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Integration of maternal genome into the neonate
genome through breast milk mRNA transcripts
and reverse transcriptase
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Abstract

Human milk samples contain microvesicles similar to the retroviruses. These microvesicles contain mRNA transcripts
and possess reverse transcriptase activity. They contain about 14,000 transcripts representing the milk transcriptome.
Microvesicles are also enriched with proteins related to “caveolar-mediated endocytosis signaling” pathway. It has
recently been reported that microvesicles could be transferred to other cells by endocytosis and their RNA content
can be translated and be functional in their new location. A significant percentage of the mammalian genome
appears to be the product of reverse transcription, containing sequences whose characteristics point to RNA as a
template precursor. These are mobile elements that move by way of transposition and are called retrotransposons.
We thought that retrotransposons may stem from about 14,000 transcriptome of breast milk microvesicles, and
reviewed the literature.
The enhanced acceptance of maternal allografts in children who were breast-fed and tolerance to the maternal
MHC antigens after breastfeeding may stem from RNAs of the breast milk microvesicles that can be taken up by
the breastfed infant and receiving maternal genomic information. We conclude that milk microvesicles may transfer
genetic signals from mother to neonate during breastfeeding. Moreover, transfer of wild type RNA from a healthy
wet-nurse to the suckling neonate through the milk microvesicles and its subsequent reverse transcription and
integration into the neonate genome could result in permanent correction of the clinical manifestations in
genetic diseases.
Introduction
In the 1970s, human milk samples were shown to con-
tain particles that exhibit many of the features character-
istic of retroviruses (see Ref [1] for details of
retroviruses). In particular, these human particles have a
density in sucrose of 1.16-1.19 g/ml and contain a
single-stranded 60 and 70 S RNA physically associated
with a reverse transcriptase [2-17]. However, labeled
cDNA prepared from these particles hybridized exclu-
sively with human genomic DNA but not with mouse
and cat DNA indicating a human origin for the particles
[18]. The etiological role of retroviruses in mammary
cancer of experimental animals coupled with observa-
tions of morphologically similar particles in human milk
has motivated considerable interest in the biological role
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reproduction in any medium, provided the or
of these virions in human breast cancer. However, no
correlation could be demonstrated between the presence
of retrovirus-like particles in human milk samples and
human breast cancer [19,20]. Thus, lacking formal proof
of a human mammary tumor virus, the possibility that
human breast cancer might also be intimately associated
with oncogenic viruses faded in the 1980s [21]. An ex-
planation for this discrepancy could be that those
retrovirus-like particles were not virions, but some other
kind of particle.
Milk fat globules and microvesicles
The answer to the question about the nature of the
retrovirus-like particles in human breast milk has come
at the beginning of the 21st century. Breast milk has
been found to contain microvesicles with a density in su-
crose of 1.10-1.19 g/ml [22] comparable with previously
identified retrovirus-like particles. In addition to
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biochemical and structural similarity, breast milk micro-
vesicles also contain RNA and reverse transcriptase ac-
tivity [23] as in retrovirus-like particles (see Ref [1] for
details of microvesicles). Moreover, RNA of the breast
milk microvesicles were demonstrated to be taken up by
other cells supporting the notion that microvesicles
could deliver RNA from cells of the mother, to cells in
the offspring [24]. These microvesicles have been called
exosome, lactosome or shedding microvesicles by the
reporters but with no reference to those articles about
the retrovirus-like particles in human milk published in
1970s. It is apparent that retrovirus-like particles of
1970s are identical with the microvesicles found more
recently. Breast milk microvesicles form directly from
the apical parts of the mammary epithelial cells by an
apocrine secretion mechanism or indirectly from the
cytoplasmic crescents of milk fat globules (MFG) by
shedding, budding or blebbing (Figure 1), similar to the
mechanism by which enveloped viruses are secreted
from the cells [25-29].
Milk fat globules are triacylglycerol carriers of about 4

