water molecule bridges the Ni atoms in the axial directions, forming polymeric chains as in the title compound, (I). In (VII), the $\mathrm{Ni}-\mathrm{O}$ bond lengths are in the range 2.0337 (15)-2.1316 (13) \AA. The $\mathrm{Ni}-\mathrm{O}$ bond lengths [2.1316 (13) and 2.1299 (13) \AA] for the bridging water molecule are the longest with an $\mathrm{Ni}-\mathrm{O}-\mathrm{Ni}$ bond angle of 134.65 (7) ${ }^{\circ}$.

We also solved the crystal structure of catena-poly[[[diaquabis (2,4,6-trimethylbenzoato- κO^{l}) manganese(II)], $\left\{\left[\mathrm{Mn}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (VIII), which had previously been reported by Chen et al. (2007). In (VIII), the $\mathrm{Mn}^{\mathrm{II}}$ atom and the bridging water O atom are located on a centre of symmetry and the $\mathrm{Mn}^{\mathrm{II}}$ atom is coordinated by two 2,4,6-trimethylbenzoate (TMB) anions and two water molecules in the basal plane, while another water molecule
bridges the $\mathrm{Mn}^{\mathrm{II}}$ cations in the axial directions, forming polymeric chains as in the title compound, (I). The $\mathrm{Mn}-\mathrm{O}$ bond lengths are in the range 2.1409 (15)-2.2734 (7) A. The $\mathrm{Mn}-\mathrm{O}$ bond length [2.2734 (7) \AA] for the bridging water molecule is the longest with an $\mathrm{Mn}-\mathrm{O}-\mathrm{Mn}$ bond angle of 128.41 (8) ${ }^{\circ}$.

In the title compound, (I), the near equalities of the $\mathrm{C} 1-\mathrm{O} 1$ [1.259 (4) \AA] and $\mathrm{C} 1-\mathrm{O} 2$ [1.246 (4) \AA] bonds in the carboxylate groups indicate delocalized bonding arrangements, rather than localized single and double bonds. The $\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$ bond angle $\left[124.5(3)^{\circ}\right]$ is increased slightly compared to the free acid [122.2°] due to the coordination of oxygen atom (O 1) to the metal atom. The $\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$ bond angle may be compared with the corresponding values of 121.96 (18) and $122.35(18)^{\circ}$ in (II), $124.0(2)^{\circ}$ in (III), 120.6 (6) and 121.3 (7) ${ }^{\circ}$ in (IV), 121.7 (2) and 121.9 (3) ${ }^{\circ}$ in (V), 123.47 (14) ${ }^{\circ}$ in (VI), 124.29 (18) and 124.33 (18) $)^{\circ}$ in (VII) and $124.02(16)^{\circ}$ in (VIII). The benzoate ions coordinate to the metal atoms in a monodentate fashion in (II), (III), (VI), (VII) and (VIII), and they are bidentate in (IV) and (V).

The $\mathrm{Co} 1 \cdots \mathrm{Co} 1^{\mathrm{ii}}$ distance $[4.045$ (15) \AA] across the chain (Fig. 2) and the $\mathrm{Co} 1-\mathrm{O} 4-\mathrm{Co}^{\mathrm{ii}}$ bond angle [132.95 (13) ${ }^{\circ}$] in (I) may be compared with the corresponding values of 4.079 (4) \AA and $128.35(6)^{\circ}$ in (II), 4.951 (3) \AA in (III), 9.795 (4) \AA in (IV), 7.363 (4) \AA in (V), 4.3798 (3) \AA in (VI), $3.932 \AA$ and $134.65(7)^{\circ}$ in (VII) and $4.049(15) \AA$ and 128.41 (8) ${ }^{\circ}$ in (VIII). According to these results, when the transition metal(II) atoms are bridged by the water molecules the $M-\mathrm{O}_{\mathrm{brdw}}-M(M=$ transition metal and brdW $=$ bridging water) bond angles increase, while the $M-\mathrm{O}_{\text {brdw }}$ bond lengths decrease with increasing atomic number, Z, of the transition metal(II) atoms and the $M \cdots M$ distances across the polymeric chains are almost the same, independent of the type of anion coordinating to the metal(II) atoms.

