

A tool for automated inspection of software design
documents and its empirical evaluation in an aviation

industry setting

M. Evren Co�kun, M. Melta Ceylan, Kadir Yi�itözu
Turkish Aerospace Industries Inc. (TAI)

Ankara, Turkey
{ecoskun, mceylan, kyigitozu}@tai.com.tr

Vahid Garousi
Software Engineering Research Group, Department of Computer

Engineering, Hacettepe University, Ankara, Turkey
vahid.garousi@hacettepe.edu.tr

Abstract-- While software inspection is an effective activity to detect
defects early in the software development lifecycle, it is an effort-
intensive and error-prone activity. Motivated by a real need in the
context of the Turkish Aerospace Industries Inc. (TAI), a tool named
AutoInspect was developed to (semi-) automate the inspection of
software design documents and, as a result, to increase the efficiency
and effectiveness of the inspection process. We present in this paper
the features of the tool, its development details and its initial
evaluation for inspecting the design documents of three real systems
in the company. The results of the initial case-study reveal that the
tool is indeed able to increase the inspections efficiency and
effectiveness. In terms of efficiency, inspection engineers who used
AutoInspect performed 41-50% more efficiently, for the three design
documents under study, compared to the case when the tool was not
used (i.e., manual inspections). In terms of effectiveness, compared
to manual inspections, the automated approach found between 23-
33% more defects in the three design documents under study. As the
tool currently only provides partial automation, our efforts are
currently underway to increase its automation level even further.
Keywords-- Software inspections; design verification; automated
inspections; industry case study; improving efficiency and
effectiveness; Computer-aided software engineering (CASE).

I. INTRODUCTION
Software inspection is a detailed review of software artifacts by
technically-competent peers (defined and used as early as in 1976
[1]). Inspection is considered an efficient and effective means of
defect detection in software engineering. The success of
inspection is due to its early defect detection capability, when the
cost of defect removal is less, compared to later phases of software
development lifecycle [2].

The software engineering literature contains many sources on
software inspections as an important activity. For example, the
book by Gilb and Graham [3] in 1993 is one of the early books on
this topic, and cites numerous positive experience reports on the
topic. For example, Russell reported [4] a return of 33 hours of
maintenance saved for every hour of inspection invested in a case
study of inspections of 2.5 million lines of high-level code at Bell-
Northern Research. Furthermore, Barry Boehm included
inspection (phrasing it as “walkthroughs”) in his list of the 10
most important approaches for improving software quality
because, according to his research, it could catch 60% percent of
defect [5]. Inspections are conducted in different phases of the
development lifecycle and on different software artifacts (e.g.,
requirements and design documents, source code, and test scripts)
[6].

While inspection is an effective activity to detect defects, it still
remains an effort-intensive and error-prone activity [3].

Inspectors (also called, inspection engineers) have to spend many
hours of manual effort to look for potential defects in software
artifacts, usually using pre-specified checklists or inspection
rules. While the goal of the activity is finding potential defects,
the activity itself can unfortunately be error-prone since it is
mostly conducted by humans and, thus, even by following high-
quality checklists, inspector can miss potential defects.

In the context of the Turkish Aerospace Industries Inc. (TAI),
the authors and their colleagues were facing the above challenges
in the scope of inspection activities on software design documents
for the company’s Enterprise Resource Planning (ERP) software
applications. Motivated by that need, we started a project to
explore ways to increase the efficiency and effectiveness of the
inspection process. The project was based on the principles of the
Action-Research (AR) methodology [7] in which the real
industrial challenges (problems) drive the research. As the result
of this project so far, we have developed a tool named AutoInspect
to (semi-) automate the inspection of software design documents
and, as a result, to increase the efficiency and effectiveness of the
inspection process.

The remainder of this paper is structured as follows. We
describe the case, company context, and the need for the proposed
tool in Section 2. A review of the related work and tools is
presented in Section 3. Section 4 presents features, example
usage, and development details of the AutoInspect tool. Section 5
presents a preliminary industrial case-study for evaluation of the
tool. Finally, in Section 6, we draw conclusions, and discuss our
ongoing and future works.

II. CASE DESCRIPTION AND NEED ANALYSIS
A. Company and context
Turkish Aerospace Industries Inc. (TAI) is a major center of
technology in design, development, manufacturing, integration,
modernization and after-sales support of aerospace systems in
Turkey. TAI’s experience includes the licensed production of F-
16 Fighting Falcon jets, combat search and rescue (CSAR) and
utility helicopters as well as the design and development of
Unmanned Aerial Vehicles (UAVs), fixed and rotary wing
aircrafts. TAI’s core business also includes modernization,
modification and systems integration programs and aftersales
support of both military and commercial aircrafts.

