

Received 4 August 2015 Accepted 11 August 2015

Edited by H. Stoeckli-Evans, University of Neuchâtel, Switzerland

Keywords: crystal structure; amido amine derivatives; phthalonitrile derivatives; hydrogen bonding

CCDC reference: 1418026 **Supporting information**: this article has supporting information at journals.iucr.org/e

OPEN 👌 ACCESS

🖲 CrossMark

Crystal structure of 4-(3,4-dicyanophenoxy)-N-[3-(dimethylamino)propyl]benzamide monohydrate: a phenoxyphthalonitrile derivative

Senem Çolak,^a Salih Zeki Yıldız,^a Nagihan Çaylak Delibaş,^b Hasan Pişkin^b and Tuncer Hökelek^c*

^aDepartment of Chemistry, Sakarya University, 54187 Esentepe, Sakarya, Turkey, ^bDepartment of Physics, Sakarya University, 54187 Esentepe, Sakarya, Turkey, and ^cDepartment of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey. *Correspondence e-mail: merzifon@hacettepe.edu.tr

In the title compound, $C_{20}H_{20}N_4O_2 H_2O$, the planes of the phenoxy and phthalonitrile rings are oriented at a dihedral angle of 60.39 (5)°. The 3-(dimethylamino)propyl chain has an extended conformation and is *cis* with respect to the phthalonitrile ring. In the crystal, $O-H\cdots O$, $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds link the molecules to form slabs parallel to (100). There are also $C-H\cdots O$ and $C-H\cdots N$ hydrogen bonds and $C-H\cdots \pi$ interactions present within the slabs. The slabs are linked by a pair of inversion-related $C-H\cdots N$ hydrogen bonds, involving phthalonitrile rings, forming a three-dimensional structure.

1. Chemical context

Amido amine derivatives are suggested as exhibiting an outstanding combination of surfactant properties. Well-known application fields for amino derivatives are their use as synthetic intermediates of anticancer agents, antibiotics and other drugs. They also exhibit exceptionally low ocular irritation and oral toxicity, being well tolerated by human tissue (Roy et al., 2010). Amides and amido amines of fatty acids and polyamine products are used as typical corrosion inhibitors in high dosage, despite their poor biodegradability, because of their extremely good oil solubility. Polyamines play an important role in cell growth and bind to the phosphate residues of DNA, stabilizing the specific conformation of the latter (Karaoğlan et al., 2011; Göksel et al., 2013; Kim et al., 2012; Çolak et al., 2014). In this context, we synthesized 4-(3,4dicyanophenoxy)-N-[3-(dimethylamino)propyl]benzamide monohydrate and report herein on its crystal structure.

2. Structural commentary

The molecular structure of the title compound, which crystallized as a monohydrate, is illustrated in Fig. 1. The phthalonitrile (A = atoms C1–C6) and phenoxy (B = atoms C9–C14) rings are oriented at a dihedral angle of 60.39 (5)°. Atoms O1 N1, N2, C7 and C8 are at distances of 0.0799 (13), -0.1207 (18), 0.0366 (18), -0.0613 (19) and 0.0183 (18) Å, respectively, from phthalonitrile ring A, and are thus almost coplanar with this ring. In contrast, atoms O1, N3 and C15 are displaced by -0.1329 (13), 0.1004 (15) and -0.1247 (17) Å, respectively, from phenoxy ring B. The mean plane of the amide group (C15/O2/N3) makes a dihedral angle of 15.8 (2)°

Table 1		
Hydrogen-bond geometry (Å, °).	

Co^2 is	the	centroid	of	the	phenoxy	ring	C9-	C14
052 13	the	centrolu	O1	unc	phenoxy	THIE	<u> </u>	C17

	D II	TT 4	D 4	
$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$N3-H3\cdots O3^i$	0.89 (2)	1.99 (2)	2.825 (2)	155 (2)
$O3-H31\cdots N4^{ii}$	0.97 (3)	1.85 (3)	2.808 (2)	168 (3)
$O3-H32\cdots O2^{iii}$	0.88 (3)	1.93 (3)	2.803 (2)	176 (3)
$C13-H13\cdots O3^{i}$	0.93	2.58	3.477 (2)	162
$C14-H14\cdots O2^{iv}$	0.93	2.36	3.049 (2)	131
$C16-H16B\cdots Cg2^{v}$	0.97	2.96	3.661 (2)	130
$C2-H2\cdots N1^{vi}$	0.93	2.49	3.324 (2)	149

