Crystal Structure of Bis[4-(5-methyl-2-oxyphenyl- $\mathbf{\kappa} \mathbf{0 , 2 \kappa 0} \mathbf{)}$-4-imino-2-penten-2-olato- $\left.O, O^{\prime}, N^{\prime}\right]$ copper(II)

Orhan Atakol ${ }^{* \dagger}$, Filiz Ercan**, Dincer Ülkü** and Nazife Yilmaz*
*Department of Chemistry, Science Faculty, Ankara University, Tandogan 06100 Ankara, Turkey
**Department of Engineering Physics, Haceteppe University, Beytepe 06322, Ankara, Turkey

The title compound, $\mathrm{Cu}_{2}\left(\mathrm{C}_{12} \mathrm{H}_{13} \mathrm{NO}_{2}\right)_{2}$, is a doubly oxygen-bridged dimeric copper(II) complex. Doubly oxygen bridged complexes with subnormal magnetic moments are known to exhibit super exchange interaction. ${ }^{1-3}$ The Cu atoms have a distorted square-planar environment, with bond angles in the range 76.9(1)$100.3(1)^{\circ}$. The average $\mathrm{Cu}-\mathrm{O}$ distance is $1.916(2) \AA$ and the average $\mathrm{Cu}-\mathrm{N}$ distance is $1.941(3) \AA$. The Cu and Cu 2 atoms are located $0.0339(5)$ and $0.0336(5) \AA$ off the coordination best plane, respectively. The bridging angles $\mathrm{Cu} 1-\mathrm{O} 1-\mathrm{Cu} 2, \mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 3, \mathrm{Cu} 1-\mathrm{O} 3-\mathrm{Cu} 2$ and $\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 3$ are 102.8(1), 76.9(1), 102.5(1) and 77.5(1) ${ }^{\circ}$,

Table 1 Crystal and experimental data

```
Formula: \(\mathrm{Cu}_{2} \mathrm{C}_{24} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4}\)
Formula weight=533.57
Crystal system: monoclinic
Space group: \(P 2_{1} / n \quad Z=4\)
\(a=10.963(2) \AA\)
\(b=17.051(1) \AA\)
\(c=11.953(1) \AA\)
\(\beta=101.956(8)^{\circ}\)
\(V=2185.6(4) \AA^{3}\)
\(D_{\mathrm{x}}=1.62 \mathrm{Mg} / \mathrm{m}^{3}\)
\(\mu\left(\right.\) Mo K \(\left._{\alpha}\right)=1.98 \mathrm{~mm}^{-1}\)
\(T=295 \mathrm{~K}\)
Dark green
\(\mathrm{F}(000)=1096\)
Crystal size: \(0.35 \times 0.35 \times 0.18 \mathrm{~mm}\)
Radiation \(=\mathrm{MoK}_{\alpha}\)
\(R=0.043\)
\(R w=0.052\)
No. of reflections used \(=3294\)
No. of parameters \(=289\)
Goodness-of-fit=1.09
Measurement: Enraf Nonius CAD-4 diffractometer
Program system: CAD-4 EXPRESS Software
Structure determination: MolEN
Refinement: full matrix least-squares (MolEN)
Hydrogen atoms: H atoms ridging
```

$$
w=\left[\sigma F^{2}+(0.002 F)^{2}+1.15\right]^{-1}
$$

respectively. The dihedral angles between the $\mathrm{Cul}-\mathrm{Ol}-$ $\mathrm{Cu} 2-\mathrm{O} 3$ bridging plane and the coordination planes (O 1 , $\mathrm{N} 1, \mathrm{O} 2, \mathrm{O} 3$ and $\mathrm{O} 1, \mathrm{O} 3, \mathrm{~N} 2, \mathrm{O} 4$) around coppers are $2.9(9)$ and $8.0(3)^{\circ}$, respectively. The $\mathrm{Cu} \cdots \mathrm{Cu}$ distance [3.021(2) \AA] in the bridging plane is rather long, to have a direct interaction. This distance is in between the two values: $2.994(2) \AA^{4}$ and $3.073(2) \AA^{5}$, reported previously.

Table 1 shows the crystal and experimental data while final atomic parameters are given in Table 2. The bond distances and angles are shown in Table 3.
4-(5-Methyl-2-hydroxyphenyl)iminomethyl-2-hydroxy-2-penten (0.205 g) was dissolved in 30 ml hot MeCN . To this mixture, a solution of $\mathrm{Cu}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ ($0.199 \mathrm{~g}, 1 \mathrm{mmol}$) in 30 ml hot MeOH was added and mixed. After 2 h the dark green Cu complex was filtered and dried.