micrometer diameter secreted by the mammary epithelial
cells and are the main source of energy for the infant
[25]. Milk fat globules arise by the fusion of lipid droplets
and are thus enveloped in a monolayer from the cyto-
plasmic leaflet of the endoplasmic reticulum (ER) mem-
brane and are transported to the cell surface where they
are pinched off into the alveolar space entirely sur-
rounded in a layer of plasma membrane [30,31]. Variable
amounts of cytoplasm are often entrained between the
inner monolayer and the outer bilayer (Figure 1). These
are generally called cytoplasmic crescents [32].
Figure 1 Formation of breast milk microvesicles. Breast milk
microvesicles form directly from the apical parts of the mammary
epithelial cells by an apocrine mechanism or indirectly from the
cytoplasmic crescents of milk fat globules (MFG) by shedding,
budding or blebbing, similar to the mechanism by which enveloped
viruses are secreted from the cells.
Cytoplasmic crescents contain nearly all intracellular
membranes and organelles of the milk-secreting cell, ex-
cept nuclei, and they represent an important route of cel-
lular substances into milk, such as mRNAs and proteins
[33]. About 100 proteins were identified in the mem-
brane and cytoplasmic crescents of milk fat globules [34].
While these proteins have a very low nutritional value,
they play important roles in various cell processes such
as vesicle trafficking, cell signaling, protein synthesis,
binding, folding, intracellular transport, antigen presen-
tation (MHC class I and II molecules), receptor activity
and immune functions [35,36]. The vesicle trafficking
proteins identified include ADP ribosylation factor-1
(Arf1) [22], Rab1 and SNARE proteins [37]. Proteins
such as clusterin, CD55 and CD59 protect microvesicles
against complement lysis [38]. Among the identified pro-
teins involved in folding and protein destination are
cyclophilin A, and heat shock proteins [39]. Proteomes
of MFG and microvesicle fractions mostly share the simi-
lar proteins, but microvesicles are especially enriched
with proteins related to “caveolar-mediated endocytosis
signaling” pathway [25]. In addition to this rich protein
content, cytoplasmic crescents of MFGs were demon-
strated to contain substantial quantities of high-quality
RNA; about 14,000 transcripts representing the MFG
transcriptome [40]. The top networks most highly asso-
ciated with the MFG gene list were 1) cellular function
and maintenance cell signaling, and nucleic acid metab-
olism; 2) cell cycle, 3) DNA replication, recombination,
and repair, 4) protein synthesis, gene expression, and
RNA trafficking [40]. It is plausible to suggest that tran-
scriptome of cytoplasmic crescents reflects the RNA con-
tent of breast milk microvesicles which are capable of
reverse transcription of the RNA into double-stranded
DNA with their reverse transcriptase activity.

Retrotransposons
A significant percentage of the mammalian genome
appears to be the product of reverse transcription, con-
taining sequences whose characteristics point to RNA as
a template precursor [41]. These are mobile elements
that move by way of transposition and are called retro-
transposons [42]. They can be grouped into two large
classes:

a. Retroviral-like retrotransposons. They resemble
retroviruses, but lack a protein coat. They move
themselves in and out of chromosomes by a
mechanism that is identical to that used by
retroviruses. These elements are present in
organisms as diverse as yeast, flies, and mammals;
unlike viruses they have no intrinsic ability to leave
their resident cell but are passed along to all
descendants of that cell through the normal process
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of DNA replication and cell division [42]. The first
step in their transposition is the transcription of the
entire transposon, producing an RNA copy of the
element that is typically several thousand
nucleotides long. This transcript, which is translated
as a messenger RNA by the host cell, encodes a
reverse transcriptase enzyme. This enzyme makes a
double-strand DNA copy of the RNA molecule via
an RNA/DNA hybrid intermediate, precisely
mirroring the early stages of infection by a
retrovirus. Like retroviruses, the linear double-
stranded DNA molecule then integrates into a site
on the chromosome by using an integrase enzyme
that is also encoded by the element [42].

