Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

5,6-Diphenylthieno[2,3-d][1,3]-dithiole-2-thione

F. Betül Kaynak, ${ }^{\text {a* }}$ Süheyla Özbey, ${ }^{\text {a }}$ Turan Öztürk ${ }^{\text {b }}$ and Erdal Ertas ${ }^{\text {b }}$

${ }^{\text {a Department of Engineering Physics, Hacettepe University, Beytepe 06532, Ankara, }}$ Turkey, and ${ }^{\mathbf{b}}$ Marmara Research Center, Department of Chemistry, 41470 Gebze, Kocaeli, Turkey
Correspondence e-mail: gulsen@hacettepe.edu.tr

Received 13 March 2001
Accepted 2 July 2001
The title compound, $\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~S}_{4}$, has two independent molecules in the asymmetric unit. In both molecules, the fused heterocycle is almost planar and the phenyl groups make dihedral angles of 42.88 (9) and $52.79(8)^{\circ}$ with the fused heterocycle in one molecule, and angles of 40.62 (9) and $52.28(8)^{\circ}$ in the other. The crystal packing is governed by short intermolecular S...S interactions, the shortest contact being 3.333 (1) \AA.

Comment

It has recently been discovered that Lawesson's reagent (LR), (I), could be used to construct 1,4-dithiine (III) and/or thiophene heterocycles from 1,8-diketones (II) (Öztürk, 1996). The possible mechanism of this reaction involves a nine-membered-ring intermediate which then rearranges to the sixmembered dithiine ring. Loss in situ of an S atom from the 1,4dithiine ring leads to the formation of a thiophene ring. The dithiine/thiophene ratio depends on the electron-withdrawing or electron-releasing nature of the aromatic (Ar) substituent. While electron-donating groups make the loss of the S atom easier, electron-withdrawing groups make it more difficult.

Our previous and ongoing studies indicated that when the corresponding 1,8 -diketone is treated with LR, dithiine (V) is obtained as a minor product (Öztürk, 1996; Öztürk \& Türksoy, 1999). On the other hand, when the phenyl group of the $1,8-$ diketone is replaced by para-methoxyphenyl, thiophene rather than dithiine becomes a major product (Öztürk \& Wallis, 1996).

In an effort to obtain new diphenyl-substituted dithiine (VIII) and thiophene (IX) heterocycles, which are useful building blocks for organic conducting/superconducting materials, the tetraphenyl-1,8-diketone (VII) was reacted overnight with LR in refluxing toluene under a nitrogen atmosphere. In accordance with the results obtained previously (Lee et al., 1998), no product containing dithiine ring (VIII) was obtained. Diphenylthiophene (IX) was
isolated as the sole product and its X-ray crystal structure is reported here.

Compound (IX) crystallizes in $P 2_{1} / c$ and has two crystallographically independent molecules in the asymmetric unit, labelled A and B (Fig. 1). Interatomic distances and angles are very similar in both molecules. The fused heterocyle in the molecules is nearly planar; the best planes of the two fivemembered rings (thiophene and dithiole) form dihedral angles of 4.77 (8) ${ }^{\circ}$ in molecule A and $5.35(8)^{\circ}$ in molecule B. These values are comparable with that found in 6-(4-methoxy-phenyl)thieno[2,3-d][1,3]dithiole-2-thione [4.2 (1) ${ }^{\circ}$; Öztürk \& Wallis, 1996]. The phenyl groups in (IX) are essentially planar, the maximum deviations being 0.007 (2) (C17A in molecule A) and -0.008 (3) $\AA(\mathrm{C} 15 B$ in molecule $B)$. The dihedral angles between the phenyl groups ($\mathrm{C} 6-\mathrm{C} 11$ and $\mathrm{C} 12-\mathrm{C} 17$) and the fused heterocycle are $42.88(9)$ and $52.79(8)^{\circ}$, while the dihedral angle between these two phenyl rings is $55.05(11)^{\circ}$ for molecule A; these values are slightly less for molecule B, viz. 40.62 (9), 52.28 (8) and $52.75(11)^{\circ}$, respectively. The terminal $\mathrm{C}=\mathrm{S}$ double bond [mean 1.648 (2) \AA] is quite similar to that of other structures including the 1,3-thiole-2-thione moiety (Öztürk \& Wallis, 1996; Parvez et al., 1996; Lee \& Noh, 1998). There is a marked asymmetry in the thiophene and dithiole rings. The $\mathrm{S} 4-\mathrm{C} 5$ bond distance $[1.742$ (2) \AA in molecule A and 1.744 (2) \AA in molecule B] is longer than the

S4-C3 bond distance [1.709 (2) and 1.710 (2) \AA for molecules A and B, respectively]. The mean bond angle at the S 4 atom, $91.29(8)^{\circ}$, is significantly smaller than the angles at the S 2 and S3 atoms, which have mean values of 96.57 (8) and 95.89 (8) ${ }^{\circ}$, respectively.

