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Spinal Muscular Atrophy Associated
with Progressive Myoclonic Epilepsy
Is Caused by Mutations in ASAH1

Jie Zhou,1 Marcel Tawk,1 Francesco Danilo Tiziano,2 Julien Veillet,1 Monica Bayes,3 Flora Nolent,1

Virginie Garcia,4 Serenella Servidei,5 Enrico Bertini,6 Francesc Castro-Giner,3 Yavuz Renda,7

Stéphane Carpentier,4 Nathalie Andrieu-Abadie,4 Ivo Gut,3 Thierry Levade,4,8 Haluk Topaloglu,7

and Judith Melki1,*

Spinal muscular atrophy (SMA) is a clinically and genetically heterogeneous disease characterized by the degeneration of lower motor

neurons. The most frequent form is linked to mutations in SMN1. Childhood SMA associated with progressive myoclonic epilepsy

(SMA-PME) has been reported as a rare autosomal-recessive condition unlinked to mutations in SMN1. Through linkage analysis, homo-

zygosity mapping, and exome sequencing in three unrelated SMA-PME-affected families, we identified a homozygous missense

mutation (c.125C>T [p.Thr42Met]) in exon 2 of ASAH1 in the affected children of two families and the same mutation associated

with a deletion of the whole gene in the third family. Expression studies of the c.125C>T mutant cDNA in Farber fibroblasts showed

that acid-ceramidase activity was only 32% of that generated by normal cDNA. This reduced activity was able to normalize the ceramide

level in Farber cells, raising the question of the pathogenic mechanism underlying the CNS involvement in deficient cells. Morpholino

knockdown of the ASAH1 ortholog in zebrafish led to a marked loss of motor-neuron axonal branching, a loss that is associated with

increased apoptosis in the spinal cord. Our results reveal a wide phenotypic spectrum associated with ASAH1 mutations. An acid-

ceramidase activity below 10% results in Farber disease, an early-onset disease starting with subcutaneous lipogranulomata, joint

pain, and hoarseness of the voice, whereas a higher residual activity might be responsible for SMA-PME, a later-onset phenotype

restricted to the CNS and starting with lower-motor-neuron disease.
Introduction

Childhood spinal muscular atrophy (SMA [MIM 253300,

MIM253550,MIM253400, andMIM271150]) is a clinically

and genetically heterogeneous group of inherited neuro-

muscular disorders characterized by the degeneration of

motor neurons of the spinal cord and leading to progressive

atrophyof skeletalmuscles andparalysis. Themost frequent

form is inherited as an autosomal-recessive trait result-

ing from mutations in survival of motor neuron 1 (SMN1

[MIM 600354]).1 The other forms of SMA are a genetically

heterogeneous group of rare disorders differing by their

mode of inheritance, the topography of the muscle deficit,

or their association with other neurological abnormalities.

Progressive myoclonic epilepsy (PME) represents a

heterogeneous group of epilepsies characterized by myoc-

lonic and generalized seizures with progressive neurolog-

ical deterioration. PME can occur as a pure form such as

Lafora disease (MIM 254780), Unverricht-Lundborg type

disease (MIM254800), andmyoclonic epilepsywith ragged

red fibers (MERRF [MIM 545000]) or can be associated

with neuronal ceroid lipofuscinosis (NCL [MIM 256730]),

biopterin deficiency, and lysosomal-storage disorders.
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A rare variant has been reported to associate lower-

motor-neuron disease with progressive myoclonic epilepsy

(SMA-PME) in childhood. This condition is inherited as an

autosomal-recessive trait. Jankovic and Rivera2 were the

first to report this association as a clinically separate entity.

Haliloglu et al.3 reported two additional families affected

by a syndrome characterized by severe and progressive my-

oclonic epilepsy and lower-motor-neuron disease proven

by electrophysiological and muscle-biopsy findings. The

facts that extensive metabolic investigations were normal

and that SMN1 mutations were ruled out indicate that

the association between PME and SMA represents a sepa-

rate clinical and genetic entity.

In this report, we combined exome sequencing and

whole-genome scanning with the use of SNP microarrays

to identify the genetic cause of SMA-PME in three unre-

lated families.

Subjects and Methods

Families
The first affected child, born from a first-degree consanguineous

Turkish family (family D, Figure 1) consisting of three affected
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ttolica del Sacro Cuore, Roma 00168, Italy; 6Unit of Molecular Medicine,

a 00165, Italy; 7Child Neurology Unit, Department of Pediatrics, Hacettepe
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Figure 1. Pedigrees and Linkage Anal-
ysis in SMA-PME-Affected Families
(A) Pedigrees of SMA-PME-affected fami-
lies. The numbers denote individuals
whose DNA samples were available for
genetic analysis. Linkage analysis and
homozygosity mapping were performed
in families D and ITA.
(B) Combined results of linkage analysis
of families D and ITA show a maximum
LOD score Zmax ¼ 2.7 at q ¼ 0.0. The
x axis represents genetic distance in cM,
and the y axis represents LOD scores.
siblings and one unaffected sibling, developed progressive walking

difficulties, frequent falls, and a tremor in her hands from the age

of 5 years. Early developmental milestones were normal, and she

was able to walk at the age of 14 months. Physical examination

revealed proximal weakness and muscular atrophy. A creatine

kinase (CK) test was normal. Electromyography (EMG) showed a

chronic denervation process. By the age of 7 years, she began to

have brief myoclonic seizures without losing consciousness. An

electroencephalograph (EEG) showed slow and sharp bilateral

waves of 3–4 cycles/s. Repeated EEGs showed subcortical-

myoclonic epileptiform abnormalities sensitive to hyperventila-

tion. When the patient was 11 years old, muscle biopsy showed

neurogenic atrophy but no changes suggestive of a mitochondrial

disorder. The disease was progressive and caused recurrent lung

infections. She died at the age of 13 years. The second and third

affected children (IV-1 and IV-2, Figure 1,) had very similar symp-

toms, including myoclonic epilepsy and muscle weakness result-

ing from a denervation process. The disease course was progres-

sive, and both died at 17 years of age.

