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SUMMARY

Development of the human nervous system involves
complex interactions among fundamental cellular
processes and requires a multitude of genes, many
of which remain to be associated with human dis-
ease. We applied whole exome sequencing to 128
mostly consanguineous families with neurogenetic
disorders that often included brain malformations.
Rare variant analyses for both single nucleotide
variant (SNV) and copy number variant (CNV) alleles
allowed for identification of 45 novel variants in 43
known disease genes, 41 candidate genes, and
CNVs in 10 families, with an overall potential molecu-
lar cause identified in >85% of families studied.
Among the candidate genes identified, we found
PRUNE, VARS, and DHX37 in multiple families and
homozygous loss-of-function variants in AGBL2,
SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroi-
maging and in silico analysis of functional and
expression proximity between candidate and known
disease genes allowed for further understanding of
genetic networks underlying specific types of brain
malformations.

INTRODUCTION

Human brain development is a precisely orchestrated process

requiring multiple genetic and epigenetic interactions and the

coordination of cellular andmolecular mechanisms, perturbation
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of which leads to a plethora of neurodevelopmental phenotypes

depending on the spatial and temporal effect of the disturbance.

Neuronal development has been categorized into three main

processes: neurogenesis, neuronal migration, and postmigra-

tional cortical organization and circuit formation. Classification

of the various malformations of cortical development has

evolved to reflect these underlying developmental processes

(Barkovich et al., 2012; Mirzaa and Paciorkowski, 2014).

Although such classifications recapitulate the main develop-

mental steps in brain formation, recent advances challenge the

implied boundaries between these clearly defined stages and

suggest that the genes implicated in many developmental

stages are genetically and functionally interdependent. This

can lead to a more pragmatic classification of neurodevelop-

mental phenotypes that relies primarily on knowledge of genes

and gene networks and manifests as a dysfunction or dysfunc-

tions in the mechanisms of protein and pathway actions (Barko-

vich et al., 2012; Guerrini and Dobyns, 2014).

A fundamental question in the study of brain malformations is

the role of structural abnormalities in the promotion of intellectual

disability (ID). The two have long been studied together, with

particular focus on X-linked ID and recent studies on both auto-

somal recessive ID and dominant de novo mutations. Genes

involved in ID play a role in diverse basic cellular functions,

such as DNA transcription and translation, protein degradation,

mRNA splicing, chromatin remodeling, energy metabolism,

and fatty-acid synthesis and turnover (de Ligt et al., 2012; Gilis-

sen et al., 2014; Najmabadi et al., 2011). Further coordinated

study of brain malformations and ID offers the opportunity to

potentially relate basic developmental features to elements of

higher-level cognitive function.

The advent of next-generation sequencing has enabled rapid

identification of numerous genes and mechanisms that underlie

disorders of brain malformation and ID (Alazami et al., 2015; Naj-

mabadi et al., 2011). Further advances are often limited by the

availability of well-characterized and rigorously phenotyped pa-

tients and the capacity for detailed analyses of gene function. In
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this study, we applied whole exome sequencing (WES) to a

cohort of 208 patients from 128 mostly consanguineous families

with congenital brain malformations and/or ID. Due to the possi-

bility that some post-migrational brain malformations may not be

evident on imaging, we did not exclude patients with isolated

profound ID from this study. We describe the genes identified

by rare variant analyses and highlight candidate novel genes

that were present in more than one family with a similar pheno-

type, clearly fit into known biological processes perturbed in

neurodevelopment, or harbored homozygous loss-of-function

(LOF) (i.e., stop gain, frameshift, or splice site) variants.

RESULTS

Neurological Manifestations of Patients in the Study
Cohort
The central nervous system (CNS) features and pedigree struc-

tures of the 128 families are shown as Figures 1 and S1,

respectively. According to their foremost CNS findings and

accompanying clinical features (dysmorphic and additional sys-

temic findings), we further classified probands into seven major

groups: primary microcephaly (10%), cortical dysgenesis (38%),

callosal abnormalities (7%), hindbrain malformations (7%), syn-

dromic brain malformations (19%), non-syndromic ID (7%),

and syndromic developmental delay (DD) or ID (12%) (Figure 1B).

Multiple affected members (proband and one or two siblings or

cousins) were sequenced when available, and in singleton

cases, either the trio (unaffected parents and affected proband)

or only the proband were sequenced.

Analysis of WES Data
Figure S2 describes the workflow used to identify candidate dis-

ease genes. We identified known variants in 5 known disease

genes and 47 novel variants in 42 known disease genes; of these,

19 represented phenotypic expansions wherein trait manifesta-

tions were distinct from those previously reported in association

with variation in that gene (Table S1; Figure 1C). Variants of
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Figure 1. Phenotypic Clustering of the Cohort and Summary of WES Findings

(A) Venn diagram of clinical and neuro-radiological features. The font size of the numbers correlates with the number of individuals that represent any given

category.