As usual in this type of compound, packing appears to be governed by S..S interactions. Some intermolecular S...S contact distances are $\mathrm{S} 1 A \cdots \mathrm{~S} 3 A^{\mathrm{i}} 3.333(1), \mathrm{S} 1 A \cdots \mathrm{~S} 4 A^{\mathrm{i}}$

Figure 1
ORTEP (Johnson, 1965) drawing of the asymmetric unit of (IX), showing the atomic numbering scheme and displacement ellipsoids at the 40% probability level.
3.372 (1), $\quad \mathrm{S} 1 A \cdots \mathrm{~S} 1 A^{\mathrm{ii}} \quad 3.555(1), \quad \mathrm{S} 2 A \cdots \mathrm{~S} 3 A^{\mathrm{i}} \quad 3.427$ (1), $\mathrm{S} 1 B \cdots \mathrm{~S} 3 B^{\mathrm{iii}} 3.344$ (1), S $1 B \cdots \mathrm{~S} 4 B^{\mathrm{iii}} 3.355$ (1), S $1 B \cdots \mathrm{~S} 1 B^{\text {iv }}$ 3.570 (1) and $\mathrm{S} 2 B \cdots \mathrm{~S} 3 B^{\mathrm{iii}} 3.447$ (1) \AA, and contribute to the formation of chains along the b direction [symmetry codes: (i) $2-x, \frac{1}{2}+y, \frac{3}{2}-z$; (ii) $2-x, 1-y, 2-z$; (iii) $1-x, \frac{1}{2}+y$, $\frac{3}{2}-z$; (iv) $1-x, 1-y, 2-z$]. These chains, in turn, are held together by van der Waals interactions.

Experimental

For the preparation of 5,6 -diphenylthieno[2,3- $d][1,3]$ dithiole-2thione, (IX), a solution of 1,8 -diketone (VII) ($0.5 \mathrm{~g}, 0.85 \mathrm{mmol}$) and Lawesson's reagent, (I) ($0.4 \mathrm{~g}, 0.99 \mathrm{mmol})$, in dry toluene (25 ml) was refluxed overnight under a nitrogen atmosphere. The solvent was evaporated and the residue purified by column chromatography, eluting with hexane-dichloromethane (2:1) (m.p. 429-430 K, 0.087 g , 30%). ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.5(10 \mathrm{H}, m) ;{ }^{13} \mathrm{C}$ NMR $\left(50.32 \mathrm{~Hz}, \mathrm{CDCl}_{3}\right): \delta 207(\mathrm{C}=\mathrm{S}), 143.8,140.7,133.9,132.6,129.06$, 129, 128.9, 128.8, 128.7, 128.6, 128.5, 128.4; m/z (EI): $342\left(M^{+}\right) ; m / z$ (HRMS): $341.9665, \mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~S}_{4}$ requires 341.9684; UV $\left(\mathrm{CH}_{3} \mathrm{CN}, \mathrm{nm}\right)$ 392.

Crystal data

```
\(\mathrm{C}_{17} \mathrm{H}_{10} \mathrm{~S}_{4}\)
\(M_{r}=342.53\)
Monoclinic, \(P 2_{1} / c\)
\(a=23.441\) (3) \(\AA\)
\(b=10.1303(14) \AA\)
\(c=13.5222(17) \AA\)
\(\beta=73.822\) (10) \({ }^{\circ}\)
\(V=3083.9(7) \AA^{3}\)
\(Z=8\)
```


Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1983)
$T_{\text {min }}=0.840, T_{\text {max }}=0.913$
7317 measured reflections
7013 independent reflections
5657 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R(F)=0.033$
$w R\left(F^{2}\right)=0.099$
$S=1.07$
5657 reflections
379 parameters
H -atom parameters constrained
$R_{\text {int }}=0.052$
$\theta_{\text {max }}=27.9^{\circ}$
$h \stackrel{\text { max }}{=}-29 \rightarrow 30$
$k=-13 \rightarrow 0$
$l=0 \rightarrow 17$
3 standard reflections frequency: 120 min intensity decay: 1%