One of the departments of the company is the Information
Management Systems (IMS) department that develops in-house
Enterprise Resource Planning (ERP) applications and conducts all
the related analysis, design, development, testing, and the process
improvement activities. The department develops the ERP

2016 IEEE International Conference on Software Testing, Verification and Validation Workshops

/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSTW.2016.12

287

2016 IEEE Ninth International Conference on Software Testing, Verification and Validation Workshops

978-1-5090-3674-5/16 $31.00 © 2016 IEEE

DOI 10.1109/ICSTW.2016.12

287

applications using the industry’s best practices, and these
applications support all business functions of the company. The
IMS department is responsible to develop and maintain
applications for 12 main process areas of the company: (1)
information and knowledge management, (2) finance
management, (3) human resources management, (4) product
development, (5) production planning, (6) manufacturing
execution, (7) quality management, (8) facility asset management,
(9) purchasing and subcontract management, (10) sales &
transportation management, (11) logistics management and (12)
portfolio management.

When developing software systems, as per the development
process followed in the company, software design documents are
developed as a result of the analysis and design phases during the
software development lifecycle. Design documents are prepared
by the engineers in the ‘Business Process’ group of the IMS
department in accordance with the department’s pre-designed
software design document template and guidelines. The
documents mainly include the following artifacts: business flow
diagrams, graphical user interfaces design, functional/non-
functional requirements, special hardware requirements,
constraints, database design, integration with other systems, and
information/error messages. Figure 1 shows an example page
from an actual design document which undergo inspections.

FIGURE 1-AN EXAMPLE PAGE FROM AN ACTUAL DESIGN DOCUMENT WHICH

UNDERGO INSPECTIONS

B. Inspection of software design documents: the traditional
manual approach

After software design documents are developed, again as per the
company’s development process, the Software Verification and
Validation group of the IMS department is tasked to manually
inspect the design documents according to a specific design
inspection (verification) checklist, as shown in Table 1. Besides

the checklist, for the purpose of manual inspections, software
engineers also use the software design document template, the
database design guide, the requirements management instruction
and the department’s software verification and validation
instructions. As the result of the inspection, non-compliances are
recorded in the department’s Application Lifecycle Management
(ALM) tool, i.e., Microsoft Team Foundation Server (TFS), and
they are later assigned to the developer of the document to be
fixed. The inspection process is continued until all issues are
resolved and software development cycle continues afterwards,
i.e., the implementation phase.

The 20 rules of the inspection checklist, shown in Table 1, are
divided into two groups: structure and contents. The first two
inspection rules are about document structure. For each rule, we
also show in Table 1 the level of automation that we have
achieved so far by the AutoInspect tool, to be presented in the rest
of this paper. Also, for each rule, the severity of possible
incompatibilities that the inspector can choose form is shown,
e.g., for rule #1, the possible values are {low, medium, high}
while for rule #2, it can only be ‘High’, if any.

As we discuss in Section 4, to automate some of the rules in
the manual checklist in Table 1, we had to break them down into
sub-rules when implementing our tool (AutoInspect). Thus, the
column named ‘# of sub-rules in AutoInspect’ in Table 1 shows
that information, and the issue will be discussed in detail in
Section 4.2.

Also, another important aspect in Table 1 is the level of
automation by the AutoInspect tool which can be either: {No,
Partial, Full}. According to a survey paper [8] on inspections,
there are four main areas of inspections which have been the target
for tool support (automation): document handling, individual
preparation, meeting support and metrics collection. For the rules
in Table 1 which have ‘partial’ levels of automation, the tool
provides the following features: (1) document handling: by
automatically browsing the design document and showing the
exact location to be inspected to the inspection engineer, (2)
metrics collection: by automatically collecting the number of
defects and placing them in an output report, and (3) coordination
of and offering a collaborative inspection approach in which the
tool and inspection engineer work together to conduct the
inspection activities. These activities will be discussed later in the
paper.
C. Inefficiency of manual inspection and need for automated

inspection
As discussed above, similar to many other companies [2], manual
inspection process has been carried out in the group for several
years now in which inspection engineers were verifying the
documents manually with respect to the design checklist.
However, similar to every manual task and process, manual
inspections were error-prone, ineffective, and inefficient in
several ways: (1) as per the time logs, manual inspection of the
109-page design document for a system called EFAB (acronym in
Turkish for: “Elektronik Fabrika Sistemi”, meaning: Electronic
Factory System) took about 29 man-hours; (2) since there are
various checklists to be controlled, inspectors could easily miss
some of the rules and, thus, defects would stay in the documents;
(3) the inspection process was not streamlined and were
somewhat ad-hoc; (4) the process was lacking the adequate
traceability, visibility and reliability, e.g., non-compliance items

288288

did not have enough explanations to locate the exact location of
the issues in document.

