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Condition for gapless color-antitriplet excitations in Nambu–Jona-Lasinio models
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We present an exact condition for the existence of gapless quasiparticle excitations in Nambu–Jona-Lasinio
models of color superconducting quark matter with a quark-quark interaction in the scalar color-antitriplet
channel. The condition can be represented by a rotated ellipse in the plane of mass and chemical potential
differences for the paired quark fields.
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I. INTRODUCTION

At high baryon density and low temperature, matter is
believed to be in a color superconducting state, which is
characterized by condensates of quark Cooper pairs [1–4].
A superconducting phase typically has an energy gap in the
density of states, which corresponds to the lowest excitation
energy of a quasiparticle pair. However, if the difference
between the Fermi momenta of the paired quarks is sufficiently
large, gapless quasiparticle excitations could exist [5–8]. The
presence of gapless phases could have observable conse-
quences, e.g., the high specific heat and neutrino emissivity
could affect the cooling behavior of compact stars [9]. It has
been found, however, that gapless phases might suffer from a
chromomagnetic instability [10–15], and it is currently unclear
whether gapless phases appear at temperatures relevant for
compact star evolution [8,15–17]. It is therefore important to
improve the understanding of gapless phases. In this paper
we derive an exact condition for the existence of gapless
excitations in the frequently used Nambu–Jona-Lasinio (NJL)
model of color superconducting quark matter. A qualitatively
useful graphical representation of the condition and some
well-known approximations are also presented.

II. MODEL

The most dense environment where quark matter is ex-
pected to exist is in the core of neutron stars, which are subject
to a gravitational instability that limits the maximum density
to ∼1015 g/cm3 [18]. This corresponds to a maximum quark-
number chemical potential of µ ∼ 500 MeV and a maximum
baryon number density of nB ∼ 10 n0, where n0 = 0.17 fm−3

is the baryon number density in nuclear matter. Since the charm
quark mass is higher than the maximum chemical potential,
it is sufficient to consider up (u), down (d), and strange (s)
quarks. The quark spinors are

qT = (ψur, ψug, ψub, ψdr , ψdg, ψdb, ψsr , ψsg, ψsb), (1)

where r, g, and b represent red, green, and blue colors. The NJL
model of superconducting quark matter is based on effective
pointlike four-fermion interactions and is described in, e.g.,
Refs. [15–17,19]. Here we repeat some of the essential points.

The Lagrangian density is

Leff = q̄(i∂/ − m̂ + µ̂γ 0)q + Lq̄q + Lqq, (2)

where m̂ = diagf (mu, md, ms) is the current quark mass
matrix in flavor space.Lq̄q andLqq are the effective interaction
terms, which are used at mean-field level in the Hartree
approximation. Explicitly,

Lq̄q = GS

8∑
a=0

[(q̄τaq)2 + (q̄iγ5τaq)2]

−K{detf [q̄(1 + γ5)q] + detf [q̄(1 − γ5)q]}, (3)

Lqq = GD

∑
a,b=2,5,7

(q̄iγ5τaλbCq̄T )(qT Ciγ5τaλb q), (4)

where τa and λb are the antisymmetric Gell-Mann matrices
acting in, respectively, flavor and color space. GS,K, and
GD are coupling constants that must be determined by
experiments.

The quark-quark interaction term Lqq gives rise to super-
conducting condensates, sab = 〈qT Cγ5τaλbq〉, which break
SU(3)c and U(1) symmetry. The symmetries of L correspond
to a conserved chromoelectromagnetic charge. The associated
chemical potential is [19]

µ̂ = µ + µQ

(
τ3

2
+ τ8

2
√

3

)
+ µ3λ3 + µ8λ8. (5)

Here, µ is the quark-number chemical potential, µQ is the
positive electric-charge chemical potential, and µ3 and µ8 are
color-charge chemical potentials. By linearizing Eq. (2) in the
quark-quark (diquark) gaps, �ab = 2GDsab, and the quark-
antiquark (chiral) gaps, φi = −4GS〈q̄iqi〉, one can obtain a
grand canonical thermodynamic potential by standard methods
[15–17,19]:

�(T ,µ) = φ2
u + φ2

d + φ2
s

8GS

+ Kφuφdφs

16G3
S

+ �2
ud + �2

us + �2
ds

4GD

−
∫

d3p

(2π )3

18∑
n=1

[En + 2T ln(1 + e−En/T )]

+�lep − �0. (6)

Here, En(p, µ; µQ,µ3, µ8, φu, φd, φs, �ud,�us,�ds) are
the quasiparticle dispersion relations, �lep is the contribution
from leptons (e.g., electrons, muons, and the corresponding
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neutrino flavors), and �0 is the vacuum, i.e., �(0, 0) = 0. It
should be noted that Eq. (6) is an even function of En, so the
signs of the dispersion relations are arbitrary. We therefore
follow the standard convention that all states below the Fermi
surface (En < 0) are occupied, and only positive-energy states
are considered. In Eq. (6) the diquark gaps are denoted with
flavor indices. One can readily do this by considering the color
and flavor structure of the Gell-Mann matrices