In this family, lysosomal screening tests for hexosaminidase A,

examination of peripheral blood leukocytes for a possible NCL,

and mitochondrial-DNA mutational analysis for MERRF were

negative. Fundoscopic examination, electroretinography, and

skin biopsy were normal. SMN1 copy number was normal. Brain

magnetic resonance imaging (MRI) of the three affected siblings

was normal.

The second family (family ITA, Figure 1) consisted of two

affected sisters born to unrelated healthy Italian parents. They

had normal motor and intellectual milestones. At 4 (II-1, Figure 1)

and 5 years of age (II-2), they developed progressive muscle weak-

ness of the lower and then upper limbs. Around age 12, both had

generalized epileptic seizures, numerous brief episodes of loss of

consciousness, and myoclonic jerks. Both affected children lost

the ability to walk at 17 years of age. Both sisters showed mild

facial weakness and difficulty swallowing, fasciculations of the

tongue, muscle weakness, absent deep-tendon reflexes, severe

scoliosis, and subsequent respiratory insufficiency. EMG and

muscle biopsies showed a denervation process, and brain MRI

was normal.

In the third family (family ITB, Figure 1), the affected girl (II-1)

was born to unrelated healthy Italian parents. Early develop-
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mental milestones were normal. Progres-

sive muscle weakness started at the age

of 5 years. Around the age of 10 years,

the girl began having brief episodes of

loss of consciousness usually accompanied

by myoclonic jerks of the upper limbs.

When she was 11 years old, a neurological
examination showed diffuse muscle atrophy, mild facial weakness

and difficulty swallowing, and fasciculations of the tongue. The

affected child died from pneumonia at the age of 15 years. EMG

and muscle biopsy showed evidence of a denervation-reinnerva-

tion process. Brain MRI performed when she was 10 years

old showed no significant abnormalities. Between the ages of 10

and 14 years of age, her EEG recordings showed normal back-

ground activity and paroxysmal activity that consisted—in

frequent diffuse bursts—of sharp waves and poly-spike and wave

complexes that were present both in conscious wakefulness and

non-rapid-eye-movement sleep stages 1 and 2. Neither skin nor

joint abnormalities were reported in these affected individuals.

In accordance with the ethical standards of the institutional

review boards at CPP Île de France, DNA samples from affected

individuals and their parents were collected after written informed

consent was given.

Genome-wide Linkage Analysis
Whole-genome SNP scanning was carried out according to the

Affymetrix 250K GeneChip Mapping Assay manual. Multipoint

linkage analysis and homozygosity mapping of SNP data applied

to the whole genome were performed with Alohomora4 and

Merlin software5 with the following parameters: autosomal-reces-

sive inheritance, 100% penetrance, and a 1:1,000 disease gene

frequency in the population.

Genome-Wide Human SNP Nsp/Sty Assay Kit 6.0 was used for

copy-number examination of the ASAH1 (MIM 613468) locus

according to the Affymetrix SNP 6.0 array protocol. Copy-number

variation (CNV) detection was performed by Birdseed in Affyme-

trix Genotyping console 4. A dataset of 90 HapMap samples was

added for the determination of CNV.

Exome Sequencing
The Illumina TruSeq DNA Sample Prep kit v.1 and the NimbleGen

SeqCap EZ Exome v.1 were used for library preparation and exome

enrichment, respectively. In brief, genomic DNA (3–5 mg) was frag-

mented in a Covaris S2 instrument. Fragmented DNA was pro-

cessed through enzymatic treatments of end repair, dA tailing,

and ligation to Illumina’s adapters. A 200–300 bp fraction was

excised from an agarose gel, and the adaptor-ligated library was

PCR amplified with Illumina PE primers for eight cycles. Products



(500 ng) were hybridized to the capture oligomers for 70 hr at

47�C. Biotinylated hybrids were captured, and the enriched frac-

tion was eluted and amplified with 14 additional PCR cycles.

The pre- and post-capture libraries were compared by quantitative

PCR for the determination of the relative fold enrichment of the

targeted sequences. The library was applied to an Illumina flow

cell for cluster generation. Sequencing was performed on a

Genome Analyzer IIx instrument with 75 bp paired-end reads

according to Illumina’s protocol.

Reads were aligned to the human reference genome sequence

(UCSC hg19, National Center for Biotechnology Information

[NCBI] build 37.3) via the Burrows-Wheeler Aligner (BWA)

program.6 Variants were selected with Samtools7 and were then

annotated with Annovar software.8 Reads with a mapping quality

score of at least 20 and at least 53 coverage were filtered against

dbSNP v.131. Intron-exon junctions, nonannotated variants

(including synonymous, nonsynonymous, and nonsense muta-

tions) in coding regions, or short coding insertions or deletions

were selected. The ratio of mutants to total reads was at least

20%. An autosomal-recessive model was applied. Finally, variants

mapping to the candidate regions as determined by linkage anal-

ysis were selected.
Real-Time PCR Amplification of Genomic DNA
Real-time PCR amplification was conducted with the use of

genomic DNA on a 7300 Real-Time PCR system (Applied Biosys-

tems) with Power SYBR Green PCR Master Mix (Applied Biosys-

tems). Genomic deletion was defined when the ratio of tested

DNA to control DNA was equal to or less than 0.5. Real-time

PCR amplification of each sample was performed in duplicate

with primers within ASAH1 exons 1, 2, or 14 (Table S1, available

online). Albumin was used as an internal control (Table S1).
Reverse-Transcription-PCR Amplification
Total RNAs were extracted by the TRI Reagent LS method (Sigma).