By considering the above deficiencies of the manual inspection
process and upon the review of the current inspection process by
the team members and managers, the team decided to switch to an
automatic inspection process. For this, we had to find, adopt,
customize or develop (from scratch) an automatic inspection tool.
Based on the AR methodology [7], the first task after identifying
the need was to review the related work and tools. The review of
the state-of-the-art and -practice would actually serve two
purposes: (1) to see if we could find an existing commercial or
open-source inspection tool which we could customize/adopt to
our need; and (2) to become familiar with the type of automated
inspection approaches/methods proposed by other researchers and
practitioners.

III. RELATED WORK AND TOOLS
When searching for “automated software inspection” in academic
search engines, e.g., Google Scholar and Scopus, one would find
a large number of papers, most of which are related to inspection
of code (e.g., static code analysis tools) [9]. To stay relevant on
our study scope, we only narrowed our literature search and
review to studies on and tools used for inspection of technical
documents, e.g., design and requirements documents. The other
relevant set of keywords that we searched for was “software
design verification”. Among the studies that we found are [10-14].

The paper [10] presented a tool called QuARS (Quality
Analyzer of Requirements Specification) for the analysis of

natural language software requirements. The tool is based on a
special quality model which aims at providing a quantitative,

corrective and repeatable evaluation of software requirement
documents.

The paper [11] presented an early lifecycle tool for assessing
requirements in natural language developed by NASA’s Goddard
Space Flight Center’s (GSFC). The tool searches the document
for terms identified as ‘weak’ phrases. The reports produced by
the tool are used to identify specification statements and structural
areas of the requirements specification document that need to be
improved. The metrics can be used by project managers to
recognize and preclude potential areas of risk. Similarly, [12]
presented a tool named Text2Test for automated inspection of
natural-language use cases. The experience paper [13] reported
the in-process inspections of design and development work
products at AT&T. Brykczynski reported in 1999 paper [14] a
survey of software inspection checklists.

Software documentation quality is also another active related
field to our work, e.g., works such as [15-18]. The work in [17]
presents a quality monitoring method for the automated quality
assessment of software documentation using a document quality
analysis framework and a set of quality rules which represent best
practices for software documentation. To shows the value of
software documentation quality, [18] conducted a survey software
professional and the survey shows that the most important quality
attributes with regard to documentation quality are accuracy,
clarity, consistency, readability, structuredness, and

TABLE 1- MANUAL CHECKLIST (SET OF INSPECTION RULES) USED FOR MANUAL INSPECTION OF DESIGN DOCUMENTS

Group� Inspection�rules�(criteria)�
Severity�of�possible�
incompatibilities�

Level�of�automation�
by�the�AutoInspect�

tool�

#�of�sub�rules�in�
AutoInspect�

Low Medium High Critical

Structure�
compliance�

1.�Is�the�document�format�compatible�with�the�software�
design�document�template?�(itself�has�a�set�of�rules,�
examples�in�Section�4.2)�

X� X� X� � Full� 20�

2.�Are�the�versions�of�the�design�document�in�the�TFS�
server�same�as�the�one�on�the�SharePoint�server?�

� � X� � No� 0�

Contents�
compliance�

3.�Are�the�functional�requirements�defined?� X Partial� 1
4.�Are�the�user�interfaces�and�their�features�defined?� X� X� X� X� Partial� 3�
5.�Is�the�user�interface�flow�clear�and�stated�properly? X X X X Partial� 4
6.�Are�decision�states,�elections�/�queries�and�calculations�
clearly�defined?�

X� X� X� X� Partial� 2�

7.�Are�all�requirements�classified�and�enumerated?� � X� � � Partial� 1�
8.�Is�the�database�design�compatible�with�the�database�
guide?�

� X� X� X� Partial� 24�

9.�Are�all�user�groups�and�their�behaviors�clearly�defined? X X Partial� 2
10.�Are�all�information�security�requirements�clearly�
defined?� � � � X� Partial� 2�

11.�Are�all�hardware�requirements�clearly�defined?� � X� X� X� Partial� 1�
12.�Are�all�information/error�messages,�and�in�which�case�
they�are�shown,�defined?�

� X� X� � Partial� 3�

13.�Is�there�any�requirement�which�is�out�of�the�scope?�
(Except�those�written�as�a�note)�

� X� X� � Partial� 1�

14.�Is�the�integration�with�other�systems�defined?� � � X� X� Partial� 1�
15.�Are�there�any�conflicting�or�inconsistent�requirements?� � X� X� X� Partial� 3�
16.�Do�error�messages�clearly�indicate�what�action�the�user�
needs�to�take�to�correct�the�error?� X� X� X� � Partial� 2�

17.�Are�assumptions�and�limitations�stated?� X� X� X� X� Partial� 1�
18.�Are�the�requirements�clearly�understood?� X� X� X� X� Partial� 1�

19.�Can�the�requirements�be�tested?�(Dependent�on�the�
test/hardware�tools,�the�test�methods,�the�test�resources,�the�
scalability�and�the�observability.)�

X� X� X� � Partial� 1�

20.�Are�the�requirements�traceability�satisfied�via�TFS? X No� 0

289289

understandability. Many respondents mentioned a general lack of
tool support for quality assessment of software documentation.