5. Synthesis and crystallization

The title compound was prepared by the reaction of $\mathrm{CoSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}(0.70 \mathrm{~g}, 2.5 \mathrm{mmol})$ with sodium 2,4,6-trimethylbenzoate $(0.93 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{H}_{2} \mathrm{O}(150 \mathrm{ml})$ at room temperature. The mixture was set aside to crystallize at ambient temperature for eight weeks, giving pink single crystals (yield: $0.96 \mathrm{~g}, 81 \%$). FT-IR: 3630, 3405, 3209, 2286, 2069, 1612, 1535, 1446, 1400, 1181, 1114, 1031, 893, 857, 827, $758,690,615,570,490,478,401$.

6. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2. H atoms of water molecules were located in difference-Fourier maps and refined with distance and angle restraints (SIMU, DELU and ISOR restraints in $S H E L X L$). Bond lengths and angles for water molecules are: $\mathrm{O} 3-\mathrm{H} 31=0.806(19), \mathrm{O} 3-\mathrm{H} 32=$ 0.818 (18), $\mathrm{O} 4-\mathrm{H} 41=0.827$ (18), $\mathrm{O} 5-\mathrm{H} 51=0.812$ (10), $\mathrm{O} 5-\mathrm{H} 52=0.820(10) \AA$ and $\mathrm{H} 31-\mathrm{O} 3-\mathrm{H} 32=107$ (4) and $\mathrm{H} 51-\mathrm{O} 5-\mathrm{H} 52=107(4)^{\circ}$ The C-bound H atoms were posi-
tioned geometrically with $\mathrm{C}-\mathrm{H}=0.93$ and $0.96 \AA$ for aromatic and methyl H atoms, respectively, and constrained to ride on their parent atoms, with $U_{\text {iso }}(\mathrm{H})=k \times U_{\text {eq }}(\mathrm{C})$, where $k=1.5$ for methyl H atoms and $k=1.2$ for aromatic H atoms. The maximum and minimum electron densities were found $0.89 \AA$ and $0.82 \AA$ from Co 1 . The high residual electron density value of $2.178 \mathrm{e}_{\AA^{-1}}$ may be due to the poor quality of the crystal.

Acknowledgements

The authors acknowledge the Scientific and Technological Research Application and Research Center, Sinop University, Turkey, for the use of the Bruker D8 QUEST diffractometer.

References

Adams, St. (2001). Acta Cryst. B57, 278-287.
Adiwidjaja, G., Rossmanith, E. \& Küppers, H. (1978). Acta Cryst. B34, 3079-3083.
Amiraslanov, I. R., Mamedov, Kh. S., Movsumov, E. M., Musaev, F. N. \& Nadzhafov, G. N. (1979). Zh. Strukt. Khim. 20, 1075-1080.
Antolini, L., Battaglia, L. P., Bonamartini Corradi, A., Marcotrigiano, G., Menabue, L., Pellacani, G. C. \& Saladini, M. (1982). Inorg. Chem. 21, 1391-1395.
Antsyshkina, A. S., Chiragov, F. M. \& Poray-Koshits, M. A. (1980). Koord. Khim. 15, 1098-1103.
Bozkurt, N., Dilek, N., Çaylak Delibas, N., Necefoğlu, H. \& Hökelek, T. (2013). Acta Cryst. E69, m381-m382.

Bruker (2012). APEX2, SAINT and SADABS. Bruker AXS Inc. Madison, Wisconsin, USA.
Capilla, A. V. \& Aranda, R. A. (1979). Cryst. Struct. Commun. 8, 795798.