(B) Phenotypic clustering of the probands according to their most outstanding feature revealed seven major groups: primary microcephaly (10%), cortical

dysgenesis (38%), callosal abnormalities (7%), hindbrain malformations (7%), syndromic brain malformations (Malf.) (19%), non-syndromic ID (7%), and syn-

dromic DD or ID (12%).

(C)WES analysis revealed novel candidates in 36%, novel variants in known genes in 36%, known variants in known genes in 5%, and CNVs in 8%of the families.

Of the families with novel variants in known genes, 42% represent phenotypic expansion.
unknownsignificance inknowndiseasegeneswereconsidered to

probably be associated with the disease if they segregated with

the phenotype andwere determineddamagingor likely damaging

by bioinformatic predictions by amajority of five tools (see Exper-

imental Procedures), with evolutionary conservation of the

affected amino acid being a prerequisite for missense variants.

The preceding criteria were then used to screen for the stron-

gest candidate genes in the remaining cases, with the addition of

two factors: (1) an internal database was screened to ensure that

no potentially deleterious homozygous or compound heterozy-

gous variants were present in control subjects without brain

malformations in the specific gene of interest, and (2) a compre-

hensive literature and database search was conducted to deter-

mine whether the function and expression pattern of the

encoded protein could potentially be associated with the pheno-

type in question. Eventually, in 46 families (36%), we identified

potential disease-causing variants in 41 candidate disease

genes (Tables 1 and S1; Figures 2C and S2). Rare variants

were detected in the PRUNE, VARS, and DHX37 genes in

more than one family segregating for a similar phenotype.

Expression, Annotation, and Pathway Analysis of Known
and Candidate Genes
Unsupervised clustering of the novel candidate and known

mutated disease genes based on their mRNA levels in the brain

tissue partitioned them into four subgroups: genes expressed

only in early embryonic development, only in fetal development,

only in adult brain tissue, or in both embryonic development and
adult tissue (Figure 2A). Biological functional annotation of the

novel and known mutated genes in our cohort revealed enrich-

ment of the collection in neurogenesis, tRNA metabolic pro-

cesses, forebrain development, pattern specification process,

and cell-cell adhesion (Figure 2B).

We next tested whether the novel and known mutated genes

have a greater than expected degree of connectivity within a

protein-protein interaction network, based upon the known

and predicted protein-protein interaction score retrieved from

the Search Tool for the Retrieval of Interacting Genes/Proteins

database (http://string-db.org). The protein-protein interaction

network had a greater degree of interconnectivity than expected

by chance (p = 3.26 3 10�3), and could be partitioned into three

highly interconnected protein networks consisting of genes

significantly enriched in brain development, RNA metabolism,

and cytoskeletal organization (Figure 2C).

Copy Number Variant Analysis
In addition to single nucleotide variant (SNV) analysis by WES,

we performed systematic screening of the WES data for copy

number variant (CNV) alleles and found likely pathogenic CNVs

in 10 families (13 affected individuals) (Tables 2 and S2; Figures

3, 4, and S3). Among these families, we identified homozygous

deletions in three consanguineous families. First, �64 kb homo-

zygous deletion encompassing almost the entire SNX14 gene

was identified in patient BAB3498 with ID, microcephaly,

and hypotonia (Figure 3D). Second, a 193 kb homozygous dele-

tion encompassing almost the entire AP4E1 gene, previously
Neuron 88, 499–513, November 4, 2015 ª2015 Elsevier Inc. 501
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Table 1. Detected SNVs in Potential Candidate Disease Genes in