After reviewing the related work and tools, we really did not
find any available tool suitable for our needs. Thus we decided to
develop our own inspection tool.

IV. AUTO INSPECT: FEATURES AND DEVELOPMENT DETAILS
After deciding to develop our own inspection tool, several
engineers in the team were tasked to design and develop the tool.
The goal was to develop a reliable, efficient, flexible, extendible
and user-friendly tool. We discuss next the features, example
usage, and implementation details of the tool.
A. Features and example usage

AutoInspect is a tool for semi-automated inspection of design
documents. The activity diagram in Figure 4 shows the usage
process and input/outputs of the tool. A software design document
is given by the engineer as the input. Similar to
other inspection tools, e.g., [10-13], our tool does
not fully automate inspections, but only partially
automates it. As a ‘collaborative’ inspection tool,
the engineer ‘interacts’ with the tool and the tool
facilitates and increases the inspection efficiency in
the tasks that our experience has shown to be
tedious and effort intensive, e.g., browsing through
a long design Word document and checking
formats, etc. The other important input is the set of
design inspection rules, examples of which were
provided in Table 1. As outputs, a list of defects
found during inspection, and a design verification
report (in PDF format) are created. We discuss the
details with examples in the following.

As discussed in Section 2, the inspection rules
are divided into two groups: structure and contents
of the documents. Accordingly, the tool’s usage
follows the same notion. Figure 2 shows a
screenshot of the tool’s main windows also the
results of a given document’s structure inspection.
The two button’s “Inspect Structure” and “Inspect
Contents” conduct the two main use cases. It is
imperative to execute the structure inspection first
and then the content inspection. To ensure
flexibility and extensibility of the tool, the
inspection rules are stored out of the tool’s core
code-base and can be revised/extended as needed
(to be discussed in the next sub-section).

During the structure inspection, the rules are
checked automatically such as the required
contents of design documents, version information,
contents of GUI elements, tables and figures, and
database design diagrams. Summary of result, as
shown in Figure 2, is shown to the user after the
structure inspection is completed. In this example,
AutoInspect has been applied to a design document
for a system named EYTS. After the structure
inspection, in this case, the tool was able to find
two non-compliances (defects) in this case. Further
explanations of the non-compliances can be seen
by pressing the red icons, an example of which is
also shown in Figure 2. In this case, the document

under inspection is missing the version information and text inside
the introduction section.

FIGURE 4-ACTIVITY DIAGRAM SHOWING THE USAGE PROCESS AND

INPUT/OUTPUTS OF THE TOOL

The tree structure of the checklist shown in Figure 2 is based
on the design document template that company has created a few

FIGURE 2-A SCREENSHOT OF THE TOOL SHOWING THE RESULTS OF A DOCUMENT’S STRUCTURE
INSPECTION

FIGURE 3- A SCREENSHOT OF THE TOOL SHOWING THE INTERACTION WITH THE ENGINEER TO
CONDUCT SEMI-AUTOMATED INSPECTION OF DOCUMENT CONTENTS

290290

years ago and shall be used in all projects. After the initial parts,
the major structure of a given document is about ‘functional
requirements’ which shall be specified for each GUI screen for
the system under design.

Once structure inspection is completed, the engineer will
follow the process with content inspection using the tool. As
discussed in Section 2.2 and shown in Table 1, content inspection
has not been fully automated yet since expert human knowledge
is still necessary for all the tasks in this category which can hardly
be automated (that will require AI and other advanced machine
learning techniques which we plan to pursue in future). Figure 3
shows a screenshot of the tool interacting with the engineer to
conduct semi-automated inspection of document contents, in this
case the functional requirements of a ‘Login’ screen. The content
inspection phase is based on a relatively large set of inspection
rules, examples of which are shown in Figure 3, e.g., (1) Are all
object names meaningful?, and (2) Are the screen flows clearly
defined?

TABLE 2- THE LIST OF INSPECTION SUB-RULES FOR MANUAL INSPECTION
RULES WHICH HAD TO BE BROKEN DOWN INTO SUB-RULES IN AUTOINSPECT

*: Rule number in Table 1

Furthermore, in terms of usability and to increase efficiency,
the tool assists the inspection engineer by automatically jumping
to the relevant part of the design document in the Microsoft Word
which is opened automatically by the tool in a second display
(monitor), usually to the right of the AutoInspect window. In this
scenario, if the engineer notices any issue (non-compliance), s/he
would select the severity of inspection and would type an
explanation as well (if needed). The inspection engineer would
then press the ‘Next’ button to check the next set of inspection
rules. Summary of the results, shown in the left-side of Figure 2,
is constantly updated, in each step of the inspection.