Catterick (neé Drew), J., Hursthouse, M. B., New, D. B. \& Thornton, P. (1974). J. Chem. Soc. Chem. Commun. pp. 843-844.

Chen, H. J. \& Chen, X. M. (2002). Inorg. Chim. Acta, 329, 13-21.
Chen, M. S., Hu, J. R., deng, Y. F., Kuang, D. Z., Zhang, C. H., Feng, Y. L. \& Peng, Y. L. (2007). Chin. J. Inorg. Chem. 23, 145-148.

Clegg, W., Little, I. R. \& Straughan, B. P. (1986a). Acta Cryst. C42, 919-920.
Clegg, W., Little, I. R. \& Straughan, B. P. (1986b). Acta Cryst. C42, 1701-1703.
Clegg, W., Little, I. R. \& Straughan, B. P. (1987). Acta Cryst. C43, 456457.

Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
Guseinov, G. A., Musaev, F. N., Usubaliev, B. T., Amiraslanov, I. R. \& Mamedov, Kh. S. (1984). Koord. Khim. 10, 117-122.
Hauptmann, R., Kondo, M. \& Kitagawa, S. (2000). Z. Kristallogr. New Cryst. Struct. 215, 169-172.
Hökelek, T., Dal, H., Tercan, B., Aybirdi, Ö. \& Necefoğlu, H. (2009). Acta Cryst. E65, m747-m748.
Hökelek, T., Tercan, B., Şahin, E., Aktaş, V. \& Necefoğlu, H. (2011). Acta Cryst. E67, m1057-m1058.

Table 2
Experimental details.
Crystal data

Chemical formula	$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{\text {r }}$	475.39
Crystal system, space group	Monoclinic, C2/c
Temperature (K)	296
$a, b, c(\AA)$	29.5261 (5), 10.1413 (2), 8.0906 (2)
β (${ }^{\circ}$)	91.894 (4)
$V\left(\mathrm{~A}^{3}\right)$	2421.27 (9)
Z	4
Radiation type	Mo K α
$\mu\left(\mathrm{mm}^{-1}\right)$	0.75
Crystal size (mm)	$0.35 \times 0.29 \times 0.20$
Data collection	
Diffractometer	Bruker SMART BREEZE CCD diffractometer
Absorption correction	Multi-scan SADABS; Bruker, 2012
$T_{\text {min }}, T_{\text {max }}$	0.779, 0.864
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	25445, 2957, 2448
$R_{\text {int }}$	0.058
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.664
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.060, 0.166, 1.09
No. of reflections	2957
No. of parameters	161
No. of restraints	74
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	2.18, -0.52

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS97 and SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows and WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

Indrani, M., Ramasubramanian, R., Fronczek, F. R., Vasanthacharya, N. Y. \& Kumaresan, S. (2009). J. Mol. Struct. 931, 35-44.

Nadzhafov, G. N., Shnulin, A. N. \& Mamedov, Kh. S. (1981). Zh. Strukt. Khim. 22, 124-128.
Necefoğlu, H., Özbek, F. E., Öztürk, V., Tercan, B. \& Hökelek, T. (2011). Acta Cryst. E67, m1003-m1004.

Niekerk, J. N. van, Schoening, F. R. L. \& Talbot, J. H. (1953). Acta Cryst. 6, 720-723.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Shnulin, A. N., Nadzhafov, G. N., Amiraslanov, I. R., Usubaliev, B. T. \& Mamedov, Kh. S. (1981). Koord. Khim. 7, 1409-1416.
Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Usubaliev, B. T., Guliev, F. I., Musaev, F. N., Ganbarov, D. M., Ashurova, S. A. \& Movsumov, E. M. (1992). Zh. Strukt. Khim. 33, m203-m207.
Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. \& Hökelek, T. (2012). Acta Cryst. E68, m257-m258.

supporting information

Crystal structure of catena-poly[[[diaquabis(2,4,6-trimethylbenzoatoκO)cobalt(II)]- μ-aqua- $\kappa^{2} O: O$] dihydrate]

