Crystal Structure of 1,5-Di[N-2-oxyphenyl-salicylidene]-3-oxapentane

Tuncer Höкelek,** Nurcan Akduran,* Mustafa Yildiz,** and Zeynel Kiliç**
*Hacettepe University, Department of Physics, 06532 Beytepe-Ankara, Turkey
**Ankara University, Department of Chemistry, 06100 Tandoğan-Ankara,Turkey

(Received October 1, 1999; Accepted February 4, 2000)

2-Hydroxy Schiff base ligands are of interest mainly due to the existence of ($\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{O} \cdots \mathrm{H}-\mathrm{N}$) type hydrogen bonds and tautomerism between phenol-imine and keto-amine forms. ${ }^{1-3}$ In these types of ligands, short hydrogen bonds are observed between the 2-hydroxy group and the imine nitrogen atom. In

Fig. 1 Chemical diagram.

Table 1 Crystal and experimental data

```
Formula: \(\mathrm{C}_{30} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{5}\)
    Formula weight \(=496.57\)
    Crystal system: monoclinic
    Space group: \(P 2_{1} \quad Z=2\)
    \(a=15.336(1) \AA\)
    \(b=5.735(1) \AA\)
    \(c=15.679(2) \AA\)
    \(\beta=110.91(2)^{\circ}\)
    \(V=1288.0(3) \AA^{3}\)
    \(D_{\mathrm{x}}=1.28 \mathrm{~g} / \mathrm{cm}^{3}\)
    \(\mu\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=0.67 \mathrm{~mm}^{-1}\)
    \(T=293 \mathrm{~K}\)
    Orange
    Crystal size: \(0.20 \times 0.25 \times 0.30 \mathrm{~mm}\)
    \(\lambda\left(\mathrm{Cu} \mathrm{K}_{\alpha}\right)=1.54184 \AA\)
    \(R=0.034 \quad w R=0.035\)
    No. of reflections measured \(=2764\)
    No. of reflections used \(=1823\)
    [ \(F>3.0 \sigma(F)\) ]
    No. of parameters \(=342\)
    Goodness-of-fit \(=0.98\)
    \((\Delta / \sigma)_{\text {max }}=0.02\)
    \((\Delta \rho)_{\max }=0.10\)
    \((\Delta \rho)_{\min }=-0.07\)
    \(2 \theta_{\text {max }}=148.7^{\circ}\)
    Measurements: Enraf-Nonius CAD-4 diffractometer
    Program system: CAD-4 EXPRESS Software
    Structure determination: MolEN
    Refinement: Full matrix least-squares
```

[^0]some instances, the hydrogen from the phenol group is completely transferred to the imine nitrogen. ${ }^{4,5}$ The hydrogen bond type depends neither on the stereochemistry of the molecule nor on the sort of the substituent to the imine atom, but on the kind of aldehyde used. ${ }^{5}$ The title ligand was prepared from a mixture of diethylene glycol bis(2-aminophenyl ether) $(1.00 \mathrm{~g}, 0.0035 \mathrm{~mol})$ and THF $(100 \mathrm{~mL})$ solution of salicylaldehyde $(0.85 \mathrm{~g}, 0.007 \mathrm{~mol})$. After the evaporation of THF, the residue was crystallized from CHCl_{3} :hexane ($3: 1$).
The results of X-ray structure determination are given in Tables 1-3. The title molecule (Fig. 2) contains short