Once all the inspections are done, by pressing the ‘Report’
button, the tool generates a design verification report (in PDF
format) as shown in Figure 5. In this example, after the structure
and content inspections, a total number of 571 inspection rules
have been applied, out of which 563 rules have passed, and the
collaborative work of the tool and engineer has detected 8 issues
(and 14 high-level defects in the tree structure).

FIGURE 5-A SCREENSHOT OF THE TOOL

B. Inspection rules and sub-rules
As discussed in Section 2.2, to make some of the rules in the
manual checklist in Table 1 automatable or to make them concrete
enough for the inspection engineer to atomically decide about
them, we had to break them down into sub-rules when
implementing our AutoInspect tool in or der to make them, e.g.,
rule #1 of the document structure in Table 1 (Is the document
format compatible with the software design document template?)
was broken down into 20 sub-rules, as listed in Table 2, which
shows the list of all sub-rules for rules having more than one sub-
rule. Manual inspection rules such as rule #3 in Table 1 (Are the
functional requirements defined?) were concrete enough to be
easily implemented in AutoInspect and thus there was no need to
be broken down into sub-rules.
C. Development details
The team followed the iterative development process in which
expert inspectors (who has expertise in manual inspection for a
few years) iteratively worked with developers to develop the
features one by one. Tool requirements were not formally written
down, but instead, were informally communicated among the
team members. Essentially, the senior engineers who had
expertise in conducting the manual inspections transferred their
knowledge to the developer to develop the tool.

Since design documents were all in Microsoft Word format, for
compatibility and easier implementation purposes, we selected
the Microsoft Visual Studio 2013 and C# as the development
platform for AutoInspect. Moreover, we used suitable libraries
such as Microsoft.Office.Interop.Word since this library
allows Word DOC files to be easily opened and manipulated
programmatically from C#.

� #*� Inspection�rules�

St
ru
ct
ur
e�

1�

1��Is�the�version�information�written?�
2��Are�the�list�of�tables�and�the�tables�in�the�list�defined?�
…�
20��Is�the�database�design�described?�

C
on
te
nt
�

4�

1��Are�the�graphical�user�interfaces�defined?�
2��Are�all�screen�object�names�meaningful?�

3��Are�all�properties�of�screen�objects�defined?�

5�

1� Is�the�attach�file�process�clearly�defined?�(If�available)�

2��Is�the�screen�flow�clearly�defined?�

3��Are�the�SMS/e�Mail�scenarios�clearly�defined?�(If�available)�

4��Is�the�query�process�clearly�defined?�(If�available)�

6�
1��Are�the�computation�functions�clearly�defined?�(If�available)�

2��Are�the�decision�states�clearly�defined?�

8�

1��Are�the�primary�keys�defined�for�all�database�tables?�

2��Is�the�datatype�of�all�table�columns�defined?�

…�

22��Are�the�privileges�defined�for�database�tables?�

23���Is�the�GUI�object�compatible�with�DDL?�
24��Is�there�any�GUI�object�connected�with�the�database�column�
which�is�not�defined�in�DDL?�

9�
1��Are�the�user�privileges�defined�for�the�entire�software?�
2��Are�the�user�groups�and�their�behaviors�defined�for�every�single�
GUI?�

10�
1��Are�the�information�security�requirements�defined�in�the�non�
functional�requirements�section�of�the�design�document?�
2��Are�the�information�security�requirements�defined�for�the�GUI?�

12�

1��Are�the�information�messages�defined�during�the�attach�file�
process?�(If�available)�
2��Are�information/error�messages,�and�in�which�case�they�are�
shown,�defined�in�the�function�explanations�section�of�the�design�
document??�
3��Are�information/error�messages,�and�in�which�case�they�are�
shown,�defined�in�the�controls�and�messages�section�of�the�design�
document?�

15�

1��Are�there�any�conflicting�or�inconsistent�requirements?�
2��Is�there�any�conflicted�definition�for�the�same�GUI�objects�which�
are�stated�in�different�screens?�
3��Is�there�any�conflicted�function�for�the�same�events�which�are�
stated�in�different�screens?�

16�
Is�the�content�of�information/error�messages�consistent?�

Is�the�content�of�information/error�messages�meaningful?�

291291

To present further development details about the tool, Figure 6
shows the architectural design of AutoInspect. Each class, its
purpose, and the meaning of the most significant attributes and
functions are described next. The MainScreen class is the main
GUI class of AutoInspect and its role is to get input from the
inspection engineer, to create InspectionManager class
(described next), to call structural and content inspection
functions and to show results to the inspection engineer. The
ContentInspectionScreen class is used to get inputs for the
result of content inspection classes from the inspection engineer.
The inspection engineer can select the severity of inspection and
enter comments if needed. Moreover, the ReportCreator class
is used to create final result report.