Tuncer Hökelek, Nurcan Akduran, Safiye Özkaya and Hacali Necefoğlu

Computing details

Data collection: APEX2 (Bruker, 2012); cell refinement: SAINT (Bruker, 2012); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX publication routines (Farrugia, 2012) and PLATON (Spek, 2009).

catena-Poly[[[diaquabis(2,4,6-trimethylbenzoato- κO)cobalt(II)]- μ-aqua- $\left.\kappa^{2} O: O\right]$ dihydrate]

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=475.39$
Monoclinic, $C 2 / c$
Hall symbol: -C 2 yc
$a=29.5261$ (5) \AA
$b=10.1413(2) \AA$
$c=8.0906(2) \AA$
$\beta=91.894$ (4) ${ }^{\circ}$
$V=2421.27(9) \AA^{3}$
$Z=4$

Data collection

Bruker SMART BREEZE CCD

 diffractometerRadiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
SADABS; Bruker, 2012
$T_{\min }=0.779, T_{\text {max }}=0.864$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.060$
$w R\left(F^{2}\right)=0.166$
$S=1.09$
2957 reflections
161 parameters
74 restraints
$F(000)=1004$
$D_{\mathrm{x}}=1.304 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 9882 reflections
$\theta=2.8-28.1^{\circ}$
$\mu=0.75 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, translucent light pink
$0.35 \times 0.29 \times 0.20 \mathrm{~mm}$

25445 measured reflections
2957 independent reflections
2448 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.058$
$\theta_{\text {max }}=28.2^{\circ}, \theta_{\text {min }}=1.4^{\circ}$
$h=-38 \rightarrow 39$
$k=-12 \rightarrow 13$
$l=-10 \rightarrow 10$

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement

supporting information

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0725 P)^{2}+9.9721 P\right] \\
& \quad \text { where } P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001
\end{aligned}
$$

$$
\begin{aligned}
& \Delta \rho_{\max }=2.18 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.52 \mathrm{e}^{-3}
\end{aligned}
$$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Col	0.5000	0.5000	0.5000	0.02399 (18)
O1	0.55057 (8)	0.6264 (2)	0.4251 (3)	0.0409 (6)
O2	0.57111 (9)	0.7216 (3)	0.6626 (3)	0.0503 (7)
O3	0.45248 (10)	0.6292 (3)	0.4084 (3)	0.0492 (7)
H31	0.4484 (17)	0.625 (6)	0.310 (2)	0.086 (17)*
H32	0.4289 (10)	0.656 (4)	0.446 (5)	0.057 (13)*
O4	0.5000	0.4132 (3)	0.2500	0.0274 (6)
H41	0.5249 (8)	0.378 (4)	0.237 (5)	0.048 (10)*
O5	0.37711 (14)	0.7250 (4)	0.5521 (4)	0.0768 (10)
H51	0.3607 (18)	0.785 (4)	0.522 (7)	0.103 (15)*
H52	0.385 (2)	0.740 (6)	0.649 (3)	0.100 (15)*
C1	0.57564 (11)	0.7012 (3)	0.5121 (4)	0.0348 (6)
C2	0.61375 (11)	0.7694 (3)	0.4254 (4)	0.0366 (7)
C3	0.65665 (13)	0.7129 (4)	0.4284 (5)	0.0509 (9)
C4	0.69080 (15)	0.7756 (5)	0.3429 (6)	0.0625 (11)
H4	0.7196	0.7386	0.3439	0.075*
C5	0.68271 (16)	0.8917 (5)	0.2564 (5)	0.0647 (12)
C6	0.64030 (15)	0.9461 (4)	0.2567 (5)	0.0567 (11)
H6	0.6349	1.0245	0.1997	0.068*
C7	0.60467 (13)	0.8874 (4)	0.3403 (4)	0.0450 (8)
C8	0.55866 (16)	0.9483 (5)	0.3372 (7)	0.0689 (12)
H8A	0.5409	0.9133	0.2458	0.103*
H8B	0.5614	1.0421	0.3252	0.103*
H8C	0.5441	0.9286	0.4387	0.103*
C9	0.7209 (2)	0.9563 (8)	0.1634 (8)	0.109 (2)
H9A	0.7152	0.9467	0.0465	0.164*
H9B	0.7491	0.9145	0.1941	0.164*
H9C	0.7225	1.0482	0.1911	0.164*
C10	0.66644 (18)	0.5874 (5)	0.5233 (7)	0.0777 (15)
H10A	0.6629	0.6028	0.6391	0.117*
H10B	0.6970	0.5597	0.5049	0.117*
H10C	0.6457	0.5198	0.4860	0.117*