b. Nonretroviral retrotransposons. A large fraction of
the human genome (about 40%) is composed of
nonretroviral retrotransposons [43]. They move via a
distinct mechanism that requires a complex of an
endonuclease and a reverse transcriptase. The RNA
and reverse transcriptase have a much more direct
role in the recombination event than they do in the
retroviral-like retrotransposons. RNA copy of the
element is central to the incorporation of the
element into the target DNA, acting as a direct
template for a DNA target-primed reverse
transcription event [42]. Basically, an endonuclease -
reverse transcriptase enzyme complex attached to
the RNA of the retrotransposon nicks the target
DNA at the point at which insertion will occur. This
cleavage releases a 3’-OH DNA end in the target
DNA, which is then used as a primer for the reverse
transcription step. This generates a single-stranded
DNA copy of the element that is directly linked to
the target DNA. In subsequent reactions, further
processing of the single-stranded DNA copy results
in the generation of a new double-stranded copy of
the nonretroviral retrotransposon that is inserted at
the site of the initial nick [42]. Nonretroviral
retrotransposons are the major constituents of our
genome, and the wide diversity of retrotransposons
compared to the limited diversity of retroviruses
suggests that most retrotransposons stem from RNA
of other sources, maybe from about 14,000
transcriptome of breast milk microvesicles.
Microvesicles of breast milk seem to be the
appropriate structures for housing and delivering
genes. But, after entering the body of a neonate, how
can they penetrate mucus layers, move through the
bloodstream, and transfer their RNA into the cells of
the infant?

Transport of breast milk microvesicles in the neonate
Viruses provide information that can be used by micro-
vesicles to deliver their RNAs in the neonate [44].
Lactogenic transmission plays an important role in the
biology of viruses, for example about one third of
mother to child HIV infections are attributed to lacto-
genic infections [45]. Glycoproteins on the viral envelope
provide protection from proteolytic enzymes and low
pH in the stomach of the infant [41]. The great perme-
ability of the gut of newborn facilitates the entry of the
virus via ingestion of infected milk [46]. Viruses pass
from intestinal epithelial cells through transcytosis and
then, via the lymphatic system, into the systemic circula-
tion [47-50]. Transcytosis is the process by which
macromolecules internalized within caveolae are trans-
ported from the apical side of polarized cells to the basal
side [44,51,52]. Transcytosis of viruses occurs widely in
many polarized epithelial cell types after caveolar endo-
cytosis. This process is rapid and viruses transcytose
from apical to basolateral of the epithelial cells without
infection [53,54]. Thus, caveolar endocytosis overcomes
the epithelial and endothelial barriers by means of trans-
cytosis, thereby delivering the viruses from the intestine
to the tissues of the neonate. Extensive glycosylation of
the viral envelope proteins renders them nearly invisible
to immunoreactive cells and neutralizing antibodies in
the circulation [41].
Like viruses, microvesicles are also resistant to degrad-

ation in the stomach of milk-fed infants and maintain
their structure and function even at low pH and in the
presence of the proteolytic enzyme pepsin [22,55,56]. In-
testinal epithelial cells have been shown to secrete
microvesicles from their basolateral side [57] and serum
contains microvesicles originated from the gut epithe-
lium [58,59]. With their molecular machinery for caveo-
lar endocytosis and transcytosis, breast milk
microvesicles could also be released at the basolateral
surface of enterocytes passing into the systemic circula-
tion of the infant. The presence of clusterin, CD55 and
CD59 makes microvesicles resistant to complement lysis,
and like viruses, microvesicles seem to be sufficiently
stable to survive in the extracellular environment [60].