This complex (0.100 g) was crystallized from 70 ml N, N-dimethylformamide.

Fig. 1 The ORTEP drawing of the title compound with atom labeling.

[^0]Table 2 Final atomic coordinates and equivalent isotropic thermal parameters for non-hydrogen atoms

	\boldsymbol{y}	y	z	$\boldsymbol{B}_{\text {eq }} / \AA^{2}$
Atom				
Cu1	$0.65019(4)$	$0.02569(3)$	$0.58843(4)$	$2.791(9)$
Cu2	$0.84795(4)$	$-0.02582(3)$	$0.46108(4)$	$2.782(9)$
O1	$0.7706(3)$	$0.0685(2)$	$0.5126(3)$	$3.27(6)$
O2	$0.5352(3)$	$-0.0248(2)$	$0.6585(3)$	$4.28(7)$
O3	$0.7350(3)$	$-0.0683(2)$	$0.5475(3)$	$3.22(6)$
O4	$0.9538(3)$	$0.0210(2)$	$0.3744(3)$	$3.36(6)$
N1	$0.6132(3)$	$0.1337(2)$	$0.6199(3)$	$2.73(7)$
N2	$0.8599(3)$	$-0.1329(2)$	$0.4096(3)$	$2.70(7)$
C1	$0.7741(4)$	$0.1474(2)$	$0.5150(4)$	$2.65(8)$
C2	$0.8553(4)$	$0.1896(2)$	$0.4642(4)$	$3.03(8)$
C3	$0.8583(4)$	$0.2706(3)$	$0.4712(4)$	$3.10(9)$
C4	$0.7808(4)$	$0.3104(2)$	$0.5295(4)$	$3.26(9)$
C5	$0.6984(4)$	$0.2676(3)$	$0.5793(4)$	$3.41(9)$
C6	$0.6910(4)$	$0.1861(2)$	$0.5729(3)$	$2.60(8)$
C7	$0.5243(4)$	$0.1519(2)$	$0.6752(4)$	$2.72(8)$
C8	$0.4543(4))$	$0.0933(3)$	$0.7182(4)$	$3.01(8)$
C9	$0.4620(4)$	$0.0134(3)$	$0.7111(4)$	$3.18(9)$
C10	$0.7861(5)$	$0.3984(3)$	$0.5392(5)$	$4.9(1)$
C11	$0.4888(4)$	$0.2347(3)$	$0.6966(4)$	$3.54(9)$
C12	$0.3804(4)$	$-0.0385(3)$	$0.7665(4)$	$4.1(1)$
C13	$0.7339(4)$	$-0.1473(2)$	$0.5480(4)$	$2.75(8)$
C14	$0.6711(4)$	$-0.1901(3)$	$0.6158(4)$	$3.31(9)$
C15	$0.6810(4)$	$-0.2710(3)$	$0.6186(4)$	$3.41(9)$
C16	$0.7524(4)$	$-0.3103(2)$	$0.5533(4)$	$3.10(9)$
C17	$0.8147(4)$	$-0.2669(2)$	$0.4847(4)$	$3.02(8)$
C18	$0.8046(4)$	$-0.1853(2)$	$0.4770(4)$	$2.69(8)$
C19	$0.9006(4)$	$-0.1494(2)$	$0.3156(4)$	$2.72(8)$
C20	$0.9526(4)$	$-0.0905(3)$	$0.2558(4)$	$3.17(9)$
C21	$0.9767(4)$	$-0.0133(3)$	$0.2850(4)$	$3.14(9)$
C22	$0.7626(5)$	$-0.3984(3)$	$0.5571(5)$	$4.21(1)$
C23	$0.8951(4)$	$-0.2301(3)$	$0.2636(4)$	$3.44(9)$
C24	$1.0354(5)$	$0.0390(3)$	$0.2095(4)$	$4.4(1)$

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}{ }^{*} a_{j}{ }^{*}\left(\boldsymbol{a}_{i} \cdot a_{j}\right)$.