Symmetry codes: (i) -x + 1, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (ii) -x + 1, -y + 2, -z; (iii) x - 1, y, z; (iv) x, $-y + \frac{3}{2}$, $z + \frac{1}{2}$; (v) -x, $y + \frac{1}{2}$, $-z + \frac{1}{2}$; (vi) -x + 1, -y + 2, -z + 1.

with that of phenoxy ring B. The 3-(dimethylamino)propyl chain [N4/C16–C18; maximum deviation = 0.057 (2) Å] has an extended conformation and its mean plane is inclined to ring B by 68.53 (16)°, and by 28.69 (16)° to phthalonitrile ring A.

3. Supramolecular features

In the crystal, $N-H_{amd} \cdots O_w$ (amd = amide; w = water), $O-H_{w} \cdots O_{amd}$ and $O-H_{w} \cdots N_{dma}$ (dma = dimethylamino)

Figure 1

The molecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Part of the crystal packing of the title compound. The $O-H\cdots O$, $O-H\cdots N$ and $N-H\cdots O$ hydrogen bonds are shown as dashed lines (see Table 1). Only H atoms involved in hydrogen bonding have been included for clarity.

hydrogen bonds (Table 1 and Fig. 2) link molecules to form slabs lying parallel to (100). Within the slabs there are also C– $H \cdots O$ hydrogen bonds and $C-H \cdots \pi$ interactions present (Table 1). The N- $H_{amd} \cdots O_w$, $C-H_{phen} \cdots O_w$ (phen = phenoxy), and the $O-H_w \cdots O_{amd}$, $C-H_{phen} \cdots O_{amd}$ and C- $H_{phen} \cdots O_w$ hydrogen bonds form $R_2^2(7)$ and $R_3^3(7)$ ring motifs, respectively (Table 1 and Fig. 3). The slabs are linked *via* a pair of inversion-related $C_{phn}-H \cdots N_{phn}$ (phn = phthalonitrile) hydrogen bonds, forming a three-dimensional structure (Table 1 and Fig. 4).

4. Database survey

A search of the Cambridge Structural Database (CSD, Version 5.36, last update May 2015; Groom & Allen, 2014) gave 29 hits for 4-phenoxyphthalonitrile, with no substituents in the positions *ortho* to the bridging O atom. The dihedral angle between the planes of the phthalonitrile and phenoxy rings varies from *ca* 50.2–88.1°. In 4-phenoxyphthalonitrile itself (CSD refcode NIKFOD; Fang *et al.*, 2007) and two other similar compounds, namely 4-(m-tolyloxy)phthalonitrile

A partial view of the crystal packing of the title compound. The N– $H_{amd} \cdots O_w$, O– $H_w \cdots O_{amd}$, O– $H_w \cdots N_{dma}$, C– $H_{phen} \cdots O_{amd}$ and C– $H_{phen} \cdots O_w$ (amd = amide, dma = dimethylamino, w = water and phen = phenoxy) hydrogen bonds, enclosing $R_2^2(7)$ and $R_3^3(7)$ ring motifs, are shown as dashed lines (see Table 1). Only H atoms involved in hydrogen bonding have been included for clarity.

research communications

Figure 4

A view along the b axis of the crystal packing of the title compound. The hydrogen bonds are shown as dashed lines (see Table 1). Only H atoms involved in hydrogen bonding (grey balls) have been included for clarity.

(JEVSAF; Ocak Ískeleli, 2007) and 4-(4-benzyloxyphenoxy)phthalonitrile (IROSOX; Karadayı *et al.*, 2004), the dihedral angles between the two aromatic rings are *ca* 72.03, 68.18 and 71.31 °, respectively; similar to the same dihedral angle in the title compound, *viz.* 68.53 (16)°.

5. Refinement

The experimental details including the crystal data, data collection and refinement are summarized in Table 2. The water H atoms (H31 and H32) and the N-H H atom (H3) were located in a difference Fourier map and freely refined. The C-bound H atoms were positioned geometrically and constrained to ride on their parent atoms, with C-H = 0.93-0.97 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for methyl H atoms and 1.2 $U_{eq}(C)$ for the other H atoms.