Mechanisms of the microvesicle endocytosis by target
cells
Viruses are valuable models of cellular entry and intra-
cellular trafficking pathways. Membrane-bound com-
partments newly formed from the host cell surface
normally enter the endosomal/lysosomal network, which
is an inhospitable environment [61]. Therefore, after cel-
lular uptake, microvesicles must harbor a mechanism
that mimics that used by viral particles to escape from
the endocytic/lysosomal pathway and proceed to the nu-
cleus [62]. Caveolar internalization route mediates traf-
ficking of viruses, such as Simian virus 40 (SV40), to the
endoplasmic reticulum (ER), thus avoiding degradation
in lysosomes [44]. Most of the viruses that enter cells
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via caveolar endocytosis are nonenveloped and are less
than 55 nm. Evidently, the actual size of a single caveo-
lae is very small (60–80 nm) to allow the accommoda-
tion of these viruses [44]. Caveolae pinch off from the
plasma membrane and deliver their contents either to
ER or to the nucleus [63]. Thus, microvesicles contain-
ing the molecular machinery for caveolar endocytosis
and with a diameter of 50 nm must be internalized via
caveolar endocytosis [64]. As a result, this pathway pro-
vides a direct route to deliver the microvesicular RNA
from the plasma membrane to the ER or nucleus. Sev-
eral other non-enveloped viruses also use caveolar endo-
cytosis, including the ECHO 1 virus and coxsackie B;
but in contrast to SV40, the endoplasmic reticulum is
not involved in further steps of their intracellular trans-
port [65,66]. This indicates that traffic to the ER is an ac-
tive process mediated by the viruses. Therefore,
microvesicles must contain a molecular machinery for
vesicle trafficking and fusion and also must be capable
to translocate these molecules to the outer surface of the
vacuolar membrane as demonstrated in Legionella pneu-
mophila (see Ref [1] for details of SV40 and Legionella
pneumophila). Legionella pneumophila can manipulate
host cell vesicular trafficking pathways and establish a
vacuole, delivered directly from caveolae to the endo-
plasmic reticulum thus making it a model for milk
microvesicles. Cells that do not develop caveolar invagi-
nations have caveolar-equivalent plasma membrane
domains, so-called "lipid rafts." Lipid-raft-dependent but
caveolae-independent internalization pathways [67,68]
also support the entry of some viruses including picor-
naviruses, papillomaviruses, filoviruses and retroviruses.

Breast milk microvesicles as gene delivery vehicles
We suggest here that transfer of maternal mRNA to the
suckling neonate through the milk microvesicles and its
subsequent reverse transcription and integration into the
neonate genome may form the basis of the presence of
retrotransposons in the neonate. Moreover, the enhanced
acceptance of maternal allografts in children who were
breast-fed [69-71] and tolerance to the maternal MHC
antigens after breastfeeding [72] may stem from RNAs of
the breast milk microvesicles that can be taken up by the
breastfed infant and receiving maternal genomic infor-
mation. The above considerations may also form the
basis of neonatal gene therapy via breast milk.

Advantages of gene therapy in infancy
Gene therapy has become an invaluable tool to explore
potential therapeutic applications to various acquired or
inherited diseases (see Ref [1] for details of current gene
delivery systems). However, immune responses to the
therapeutic protein pose a significant hurdle for success-
ful gene therapy. Problematic immune responses can
include the development of a cytotoxic T lymphocyte
response that results in the destruction of genetically-
modified cells and/or the formation of antibodies
directed against the therapeutic protein [73]. One ap-
proach to avoid an immune response is to perform
gene therapy in newborns, which takes advantage of
the fact that the immune system is relatively immature
at birth. Mature T cells are not present during early
infancy and the antibody repertoire is not fully estab-
lished for many months. IgG antibodies to protein
antigens are formed in early infancy, but IgG anti-
bodies to polysaccharides do not appear until 2–
2.5 years of age [74]. Newborns also have low serum
complement levels [75]. When an antigen is introduced
into immunologically immature newborns, they may,
upon reaching maturity, become unresponsive to
immunization with that antigen (neonatal tolerance).
This immunological tolerance is characterized by the ab-
sence of both antibody and cell-mediated responses, and
it is specific for the original antigen [74]. High antigen
levels are more efficient at inducing tolerance. Reactive
lymphocyte clones may be inactivated or deleted by ex-
posure to these macromolecules during the early stages
of maturation. Gene therapy that is initiated before the
maturation of the immune system may thus limit the ad-
verse immune response and thereby lengthen the dur-
ation of transgene expression. Application of gene
therapy to treat genetic diseases has additional advan-
tages when performed in newborns. Because of the min-
imal adverse effect of the underlying disease on cells of
the newborn, the relatively small size of infants which
makes the logistics of performing gene therapy simpler,
and the large amount of future growth, gene therapy may
be more successful in newborns than in older children or
adults [76]. Many metabolic disorders could be treated
by gene therapy during the neonatal period if prenatal
diagnoses are made and the appropriate regulatory
requirements have been met.