the Study Cohort

Proband Gene Transcript: Nucleotide; Protein Zyg

SZ51 PRUNE NM_021222: c.G383A; p.R128Q Het

SZ51 PRUNE NM_021222: c.G820T; p.G174X Het

SZ322 PRUNE NM_021222: c.G316A; p.D30N Hom

BAB3500 PRUNE NM_021222: c.G316A; p.D106N Hom

BAB3737 PRUNE NM_021222: c.G316A; p.D106N Hom

BAB3186 VARS NM_006295: c.C2653T; p.L885F Hom

BAB3643 VARS NM_006295: c.G3173A; p.R1058Q Hom

BAB4627 AGBL2 NM_024783: c.C1747T; p.R583X Hom

BAB6167 CPLX1 NM_006651: c.G322T; p.E108X Hom

BAB4453 SMARCA1 NM_003069: c.C7T; p.Q3X Hem

BAB4019 DHX37 NM_032656: c.G1460A; p.R487H Hom

BAB4434 DHX37 NM_032656: c.C1257A; p.N419K Hom

BAB6569 ACTL6B NM_016188: c.G893A; p.R298Q Hom

BAB4471 CEP97 NM_024548: c.A1148G; p.H383R Hom

BAB6511 CINP NM_032630: c.T637G; p.X213G Hom

BAB5333 KIF23 NM_004856: c.T755A; p.L252H Hom

BAB4852 OGDHL NM_001143996: c.C2162T; p.S721L Hom

BAB3407 SLC18A2 NM_003054: c.705delC; p.G235fs Hom

BAB4452 TTI1 NM_014657: c.G2761A; p.D921N Hom

BAB3415 TUT1 NM_022830: c.G1411A; p.A471T Hom

BAB4748 ANK3 NM_020987: c.C9652T; p.L3218F Hom

BAB3408 ARHGAP21 NM_020824: c.T3491G; p.I1164R Hom

BAB6026 ASH2L NM_001105214: c.A1444G; p.I482V Hom

BAB3420 ASTN1 NM_004319: c.G2224C; p.G742R Hom

BAB4462 C12orf34 NM_032829: c.A284T; p.H95L Hom

BAB4860 CDH4 NM_001794: c.G1976C; p.R659P Hom

BAB5209 CELSR2 NM_001408: c.C3830T; p.P1277L Hom

BAB4930 CSRP2BP NM_020536: c.G1399A; p.E467K Hom

BAB5192 DSCAML1 NM_020693: c.G1411A; p.V471I Hom

BAB5013 GTF3C1 NM_001520: c.G4096A; p.E1366K Hom

BAB3740 IGFBP4 NM_001552: c.C698T; p.T233M Hom

BAB5373 INA NM_032727: c.G562A; p.G188R Hom

BAB4633 KLHL15 NM_030624: c.G1474A; p.V492I Het

BAB3480 MXRA8 NM_032348: c.T1238A; p.I413N Hom

BAB4830 PLEKHG2 NM_022835: c.G1708A; p.G570R Hom

BAB4519 ROS1 NM_002944: c.G1094C; p.G365A Hom

BAB5548 SLITRK5 NM_015567: c.G2515C; p.E839Q Hom

BAB5382 SNAPIN NM_012437: c.A163T; p.N55Y Hom

BAB3491 SVIL NM_003174: c.C2348T; p.S783L Hom

BAB4017 TTC1 NM_003314: c.T784G; p.F262V Hom

BAB4807 UBQLN1 NM_053067: c.377delA; p.N126fs Hom

BAB5605 ULK2 NM_001142610: c.A1733G; p.H578R Hom

BAB3410 USP11 NM_004651: c.G722A; p.R241Q Hom

BAB5379 PTPRT NM_007050: c.1561-3C > T Het

BAB5379 PTPRT NM_133170: c.T206C; p.V69A Het

BAB5720 CDK10 NM_001160367: c.G857A; p.R286H Hom

BAB5720 CDK10 uc002fob.2: c.C512G; p.T171S Hom

Table 1. Continued

Proband Gene Transcript: Nucleotide; Protein Zyg

BAB4698 HELZ NM_014877: c.A3322G; p.I1108V Hom

BAB4133 TNN NM_022093: c.G2516A; p.R839K Hom

This table covers 46 families and 41 genes. Potential candidate disease

genes are ordered (stratified) from ‘‘most likely’’ pathogenic to ‘‘less

likely,’’ whereas every single gene is the strongest candidate in any given

individual. See Experimental Procedures for stratification criteria. zyg,

zygosity; het, heterozygous; hom, homozygous; hem, hemizygous.
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associated with spastic paraplegia 51 (Mendelian Inheritance in

Man [MIM]: 613744), was found in patient BAB5029 with ID,

microcephaly, seizures, spasticity, and hyperintensity changes

in both cerebellar hemispheres and subcortical deep white mat-

ter (Figure 3A). His brother BAB5030 was not homozygous for

this same deletion, and retrospective analysis of their pheno-

types indicated that unlike his brother, BAB5030 had neither ab-

normalities on MRI nor spasticity. The third family had a 173 bp

homozygous intragenic deletion in CNTNAP2 identified in

BAB3747 and BAB3748, siblings with ID and seizures (Tables

2 and S2; Figure 3). We also identified a hemizygous intragenic

deletion interrupting exons 46 and 47 ofDMD in two affected sib-

lings, BAB5866 and BAB5867, with prominently elevatedmuscle

enzymes (creatine kinase > 10,000 U/l). These siblings also

showed a Smith-Lemli-Opitz syndrome (MIM: 270400) pheno-

type explained by a novel homozygous missense mutation in

DHCR7 (Tables 1, 2, S1, and S2; Figure 3).

In the remaining six families, we found heterozygous deletions

and duplications (Tables 2 and S2; Figures 4 and S3). Review of

the SNVs on the complementary chromosome did not reveal

any reduction to homozygosity of a recessive variant in a known

disease-associated gene in these loci. Two patients (BAB5687

andBAB4097) hadbotha terminal deletionanda terminalduplica-

tion, possibly suggestive of an unbalanced translocation. Patient

BAB5040 had a 17q21.31 deletion (�6 Mb) involving KANSL1, a

gene in which heterozygous deletion CNV and damaging intra-

genicSNVhave been reported in associationwithKoolen-deVries

syndrome (MIM: 610443); patient BAB5481 had 15q11.2 deletion

syndrome (MIM: 615656); patient BAB5503 had a 14q11.2 dele-

tion; and patient BAB4164 had a 33 kb deletion including VTI1B

and RDH11 (Tables 2 and S2; Figures 4 and S3).