One microgram of RNA was used for synthesizing cDNA with the

use of random primers according to the manufacturer’s manual

(SuperScript III Reverse Transcriptase, Invitrogen) in a final

volume of 20 ml. Reverse-transcription PCR (RT-PCR) amplification

was carried out with 1.5 mM MgCl2, 0.6 U DNA Polymerase (Invi-

trogen), 0.2 mM of each primer, and 1 ml cDNA. After an initial

denaturation cycle at 94�C for 5 min, 30 cycles were performed

and consisted of denaturation at 94�C for 30 s, annealing at

60�C for 1 min, and extension at 72�C for 1 min; these cycles

were followed by a final extension at 72�C for 7 min in an ABI

9700 Thermal Cycler (Applied Biosystems). RT-PCR products

were separated by agarose gel electrophoresis and labeled with

ethidium bromide.

For determining the effect of the mutation in exon 2 of ASAH1

on transcripts, PCR-amplification analysis of single-strand cDNA

was performed with a forward primer chosen in exon 1 and reverse

primers in exons 4, 5, or 6 (Table S1). As an internal control for

PCR amplification, b-actin cDNA was coamplified (Table S1).

Sanger sequencing was performed from the PCR products.
Sanger Sequencing
PCR primer pairs were designed from genomic DNA to amplify

exon 2 of ASAH1 (Table S1). PCR amplification was carried out

with 1.5 mM MgCl2, 0.6 U DNA polymerase, 0.25 mM of each

primer, and 100 ng DNA. After an initial denaturation cycle at

94�C for 5 min, 30 cycles were performed and consisted of dena-
T

turation at 95�C for 30 s, annealing at 60�C for 1 min, and exten-

sion at 72�C for 1 min; these cycles were followed by a final exten-

sion at 72�C for 7 min in an ABI 9700 Thermal Cycler. PCR

products were then purified on P100 columns (Bio-Gel P-2 Gel

fine, Biorad) and were sequenced with the forward or reverse

primers and the Big Dye Terminator v.3.1 Cycle Sequencing Kit

(Applied Biosystems). The sequencing reaction products were

purified on G50 columns (Sephadex G-50 Superfine, GE Health-

care) and then migrated on an automated fluorescent DNA

sequencer (ABI Prism 3100 Genetic analyzer, Applied Biosystems).

The obtained DNA sequences were compared with published

sequences (BLAST, NCBI).
Cloning of Mutant cDNA and Expression Studies

of Acid Ceramidase
Cell Lines and Transfections

The cDNA of ASAH1, corresponding to transcript variant 1

(RefSeq accession number NM_177924), was kindly provided by

Dr. J.A. Medin (University of Toronto, Canada) and subcloned

into pcDNA5/TO (Life Technologies).9 The c.125C>T mutation

was introduced into wild-type (WT) cDNA after the removal of

the BamHI-BsgI restriction fragment flanking the mutation and

the ligation of a BamHI-BsgI restriction fragment derived from

RT-PCR of the affected individual’s RNA with primers provided

in Table S1. The plasmid was transformed into DH5a-T1R E. coli

(Invitrogen). Sequencing of mutant cDNA confirmed the insertion

of the mutation and the lack of any other sequence changes. The

Farber fibroblast cell line is a SV40 large T-transformed cell line

derived from a Farber-disease-affected individual (MIM 228000)

with an acid-ceramidase-activity level that is less than 3.5% of

the control value.10,11 Cells were grown in a humidified 5% CO2

atmosphere at 37�C in DMEM medium containing 10% fetal calf

serum and Glutamax (Life Technologies). Fibroblasts were trans-

fected with the use of either Lipofectamine 2000 (Life Technolo-

gies) or Superfect (QIAGEN). The pCMV/LacZ vector was cotrans-

fected with WT or mutant ASAH1 cDNA for the evaluation of the

efficiency of transient expression through bacterial b-galactosidase

activity. Acid-ceramidase activity was normalized to the protein

level and bacterial b-galactosidase activity. Cotransfection of

both nonrecombinant pcDNA5/TO and pCMV/LacZ vectors was

used as a blank.

Enzymatic Assays

Acid-ceramidase activity was assayed with Rbm14-12; bacterial

b-galactosidase activities were determined with 4-methylumbelli-

feryl-b-D-galactopyranoside as a substrate (Sigma) as previously

reported.9,12,13

Quantitation of Ceramide

After extraction of lipids, ceramide levels were determined with

the use of E. coli diacylglycerol kinase and [g32P]-ATP as previously

described.14
Immunoblotting Experiments
Pellets of transfected cells were resuspended in 0.2 ml of ice-cold

lysis buffer (Cell Signaling Technology) and immunoblotted

with a rabbit polyclonal acid-ceramidase antibody (kindly pro-

vided by Drs. K. Sandhoff and H. Schulze, Bonn, Germany).

Immunoreactive proteins were detected with enhanced chemilu-

minescence (Pierce). The b-actin monoclonal antibody (Cell

Signaling Technology) was used as an internal control for loading.

The density of the bands was quantified with ImageJ (National

Institutes of Health).
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Knockdown of ASAH1 in Zebrafish with Antisense

Morpholino Oligonucleotides
Embryos were staged and cared for according to standard

protocols.15

Injections of Antisense Morpholino Oligonucleotides

Antisense morpholino oligonucleotides (MOs) were purchased

from Gene Tools. asah1b-MO (Table S1) was designed to target

the 50 UTR of asah1b mRNA (RefSeq NM_200577). The control

‘‘mismatch’’ morpholino (Table S1) had five nucleotides altered

along its sequence. Morpholinos were dissolved in water to a final

concentration of 0.6 mM; 1 nl of morpholino was injected into

1- to 4-cell-stage embryos as previously described.16

Immunohistochemistry

For immunostaining, embryos were fixed in 4% paraformaldehyde

and stained as whole mounts. The acetylated-tubulin antibody

(Sigma) was used at a 1:1,000 dilution. The znp-1 antibody (Devel-

opmental Studies Hybridoma Bank) was used at a dilution of 1:75.