The InspectionManager class is the main operational class
of AutoInspect and its role is to create InspectionFactory
class (described next), to run structural inspection, and to return
the inspection list with results to MainScreen class. The
InspectionFactory class is used to create
StructureInspectionFactory and
ContentInspectionFactory. During the implementation, in
order to make future code maintenance easier [19], we used the
factory design pattern. These factory classes are used to create the
InspectionAbsract classes, which is the analysis core of
AutoInspect and all the inspection rule classes are inherited from
this abstract class such as StructureInspectionFind,
StructureInspection-FindBetween,
StructureInspectionFindHeader,
StructureInspectionFindTable, and Content
Inspection.

The inspect() method is the most important function for the
InspectionAbstract class. The results of this function are
shown to the inspection engineer by the tool. Figure 7 shows the
AbstractIncpection class can have childIncpections. If
the inspection class has child inspections, it recursively calls the
inspect function of childIncpections until there is no child
inspections. If the returned valued of the inspect() method is
false, the result of all high level inspect functions are false. For
the structural inspection classes, the result of the inspect()
method is automatically calculated. On the other hand, for the
content inspection classes, the result of the inspect() method is
entered by the inspection engineer and processed (aggregated)
later by the tool.

V. INITIAL EVALUATION OF THE TOOL
A. Case-study design
Since the tool was developed based on a real need (as discussed
in Section 2), once the tool development finished, we started
evaluating the tool on a set of design documents to assess how it
addressed the need behind it. In the initial step as we report in this
tool paper, we started with a small case-study.

The research approach we used in our study is the Goal,
Question, Metric (GQM) methodology [20]. Stated using the
GQM’s goal template [20], the goal of the case study is to evaluate
the AutoInspect tool in increasing the efficiency and effectiveness
of inspections when compared to manual inspections before the
tool existed. To address the goal, we raised and addressed the
following research question (RQ): To what extent the tool
increases the efficiency and effectiveness of inspections when

compared to manual inspections? As metrics to assess efficiency
and effectiveness, we selected the inspection effort (in hours) and
the number of defects found, respectively.

As the objects of study, we selected the design document of
three ongoing projects (systems) in the company: (1) EYTS
(acronym in Turkish for: “Ekipman Yerle�im Tasar�m� Sistemi”,
meaning: Equipment Location Design System), (2) EFAB
(acronym in Turkish for: “Elektronik Fabrika Sistemi”, meaning:
Electronic Factory System), and (3) TAS (acronym in Turkish for:
“TAI Akademi Sistemi”, meaning: TAI Academy System).

As the subjects of study, to collect the metrics for each object
under study, we ensured that an engineer different than the one
who had done manual inspection would conduct automated
inspection using the tool. Also, to ensure comparability and to
really assess the benefit of the tool and not the personal skill-level
nor efficiency and effectiveness of the inspector, we ensure that
the two engineers had similar expertise and performance.
B. Results
Table 3 shows the size metrics of the three objects of study (design
documents) and measurements as the results of the study. In terms
of size metrics, the document had between 52-321 pages in the
standard design template format and between 12-34 GUI screens.

In terms of efficiency, manual inspection efforts were collected
from the time log records and, as shown in Table 3, are 8, 29 and
51 man-hours for the three documents. Automated inspection
effort, on the other hand, varied between 4-27 hours. This, in turn,
yielded efficiency improvements between 41-50% for the three
cases. Automation has helped us save about 50% of the effort, and
not more. The main reason for this is that the tool only mainly
helps the inspector navigate the document and save the issues and
does not do many sophisticated automated analysis.

In terms of effectiveness, compared to manual inspections, the
automated approach found between 23-33% more defects for the
three cases. In other words, the automated tool found all the
defects, found by manual inspections, plus some additional
defects. The main reason for this was that, as shown in Table 1,
the high-level manual inspections rules had to be broken down to
more granular lower-level automated inspections rules. As a result
of rules’ granularity and a decrease in their ambiguity, the defect
detection effectiveness was increased.

Thus, in summary we clearly observe that our tool has been
beneficial to the team, both in terms of efficiency and
effectiveness.
C. Discussions, limitations and implications
As discussed in Section II, our semi-automated tool provided tool
support for the following areas: (1) document handling: by
automatically browsing the design document and showing the
exact location to be inspected to the inspection engineer, (2)
metrics collection: by automatically collecting the number of
defects and placing them in an output report (see the example in
Figure 5), and (3) coordination of and offering a collaborative
inspection approach in which the tool and inspection engineer
work together to conduct the inspection activities. The
‘collaborative software inspection’ in a notion that has actually
been around since 2-3 decades ago, e.g., [8].