Candidate Genes Seen in Multiple Families with Various
Cortical Abnormalities
In our cohort, 48 families showed cortical dysplasia (atrophy,

heterotopia, pachygyria, or schizencephaly) with or without

microcephaly, callosal abnormalities, and hindbrain involvement

(Figures 1A and 1B). In this clinical phenotypic category, we high-

light novel candidate genes in which likely deleterious variants

were identified in more than one family: PRUNE (four families),

VARS (two families), and DHX37 (two families) (Tables 1 and

S1; Figures 5A–5D).

Potentially deleterious variants in PRUNE were identified in

four families. In two apparently unrelated families from nearby

villages in eastern Turkey, we identified an identical homozygous

variant (NM_021222: c.G316A; p.D106N) in the PRUNE gene.

Both probands (BAB3500 and BAB3737) presented with



microcephaly, fronto-temporal cortical atrophy, and cerebellar

atrophy (Figures 5A, 5C, and 5D). Based on the proximity of

the villages of the two families and the shared absence of hetero-

zygosity (AOH) surrounding the mutation (data not shown), we

suggest that a founder effect likely played a role in the etiology

(Karaca et al., 2014), as commonly seen in populations with

high rates of consanguineousmarriage. In a Saudi Arabian family

(SZ322) in which parents were consanguineous, an 18 month

old male patient with cerebral and cerebellar atrophy, micro-

cephaly, seizures, and severe DD was found to be homozygous

for a rare PRUNE (NM_02122: cG88A; p.D30N) variant. A fourth

non-consanguineous family (SZ51) from the US with severe DD,

regression, seizures, and microcephaly marked by cerebral and

cerebellar volume loss showed compound heterozygous

(NM_021222: c.G383A; p.R128Q and NM_021222: c.G520T;

p.G174X) variants shared by the two affected siblings. PRUNE

(prune homolog, Drosophila) is a phosphodiesterase member

of the aspartic acid-histidine-histidine (DHH) phosphoesterase

superfamily, highly expressed in the human fetal brain, and fully

confined to the nervous system in mouse embryos (Reymond

et al., 1999). Its encoded protein plays a role in cell proliferation

and induction of cellular motility in the cancermetastatic process

via interaction with NME1 (Aravind and Koonin, 1998; D’Angelo

et al., 2004; Reymond et al., 1999). It has also been shown to

cooperate with GSK-3 (serine/threonine kinase glycogen syn-

thase kinase 3) inmodulation of focal adhesions and thus to regu-

late cell migration (Kobayashi et al., 2006). Human PRUNE pro-

tein contains two main domains: a catalytic DHH domain, and

an adjacent aspartic acid-histidine-histidine (Asp-His-His) fam-

ily-associated motif 2 (DHHA2) domain. All ‘‘likely pathogenic’’

variants identified in our patients map to the DHH domain (Fig-

ure 5C). The Turkish variant p.D106N changes one of the three

conserved amino acids (Asp-His-His) that form the active site

of the protein. Mutation of any of these three amino acids has

been shown to severely decrease the enzyme’s activity to hydro-

lyze short-chain polyphosphates (Tammenkoski et al., 2008).

We detected two different homozygous potentially pathogenic

variants in VARS that encodes valyl-tRNA synthetase in two

unrelated consanguineous pedigrees: NM_006295: c.G3173A;

p.R1058Q in BAB3643 and NM_006295.2: c.C2655; p.L885F in

siblings BAB3186 andBAB3187 (Figures 5B and 5C). All affected

individuals presented with severe DD, microcephaly, seizures,

and cortical atrophy on MRI (Figure 5B). The phenotype of these

affected individuals was similar to that of the families with the ho-

mozygous PRUNE variant and to the previously published pa-

tients with CLP1 mutations (Karaca et al., 2014), both in terms

of severity and brain regions involved, and functional network

analysis suggested protein-protein interactions among VARS,

PRUNE, and CLP1.

In two unrelated families, each with one affected proband

(BAB4019 and BAB4434), we found two different homozygous

variants (NM_032656: c.G1460A; p.R487H and NM_032656:

c.C1257A; p.N419K, respectively) in the DHX37 gene (Figures

5B and 5C). BAB4019 presented with severe microcephaly,

DD, seizures, and cortical atrophy, and BAB4434 presented

with severe microcephaly, polymicrogyria, and dysgenesis of

the corpus callosum (Figure 5B).DHX37 encodes a RNA helicase

that is a member of the DEAD box protein subfamily, character-
ized by the evolutionarily conservedmotif aspartic acid-glutamic

acid-alanine-aspartic acid (Asp-Glu-Ala-Asp, or DEAD) (Blei-

chert and Baserga, 2007). DEAD box proteins are known to be

implicated in embryogenesis, spermatogenesis, and cellular

growth and division (de la Cruz et al., 1999; Jankowsky et al.,

2001). In a recent study, it was shown that Dhx37 is required

for the biogenesis of glycine receptors in zebrafish and thereby

regulates glycinergic synaptic transmission and associated mo-

tor behaviors (Hirata et al., 2013). The authors do not comment

on a CNS phenotype in the mutants.