6. Synthesis and crystallization

To a mixture of *N*,*N*-dimethylpropane-1,3-diamine (72 mg, 0.71 mmol) and K_2CO_3 (293 mg, 2.12 mmol) in dry tetrahydrofuran (THF; 5 ml), stirred in an ice bath for 15 min, was added over a period of 40 min, 4-(3,4-dicyanophenoxy)benzoyl chloride (200 mg, 0.71 mmol) in dry THF (5 ml). The reaction mixture was then stirred for 5 h at room temperature and monitored by thin-layer chromatography [THF–hexane (3:4 v/v) as a mobile phase on silica-gel plates]. The oily residue obtained was dissolved in MeOH. The solvent was evaporated slowly and colourless block-like crystals appeared in *ca* 10 d (yield 580 mg, 73%).

References

Bruker (2012). *APEX2*, *SAINT* and *SADABS*. Bruker AXS Inc. Madison, Wisconsin, USA.

Table 2	
Experimental details.	
Crystal data	
Chemical formula	$C_{20}H_{20}N_4O_2 \cdot H_2O$
$M_{ m r}$	366.42
Crystal system, space group	Monoclinic, $P2_1/c$
Temperature (K)	100
a, b, c (Å)	12.9004 (4), 10.5012 (3), 14.1343 (4)
β (°)	99.819 (5)
$V(Å^3)$	1886.72 (10)
Z	4
Radiation type	Μο Κα
$\mu \text{ (mm}^{-1})$	0.09
Crystal size (mm)	$0.41\times0.21\times0.12$
Data collection	
Diffractometer	Bruker Kappa APEXII CCD area- detector diffractometer
Absorption correction	Multi-scan (<i>SADABS</i> ; Bruker, 2012)
T_{\min}, T_{\max}	0.964, 0.989
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	11419, 4167, 3181
R _{int}	0.048
$(\sin \theta / \lambda)_{\rm max} ({\rm \AA}^{-1})$	0.641
Refinement	
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.050, 0.134, 1.03
No. of reflections	4167
No. of parameters	258
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta ho_{ m max}, \Delta ho_{ m min} ({ m e} { m \AA}^{-3})$	0.30, -0.27

Computer programs: APEX2 (Bruker, 2012), SAINT (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008), WinGX (Farrugia, 2012) and PLATON (Spek, 2009).

- Çolak, S. & Yıldız, S. Z. (2014). Turk. J. Chem. 38, 1153–1165.
- Fang, X., Wang, J.-D., Chen, L.-P., Chi, C. & Chen, N.-S. (2007). Jiegou Huaxue (Chin. J. Struct. Chem.), 26, 8.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Göksel, M., Durmuş, M. & Atilla, D. (2013). J. Photochem. Photobiol. Chem. 266, 37–46.
- Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671.
- Karadayı, N., Işık, S., Akdemir, N., Ağar, E. & Özil, M. (2004). Acta Cryst. E60, 0254–0255.
- Karaoğlan, G. K., Gümrükçü, G., Koca, A., Gül, A. & Avcıata, U. (2011). *Dyes Pigments*, **90**, 11–20.
- Kim, G., Yoo, C. E., Kim, M., Kang, H. J., Park, D., Lee, M. & Huh, N. (2012). Bioconjugate Chem. 23, 2114–2120.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). *J. Appl. Cryst.* **41**, 466–470.
- Ocak Ískeleli, N. (2007). Acta Cryst. E63, 0997-0998.
- Roy, A., Kundu, D., Kundu, S. K., Majee, A. & Hajra, A. (2010). *The Open Catalysis J.* **3**, 34–39.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2015). E71, 1042-1044 [https://doi.org/10.1107/S2056989015014991]

Crystal structure of 4-(3,4-dicyanophenoxy)-*N*-[3-(dimethylamino)propyl]benzamide monohydrate: a phenoxyphthalonitrile derivative

Senem Çolak, Salih Zeki Yıldız, Nagihan Çaylak Delibaş, Hasan Pişkin and Tuncer Hökelek

Computing details

Data collection: *APEX2* (Bruker, 2012); cell refinement: *SAINT* (Bruker, 2012); data reduction: *SAINT* (Bruker, 2012); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 2012) and *Mercury* (Macrae *et al.*, 2008); software used to prepare material for publication: *WinGX* (Farrugia, 2012) and *PLATON* (Spek, 2009).