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Co1	$0.0380(3)$	$0.0218(3)$	$0.0124(3)$	$-0.00099(18)$	$0.00338(18)$	$-0.00010(16)$
O1	$0.0549(14)$	$0.0470(13)$	$0.0210(9)$	$-0.0202(10)$	$0.0055(9)$	$-0.0019(9)$
O2	$0.0670(16)$	$0.0616(16)$	$0.0227(10)$	$-0.0243(13)$	$0.0073(10)$	$-0.0082(10)$
O3	$0.0633(16)$	$0.0626(17)$	$0.0221(11)$	$0.0257(13)$	$0.0050(10)$	$0.0023(11)$
O4	$0.0375(15)$	$0.0275(13)$	$0.0175(12)$	0.000	$0.0044(10)$	0.000
O5	$0.087(2)$	$0.094(3)$	$0.0492(18)$	$0.032(2)$	$-0.0007(16)$	$-0.0010(18)$
C1	$0.0459(16)$	$0.0352(15)$	$0.0234(13)$	$-0.0057(12)$	$0.0017(11)$	$0.0016(11)$
C2	$0.0439(16)$	$0.0405(16)$	$0.0255(13)$	$-0.0142(13)$	$0.0024(11)$	$-0.0034(12)$
C3	$0.051(2)$	$0.056(2)$	$0.046(2)$	$-0.0079(17)$	$0.0059(15)$	$0.0018(17)$
C4	$0.048(2)$	$0.084(3)$	$0.056(2)$	$-0.011(2)$	$0.0104(17)$	$0.005(2)$
C5	$0.063(3)$	$0.088(3)$	$0.043(2)$	$-0.033(2)$	$0.0041(18)$	$0.011(2)$
C6	$0.072(3)$	$0.057(2)$	$0.0398(19)$	$-0.027(2)$	$-0.0063(17)$	$0.0137(17)$
C7	$0.055(2)$	$0.0468(19)$	$0.0326(16)$	$-0.0138(15)$	$-0.0030(14)$	$0.0054(14)$
C8	$0.071(3)$	$0.060(3)$	$0.075(3)$	$0.002(2)$	$-0.005(2)$	$0.024(2)$
C9	$0.081(4)$	$0.163(6)$	$0.083(4)$	$-0.057(4)$	$0.011(3)$	$0.042(4)$
C10	$0.070(3)$	$0.068(3)$	$0.095(4)$	$0.015(2)$	$0.015(3)$	$0.025(3)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