�ud ≡ �22 (u-d, r-g pairing), (7)
�us ≡ �55 (u-s, r-b pairing), (8)
�ds ≡ �77 (d-s, g-b pairing), (9)

and �ab = 0 if a �= b [19]. The chiral gaps and the diquark
gaps are variational parameters that are determined by mini-
mization of Eq. (6). The constituent quark masses are

Mi = mi + φi + K

8G2
S

φjφk, (10)

where (i, j, k) is any permutation of (u, d, s).
In QCD, a color superconducting ground state is auto-

matically color neutral because of the generation of gluon
condensates in one or more of the eight components of
the gluon field. In NJL models there are no gauge fields
that neutralize the color charge dynamically, because the
gluons have been replaced with effective pointlike quark-
antiquark [Eq. (3)] and quark-quark [Eq. (4)] interactions.
One must therefore enforce color neutrality by solving for
the charge chemical potentials µQ,µ3, and µ8 such that the
corresponding charge densities na = 〈ψ†Taψ〉 = −∂�/∂µa

are zero [20].
The values of the gaps and the (charge) chemical potentials

depend on the coupling constants (GS,K, and GD), the
current quark masses (mu,md, and ms), and the regularization
method. These input parameters are fitted to low-density
hadronic results and are therefore only approximately known.
In addition, approximations are frequently used to simplify the
evaluation of Eq. (6). In this context it would be useful to have
a mathematically exact condition for the appearance of gapless
quasiparticle dispersion relations, without reference to specific
input parameters and further assumptions. This condition is
presented below.

III. GAPLESS CONDITIONS

The dispersion relations En are eigenvalues of six 4 × 4
matrices and one 12 × 12 matrix [15–17]. Disregarding the
signs, three 4 × 4 matrices and 6 of the 12 eigenvalues of
the 12 × 12 matrix remain (3 × 4 + 6 = 18). The 12 × 12
matrix corresponds to ur-dg-sb pairing, and the three 4 × 4
matrices correspond to ug-dr, ub-sr , and db-sg pairing. There
are strong indications that the ur-dg-sb modes are never
gapless, because the Fermi momenta of these three species
are approximately equal [8], and no such gapless modes have
been found in numerical evaluations [15–17]. A proof has
turned out to be difficult to obtain because of the complexity
of the characteristic polynomial of the 12 × 12 matrix. We
therefore leave this analysis to a future publication. Here the
4 × 4 matrices are considered. The characteristic polynomials

of these matrices can be written as

E4
n + a3E

3
n + a2E

2
n + a1En + a0. (11)

The a0 coefficient of the polynomial is [17]

a0 = p4 + (
M2

i + M2
j + 2�2

ij − µ2
iα − µ2

jβ

)
+p2

(
µiαµjβ + MiMj + �2

ij + µiαMj + µjβMi

)
× (

µiαµjβ + MiMj + �2
ij − µiαMj − µjβMi

)
, (12)

for quark flavors (i, j ) and colors (α, β). The chemical
potential µiα for a quark field with flavor i and color α can be
extracted from Eq. (5) (µ̂ is diagonal in color and flavor space).
A gapless dispersion relation is characterized by En(p) = 0
for some real value(s) of p when �ij �= 0. This requires that
a0(p) = 0 have at least one real root. The solutions are

p2 = µ̄2 + δµ2 − M̄2 − δM2 − �2

± 2
√

(µ̄δµ − M̄δM)2 − �2(µ̄2 − δM2). (13)

Here we have introduced the quantities

M̄ = (Mi + Mj )/2, δM = (Mi − Mj )/2, (14)

µ̄ = (µiα + µjβ)/2, δµ = (µiα − µjβ)/2, (15)

and � = �ij . The indices in Eq. (12) can be omitted without
ambiguity, since we are dealing with two-species pairing.
Observe that the masses and chemical potentials of the paired
quark fields are M̄ ± δM and µ̄ ± δµ. A real square root in
Eq. (13) requires that

� � �g ≡ |µ̄δµ − M̄δM|√
µ̄2 − δM2

, (16)

and a positive solution for p2 requires that

M̄2 + δM2 + �2 − µ̄2 − δµ2

� 2
√

(µ̄δµ − M̄δM)2 − �2(µ̄2 − δM2). (17)