Primary antibodies were detected with appropriate secondary

antibodies conjugated to Alexa 488 (Molecular Probes) at a 1:200

dilution.

Confocal Image Analysis

Image acquisition was performed with a Zeiss confocalmicroscope

and Zeiss LSM imaging software. Images were captured in z sec-

tions at 2 mm increments. Axonal-branch analysis was performed

offline with the ImageJ plugin NeuronJ and Adobe photoshop.

Analysis was restricted to fascicles ventral to the spinal cord

because labeling of spinal neuropil precluded the accurate exami-

nation of dorsal processes. Thus, axon branches of the rostral and

caudal primary motor neurons were included for analysis. Branch

patterns of five consecutive somites were analyzed per fish (three

are presented for each group).

Acridine-Orange Staining

Living zebrafish larvae were anesthetized with Tricaine (Sigma-

Aldrich), incubated in a solution of 3 mg/ml acridine orange

(Sigma-Aldrich) with Tricaine for 30 min, and then washed. For

imaging, fish were embedded in 1.2% low-melting agarose.

Statistics

Mean values and standard deviations (SDs) were calculated with

Microsoft Excel. Statistical analysis was performed with a Student’s

t test. p values < 0.05 were considered as significant.

Enzymatic assays and quantization of ceramide are described

above.
Results

Genome-wide SNP Genotyping and Exome

Sequencing Identify ASAH1 Mutations in SMA-PME

To identify the disease locus, we conducted genome-wide

SNP genotyping by using the 250K NspI microarrays in

the two multiplex families (families D and ITA, Figure 1).

Multipoint linkage analysis of SNP data was performed

for each family, and homozygosity mapping was per-

formed for the consanguineous family (family D). Com-

bining linkage data from the two multiplex families re-

vealed two overlapping loci in chromosomal regions

8p22 and 13q12; each locus had a maximum LOD score

of Zmax ¼ 2.7 at q ¼ 0.0 (Figure 1). The sizes of the disease

loci in chromosomal regions 8p22 and 13q12 were

8.38 Mb and 4.46 Mb, respectively. The recombinant

events were observed between rs1510424 and rs7845953
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(chr8: 14,450,366–22,828,463; human genome build

37.3) and between rs6490964 and rs2479781 (chr13:

25,196,912–29,653,083). According to Map viewer

(NCBI), these intervals contained 97 annotated genes.

We performed Sanger sequencing of exons and intron-

exon junctions of candidate genes chosen on the basis of

their position and function. No mutations in ATP6V1B2

(MIM 606939), EGR3 (MIM 602419), LGI3 (MIM

608302), MTIF3, or NUPL1 (MIM 607615) were found in

the affected individuals.

We then performed exome sequencing by using the

DNA sample of one affected individual per family (IV-1

in family D, II-2 in family ITA, and II-1 in family ITB;

Figure 1). The median coverage of the targeted exomes

was 623, 713, and 733 in the affected individuals from

families D, ITA, and ITB, respectively. Nonannotated

variants mapping to the two candidate regions as deter-

mined by linkage analysis were selected. As a result, only

24, 23, and 26 variants remained candidates in affected

individuals from families D, ITA, and ITB, respectively.

ASAH1, located on chromosome 8, was the only gene

carrying nonannotated variants shared by the three un-

related affected individuals. The same missense mutation

(c.125C>T [p.Thr42Met]; RefSeq NM_177924.3) in exon

2 of ASAH1 was found in the three affected individuals.

Sanger sequencing of DNA samples confirmed that the

mutation was homozygous (or hemizygous) in the three

affected persons (Figure 2). The p.Thr42Met missense

substitution occurred at an evolutionarily conserved

amino acid among different species (Figure S1). This muta-

tion was absent in 95 ethnically matched controls.

c.125C>T was found at a very low frequency (2 out of

10,756 alleles) in the current Exome Variant Server data-

base (ESP5400). The possible impact of the p.Thr42Met

substitution on the function of acid ceramidase was calcu-

lated with Polyphen-2 software.17 This substitution is

predicted to be damaging on the basis of its high score

(0.969). Segregation analysis of the mutation was per-

formed in the three families. In families D and ITA, both

parents were heterozygous and affected siblings were

homozygous for this missense mutation (Figure 2). In

family ITB, the mother was heterozygous, whereas the

father harbored only a WT allele, suggesting either an

inherited or de novo deletion occurring at this locus

(Figure 2). We performed real-time PCR on DNA from

the affected individual in family ITB by using primers

located in exons 1, 2, and 14 of ASAH1. A heterozygous

deletion was observed in both the affected child and her

father, indicating that the affected child was compound

heterozygous for the c.125C>T mutation inherited from

the mother and for a whole-gene deletion inherited

from her father (data not shown). To refine the size of

the deletion found in the affected individual of family

ITB, we performed pangenomic analysis of her DNA by

using the Genome-Wide Human SNP Array 6.0 that had

an intermarker distance of less than 1 kb. A 55 kb

heterozygous deletion was found on chromosome 8



Figure 2. ASAH1 Mutations Identified in SMA-
PME-Affected Families
(A) Sanger sequencing of ASAH1 exon 2 (genomic
DNA) shows (1) a homozygous (or hemizygous)
c.125C>T mutation in affected individuals of
the three families (arrow); (2) a heterozygous
c.125C>T mutation in both parents of families
D and ITA and the mother of family ITB; and
(3) a WT allele only in the father of family ITB.
Reverse strands are shown.
(B) Copy-number and SNP analysis of the
affected child in family ITB shows a heterozygous
deletion of the whole gene. Dots indicate copy
number and SNP copy number (1 or 2). Vertical
bars indicate copy number (dark green) or SNPs
(light green). The horizontal red rectangular box
indicates the physical position of the heterozy-
gous deletion.
from position 17,909,063 to 17,964,559 (Hg 19) and

included 24 copy-number and 51 SNP probes (Figure 2).