Table 3 Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

$\mathrm{Cu}-\mathrm{Cu} 2$	3.021(2)	N1-C7	$1.323(6)$
$\mathrm{Cul}-\mathrm{Ol}$	1.895(3)	N2-C18	$1.421(6)$
$\mathrm{Cu}-\mathrm{O} 2$	1.862(4)	N2-C19	1.324(6)
Cul - O 3	1.965(3)	C4-C10	$1.507(6)$
Cu - N 1	$1.941(3)$	C7-C8	$1.419(6)$
$\mathrm{Cu} 2-\mathrm{O} 1$	1.976(3)	C7-C11	$1.501(6)$
$\mathrm{Cu} 2-\mathrm{O} 3$	$1.912(3)$	C8-C9	$1.369(6)$
Cu2-O4	1.885(3)	C9-C12	$1.505(7)$
$\mathrm{Cu} 2-\mathrm{N} 2$	1.941(3)	C16-C22	1.508(6)
$\mathrm{Ol}-\mathrm{Cl}$	1.348(5)	C19-C20	1.419(6)
O2-C9	$1.294(6)$	C19-C23	$1.508(6)$
O3-C13	$1.348(5)$	C20-C21	$1.374(6)$
O4-C21	$1.289(6)$	C21-C24	1.505(7)
N1-C6	1.428(6)		
$\mathrm{O} 1-\mathrm{Cul}-\mathrm{O}_{2}$	175.1(1)	O1-C1-C2	122.1(4)
$\mathrm{O} 1-\mathrm{Cu}-\mathrm{O} 3$	77.5(1)	O1-Cl-C6	$117.2(4)$
$\mathrm{Ol}-\mathrm{Cul}-\mathrm{N} 1$	85.4(1)	C3-C4-C10	120.7(5)
O2-Cul-O3	97.6(1)	C5-C4-C10	$120.6(5)$
$\mathrm{O} 2-\mathrm{Cul}-\mathrm{N}$	$99.5(1)$	N1-C6-C1	113.5(4)
$\mathrm{O} 3-\mathrm{Cu}-\mathrm{N} 1$	162.1(1)	N1-C6-C5	129.4(4)
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 3$	76.9(1)	N1-C7-C8	121.6(4)
$\mathrm{O} 1-\mathrm{Cu} 2-\mathrm{O} 4$	100.3(1)	N1-C7-C11	123.3(4)
Ol - $\mathrm{Cu} 2-\mathrm{N} 2$	158.0(1)	C8-C7-C11	115.1(4)
$\mathrm{O} 3-\mathrm{Cu} 2-\mathrm{O} 4$	176.9(1)	O2-C9-C8	125.8(4)
O3-Cu2-N2	84.7(1)	C8-C9-C12	113.7(4)
$\mathrm{O} 4-\mathrm{Cu} 2-\mathrm{N} 2$	97.7(1)	O3-C13-C14	120.6(4)
$\mathrm{Cul}-\mathrm{Ol}-\mathrm{Cu} 2$	102.8(1)	O3-C13-C18	122.6(4)
$\mathrm{Cul}-\mathrm{Ol}-\mathrm{Cl}$	113.3(3)	O3-C13-C18	116.6(4)
$\mathrm{Cu} 2-\mathrm{Ol}-\mathrm{Cl}$	143.9(3)	C15-C16-C22	120.8(4)
$\mathrm{Cu} 1-\mathrm{O} 2-\mathrm{C} 9$	122.0(3)	C17-C16-C22	120.6(4)
$\mathrm{Cu} 1-\mathrm{O} 3-\mathrm{Cu} 2$	102.5(1)	N2-C18-C13	113.7(3)
$\mathrm{Cu1}-\mathrm{O} 3-\mathrm{Cl} 3$	144.1(3)	N2-C18-C17	128.8(4)
$\mathrm{Cu} 2-\mathrm{O} 3-\mathrm{C} 13$	112.9(3)	N2-C19-C20	121.3(4)
$\mathrm{Cu} 2-\mathrm{O} 4-\mathrm{C} 21$	120.8(3)	N2-C19-C23	123.6(4)
Cul - $\mathrm{N} 1-\mathrm{C} 6$	110.6(3)	C20-C19-C23	115.1(4)
$\mathrm{Cul}-\mathrm{N} 1-\mathrm{C} 7$	121.6(3)	C19-C20-C21	128.8(4)
C6-N1-C7	127.7(4)	O4-C21-C20	125.9(4)
$\mathrm{Cu} 2-\mathrm{N} 2-\mathrm{Cl} 18$	110.3(3)	O4-C21-C24	114.2(4)
Cu2-N2-C19	121.8(3)	C20-C21-C24	119.9(4)
C18-N2-C19	127.4(4)		

5. M. N. Tahir, D. Ülkü, O. Atakol and M. A. Akay, Acta Crystallogr., C52, 2676 (1996).
(Received April 7, 1997)
(Accepted September 8, 1997)

[^0]: \dagger To whom correspondence should be addressed.