Patients with Homozygous LOF Variants in Novel
Candidates
We further screened for any homozygous or hemizygous LOF

variants in our cohort. We verified that the observed LOF variants

affected all transcripts; checked whether they were in the

last exon or last 55 bp of the penultimate exon, which may

escape nonsense mediated decay; and reviewed internal and

publicly available databases (e.g., the ExomeAggregations Con-

sortium [ExAc], 1000 Genomes, and dbSNP [RRID: nif-0000-

02734]) to ensure that no other homozygous LOF variant had

been reported in the candidate disease gene. We identified ho-

mozygous LOF variants in five families in the following genes:

AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1 (Tables 1

and S1; Figure 6).

A homozygous nonsense variant (NM_024783: c.C1747T;

p.R583X) in the AGBL2 gene was identified in patient BAB4627

with cerebral fronto-parieto-temporal atrophy, simplified gyral

pattern; diffuse thinning of the corpus callosum, and seizures

(Figures 6A and S4A). AGBL2 encodes a cytoplasmic carboxy-

peptidase involved in posttranslational modification (detyrosina-

tion) of a-tubulin (Sahab et al., 2011).

Patient BAB4453 presented with microcephaly, spasticity,

and ID. He also had dysmorphic features similar to those seen

in Coffin-Siris syndrome (MIM: 135900) (Figure 6C). Family his-

tory was negative. He was found to have a hemizygous null

variant in the SMARCA1 gene (NM_003069: c.C7T; p.Q3X)

(Tables 1 and S1; Figure 6C), which encodes a member of the

switch/sucrose non-fermentable complex (SWI/SNF) family of

proteins and is part of the ATP-dependent CECR2-containing re-

modeling factor (Figure 6C) (Banting et al., 2005).

In a female proband (BAB4810) with ID, DD, hypotonia, stra-

bismus, dolichocephaly, simple and low-set ears, and early

loss of teeth and her brother (BAB4807) with ID and DD, dilated

lateral ventricles, and Arnold-Chiari malformation on MRI but

less pronounced dysmorphic features, we identified a novel

frameshift mutation in the UBQLN1 gene (NM_013438:

c.377delA; p.N126Mfs*), which segregated with the phenotype

in five available family members (Tables 1 and S1; Figure 6).

The encoded ubiquilin 1 protein and related ubiquitin-like family

members are proposed to functionally link the ubiquitination ma-

chinery to the proteasome to facilitate in vivo protein degradation

(Kleijnen et al., 2000).

We identified a homozygous nonsense mutation

(NM_006651: c.G322T; p.E108X) in the CPLX1 gene in two fe-

male siblings, BAB6167 and BAB6168, who presented with

malignant migrating epilepsy and cortical atrophy. CPLX1 en-

codes one of the complexins (complexin 1), soluble presynaptic
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(legend continued on next page)
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Table 2. Detected CNVs in the Study Cohort

BAB CNV Location Type Included Genes Zyg

3498 chr6: 86201694-

86282093

del SNX14 Hom

3747 chr7: 147092700-

147092873

del CNTNAP2 Hom

4097 chr7: 153749905-

158935238

del many genes (5 Mb);

see Table S2

Het

4097 chr15: 98512352-

102463263

dup many genes (4 Mb);

see Table S2

Het

4164 chr14: 68129193-

68162421

del RDH11, VTI1B Het

5029 chr15: 51204274-

51397374

del AP4E1, TNFAIP8L3 Hom

5040 chr17: 43545574-

44159909

del CRHR1, MAPT,

KANSL1

Het

5481a chr15: 22744254-

23255388

del 15q11.2 Het

5503 chr14: 20295607-

24845308

del 146 genes (5 Mb);

see Table S2

Het

5687 chr3: 194392792-

197884541

dup many genes (5 Mb);

see Table S2

Het

5687 chr6: 348102-

5999438

del many genes (5 Mb);

see Table S2

Het

5866a chrX: 31947712-

31950345

del DMD Hem

In four families, homozygous (hom) or hemizygous CNVs were detected,

while heterozygous (het) were detected in the remaining six families. del,

deletion; dup, duplication.
aFamily with a blended phenotype that presented both SNV and CNV in

each affected individual.
proteins that modulate neurotransmitter release by binding the

SNAP (soluble N-ethylmalemide-sensitive-factor attachment

protein) receptor assembly (Chen et al., 2002; McMahon

et al., 1995).

Patient BAB3407, with ID, dystonia, microcephaly, cortical at-

rophy, corpus callosum hypoplasia, and seizures, was found to

have a frameshift variant in SLC18A2 (NM_003054: c.705delC;

p.G235fs) encoding the vesicular monoamine transporter 2

(VMAT2), which regulates the release and metabolism of the

monoamine neurotransmitters; this finding offers a potential

avenue for experimental treatment of the associated disease

with direct dopamine agonists (Tables 1 and S1; Figures 6B

and S4B) (Ohara et al., 2013).