Gene therapy through wet-nursing
In spite of continuous technological progress in gene ther-
apy, most clinical results have been disappointing even in
the applications performed during neonatal period. The
reasons for this are many and include difficulty targeting
the appropriate organ and low level expression of the
therapeutic gene product [77]. We thought that many of
these difficulties may be avoidable by applying the gene
therapy in neonates through wet-nursing. Before the in-
vention of bottles and commercial formula, wet-nursing
“breastfeeding another’s baby” was the safest and most
common alternative to the natural mother’s breast-milk
[78]. Although this method is becoming less fashionable,
there are still families who use this feeding method [78].
Despite the possibility of biological mother to have the
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similar genetic disorder as in neonate, in a gene therapy
application through wet-nursing, we expect that a healthy
wet-nurse would not carry the mutant gene. Therefore,
gene therapy through wet-nursing gives permanent gene
transfer and it would give a first option to parents follow-
ing prenatal diagnosis of inherited disease, where the
current choices are termination of pregnancy or accept-
ance of an affected child. A gene therapy through wet-
nursing would be extremely safe, reliable and effective at
treating the genetic disease. In practice, an effective and
comprehensive prenatal screening policy for the more
common genetic disorders would need to be implemented
and parents at risk of having an affected child would be
seen early in the antenatal period for counseling and ther-
apy as appropriate. The application of this method in
humans will critically depend on our ability to demon-
strate its safety and efficiency in preventing or treating
genetic diseases. Improved knowledge of the candidate
diseases to be treated is also vital. To improve this simple
process of milk donation, parents, as well as the commu-
nity, need education. In this method, milk donation
should start after taking a detailed medical history of the
donor mother with special attention to infectious diseases
and having the donor undergo screening tests for HIV,
Hepatitis B and C, HTLV-I, CMV, and syphilis. One of the
practical problems that must be addressed is the length of
time taken for the screening tests. Therefore, attempts to
find a donor mother should start as soon as possible, after
a genetic disorder is diagnosed in prenatal period [79]. It
remains to be seen whether this method will provide bet-
ter treatments for genetic diseases than those that cur-
rently exist [80].
Following considerations should also be kept in mind

when planning neonatal gene therapy through wet-
nursing in future studies:

a. Pasteurization does not eliminate the presence of
nucleic acids from human milk, but it affects the
quality of the nucleic acids present. Pasteurized
human milk samples from milk banks are therefore
less useful in milk-based gene therapy studies [81].

b. Gene therapy raises the possibility of introducing
genetic modifications into the recipient’s germ cells,
which could then be passed on to future
generations. Studies suggest a low risk of germ line
transmission [82].

c. By wet-nursing, a kind of relativity is established
between the breastfed infant and the offspring of the
wet-nurse.