Col-O1	2.074 (2)	C3-C10	1.509 (6)
$\mathrm{Col}-\mathrm{Ol}^{1}$	2.074 (2)	C4-C5	1.387 (7)
Col-O3	2.041 (2)	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
Col-O3 ${ }^{\text {i }}$	2.041 (2)	C5-C9	1.524 (6)
Col-O4	2.2060 (11)	C6-C5	1.368 (7)
$\mathrm{Co} 1-\mathrm{O} 4^{\text {i }}$	2.2060 (11)	C6-H6	0.9300
O1-C1	1.259 (4)	C7-C6	1.402 (5)
$\mathrm{O} 2-\mathrm{C} 1$	1.246 (4)	C7-C8	1.492 (6)
O3-H31	0.806 (19)	C8-H8A	0.9600
O3-H32	0.818 (18)	С8-H8B	0.9600
$\mathrm{O} 4-\mathrm{Col}^{\text {ii }}$	2.2060 (11)	C8-H8C	0.9600
O4-H41	0.827 (18)	C9-H9A	0.9600
O5-H51	0.812 (10)	C9-H9B	0.9600
O5-H52	0.820 (10)	C9-H9C	0.9600
C2-C1	1.513 (4)	C10-H10A	0.9600
C2-C3	1.390 (5)	C10-H10B	0.9600
C2-C7	1.401 (5)	C10-H10C	0.9600
C3-C4	1.395 (5)		
$\mathrm{O} 1-\mathrm{Col}-\mathrm{Ol}^{\text {i }}$	180.00 (9)	C4-C3-C10	120.5 (4)
$\mathrm{O} 1-\mathrm{Col-O4}$	87.53 (7)	C3-C4-H4	119.3
O1-Col-O4	92.47 (7)	C5-C4-C3	121.5 (4)
$\mathrm{O} 1-\mathrm{Col-O4}{ }^{\text {i }}$	92.47 (7)	C5-C4-H4	119.3
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Col-O} 4^{\text {i }}$	87.53 (7)	C4-C5-C9	119.7 (5)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 1$	89.44 (11)	C6-C5-C4	118.9 (4)
O3--Col-O1	90.56 (11)	C6-C5-C9	121.4 (5)

O3-Col-O1 ${ }^{\text {i }}$	90.56 (11)
$\mathrm{O} 3{ }^{\text {i }}-\mathrm{Col-O1}{ }^{\text {i }}$	89.44 (11)
O3 ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 3$	180.00 (12)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 4$	86.80 (8)
O3 ${ }^{\text {i }} \mathrm{Co} 1-\mathrm{O} 4$	93.20 (8)
O3-Co1-O4 ${ }^{\text {i }}$	93.20 (8)
O3 ${ }^{\text {i }}$ - $\mathrm{Co} 1-\mathrm{O} 4{ }^{\text {i }}$	86.80 (8)
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 4$	180.0
C1-O1-Co1	128.67 (19)
$\mathrm{Col}-\mathrm{O} 3-\mathrm{H} 32$	131 (3)
Co1-O3-H31	114 (4)
H32-O3-H31	107 (4)
$\mathrm{Co} 1-\mathrm{O} 4-\mathrm{Col}^{\text {ii }}$	132.95 (13)
$\mathrm{Co1-O} 4-\mathrm{H} 41$	108 (3)
$\mathrm{Co1} 1{ }^{\text {ii- }} \mathrm{O} 4-\mathrm{H} 41$	92 (3)
H51-O5-H52	107 (4)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	116.7 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{O} 1$	124.5 (3)
$\mathrm{O} 2-\mathrm{C} 1-\mathrm{C} 2$	118.9 (3)
C3-C2-C1	119.7 (3)
C3-C2-C7	121.3 (3)
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1$	119.0 (3)
C2-C3-C4	118.5 (4)
C2-C3-C10	121.1 (4)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 1$	105.4 (3)
$\mathrm{O3}^{\mathrm{i}}-\mathrm{Col}-\mathrm{O} 1-\mathrm{C} 1$	-74.6 (3)
$\mathrm{O} 4-\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 1$	-167.8 (3)
$\mathrm{O} 4-\mathrm{Col}-\mathrm{O} 1-\mathrm{C} 1$	12.2 (3)
$\mathrm{O} 1-\mathrm{Co} 1-\mathrm{O} 4-\mathrm{Col}^{\text {ii }}$	-46.09 (7)
O1- ${ }^{\text {i }}$ Col-O4- $\mathrm{Col}^{\text {ii }}$	133.91 (7)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 4-\mathrm{Col}^{\text {ii }}$	43.49 (9)
$\mathrm{O} 3-\mathrm{Co} 1-\mathrm{O} 4-\mathrm{Col}^{\text {ii }}$	-136.51 (9)
$\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{O} 2$	-7.3 (5)
$\mathrm{Co} 1-\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2$	172.4 (2)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	-94.3 (4)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 2$	85.4 (4)
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$	84.4 (4)
$\mathrm{C} 7-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 2$	-95.9 (4)
C1-C2-C3-C4	177.9 (3)