This deletion involves ASAH1 only. Among the 51 SNPs

mapping to the deleted region, 18 of them had a minor

allele frequency (MAF) >5% and revealed an identical

haplotype covering 31 kb in the affected individuals

of the three families. These data suggest that the

c.125C>T mutation occurred on a common ancestral

allele.

Because the c.125C>T mutation involves the last nucle-

otide of ASAH1 exon 2, binding sites for specific serine-and

arginine-rich proteins might be modified. In silico analysis

was performed with the ESEfinder program.18 The muta-

tion results in a higher score for the SC35 binding site.

To determine whether abnormal splicing might occur

in vivo and whether the mutation might result in aber-

rantly spliced products, we performed RT-PCR analysis of

ASAH1 from RNA extracted from blood leukocytes of the

affected individual from family ITB. RT-PCR products

from exon 1 to 4, 5, or 6 did not show any size difference

between the affected individual and controls (Figure S1).

Sequence analysis revealed that, compared to those of

the controls, the RT-PCR products of the affected indi-

vidual did not show any splice changes, indicating that

this mutation does not affect the splicing process of

ASAH1 exon 2 in the cell type analyzed no matter which

transcript variant it contains (isoform 1 or 2, Figure S1

and data not shown). To determine the pattern of expres-

sion of ASAH1 transcripts, we performed RT-PCR analysis

in various tissues, including lymphoblastoid cell lines

and spinal cord, skeletal-muscle, and liver tissue. The
The American Jour
ASAH1 transcript was expressed in all

tissues examined (Figure S1).

The p.Thr42Met Missense Substitution

Results in Acid-Ceramidase Deficiency

Because cell cultures from SMA-PME-

affected individuals were not available,

WT and c.125C>T mutant ASAH1 cDNAs

were cloned into the pcDNA5/TO expres-
sion vector for functional studies. In order to assess the

functional effect of the observed ASAH1 missense muta-

tion, we transfected recombinant vectors into immortal-

ized fibroblasts derived from a Farber-disease-affected indi-

vidual with a very severe acid-ceramidase activity (less

than 3.5% of the control value).10 WT or mutant ASAH1

cDNA was cotransfected with the pCMV/LacZ vector.

Acid-ceramidase activity was then normalized to the

protein level and bacterial b-galactosidase activity. As

shown in Table 1, transient expression of the mutant

cDNA revealed that its acid-ceramidase activity was lower

than that of the WT cDNA (i.e., it was about 32% of the

control value). Similar results were observed with Super-

fect or Lipofectamine 2000 for transfection experiments

(data not shown).

To directly assess the enzyme activity toward its

natural substrate, i.e., ceramide, in living cells, we then

examined whether the expression of the mutated cDNA

in fibroblasts from a Farber-disease-affected individual

could result in clearance of the accumulated substrate.

Transient expression of either theWTor mutated sequence

led to a marked (and similar) reduction of the ceramide

storage (Table 1).

We performed immunoblotting experiments to charac-

terize the WT and mutant proteins in human cells. Farber

fibroblasts were transiently transfected with WT or

c.125C>T mutant ASAH1 cDNAs, and acid ceramidase

was analyzed by immunoblot analysis (Figure 3). The

substitution affects neither the level of the precursor

form nor its processing. However, the a-subunit amount

was mildly lower than the b-subunit amount.
nal of Human Genetics 91, 5–14, July 13, 2012 9



Table 1. Acid-Ceramidase Activity and Ceramide Content in Farber Fibroblasts Expressing the p.Thr42Met Substitution

Transfected with:
Acid-Ceramidase
Activity (pmol/h/mg)

Acid Ceramidase/
b-Galactosidase 3 100

Ceramide Content
(pmol/mg)

Nothing 278 18,543

Transfection agent only 961 0.8 17,141

Empty pcDNA5/TO 528 5.2 19,206

pcDNA5/TO-ASAH1 14,194 90.9 5,401

pcDNA5/TO-ASAH1-C2 16,333 137 3,372

pcDNA5/TO-ASAH1-C3 18,694 176 4,460

pcDNA5/TO-ASAH1-P4 5,194 37.7 5,250

pcDNA5/TO-ASAH1-P6 5,417 53.8 4,413

Farber cells were cotransfected in the presence of lipofectamine with a vector encoding LacZ and pcDNA5/TO vectors carrying ASAH1 cDNA or not, and they were
cultured for 48 hr. The pcDNA5/TO-ASAH1, pcDNA5/TO-ASAH1-C2, and pcDNA5/TO-ASAH1-C3 plasmids carry the WT sequence, whereas the pcDNA5/
TO-ASAH1-P4 and pcDNA5/TO-ASAH1-P6 plasmids carry the mutant (c.125C>T) sequence. Acid-ceramidase and bacterial b-galactosidase activities and total
ceramide content were determined on cell lysates as described in the Material and Methods. Acid-ceramidase activity is expressed as pmol/h/mg of protein,
and ceramide level is expressed as pmol/mg of protein. Each determination was performed in duplicate. Note that the acid-ceramidase activity and ceramide
content in normal fibroblasts average 7,000–9,000 pmol/h/mg and 1,000–2,500 pmol/mg, respectively.
Knockdown of ASAH1 in Zebrafish Embryos Leads

to Defective Motor Neurons

To analyze ASAH1 function in vivo, we used zebrafish as

a model and designed for the ASAH1 ortholog, asah1b, a

translation-blocking antisense MO (asah1b-MO) that tar-

gets regions in the 50 UTR of the mRNA.16 Asah1b has the

highest degree of homology (60%) with the ASAH1 prepro-

tein (RefSeq NP_808592), particularly at the N-terminus,

the region specific to the preprotein (variant 1). Embryos

injected with 0.6 pmole of a 5 base mismatch control MO

(referred to as ‘‘control 5 mis MO’’ below) were indistin-

guishable from uninjected, WT embryos (n ¼ 42; Figures

4A and 4B). However, by 48 hr postfertilization (hpf),

embryos injected with asah1b-MO (0.6 pmole) exhibited

defects, including a curved body (n ¼ 50; Figure 4C). To

assess whether the general integrity of the embryos was

affected, we analyzed cell death in living fish by incubation

in acridine orange,19 a dye that stains nucleic acids in dying

cells. Comparison of morphants with both controls at

48 hpf demonstrated a significant increase in apoptosis

in the spinal cord of morphants (n ¼ 8 embryos for each

group; WT versus control 5 mis MO: t ¼ 1.70 and

p ¼ 0.12; asah1b-MO versus WT: t ¼ 11.7 and p < 0.0001;