4-(3,4-Dicyanophenoxy)-N-[3-(dimethylamino)propyl]benzamide monohydrate

Crystal data

C₂₀H₂₀N₄O₂·H₂O $M_r = 366.42$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 12.9004 (4) Å b = 10.5012 (3) Å c = 14.1343 (4) Å $\beta = 99.819$ (5)° V = 1886.72 (10) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 8.3333 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (SADABS; Bruker, 2012) $T_{min} = 0.964, T_{max} = 0.989$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.134$ S = 1.034167 reflections 258 parameters 0 restraints F(000) = 776 $D_x = 1.290 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3102 reflections $\theta = 2.4-27.6^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.41 \times 0.21 \times 0.12 \text{ mm}$

11419 measured reflections 4167 independent reflections 3181 reflections with $I > 2\sigma(I)$ $R_{int} = 0.048$ $\theta_{max} = 27.1^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -16 \rightarrow 16$ $k = -13 \rightarrow 8$ $l = -18 \rightarrow 8$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0573P)^{2} + 0.8262P] \qquad \Delta \rho_{rr}$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3 \qquad \Delta \rho_{rr}$ $(\Delta/\sigma)_{max} < 0.001$

 $\begin{array}{l} \Delta \rho_{\rm max} = 0.30 \ {\rm e} \ {\rm \AA}^{-3} \\ \Delta \rho_{\rm min} = -0.27 \ {\rm e} \ {\rm \AA}^{-3} \end{array}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2 , conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \text{sigma}(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or	· equivalent	isotropic	displacement	parameters	$(Å^2)$	ļ
	1	1	1	1	1	· · ·	

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
O1	0.67288 (10)	0.57054 (11)	0.44706 (9)	0.0266 (3)	
O2	0.89189 (10)	0.80540 (12)	0.12674 (9)	0.0268 (3)	
O3	0.03612 (13)	0.61391 (15)	0.10156 (11)	0.0390 (4)	
H31	0.069 (2)	0.647 (3)	0.050 (2)	0.067 (8)*	
H32	-0.008(2)	0.676 (3)	0.107 (2)	0.069 (9)*	
N1	0.44298 (14)	0.98877 (15)	0.59877 (12)	0.0309 (4)	
N2	0.41361 (14)	0.74623 (16)	0.79739 (12)	0.0324 (4)	
N3	0.92472 (12)	0.97057 (14)	0.22694 (11)	0.0218 (3)	
Н3	0.9178 (18)	1.006 (2)	0.2828 (17)	0.041 (6)*	
N4	0.84238 (12)	1.30422 (14)	0.03388 (11)	0.0256 (4)	
C1	0.62353 (14)	0.61497 (16)	0.51863 (12)	0.0209 (4)	
C2	0.57723 (14)	0.73408 (16)	0.51653 (12)	0.0207 (4)	
H2	0.5815	0.7908	0.4668	0.025*	
C3	0.52459 (13)	0.76621 (16)	0.59012 (12)	0.0202 (4)	
C4	0.51636 (13)	0.68108 (16)	0.66442 (12)	0.0204 (4)	
C5	0.56370 (15)	0.56311 (17)	0.66438 (13)	0.0244 (4)	
Н5	0.5594	0.5056	0.7136	0.029*	
C6	0.61708 (14)	0.53065 (17)	0.59187 (13)	0.0242 (4)	
Н6	0.6491	0.4512	0.5922	0.029*	
C7	0.47916 (15)	0.89059 (17)	0.59306 (13)	0.0233 (4)	
C8	0.45955 (14)	0.71679 (17)	0.73886 (13)	0.0234 (4)	
C9	0.71794 (13)	0.65280 (16)	0.38897 (12)	0.0207 (4)	
C10	0.70886 (13)	0.61852 (16)	0.29416 (12)	0.0212 (4)	
H10	0.6684	0.5486	0.2704	0.025*	
C11	0.76049 (13)	0.68930 (16)	0.23528 (12)	0.0208 (4)	
H11	0.7549	0.6665	0.1710	0.025*	
C12	0.82069 (13)	0.79391 (16)	0.26930 (12)	0.0188 (4)	
C13	0.82780 (14)	0.82712 (17)	0.36507 (12)	0.0217 (4)	
H13	0.8671	0.8979	0.3889	0.026*	
C14	0.77737 (14)	0.75652 (17)	0.42502 (12)	0.0232 (4)	
H14	0.7832	0.7784	0.4895	0.028*	
C15	0.88129 (13)	0.85836 (17)	0.20237 (12)	0.0196 (4)	