292292

implementation details of the inspect() method. The

FIGURE 6-CLASS DIAGRAM SHOWING THE ARCHITECTURAL DESIGN OF THE TOOL AND USAGE OF THE FACTORY DESIGN PATTERN

FIGURE 7-IMPLEMENTATION DETAILS OF THE INSPECT() METHOD

�inspectStructure()
�inspectContent()
�createReport()

�fInspectionManager�:�InspectionManager
MainScreen

+createInspections()
+inspectStructure()
+getInspectionList()�:�List<InspectionAbstract>

�fInspectionFactory�:�InspectionFactory
InspectionManager

+getInspectionList()�:�List<InspectionAbstract>

InspectionFactory

+getInspectionList()�:�List<InspectionAbstract>

StructureInspectionFactory

+getInspectionList()�:�List<InspectionAbstract>

ContentInspectionFactory

+inspect()�:�int

StructureInspectionFind

+inspect()�:�int

StructureInspectionFindBetween

+inspect()�:�int

StructureInspectionFindHeader

+inspect()�:�int

StructureInspectionFindTable

+inspect()�:�int

ContentInspection

�Create

1..*
+inspect()�:�int

+fChildInspections�:�List<InspectionAbstract>
+fCaption�:�string
+fKeyword�:�string
+fPossibleSeverityConditions�:�List<string>
+fSeverityCondition�:�string
+fExplanation�:�string
+fResultExplanation�:�string
+fInspectionResult�:�int

InspectionAbstract

+setInspectionManager()
+createReport()

�fInspectionManager�:�InspectionManager

ReportCreator�Create

1..1

�Create1..1

+setInspectionManager()
�fMainScreen�:�MainScreen
ContentInspectionScreen

�Create

1..*

�Create

1..1

�Create1..1

�Create1..*

...

Inspection�Start

i�=�0

�i�<�ruleList.count()

rule�=�ruleList.get(i)
i�=�i+1

childRuleList�=�rule.getChildRuleList()

childRuleList.count()�==�0

rule.inspect()
rule.updateResult()

True

Inspection�End

ruleList�=�childRuleList

False

ruleList

i�=�0

�i�<�ruleList.count()

rule�=�ruleList.get(i)
i�=�i+1

childRuleList�=�rule.getChildRuleList()

childRuleList.count()�==�0

rule.inspect()
rule.updateResult()

True

ruleList�=�ch ildRuleList

False

ruleList

i�= �0

�i�<�ruleList.count()

rule �= �ruleList.g et(i)
i�= �i+1

chil dRuleList�= �rule.getChildRuleL ist()

chil dRuleList .count()�==�0

rule.inspect()
rule.upda teResult()

T rue

ruleList�= �chil dRuleList

Fa lse

ruleList

RECURSIVE
...

293293

In terms of limitations of our approach, we are aware that the tool
is not a fully automated approach yet since automated inspection
of document contents (semantic aspects), for example, requires
sophisticated techniques (e.g., based on artificial intelligence or
and other advanced machine learning) and is currently done based
on expert human knowledge. But still in this mostly manual task,
the tool provides an interactive and collaborative help, thus it is
still helpful.
In terms of the implications of our tool and its evaluation study,
we believe that more work is needed by the software industry and
the research community towards developing more automated
tools in support of inspection since it is an effort-intensive and
error-prone activity.

VI. CONCLUSIONS AND FUTURE WORKS
Motivated by a real need in the context of the Turkish Aerospace
Industries Inc. (TAI) to increase the efficiency and effectiveness
of inspection activities, a tool named AutoInspect was developed
to (semi-) automate the inspection of software design documents.
We presented in this paper the features of the tool, its development
details and its initial evaluation for inspecting the design
documents of three real systems in the company. The results of
the initial case-study revealed that the tool is indeed able to
increase the inspections’ efficiency and effectiveness. We
provided quantitative measurements to demonstrate that the tool
increased efficiency and effectiveness of inspection activities in
our team. However, due to confidentiality reasons, we could not
provide more technical details about our approach and tool, we
think that other practitioners may be able to adopt some of these
ideas in developing their own automated tools and approaches.

Among our future work directions are: (1) integration of the
tool with the issue management system used in the company, i.e.,
Microsoft Team Foundation Server (TFS); (2) as the tool
currently only provides partial automation, our efforts are
currently underway to increase its automation level; and (3) to
empirical assess scalability and usability of the tool, i.e., to what
extent does the tool scale to large sets of documents? And to what
extent do the users find the tool usable?