asah1b-MO versus control 5 mis MO: t ¼ 9.87 and

p < 0.0001) (Figures 4D–4G), whereas no increase in cell

death was detected elsewhere. These data suggest that

neurons indeed degenerate in the spinal cord of asah1b

morphants, whereas the general integrity of these embryos

remains intact.

We next wished to determine whether asah1b could be

involved in motor-axon development. To this end, we

abrogated asah1b expression throughout early develop-

ment with antisense MOs. We looked specifically at the

primary motor neurons, which are few in number (typi-

cally three per somite), that undergo axonogenesis at 17

hpf and innervate the majority of muscle fibers in a given

territory. To assess the developmental impact of asah1b
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reduction on axons of primary motor neurons, we used

znp1 antibodies, panspecific markers of primary motor

axons.20 Although motor-axon branches of control-5-

mis-MO-injected fish were similar to those of WT fish at

48 hpf (Figures 4H–4L), striking changes occurred in the

asah1b morphants. Here, although motor axons appeared

to be shorter in the morphants, the difference was not

significant; however, there was a striking difference in

the number of collateral branches in the asah1b mor-

phants (n ¼ 25 fascicles in six different embryos for each

group; WT [18 5 1.59 branches per fascicle (bpf)] versus

control 5 mis Mo [17.8 5 1.5 bpf and p ¼ 0.821]; WT

versus asah1b-MO [6.065 2.2 bpf and p< 0.0001]; control

5 mis MO versus asah1b-MO [p < 0.0001]) (Figures 4K, 4L,

4M, and 4Q). To investigate whether the defect observed

here was specific to motor-neuron axonal branching or

was common to axonal projections in general, we used

the acetylated-tubulin antibody, a microtubule marker

that labels axonal projections. At 48 hpf, the posterior

lateral line nerve (PLLn) had already reached the tip end

of the tail in both controls and asah1b morphants (Figures

4N–4P). Thus, asah1b is required specifically for motor-

neuron axonal branching (and probably for other spinal-

cord neurons) but does not affect peripheral projections,

at least as indicated by the PLLn. This also shows that there

was no general delay in the development of themorphants

compared with controls.

To confirm whether the morphant phenotype resulted

from either knockout or knockdown of Asah1b, we deter-

mined the acid-ceramidase activity and ceramide content

of zebrafish embryos (Table 2). Comparison of morphants

with control zebrafish embryos revealed a significant

decrease but not abrogation of acid-ceramidase activity

in morphants (mean of 26%) without affecting ceramide

content, indicating that antisense MOs resulted in knock-

down of Asah1b in zebrafish. These data are consis-

tent with those found in transfected human cells and



Figure 3. Immunoblot Analysis of ASAH1
(A) Farber fibroblasts were either not tranfected (‘‘NT’’) or cotrans-
fected with LacZ and pcDNA5/TO expression vectors carrying the
ASAH1 cDNA or not (‘‘Empty’’). The pcDNA5/TO-ASAH1
(‘‘ASAH1’’), pcDNA5/TO-ASAH1-C2 (‘‘C2’’), and pcDNA5/TO-
ASAH1-C3 (‘‘C3’’) plasmids carry the WT sequence, whereas the
pcDNA5/TO-ASAH1-P4 (‘‘P4’’) and pcDNA5/TO-ASAH1-P6 (‘‘P6’’)
plasmids carry the mutant (c.125C>T) sequence. Forty-eight
hours later, cell extracts were analyzed by immunoblotting with
acid-ceramidase and b-actin antibodies.
(B) The density of the bands corresponding to the precursor form
(55 kDa), the b-subunit (40 kDa), and the a-subunit (13 kDa) of
acid ceramidase was normalized to that of b-actin and compared
to those of the WT protein (‘‘ASAH1’’). Note the reduced amount
of the a-subunit in cells transfected with mutant cDNA.
(C) The acid-ceramidase and bacterial b-galactosidase enzyme
activities were determined on the same cell lysates as described
in Table 1.
demonstrate that asah1b plays an essential role in motor-

neuron axonal branching and in the survival of spinal-

cord neurons.
Discussion

Genome-wide linkage analysis combined with exome

sequencing in three families affected by childhood SMA-

PME allowed us to identify ASAH1 mutations as respon-

sible for this disease entity.

The main clinical feature of this condition is the onset of

motor deficits at the age of 3 years after normal develop-

mental milestones. Progressive muscle paralysis is caused

by the involvement of lower motor neurons and is deter-

mined by EMG and/or muscle biopsy. Myoclonic epilepsy

is then observed and is generally resistant to conventional

therapy. The disease course is progressive and leads to

respiratory muscle involvement and severe handicap or

death occurring before 20 years of age. Neither skin nor

joint abnormalities were noticed, and brain MRI was

normal. In families D and ITA, affected children are homo-
Th
zygous for the c.125C>Tmissensemutation. In family ITB,

the affected child carries the c.125C>T missense mutation

and a deletion of the whole gene. The deleterious effect of

the p.Thr42Met missense substitution on acid-ceramidase

activity and the marked defect of motor-neuron axonal

branching associated with a significant increase in

apoptosis in the spinal cord of asah1b morphants further

support the finding that ASAH1mutations are responsible

for SMA-PME.