Inequality (16) can be represented with a rotated ellipse in
the δM-δµ plane, as in Fig. 1. The interior region of the ellipse
violates inequality (16) and hence represents gapped modes.
Outside the ellipse the square root in inequality (17) is real, and
inequality (17) is obviously satisfied as long as the left-hand
side is negative. A negative left-hand side of inequality (17)
is represented by the region in between the two branches of
the hyperbola, µ̄2 + δµ2 = M̄2 + δM2 + �2, in Fig. 1. For a
positive left-hand side, which corresponds to the two regions
on the left- and right-hand sides of the hyperbola, inequality
(17) can be squared, and four coupled inequalities linear in
δM and δµ are obtained. These correspond to tangent lines of
the ellipse. The hatched areas enclosed by the tangent lines,
the hyperbola and the ellipse violate inequality (17) and hence
represent gapped modes. For each tangent line the intersection
with the hyperbola coincides with the point on the ellipse.
Inequality (17) is relevant if δM/µ̄ ∼ 1 − �2(µ̄ − M̄)−2/2,
which is not the case for realistic values of the masses and
chemical potentials. This is explicitely demonstrated by the
examples in Fig. 2. Inequality (16) is therefore the relevant
condition for gapless modes. In achieving this result, no further
approximations other than those leading up to Eq. (6) were
made.
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FIG. 1. (Color online) Graphical representation of gapless in-
equalities (16) and (17). For clarity only the first quadrant is shown.
The third quadrant is a reflection of the first quadrant in the origin.
In this figure an unreasonably large value of M̄ has been used to
emphasize the role of the tangent lines. Qualitatively, the gapped
region can be represented by the rotated ellipse; see the text. The
values of δµ and δM can be represented by a point in the δM-δµ
plane. If this point is enclosed by the hatched area, the dispersion
relations are gapped. Otherwise a gapless dispersion relation exists.
Here δMc = µ̄/(1 + M̄2/�2)1/2 and ξ± = [�2 + (µ̄ ± M̄)2]1/2.

For the two-flavor color superconducting phase, which
is characterised by �ud �= 0 and �us = �ds = µ3 = 0, one
can use the fact that δM � δµ and M � µ, so the gapless
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FIG. 2. (Color online) Graphical representation of gapless condi-
tions (16) and (17) for some of the quasiparticle dispersion relations
represented in Fig. 4. The values of δM and δµ are represented
by bold points. If the center of a point is enclosed by an ellipse,
the corresponding quasiparticle has gapped dispersion relations;
otherwise a gapless dispersion relation exists.
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FIG. 3. (Color online) Diquark gaps vs. the temperature at µ =
500 MeV and η = 0.75. �g

ij is the threshold for gapless quasiparticle
dispersion relations (16), i.e., gapless modes exist iff �ij � �

g

ij . The
critical points where gapless db-sg, ub-sr , and ug-dr quasiparticles
appear are denoted by, respectively, A, B, and C. The BCS result
for the critical temperature of a superconducting condensate, T ∼
0.57� (T = 0), is indicated in the plot. This figure represents a cross
section of Fig. 5 in Ref. [17].

condition [Eq. (16)] is approximately

�ud <∼ |δµ| = −µQ. (18)

For the three-flavor color-flavor-locked phase, which is charac-
terized by �ij �= 0 and M̄ ∼ δM ∼ Ms/2, a series expansion
of inequality (16) to first order in M2

s /µ̄ yields

�is <∼ |δµ| +
[

sign(δµ)

4
+ |δµ|

8µ̄

]
M2

s

µ̄
, (19)
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FIG. 4. (Color online) Dispersion relations at µ = 500 MeV and
η = 0.75 for four different temperatures. Gapless modes are denoted
by the thick curves. Gapped modes and modes of unpaired quarks are
denoted by the thin curves. Compare with Fig. 3.
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where δµ = (µiα − µsβ )/2. These well-known approximate
results are instructive at the qualitative level, but should not be
used mechanically; see the discussion below.

IV. NUMERICAL EXAMPLE

Next we present a numerical example and therefore con-
strain the discussion to a specific parametrization of the model,
as in Ref. [17]. The momentum integral is regularized with a
cutoff, � = 602.3 MeV. The coupling constants are GS�

2 =
2.319,GD/GS ≡ η = 0.75, and K = 0. The current quark
masses are mu = md = 5.5 MeV and ms = 112 MeV. By the
insertion of these parameters into the thermodynamic potential
(6), the gaps (φu, φd, φs, �ud,�us,�ds) can be determined
by minimization of the free energy, while simultaneously
neutralizing all charge densities with µQ,µ3, and µ8. In
Fig. 3 the diquark gaps �ij and the gapless thresholds
[inequality (16)], �

g

ij are plotted versus the temperature for
a fixed value of the quark-number chemical potential, µ =
500 MeV. In Fig. 4 the quark-quark quasiparticle dispersion
relations are plotted for four different temperatures represented
in Fig. 3. Observe that gapless dispersion relations exist iff
�ij � �

g

ij . Figure 2 shows the graphical representation of
the gapless condition for some quasiparticles represented in
Fig. 4, see Fig. 1 for further information.

V. CONCLUSIONS

We find that the difference between approximate results
(18) and (19) and exact gapless condition (16) is typically
below 5% in the plane of temperature and quark-number
chemical potential. However, even a small error in �

g

ij

could lead to qualitatively incorrect conclusions if �ij (T ∼
0) ∼ �

g

ij , because �ij (T ) are roughly constant at the low
temperatures relevant for compact star evolution. The exact
condition for gapless quasiparticle excitations presented here
[Eq. (16)], which is the main result of this paper, is a safe
alternative to the approximative results. Moreover, Fig. 1 is
an accurate qualitative picture of the prerequisites for gapless
color-antitriplet excitations in NJL models.
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