Genes Involved in Biological Pathways Associated with
Distinct Phenotypes
We used the type of brain malformation in a given individual

and an understanding of its underlying molecular pathogenesis

in the prioritization of the potential candidate genes identified

in this study. Among the top candidate genes found in this
(B) Biological functional annotation of the novel and known mutated genes in our

tRNA metabolic process, forebrain development, pattern specification process,

(C) The protein-protein interaction network had a greater degree of connectivity t

interconnected protein networks, consisting of genes significantly enriched in br
group is a homozygous missense variant (NM_004856:

c.T755A; p.L252H) in KIF23 identified in siblings with severe

microcephaly (BAB5333 and BAB5334). KIF23 encodes a kine-

sin family member localized at the interzone of the mitotic spin-

dle (Mishima et al., 2004). This variant has been found only in

this family among our 5,000 in-house generated exomes on

Mendelian families and was the only shared homozygous

variant by two affected siblings. Neither this particular variant

nor any homozygous LOF variant has been reported in the

ExAC database.

TTI1 was identified in a family (HOU1832) with microcephaly

and ID where a homozygous missense mutation (NM_014657:

c.G2761A; p.D921N) segregated with the phenotype in two

affected and four unaffected family members. The encoded pro-

tein is a component of the triple T complex, which has been

shown to play a role in kinases in the phosphoinositide 3-ki-

nase-related kinase signaling in brain development and func-

tioning (Hurov et al., 2010). Another component of the triple T

complex is encoded by TTI2, and this gene has been shown to

be mutated in a large consanguineous family with microcephaly,

severe cognitive impairment, skeletal anomalies, and facial

dysmorphism (MIM: 615541) (Langouët et al., 2013). In addi-

tion, patients BAB6569 and BAB6570, with severe ID, micro-

cephaly, seizures, and some autistic behavioral pattern, were

found to have a homozygous missense mutation in ACTL6B

(NM_016188: exon10: c.G893A; p.R298Q), a component of

brain-specific chromatin remodeling complexes containing the

ATPases Brg1 (SMARCA4) and Brm (SMARCA2) (Figure 7)

(Olave et al., 2002).

To further clarify the role of RNA processing factors in brain

malformations, we screened our cohort for potentially patho-

genic variants in genes whose encoded proteins were predicted

to interact with VARS, CLP1, and other RNA cleavage and poly-

adenylation-specific factors (Figure 7). We focused especially on

families with phenotypes similar to those seen in association with

potential pathogenic variants in the preceding genes and identi-

fied a rare homozygous variant (NM_022830: exon7: c.G1411A;

p.A471T) in the TUT1 gene in a female proband (BAB3415) with

cortical atrophy, microcephaly, and cerebellar atrophy (Ta-

bles 1, 2, and S1; Figure 7). TUT1 plays a role in post-transcrip-

tional modification of microRNAs, primarily as a poly(A)

polymerase, and is essential for cell proliferation (Knouf et al.,

2013; Trippe et al., 2006).

DISCUSSION

We investigated 128 mostly consanguineous families

with abnormal brain development or brain function as evi-

denced by brain imaging or manifested as DD or ID. Exome

sequencing, accompanied by an informatics pipeline and ana-

lyses tools and followed by Sanger validation and segregation

studies, enabled detection of rare variants of potential patho-

logic significance. In silico analyses of the genes for brain
cohort revealed that they were most significantly enriched in neurogenesis, the

and cell-cell adhesion.

han expected by chance (p = 3.26 3 10�3). This network revealed three highly

ain development, RNA metabolism, and cytoskeletal organization.
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Figure 3. Homozygous and Hemizygous CNVs

(A) Homozygous deletion encompassing AP4E1 in BAB5029 but not BAB5030.

(B) Hemizygous intragenic deletion of DMD interrupting exons 46 and 47.

(C) Homozygous intragenic deletion of CNTNAP2.

(D) Homozygous deletion almost entirely encompassing SNX14.

PCRvalidationunderneatheachpedigree showsamplificationor lack thereofof thedeletion regionandapositivecontrolPCRof anunrelated locus.Amplificationof

the deletion region in parents and unaffected siblings indicates either a heterozygous (assumed for parents, as obligate carriers) or a homozygous wild-type state.
developmental expression, and interactome and pathway

analysis of gene products, further prioritized variants potentially

associated with the Mendelizing traits that were studied.
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The study of a large cohort of more than 100 families, rather

than a small number of larger families, aided the discovery

process.



Figure 4. Heterozygous CNVs Identified by WES

The upper panel represents CNV as predicted from WES data, the middle panel represents validation by array studies, and the lower panel shows the chro-

mosomal position and RefSeq genes involved. See also Figure S3.
Two similar large-scale genomic studies have been pub-

lished recently (Alazami et al., 2015; Najmabadi et al., 2011).