Mutations of the same gene are responsible for Farber

disease, a very rare autosomal-recessive condition resulting

frommarked reduction or complete lack of lysosomal acid-

ceramidase activity.21 Farber disease manifests most

commonly between 2 weeks and 4 months of age and

has a unique triad of clinical manifestations: (1) painful

and progressively deformed joints, (2) subcutaneous

nodules, particularly near the joints and over pressure

points (lipogranulomata), and (3) progressive hoarseness

due to laryngeal involvement. The liver, spleen, lungs,

and heart are often involved, and the nervous system

can show accumulation of ceramides and gangliosides in

the neurons of the brain and spinal cord. The illness is

progressive and often leads to death at a mean age of

1.45 years in the classical form. A minority of affected

infants survive beyond 5 years of age. Diagnosis is

confirmed by an acid-ceramidase assay or by morphologic

and/or biochemical studies of biopsy or autopsy tissues.

None of the individuals with SMA-PME reported here

have the main clinical manifestations of Farber disease.

In addition, the first symptoms of SMA-PME appear later

(>3 years of age) and are restricted to the CNS, and death

occurs after 12 years. This might explain why Farber

disease and SMA-PME have not been suspected to be allelic

conditions so far.

Data on almost 80 Farber-disease-affected individuals in

a variety of ethnic groups have been reported.21 In vitro

residual activity of acid ceramidase is less than 10% in

Farber disease. The ceramide that accumulates in Farber

disease is primarily located in the lysosomes. Turnover

studies have shown that it results from the impaired

capacity of acid ceramidase to hydrolyze the ceramide

generated during the degradation of complex sphingoli-

pids. However, Samuelsson and Zetterstrom22 reported

on mildly affected individuals in whom liver, lung, or

brain ceramide levels were normal. Therefore, the role of

ceramide accumulation in the disease pathogenesis

remains unclear. In SMA-PME-affected individuals, we

found that the c.125C>T mutation causes residual acid-ce-

ramidase activity to be about one-third of that of normal

cells. Immunoblotting experiments showed that the

a-subunit amount was mildly lower than the b-subunit

amount, suggesting that the c.125C>T mutation that

occurs within the a-subunit might affect its stability and

result in reduced acid-ceramidase activity. Neither the

c.125C>T mutation nor the whole-gene deletion has

been reported in Farber disease. A homozygous missense

substitution (p.Tyr36Cys) has already been reported in
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Figure 4. Morpholino Knockdown of asah1b in Zebrafish
(A–C)Morphology of living embryos at 52 hpf.WTembryos, control-5-mis-MO-injected embryos, and embryos injected with 0.6 pmole
of asah1b-MO (asah1b morphants) are shown. Note the curved body shape that asah1b morphants show in comparison to the body
shape of both controls. Views are lateral, and the dorsal sides are at the top. The scale bar represents 200 mm.
(D–F) Side views of 48 hpf living zebrafish embryos stained with acridine orange (D); some single acridine-orange-positive neurons are
depicted by asterisks in WT embryos, control-5-mis-MO-injected embryos (E), or asah1b morphants (F). Asah1b morphants show
substantial cell death in the spinal cord (dashed lines), whereas both controls show only a low, basal number of apoptotic cells. The scale
bar represents 100 mm. The following abbreviation is used: sc, spinal cord.
(G) Bar chart depicting the mean number (5 SD) of acridine-orange-positive cells per surface unit for WT (2.66 5 0.74), control 5 mis
MO (3.83 5 1.34), and asah1b morphants (16.3 5 2.5) at 48 hpf. Data represent mean 5 SD. ***p < 0.0001.
(H–M) The asah1bmorpholino decreases motor-axon collateral formation. Lateral views of znp1-antibody staining of controls (H and I)
and asah1b morphants (J) are shown at 48 hpf. znp1 labels motor axons (H, arrowheads). Tracings of motor-axon tracts ventral to the
spinal cord (K–M) are derived from panels directly above. Scale bars represent 50 mm. The following abbreviations are used: D, dorsal; V,
ventral; A, anterior; and P, posterior.
(N–P) Lateral views of acetylated-tubulin-expressing axons of the PLLn (arrow) in WT, control-5-mis-MO-injected embryos, and asah1b
morphants at 48 hpf. Axonal growth is similar in all groups; the PLLn reaches the tip end of the tail (arrows, n ¼ 10 per group).
(Q) Bar chart depicting the mean number (5 SD) of axon branches per fascicle for WT (185 1.59), control-5-mis-MO-injected embryos
(17.85 1.5), and asah1bmorphants (65 2.2) at 48 hpf. Comparedwith both controls, Asah1bmorphants show a significant decrease in
axonal branching. ***p < 0.0001.
a classical form of Farber disease leading to less than 5% of

normal acid-ceramidase activity.21 Although the position

of p.Tyr36Cys is close to the p.Thr42Met substitution

found in SMA-PME-affected individuals, the marked differ-

ence in the level of acid-ceramidase activity in Farber

disease and SMA-PME might account for distinct and

later-onset clinical SMA-PME phenotypes.

Importantly, in addition to the unique triad of clinical

manifestations of Farber disease, lower-motor-neuron
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involvement characterized by hypotonia and muscular

atrophy with diminished or lack of deep-tendon reflexes

was observed in 11 out 80 individuals with the classical

form of Farber disease at late stages of disease progression

(type 1).21 EMG showed signs of denervation. Salaam-

type seizures or infantile spasms were reported in two

affected individuals. The nervous system was abnormal

in all autopsied affected persons; an accumulation of

storage material was found in the neuronal cytoplasm,



Table 2. Acid-Ceramidase Activity and Ceramide Content in
Control and Farber Fibroblasts and in WT and Morphant Zebrafish
Embryos

Acid-Ceramidase
Activity
(pmol/h/mg)

Acid-
Ceramidase
Activity (%)

Ceramide
Content
(pmol/mg)