Table 2 Final atomic coordinates and equivalent isotropic thermal parameters

Atom	x	y	z	$B_{\text {eq }} / \AA^{2}$
O1	$0.1178(2)$	$0.3468(5)$	$0.7000(2)$	$0.0762(6)$
O2	$0.3685(1)$	$0.4921(5)$	$0.7950(1)$	$0.0677(6)$
O3	$0.4001(1)$	$0.2553(5)$	$0.9846(1)$	$0.0715(6)$
O4	$0.2163(1)$	$0.1083(5)$	$0.9830(1)$	$0.0699(6)$
O5	$0.3180(2)$	$0.0627(6)$	$1.2160(2)$	$0.0899(7)$
N1	$0.2172(2)$	$0.6849(6)$	$0.6738(2)$	$0.0605(7)$
N2	$0.1969(2)$	$-0.1915(6)$	$1.1003(2)$	$0.0539(6)$
C1	$0.0422(2)$	$0.4794(7)$	$0.6561(2)$	$0.0568(8)$
C2	$-0.0461(2)$	$0.3949(7)$	$0.6465(2)$	$0.0696(9)$
C3	$-0.1241(2)$	$0.5254(8)$	$0.6015(2)$	$0.0735(9)$
C4	$-0.1168(2)$	$0.7405(8)$	$0.5659(2)$	$0.0700(9)$
C5	$-0.0301(2)$	$0.8264(7)$	$0.5755(2)$	$0.0628(8)$
C6	$0.0504(2)$	$0.6988(6)$	$0.6216(2)$	$0.0524(7)$
C7	$0.1410(2)$	$0.79817)$	$0.6341(2)$	$0.0592(8)$
C8	$0.3054(2)$	$0.78317)$	$0.6843(2)$	$0.0605(8)$
C9	$0.3177(2)$	$0.9727(8)$	$0.6354(2)$	$0.0799(9)$
C10	$0.4054(2)$	$1.0534(9)$	$0.6457(2)$	$0.0875(9)$
C11	$0.4822(2)$	$0.9426(9)$	$0.7046(2)$	$0.0837(9)$
C12	$0.4726(2)$	$0.7555(9)$	$0.7550(2)$	$0.0748(9)$
C13	$0.3843(2)$	$0.6730(7)$	$0.7460(2)$	$0.0612(8)$
C14	$0.4493(2)$	$0.3774(8)$	$0.8579(2)$	$0.0723(9)$
C15	$0.4179(2)$	$0.1862(8)$	$0.9055(2)$	$0.0729(9)$
C16	$0.3207(2)$	$0.3996(7)$	$0.9695(2)$	$0.0697(9)$
C17	$0.2297(2)$	$0.2786(7)$	$0.9211(2)$	$0.0652(8)$
C18	$0.1440(2)$	$-0.0444(7)$	$0.9485(2)$	$0.0574(8)$
C19	$0.0813(2)$	$-0.0392(7)$	$0.8586(2)$	$0.0629(8)$
C20	$0.0106(2)$	$-0.2029(8)$	$0.8309(2)$	$0.0652(8)$
C21	$0.0005(2)$	$-0.3657(8)$	$0.8894(2)$	$0.0681(9)$
C22	$0.0617(2)$	$-0.3696(7)$	$0.9799(2)$	$0.0616(8)$
C23	$0.1341(2)$	$-0.2098(7)$	$1.0097(2)$	$0.0530(7)$
C24	$0.2060(2)$	$-0.34457)$	$1.1622(2)$	$0.0584(8)$
C25	$0.2679(2)$	$-0.3055(7)$	$1.2550(2)$	$0.0559(8)$
C26	$0.2758(2)$	$-0.4635(9)$	$1.3229(2)$	$0.0799(9)$
C27	$0.3343(2)$	$-0.429(1)$	$1.4120(2)$	$0.0875(9)$
C28	$0.3874(2)$	$-0.2314(9)$	$1.4326(2)$	$0.0849(9)$
C29	$0.3817(3)$	$-0.0687(9)$	$1.3680(2)$	$0.0849(9)$
C30	$0.3221(2)$	$-0.1014(7)$	$1.2778(2)$	$0.0663(9)$

$B_{\mathrm{eq}}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*}\left(\boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}\right)$.

Table 3 Bond distances (\AA) and angles $\left({ }^{\circ}\right)$

O2-C13	$1.364(5)$	O5-C30	$1.335(5)$
O2-C14	$1.438(4)$	$\mathrm{N} 1-\mathrm{C} 7$	$1.288(4)$
O3-C15	$1.417(5)$	$\mathrm{N} 1-\mathrm{C} 8$	$1.421(4)$
O3-C16	$1.420(4)$	$\mathrm{N} 2-\mathrm{C} 23$	$1.408(3)$
O4-C17	$1.442(5)$	$\mathrm{N} 2-\mathrm{C} 24$	$1.277(4)$
O4-C18	$1.364(4)$	$\mathrm{C} 1-\mathrm{O} 1$	$1.349(4)$
C13-O2-C14	$116.8(3)$	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	$121.3(3)$
C15-O3-C16	$116.0(2)$	$\mathrm{C} 23-\mathrm{N} 2-\mathrm{C} 24$	$124.3(3)$
C17-O4-C18	$117.3(2)$		

intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds [O1-H1 0.864(4), H1 $\cdots \mathrm{N} 1$ 1.865(3), N1 $\cdots \mathrm{O} 12.587(4)$ and O5-H5 1.056(3), $\mathrm{H} 5 \cdots \mathrm{~N} 21.603(4), \mathrm{N} 2 \cdots \mathrm{O} 52.542(4) \AA$], which means that the compound is in phenol-imine form as in 1,8-di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane ${ }^{1}$ [$\mathrm{O}-\mathrm{H}$ 1.154(3), $\mathrm{H} \cdots \mathrm{N}$ 1.488(3), $\mathrm{O} \cdots \mathrm{N} 2.578(3) \AA \mathrm{A}$. The $\mathrm{C}=\mathrm{N}$ imine bonds and $\mathrm{C}-\mathrm{N}-\mathrm{C}$ bond angles can be compared with $1.270(3) \AA$ and $123.5(2)^{\circ}$ values in $1,8-$ di[N-2-oxyphenyl-salicylidene]-3,6-dioxaoctane. ${ }^{1}$ The H atoms were calculated geometrically, $0.95 \AA$ from the corresponding atoms and refined using a riding model, while the H 1 and H 5 positions were found from difference synthesis and were refined isotropically.

Fig. 2 Molecular structure of the title compound with atomnumbering scheme. The thermal ellipsoids are drawn at the 50% probability level.

441, 1.
2. J. Costamagna, J. Vargas, R. Latorre, A. Alvarado, and G. Mena, Coord. Chem. Rev., 1992, 119, 67.
3. S. R. Salman, S. H. Shawkat, and G. M. Al-Obaidi, Can. J. Spectrosc., 1990, 35, 25.
4. M. Gavranic, B. Kaitner, and E. Mestrovic, J. Chem. Cryst., 1996, 26, 23.
5. B. Kaitner and G. Pavlovic, Acta Crystallogr., 1996, C52, 2573.

References

1. M. Yıldız, Z. Kılıç, and T. Hökelek, J. Mol. Struct., 1998,

[^0]: ${ }^{\dagger}$ To whom correspondence should be addressed.