C5-C6-C7	122.1 (4)
C5-C6-H6	119.0
C7-C6- H 6	119.0
C2-C7-C6	117.7 (4)
C2-C7-C8	121.4 (3)
C6-C7-C8	120.9 (4)
C7-C8-H8A	109.5
C7-C8-H8B	109.5
C7-C8- 88 C	109.5
H8A-C8-H8B	109.5
H8A-C8-H8C	109.5
H8B-C8-H8C	109.5
C5-C9-H9A	109.5
C5-C9-H9B	109.5
C5-C9-H9C	109.5
H9A-C9-H9B	109.5
H9A-C9-H9C	109.5
H9B-C9-H9C	109.5
C3-C10-H10A	109.5
C3-C10-H10B	109.5
C3-C10-H10C	109.5
H10A-C10-H10B	109.5
H10A-C10-H10C	109.5
H10B-C10-H10C	109.5
C1-C2-C3-C10	-2.7 (6)
C7-C2-C3-C4	-0.7 (6)
C7-C2-C3-C10	178.7 (4)
C1-C2-C7-C6	-178.0 (3)
C1-C2-C7-C8	1.5 (5)
C3-C2-C7-C6	0.6 (5)
C3-C2-C7-C8	-179.9 (4)
C2-C3-C4-C5	0.1 (7)
$\mathrm{C} 10-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-179.3 (5)
C3-C4-C5-C6	0.6 (7)
C3-C4-C5-C9	-179.5 (5)
C7-C6-C5-C4	-0.7 (7)
C7-C6-C5-C9	179.4 (5)
C2-C7-C6-C5	0.1 (6)
C8-C7-C6-C5	-179.4 (4)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($\AA,{ }^{o}$)
Cg 1 is the centroid of the $\mathrm{C} 2-\mathrm{C} 7$ ring.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3 — \mathrm{H} 31 \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.80(2)$	$1.90(2)$	$2.697(3)$	$170(5)$

supporting information

$\mathrm{O} 3-\mathrm{H} 32 \cdots \mathrm{O} 5$	$0.82(3)$	$1.91(3)$	$2.724(5)$	$174(3)$
$\mathrm{O} 4-\mathrm{H} 41 \cdots \mathrm{O} 2^{\text {iii }}$	$0.83(3)$	$1.82(3)$	$2.622(3)$	$164(4)$
$\mathrm{O} 5-\mathrm{H} 52 \cdots \mathrm{O} 2^{\mathrm{iv}}$	$0.82(3)$	$1.98(4)$	$2.726(4)$	$151(6)$
$\mathrm{C} 10-\mathrm{H} 10 C \cdots 5^{\mathrm{i}}$	0.96	2.59	$3.466(7)$	152
$\mathrm{C} 6-\mathrm{H} 6 \cdots \mathrm{Cg} 1^{v}$	0.93	3.28	$4.063(4)$	143
$\mathrm{C} 9 — \mathrm{H} 9 A \cdots \mathrm{Cg} 1^{\mathrm{v}}$	0.96	3.40	$3.961(7)$	120

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+1, y,-z+1 / 2$; (iii) $x,-y+1, z-1 / 2$; (iv) $-x+1, y,-z+3 / 2$; (v) $-x+1 / 2, y+3 / 2,-z-1 / 2$.