Both studies consisted of mostly consanguineous families

that presented with DD/ID, with or without structural brain mal-

formations, and used homozygosity mapping, in addition to

next-generation sequencing. None of the genes proposed as

potential candidates in these two studies overlapped with

those proposed herein. This may be attributed to the selection

of different ethnic groups and thus accumulation of private var-

iants that occurred in recent ancestral generations (Lupski

et al., 2011). In addition, most probands in our cohort have

structural brain malformations (�80%) rather than non-specific

ID or congenital DD. Finally, the multitude of prospective novel
candidate genes highlights the magnitude and complexity of

the mechanisms involved in human nervous system develop-

ment and maintenance.

Our findings converge on three cellular processes: brain

development, RNA metabolism, and cytoskeletal organization.

As anticipated, some genes are involved in more than one of

these processes. Genes associated with primary microcephaly

were often differentially expressed during development, with

highest expression during the early embryonic and fetal periods

(ASPM,WDR62,MCPH1, STIL, KIF23, and TTI1). This is consis-

tent with the well-established association among defective

neurogenesis, loss of neuroprogenitor cells, and resultant

decreased volume of the brain. Proposed candidates found
Neuron 88, 499–513, November 4, 2015 ª2015 Elsevier Inc. 507
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Figure 5. Patients with Mutations in PRUNE, VARS, and DHX37

(A) Pedigrees of the families with PRUNE mutations show that three families (BAB3500 and BAB3737 are of Turkish origin, SZ322 is of Saudi origin) are

consanguineous while SZ51 (US origin) is not. Available patient images reveal some dysmorphic features, most probably a result of microcephaly. Axial, mid-

sagittal, and coronal slices from the brain MRIs of each patient demonstrate a similar phenotype consisting of cortical atrophy, thin or hypoplastic corpus

callosum, and prominent cerebellar atrophy.

(B) Families with homozygous VARS and DHX37 mutations presented with severe microcephaly, DD/ID, and cortical atrophy.

(C) The human PRUNE is a member of the DHH superfamily, and it contains DHH and DHHA protein domains at the N and C termini, respectively. Human VARS is

a multi-domain protein, containing N-terminal glutathione S-transferase (GST_N), C-terminal glutathione S-transferase (GST_C), tRNA synthase class I (tRNA-

synth_1), and the anticodon-binding domain of tRNA (anticodon_1). L885F andR1058Q substitutions occur in the latter two domains, respectively. DHX37 protein

contains DEAD, helicase conserved C-terminal domain (Helicase_C), helicase-associated (HA2), and and oligonucleotide/oligosaccharide-binding fold

(OB_NTP_binding) domains. N419K substitution occurs near the DEAD domain, which plays a role in several aspects of RNA metabolism processes, such as

translation initiation and pre-mRNA splicing, whereas the other substitution (p.R487H) is located between the DEAD and the Helicase_C domains.

(D) The DHH domain of PRUNE carries a highly conservedmotif of DHH. The aspartic acid in DHHmotif of the human PRUNEwas shown to bindMg2+ (D’Angelo

et al., 2004). Themodel structure for human PRUNE protein from the SwissModel repository suggests that negatively charged D30 and D106 interact directly with

the positively charged cofactor, while R128 and G174 are close to the catalytic site.
in patients with structural brain malformations (e.g., VARS,

PRUNE, and DHX37) showed marked enrichment in early

embryonic or fetal stages. Genes associated with metabolic de-

rangements of the brain were often most highly expressed in the

postnatal period (ALDH7A1, NAGLU, and GLDC). Candidate

genes associated with ID (ADSL, GRIA3, CSRB2BP, ASH2L,

CELSR2, and ACTL6B) did not follow a recognizable pattern of

differential expression between the prenatal and the postnatal

stages.

Our hypothesis that VARS may lead to microcephaly and

cortical dysgenesis is in accordance with the emerging class of

neurological disorders resulting from mutations in genes encod-
508 Neuron 88, 499–513, November 4, 2015 ª2015 Elsevier Inc.
ing various aminoacyl-tRNA synthetases (Taft et al., 2013; Taylor

et al., 2014; Vester et al., 2013). Evidence emphasizing the impor-

tance of the genes involved in RNAmetabolism in the developing

human brain is not limited to aminoacyl-tRNA synthetases,

because tRNA-splicing complex proteins (TSEN2, TSEN34,

TSEN54, and CLP1) have also been shown to be associated

with both forebrain and hindbrain development (Budde et al.,

2008; Cassandrini et al., 2010; Karaca et al., 2014; Schaffer

et al., 2014). We identified two potential candidate genes that

function as RNA helicases: DHX37 and HELZ. RNA helicases

are involved in almost every RNA-related process, including

transcription, splicing, ribosome biogenesis, translation, and
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Figure 6. Pedigrees, Clinical, and Radiologic Images of Patients with Homozygous LOF Mutations

Consanguinity between parents is indicated in each pedigree.