Experiment 1

Control fibroblasts 8,556 958

Farber fibroblasts 267 3.1% 8,004

Experiment 2

WT zebrafish-1 5,172 1,123

MO zebrafish-1 1,324 25.6% 637

MO zebrafish-2 561 10.8% 786

Experiment 3

WT zebrafish-2 7,319 885

MO zebrafish-3 3,064 41.9% 786

Each determination was performed in duplicate. The residual acid-ceramidase
activity (%) is shown as the ratio of mutant to WT activity within each set of
experiments. The following abbreviations are used: WT, wild-type; and MO,
morphant.
particularly in the anterior horn cells of the spinal cord but

also in the brain-stem nuclei, basal ganglia, cerebellum,

retinal ganglion cells, and cortical neurons. These data

indicate that the CNS is progressively involved in Farber

disease. Consistent with these data, the fact that spinal

motor neurons show axonal-branching defects indicates

a marked and early-onset vulnerability of motor neurons

in response to ASAH1 knockdown in zebrafish embryos.

Our findings strongly suggest that although a dramatic

reduction of acid-ceramidase activity leads to Farber

disease, a very severe and early-onset disease characterized

by an involvement of joints, skin, and laryngeal tissues

and progressive neurological deterioration, a milder reduc-

tion of enzymatic activity leads to a later-onset of symp-

toms restricted to spinal-cord motor neurons and other

areas of the CNS. Several therapeutic strategies have been

undertaken for Farber disease. Allogeneic bone-marrow

transplant (BMT) has been performed in a 9.5-month-old

child with minimally symptomatic Farber disease.23 Ce-

ramidase activity in peripheral-blood leukocytes increased

from 6% to 44% by 6 weeks after BMT. By 6 months after

BMT, the subcutaneous lipogranulomata, contractures

and joint pains, and hoarseness of the voice had

completely resolved. However, the affected individual

developed progressive hypotonia, muscle weakness, loss

of head control, inability to sit unassisted, flexion contrac-

tures, opisthotonus, and tongue fasciculations.23 These

features are consistent with the occurrence of lower-

motor-neuron involvement, the main clinical feature

found in SMA-PME-affected individuals. Although the

p.Thr42Met substitution results in a mild deficiency of

acid-ceramidase activity, it is able to normalize the ceram-

ide level in Farber cells. This result suggests that the path-

ogenic mechanism underlying the CNS involvement
Th
observed in SMA-PME is probably unrelated to ceramide

accumulation in affected cells. However, the possibility

that, in specific cell types such as motor neurons, this

particular substitution results in changes of some ceramide

(or other sphingolipids) molecular species not detected by

the applied methods cannot yet be ruled out.

Medin et al.11 reported that the introduction of WT

human acid-ceramidase cDNA with a recombinant oncor-

etroviral vector into Farber-disease-cultured fibroblasts

restored enzyme activity completely and normalized ce-

ramide levels. Importantly, this study demonstrated that

transduced cells allowed diffusion of this enzyme into

the culture medium and that this activity could be taken

up subsequently into unmodified cells. More recently, a

preclinical Farber-disease gene-therapy study employing a

lentiviral vector has been performed on nonhuman

primates. Acid-ceramidase activity was detected above

normal levels in peripheral blood, bone-marrow cells, the

spleen, and the liver 1 year after lentiviral-vector transduc-

tion.24 These studies indicate that Farber disease and allelic

disease(s) such as SMA-PME might be candidates for gene

therapy in the near future. This underlines the importance

of ASAH1 or acid-ceramidase-activity screening in this

subgroup of SMA-affected individuals for diagnosis and

future therapeutics purposes.
Supplemental Data

Supplemental Data include one figure and one table and can be

found with this article online at http://www.cell.com/AJHG/.
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de la Santé et de la Recherche Médicale (to J.M.), and Vaincre les

Maladies Lysosomales (to T.L.). The authors would like to thank

the Biomedical Institute of Bicêtre for providing us with Sanger-

sequencing facilities, K. Sandhoff and H. Schulze (Bonn,

Germany) for providing the rabbit anti-ceramidase antibody, and

the National Heart, Lung, and Blood Institute Grand Opportunity

(GO) Exome Sequencing Project and its ongoing studies, the Lung

GO Sequencing Project (HL-102923), the Women’s Health Initia-

tive Sequencing Project (HL-102924), the Broad GO Sequencing

Project (HL-102925), the Seattle GO Sequencing Project (HL-

102926), and the Heart GO Sequencing Project (HL-103010),

which all produced and provided exome variant calls for compar-

ison. The authors wish to dedicate this work to the memory of

C. Brahe, who recently passed.

Received: January 10, 2012

Revised: March 12, 2012

Accepted: May 1, 2012

Published online: June 14, 2012
Web Resources

The URLs for data presented herein are as follows:

BLAST, http://blast.ncbi.nlm.nih.gov/Blast.cgi
e American Journal of Human Genetics 91, 5–14, July 13, 2012 13

http://www.cell.com/AJHG/
http://blast.ncbi.nlm.nih.gov/Blast.cgi


dbSNP, http://www.ncbi.nlm.nih.gov/snp

ESEfinder Release 2.0, http://rulai.cshl.edu/tools/ESE2/

Exome Variant Server, http://evs.gs.washington.edu/EVS/

Online Mendelian Inheritance in Man (OMIM), http://www.

omim.org

PolyPhen-2, http://genetics.bwh.harvard.edu/pph2/
References

1. Lefebvre, S., Bürglen, L., Reboullet, S., Clermont, O., Burlet, P.,

Viollet, L., Benichou, B., Cruaud, C., Millasseau, P., Zeviani,

M., et al. (1995). Identification and characterization of a spinal

muscular atrophy-determining gene. Cell 80, 155–165.

2. Jankovic, J., and Rivera, V.M. (1979). Hereditary myoclonus

and progressive distal muscular atrophy. Ann. Neurol. 6,

227–231.

3. Haliloglu, G., Chattopadhyay, A., Skorodis, L., Manzur, A.,
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