supporting information

C16	0.99496 (14)	1.02932 (18)	0.16930 (13)	0.0253 (4)
H16A	1.0372	0.9633	0.1465	0.030*
H16B	1.0424	1.0863	0.2098	0.030*
C17	0.93865 (15)	1.10365 (17)	0.08368 (13)	0.0246 (4)
H17A	0.9893	1.1300	0.0441	0.029*
H17B	0.8875	1.0487	0.0452	0.029*
C18	0.88309 (14)	1.22012 (17)	0.11356 (13)	0.0246 (4)
H18A	0.8252	1.1927	0.1444	0.030*
H18B	0.9318	1.2676	0.1605	0.030*
C19	0.80249 (17)	1.42049 (19)	0.07052 (16)	0.0351 (5)
H19A	0.8586	1.4633	0.1118	0.053*
H19B	0.7477	1.3998	0.1062	0.053*
H19C	0.7748	1.4752	0.0178	0.053*
C20	0.75924 (17)	1.2439 (2)	-0.03341 (16)	0.0389 (5)
H20A	0.7852	1.1663	-0.0567	0.058*
H20B	0.7366	1.3003	-0.0863	0.058*
H20C	0.7009	1.2251	-0.0016	0.058*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0395 (8)	0.0162 (6)	0.0278 (7)	0.0019 (5)	0.0165 (6)	0.0011 (5)
O2	0.0318 (7)	0.0291 (7)	0.0212 (6)	-0.0018 (6)	0.0090 (5)	-0.0043 (5)
O3	0.0504 (10)	0.0340 (9)	0.0376 (9)	0.0149 (7)	0.0218 (7)	0.0141 (7)
N1	0.0405 (10)	0.0237 (9)	0.0304 (9)	0.0052 (7)	0.0115 (7)	0.0025 (7)
N2	0.0398 (10)	0.0268 (9)	0.0338 (9)	0.0026 (7)	0.0155 (8)	-0.0002 (7)
N3	0.0260 (8)	0.0203 (8)	0.0198 (8)	-0.0014 (6)	0.0058 (6)	0.0015 (6)
N4	0.0267 (8)	0.0210 (8)	0.0297 (8)	-0.0017 (6)	0.0062 (7)	0.0022 (6)
C1	0.0231 (9)	0.0180 (9)	0.0222 (9)	-0.0005 (7)	0.0052 (7)	-0.0022 (7)
C2	0.0246 (9)	0.0179 (9)	0.0197 (8)	-0.0005 (7)	0.0043 (7)	0.0033 (7)
C3	0.0206 (8)	0.0168 (8)	0.0225 (9)	-0.0002 (7)	0.0020 (7)	0.0002 (7)
C4	0.0209 (8)	0.0193 (9)	0.0217 (8)	-0.0024 (7)	0.0056 (7)	-0.0008 (7)
C5	0.0313 (10)	0.0191 (9)	0.0240 (9)	-0.0010 (8)	0.0083 (7)	0.0051 (7)
C6	0.0295 (10)	0.0164 (9)	0.0280 (9)	0.0031 (7)	0.0087 (8)	0.0031 (7)
C7	0.0281 (9)	0.0204 (9)	0.0221 (9)	-0.0020 (7)	0.0060 (7)	0.0011 (7)
C8	0.0291 (10)	0.0164 (9)	0.0256 (9)	-0.0009 (7)	0.0069 (8)	0.0025 (7)
C9	0.0230 (9)	0.0167 (8)	0.0232 (9)	0.0048 (7)	0.0067 (7)	0.0041 (7)
C10	0.0202 (9)	0.0178 (9)	0.0258 (9)	0.0007 (7)	0.0040 (7)	-0.0019 (7)
C11	0.0222 (9)	0.0216 (9)	0.0178 (8)	0.0022 (7)	0.0014 (7)	-0.0019 (7)
C12	0.0191 (8)	0.0178 (8)	0.0195 (8)	0.0056 (7)	0.0030 (6)	0.0016 (6)
C13	0.0260 (9)	0.0182 (9)	0.0210 (8)	-0.0005 (7)	0.0039 (7)	-0.0021 (7)
C14	0.0298 (10)	0.0229 (9)	0.0169 (8)	0.0007 (7)	0.0040 (7)	-0.0005 (7)
C15	0.0190 (8)	0.0206 (9)	0.0185 (8)	0.0040 (7)	0.0015 (6)	0.0016 (7)
C16	0.0213 (9)	0.0263 (10)	0.0289 (10)	-0.0025 (7)	0.0060 (7)	0.0037 (8)
C17	0.0261 (9)	0.0236 (10)	0.0251 (9)	-0.0018 (7)	0.0074 (7)	0.0022 (7)
C18	0.0240 (9)	0.0244 (10)	0.0259 (9)	-0.0022 (7)	0.0055 (7)	0.0009 (7)
C19	0.0359 (11)	0.0263 (10)	0.0452 (12)	0.0042 (9)	0.0128 (9)	0.0023 (9)
C20	0.0384 (12)	0.0285 (11)	0.0444 (13)	-0.0020 (9)	-0.0083 (10)	0.0059 (9)