A scenario for the natural gene therapy through
wet-nursing
Mucopolysaccharidosis (MPS) type VII, caused by defi-
cient activity of beta-glucuronidase, is a lysosomal
storage disease and has multisystemic manifestations in-
cluding organomegaly, and skeletal, neural, cardiovascu-
lar, and ocular abnormalities [83]. Neonates are
essentially normal at birth because of the maternal
enzymes that eliminate the substrate accumulation in the
fetus during prenatal life. Neonatal gene therapy by wet-
nursing in neonates with MPS VII begins at days 1–2 of
life. Breast milk microvesicles containing wild type RNA
tolerate the gastric environment of the infant, the pH of
which is about 5 and decreases with time to reach adult
levels (pH 1–3) at 2 years of age [22]. After trancytosis
from the intestinal epithelial cells by caveolar endocyto-
sis, microvesicles are not transported to any extent in the
portal venous blood. Instead, they are collected by the
lymphatic vessels of the abdominal region and pass to
the systemic blood via the thoracic duct as in chylomi-
crons [84]. Immature nature of the immune system of
the neonate coupled with the extensive glycosylation of
the microvesicular membrane proteins renders them
nearly invisible to immunoreactive cells and neutralizing
antibodies in the circulation whereas the presence of
clusterin, CD55 and CD59 protects microvesicles against
complement lysis. Caveolar endocytosis also overcomes
the endothelial barriers by means of transcytosis without
any change, thereby delivering the microvesicles includ-
ing RNAs of wet-nurse to the neonatal cells. After bind-
ing to the plasma membrane via MHC class I antigens,
microvesicles enter the host cells through the caveolar
endocytosis. For the cells that do not have caveolar inva-
ginations, microvesicles use the lipid-raft-dependent
internalization pathways. After penetration into the cell,
microvesicles move along microtubules toward the ER.
The traffic to the ER is an active process, and microvesi-
cles containing molecular machinery for vesicle docking
and fusion (Arf1, Rab1 and SNARE proteins) are able to
translocate these molecules to the outer surface of the
vacuolar membrane by a syringe-like mechanism. Arf1
and Rab1 proteins help the microvesicles to pass from
caveola to the endoplasmic reticulum; whereas SNARE
proteins take role for the fusion of the vacuoles with ER.
In ER, decoating of the microvesicular membrane occurs
with the help of molecular chaperones such as Hsp 70
and cyclophilin A and the released RNA is translocated
into the nucleus directly together with reverse transcript-
ase. In the nucleus, the linear copy of the RNA is inserted
into chromosomal DNA with the aid of cellular endo-
nuclease and transcribed into a double-stranded DNA by
the microvesicular reverse transcriptase (Figure 2). After
integration with the neonate genome, new DNA achieves
the status of a cellular gene and replicated by cellular
enzymes in concert with chromosomal DNA as in nonre-
troviral retrotransposons. In this way, about 14,000 tran-
scripts representing the microvesicular transcriptome
from the wet-nurse can be expressed in the neonate



Figure 2 Fate of breast milk microvesicles after endocytosis by
target cells. After caveolar endocytosis, microvesicles translocate
Arf1, Rab1 and SNARE proteins to the outer surface of the vacuolar
membrane by a syringe-like mechanism. These proteins help the
microvesicles to pass from caveola to the endoplasmic reticulum
and fusion of the vacuoles with ER. In ER, decoating of the
microvesicular membrane occurs with the help of Hsp 70 and
cyclophilin A and the released RNA is translocated into the nucleus
directly together with reverse transcriptase (RT). In the nucleus, the
linear copy of the microvesicular RNA is inserted into chromosomal
DNA with the aid of cellular endonuclease and transcribed into a
double-stranded DNA by the microvesicular RT. New DNA achieves
the status of a cellular gene and replicated by cellular enzymes in
concert with chromosomal DNA as in nonretroviral retrotransposons.
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treating almost all kinds of genetic diseases. Because of
the wide networks associated with the microvesicular
gene list including cellular function, cell signaling, nu-
cleic acid metabolism; cell cycle, DNA replication, re-
combination, and repair; protein synthesis, gene
expression, and RNA trafficking, this method is capable
to treat a wide range of genetic disease. In conclusion,
with the neonatal gene therapy through wet-nursing, the
transfer of wild type mRNA to the suckling neonate
through the milk microvesicles and its subsequent re-
verse transcription and integration into neonate genome
result in the permanent correction or amelioration of the
clinical manifestations of the genetic disease. Enhanced
rate of cell division at the time of neonatal period easily
allows the integration of new genes and result in the
amplification of the genetically modified cells. After ther-
apy, infants have normal serum beta-glucuronidase en-
zyme activity and clinical signs of disease, such as cardiac
abnormalities are absent or minimal. The neonates re-
main ambulatory, versus untreated affected infants, who
are unable to stand or walk by the age of 2 years.
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