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0555 P)^{2}\right. \\
+0.6458 P] \\
\text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.001 \\
\Delta \rho_{\max }=0.25 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.36 \mathrm{e} \AA^{-3}
\end{gathered}
$$

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 1 A-\mathrm{S} 1 A$	$1.6482(18)$	$\mathrm{C} 1 B-\mathrm{S} 1 B$	$1.6485(18)$
$\mathrm{C} 1 A-\mathrm{S} 2 A$	$1.7374(18)$	$\mathrm{C} 1 B-\mathrm{S} 2 B$	$1.7359(18)$
$\mathrm{C} 1 A-\mathrm{S} 3 A$	$1.7355(19)$	$\mathrm{C} 1 B-\mathrm{S} 3 B$	$1.7373(19)$
$\mathrm{C} 2 A-\mathrm{S} 2 A$	$1.7417(17)$	$\mathrm{C} 2 B-\mathrm{S} 2 B$	$1.7398(17)$
$\mathrm{C} 3 A-\mathrm{S} 3 A$	$1.7274(18)$	$\mathrm{C} 3 B-\mathrm{S} 3 B$	$1.7257(18)$
$\mathrm{C} 3 A-\mathrm{S} 4 A$	$1.7090(18)$	$\mathrm{C} 3 B-\mathrm{S} 4 B$	$1.7104(18)$
$\mathrm{C} 5 A-\mathrm{S} 4 A$	$1.7420(18)$	$\mathrm{C} 5 B-\mathrm{S} 4 B$	$1.7437(18)$
			$114.40(10)$
$\mathrm{S} 2 A-\mathrm{C} 1 A-\mathrm{S} 3 A$	$114.37(10)$	$\mathrm{S} 2 B-\mathrm{C} 1 B-\mathrm{S} 3 B$	$117.93(13)$
$\mathrm{C} 2 A-\mathrm{C} 3 A-\mathrm{S} 3 A$	$117.75(14)$	$\mathrm{C} 2 B-\mathrm{C} 3 B-\mathrm{S} 3 B$	$122.59(15)$
$\mathrm{C} 2 A-\mathrm{C} 4 A-\mathrm{C} 12 A$	$122.62(15)$	$\mathrm{C} 2 B-\mathrm{C} 4 B-\mathrm{C} 12 B$	$112.16(13)$
$\mathrm{C} 4 A-\mathrm{C} 5 A-\mathrm{S} 4 A$	$112.40(13)$	$\mathrm{C} 4 B-\mathrm{C} 5 B-\mathrm{S} 4 B$	$96.67(8)$
$\mathrm{C} 1 A-\mathrm{S} 2 A-\mathrm{C} 2 A$	$96.47(8)$	$\mathrm{C} 1 B-\mathrm{S} 2 B-\mathrm{C} 2 B$	$95.84(8)$
$\mathrm{C} 1 A-\mathrm{S} 3 A-\mathrm{C} 3 A$	$95.95(8)$	$\mathrm{C} 1 B-\mathrm{S} 3 B-\mathrm{C} 3 B$	$91.37(8)$
$\mathrm{C} 3 A-\mathrm{S} 4 A-\mathrm{C} 5 A$	$91.22(8)$	$\mathrm{C} 3 B-\mathrm{S} 4 B-\mathrm{C} 5 B$	

Ring H atoms were placed geometrically $0.93 \AA$ from their parent atoms and a riding model was used with $U_{\text {iso }}(\mathrm{H})=1.3 U_{\text {eq }}(\mathrm{C})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1993); data reduction: MolEN (Fair, 1990); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP (Johnson, 1965); software used to prepare material for publication: PLATON (Spek, 1990).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: FR1332). Services for accessing these data are described at the back of the journal.

References

Enraf-Nonius (1993). CAD-4 EXPRESS. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
Fair, C. K. (1990). MolEN. Enraf-Nonius, Delft, The Netherlands.
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Lee, H.-J., Kim, Y.-Y. \& Noh, D.-Y. (1998). Bull. Korean Chem. Soc. 19, 10111013.

Lee, H.-J. \& Noh, D.-Y. (1998). Bull. Korean Chem. Soc. 19, 340-344.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Öztürk, T. (1996). Tetrahedron Lett. 37, 2821-2824.
Öztürk, T. \& Türksoy, F. (1999). Unpublished results.
Öztürk, T. \& Wallis, J. D. (1996). Acta Cryst. C52, 2552-2554.
Parvez, M., Mesher, S. T. E. \& Clark, P. D. (1996). Acta Cryst. C52, 1503-1505.
Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Spek, A. L. (1990). Acta Cryst. A46, C-34.