ACKNOWLEDGEMENTS
The authors would like to thank the following internship students
who were involved in the tool’s development phase: An�l Araç,
Burak Kaan Bilgehan, Özlem Ceviz, Tolga Karaman, U�ur
Konar, Özkan Mert Öztürk, and Osman Tayfun Yelim.

REFERENCES
[1] M. E. Fagan, "Design and code inspections to reduce errors in program

development," IBM Systems Journal, vol. 38, pp. 258-287, 1976.
[2] J.-L. Boulanger, Static Analysis of Software: The Abstract Interpretation:

John Wiley & Sons, 2013.

[3] T. Gilb and D. Graham, Software Inspection: Addison-Wesley, 1993.
[4] G. W. Russell, "Experience with inspection in ultralarge-scale development,"

IEEE Software, vol. 8, pp. 25-31, 1991.
[5] B. Boehm, "Industrial Software Metrics Top 10 List," IEEE Software, pp. 84-

85, 1987.
[6] O. Laitenberger and J.-M. DeBaud, "An encompassing life-cycle centric

survey of software inspection," Journal of Systems and Software, vol. 50, pp.
5-31, 1// 2000.

[7] P. S. M. d. Santos and G. H. Travassos, "Action research use in software
engineering: An initial survey," in Proceedings of the International
Symposium on Empirical Software Engineering and Measurement, 2009, pp.
414-417.

[8] F. Macdonald, J. Miller, A. Brooks, M. Roper, and M. Wood, "Automating
the software inspection process," Automated Software Engineering, vol. 3, pp.
193-218, 1996/08/01 1996.

[9] N. Nagappan, L. Williams, J. Hudepohl, W. Snipes, and M. Vouk,
"Preliminary Results On Using Static Analysis Tools For Software
Inspection," Proceedings of International Symposium on Software Reliability
Engineering, 2004.

[10] F.Fabbrini, M.Fusani, S.Gnesi, and G.Lami, "An Automatic Quality
Evaluation for Natural Language Requirements," in Proceedings of the
International Workshop on Requirements Engineering: Foundation for
Software Quality, 2001.

[11] W. M. Wilson, L. H. Rosenberg, and L. E. Hyatt, "Automated analysis of
requirement specifications," Proceedings of the International Conference on
Software Engineering, 1997.

[12] A. Sinha, S. M. Sutton, and A. Paradkar, "Text2Test: Automated Inspection
of Natural Language Use Cases," in International Conference on Software
Testing, Verification and Validation, 2010, pp. 155-164.

[13] P. J. Fowler, "In-process inspections of workproducts at AT&T," AT&T
Technical Journal, vol. 65, pp. 102-112, 1986.

[14] B. Brykczynski, "A survey of software inspection checklists," SIGSOFT
Softw. Eng. Notes, vol. 24, p. 82, 1999.

[15] J. Zhi, V. Garousi, B. Sun, G. Garousi, S. Shahnewaz, and G. Ruhe, "Cost,
Benefits and Quality of Software Development Documentation: A Systematic
Mapping," Journal of Systems and Software, vol. 99, pp. 175–198, 2015.

[16] G. Garousi, V. Garousi, G. Ruhe, J. Zhi, M. Moussavi, and B. Smith, "Usage
and Usefulness of Technical Software Documentation: An Industrial Case
Study," Elsevier Journal of Information and Software Technology, vol. 57,
pp. 664-682, 2015.

[17] A. Dautovic, "Automatic assessment of software documentation quality," in
International Conference on Automated Software Engineering (ASE), 2011,
pp. 665-669.

[18] R. Plesch, A. Dautovic, and M. Saft, "The Value of Software Documentation
Quality," in International Conference on Quality Software (QSIC), 2014, pp.
333-342.

[19] L. Prechelt, B. Unger, W. F. Tichy, P. Brossler, and L. G. Votta, "A controlled
experiment in maintenance: comparing design patterns to simpler solutions,"
Software Engineering, IEEE Transactions on, vol. 27, pp. 1134-1144, 2001.

[20] V. R. Basili, "Software modeling and measurement: the Goal/Question/Metric
paradigm," Technical Report, University of Maryland at College Park1992.

TABLE 3- RESULTS OF THE CASE STUDY

Design�document�
name�

Size�metrics� Efficiency�(inspection�effort�in�hours)� Effectiveness�(#�of�defects�found)�
Number�of�
pages�

Number�of�GUI�
screens�

Manual� Automated� Improvement�
%�

Manual� Automated� Improvement�
%�

EYTS� 52� 12� 8� 4� 50%� 6� 8� 33%�
EFAB� 109� 31� 29� 17� 41%� 100� 129� 29%�
TAS� 321� 34� 51� 27� 47%� 13� 16� 23%�

294294