Geometric parameters (Å, °)

O1—C1	1.366 (2)	C11—C10	1.370 (2)
O1—C9	1.386 (2)	C11—H11	0.9300
O2—C15	1.233 (2)	C12—C11	1.383 (2)
O3—H31	0.96 (3)	C12—C13	1.386 (2)
O3—H32	0.87 (3)	С13—Н13	0.9300
N1—C7	1.140 (2)	C14—C9	1.379 (2)
N3—C16	1.455 (2)	C14—C13	1.371 (2)
N3—H3	0.89 (2)	C14—H14	0.9300
N4—C18	1.457 (2)	C15—N3	1.325 (2)
N4—C19	1.454 (2)	C15—C12	1.489 (2)
N4—C20	1.452 (2)	C16—C17	1.517 (2)
C1—C2	1.384 (2)	C16—H16A	0.9700
C1—C6	1.376 (2)	C16—H16B	0.9700
C2—C3	1.378 (2)	C17—C18	1.514 (3)
С2—Н2	0.9300	C17—H17A	0.9700
C4—C3	1.397 (2)	C17—H17B	0.9700
C4—C5	1.381 (2)	C18—H18A	0.9700
C5—C6	1.372 (3)	C18—H18B	0.9700
С5—Н5	0.9300	С19—Н19А	0.9600
С6—Н6	0.9300	C19—H19B	0.9600
C7—C3	1.435 (2)	C19—H19C	0.9600
C8—N2	1.140 (2)	C20—H20A	0.9600
C8—C4	1.431 (3)	C20—H20B	0.9600
С10—С9	1.373 (2)	C20—H20C	0.9600
C10—H10	0.9300		
C1—O1—C9	121.43 (13)	C12—C13—H13	119.7
H31—O3—H32	99 (2)	C14—C13—C12	120.56 (16)
C15—N3—C16	120.40 (16)	C14—C13—H13	119.7
С15—N3—H3	120.2 (15)	C9—C14—H14	120.3
С16—N3—H3	119.0 (15)	C13—C14—C9	119.44 (16)
C19—N4—C18	109.66 (15)	C13—C14—H14	120.3
C20—N4—C18	111.73 (15)	O2—C15—N3	121.58 (16)
C20—N4—C19	109.46 (16)	O2—C15—C12	119.59 (16)
O1—C1—C2	123.13 (15)	N3—C15—C12	118.82 (15)
O1—C1—C6	115.67 (15)	N3—C16—C17	113.93 (15)
C6—C1—C2	121.10 (16)	N3—C16—H16A	108.8
C1—C2—H2	120.9	N3—C16—H16B	108.8
C3—C2—C1	118.13 (16)	C17—C16—H16A	108.8
C3—C2—H2	120.9	C17—C16—H16B	108.8
C2—C3—C4	121.43 (16)	H16A—C16—H16B	107.7
C2—C3—C7	120.07 (16)	С16—С17—Н17А	109.2
C4—C3—C7	118.48 (16)	C16—C17—H17B	109.2
C5—C4—C3	118.90 (16)	C18—C17—C16	112.23 (15)
C5—C4—C8	121.15 (16)	C18—C17—H17A	109.2
C3—C4—C8	119.95 (16)	C18—C17—H17B	109.2

С4—С5—Н5	119.9	H17A—C17—H17B	107.9
C6—C5—C4	120.11 (16)	N4—C18—C17	113.55 (15)
С6—С5—Н5	119.9	N4—C18—H18A	108.9
С1—С6—Н6	119.8	N4—C18—H18B	108.9
C5—C6—C1	120.32 (17)	C17—C18—H18A	108.9
С5—С6—Н6	119.8	C17—C18—H18B	108.9
N1—C7—C3	177.56 (19)	H18A—C18—H18B	107.7
N2—C8—C4	179.2 (2)	N4—C19—H19A	109.5
С10—С9—О1	116.12 (16)	N4—C19—H19B	109.5
C10—C9—C14	121.15 (16)	N4—C19—H19C	109.5
C14—C9—O1	122.44 (15)	H19A—C19—H19B	109.5
С9—С10—Н10	120.6	H19A—C19—H19C	109.5
C11—C10—C9	118.76 (16)	H19B—C19—H19C	109.5
C11-C10-H10	120.6	N4—C20—H20A	109.5
C10-C11-C12	121.46 (16)	N4—C20—H20B	109.5
C10-C11-H11	119.3	N4—C20—H20C	109.5
C12—C11—H11	119.3	H20A—C20—H20B	109.5
C11—C12—C13	118.63 (16)	H20A—C20—H20C	109.5
C11—C12—C15	117.69 (15)	H20B-C20-H20C	109.5
C13—C12—C15	123.50 (16)		
			/->
C9—O1—C1—C2	26.8 (2)	C4—C5—C6—C1	-0.2 (3)
C9—O1—C1—C6	-156.73 (16)	C11—C10—C9—O1	-173.73 (15)
C1—O1—C9—C10	-142.73 (16)	C11—C10—C9—C14	0.2 (3)
C1—O1—C9—C14	43.4 (2)	C12—C11—C10—C9	-0.2 (3)
C15—N3—C16—C17	84.1 (2)	C13—C12—C11—C10	-0.3 (3)
C20—N4—C18—C17	65.6 (2)	C15—C12—C11—C10	174.86 (15)
C19—N4—C18—C17	-172.83 (16)	C11—C12—C13—C14	0.9 (3)
01	176.48 (16)	C15—C12—C13—C14	-173.97 (16)
C6—C1—C2—C3	0.2 (3)	C13—C14—C9—O1	173.93 (16)
O1—C1—C6—C5	-176.17 (16)	C13—C14—C9—C10	0.4 (3)
C2—C1—C6—C5	0.4 (3)	C9—C14—C13—C12	-0.9(3)
C1—C2—C3—C4	-0.9(3)	O2—C15—N3—C16	-5.9 (2)
C1—C2—C3—C7	177.39 (16)	C12—C15—N3—C16	172.51 (14)
C5—C4—C3—C2	1.1 (3)	O2—C15—C12—C11	-13.1 (2)
C5—C4—C3—C7	-177.27 (16)	O2—C15—C12—C13	161.88 (16)
C8—C4—C3—C2			1 (0 =0 (1 =)
	-178.93 (16)	N3-C15-C12-C11	168.50 (15)
C8—C4—C3—C7	-178.93 (16) 2.7 (2)	N3—C15—C12—C11 N3—C15—C12—C13	-168.50(15) -16.6(2)
C8—C4—C3—C7 C3—C4—C5—C6	-178.93 (16) 2.7 (2) -0.5 (3)	N3—C15—C12—C11 N3—C15—C12—C13 N3—C16—C17—C18	-168.50(15) -16.6(2) 66.6(2)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the phenoxy ring C9—C14.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
N3—H3…O3 ⁱ	0.89 (2)	1.99 (2)	2.825 (2)	155 (2)
O3—H31…N4 ⁱⁱ	0.97 (3)	1.85 (3)	2.808 (2)	168 (3)
O3—H32…O2 ⁱⁱⁱ	0.88 (3)	1.93 (3)	2.803 (2)	176 (3)

supporting information

C13—H13…O3 ⁱ	0.93	2.58	3.477 (2)	162
C14—H14…O2 ^{iv}	0.93	2.36	3.049 (2)	131
C16—H16 B ···Cg2 ^v	0.97	2.96	3.661 (2)	130
C2—H2···N1 ^{vi}	0.93	2.49	3.324 (2)	149

Symmetry codes: (i) -*x*+1, *y*+1/2, -*z*+1/2; (ii) -*x*+1, -*y*+2, -*z*; (iii) *x*-1, *y*, *z*; (iv) *x*, -*y*+3/2, *z*+1/2; (v) -*x*, *y*+1/2, -*z*+1/2; (vi) -*x*+1, -*y*+2, -*z*+1.