(A) Brain MRI of BAB4627 revealed severe cortical dysplasia, diffuse hypoplastic corpus callosum, dilated lateral ventricles, simplified gyral pattern, and dys-

morphic basal ganglia. Note the similarity of the brain phenotype in BAB4627, with the homozygous AGBL2 p. R583X variant, to tubulinopathy-related cortical

dysplasia syndromes.

(B) BAB3407’s MRI presents cortical atrophy and thin and dysplastic corpus callosum. The patient image illustrates her severe dystonia.

(C) BAB4453 with a homozygous stop gain (p.Q3X) in SMARCA1 represents severe cortical atrophy. The patient image underlines the coarse face, bushy

eyebrows, facial hypertrichosis, and long eyelashes, which resemble the facial dysmorphism in Coffin-Siris syndrome.

(D) A homozygous frameshift mutation (p.505fs) was detected in SNX14 in patient CGD-62463468; the MRI shows severe cerebellar atrophy. For comparison, an

image of a patient (BAB5804) from a different family with a homozygous SNX14: c.T2390G; p.L797R mutation is provided; it also revealed a coarse face in the

patient.

(E) The MRI of BAB4807 with homozygous p.N126fs in UBQLN1 shows the dolichocephalic appearance of the head, dilated lateral ventricles, and Arnold-Chiari

malformation.
degradation (Jankowsky and Fairman, 2007; Jankowsky et al.,

2001). They have been suggested to be involved in the pathogen-

esis of neurodegenerative diseases, including amyotrophic

lateral sclerosis, spinal muscular atrophy, and Alzheimer dis-

ease; however, evidence is often circumstantial (Steimer and

Klostermeier, 2012). Although not directly involved in RNA pro-

cessing, in silico analysis suggested that PRUNE, in which dis-

ease-associated variant alleles were identified in four distinct

families, is tightly connected to VARS, TUT1, CLP1, and addi-

tional cleavage polyadenylation specific factors (Figure 7). We

suggest thatPRUNE has a potential role in the developing human

brain in addition to its role in cancer cell metastasis and tumor

aggressiveness, and may be added to the growing list of genes

involved in both neurodevelopment and cancer, which includes
ASPM, MCPH1 (Alsiary et al., 2014), the AKT genes (Cohen,

2013), and the FANC genes (Walden and Deans, 2014).

Identification of homozygous LOF variants in candidate genes

relevant to and co-segregating with a given Mendelian trait often

provides evidence supporting causality. The high frequency of

consanguinity in the current study cohort (�80%) allowed for

the identification of several homozygous stop gain and frame-

shift variants in novel candidate genes. These include AGBL2,

encoding a protein with a role in posttranslational modification

of a-tubulin, and SMARCA1, encoding a component of the

SWI/SNF-like chromatin remodeling complex. In addition, we

identified homozygous LOF alleles in three genes with proposed

roles in synaptic transmission: SLC18A2, CPLX1, and SNX14.

Abnormal expression of VMAT2, encoded by SLC18A2, has
Neuron 88, 499–513, November 4, 2015 ª2015 Elsevier Inc. 509
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Figure 7. Suggested Correlation among Neurodevelopmental Stage, Representative Process, Strong Candidate Genes, and Phenotype

Selected genes and their protein-protein interactions are shown in terms of correlation with the neurodevelopmental process and resultant phenotype.
been proposed to contribute to vulnerability toward epilepsy-

related psychiatric disorders and cognitive impairment (Jiang

et al., 2013). Our finding complements the single report in the

literature of a homozygous missense mutation in this gene and

provides our patient with a possible direct route to treatment

with dopamine agonists as described (Rilstone et al., 2013).

The SNX14 gene, homozygously deleted almost in its entirety

in BAB3498 and harboring a homozygous frameshift insertion

in patient CGD-62463468, encodes a protein of the sorting nexin

family, important in cell trafficking and signaling (Mas et al.,

2014). While our work was in progress, another group indepen-

dently reported SNV mutations of this gene in association with

ID, coarse face, and hypoplasia of the cerebellum, specifically

without microcephaly (Akizu et al., 2015; Thomas et al., 2014).

The microcephaly observed in BAB3498 may reflect a more se-

vere phenotype associated with the larger homozygous deletion

or possibly an as-yet-unidentifiedmodifier gene. Finally, a homo-

zygous LOF allele was identified in UBQLN, which has been

studied in Alzheimer disease due to its potential role in protea-

some degradation and its interaction with PSEN1 and PSEN2

(Bertram et al., 2005; Bird, 2005; Stieren et al., 2011). The ubiq-

uitin-proteasome system has recently been proposed to play a

role in the pathogenesis of Down syndrome (Granese et al.,

2013), and several members of this pathway have been impli-

cated in ID (UBE2A, UBE3B, and CRBN) (Basel-Vanagaite

et al., 2012; Nascimento et al., 2006; Xu et al., 2013).

Although traditional classification divides brain malformations

by temporal embryological processes, there have been sugges-

tions that future classification may rely on dysfunctions of partic-
510 Neuron 88, 499–513, November 4, 2015 ª2015 Elsevier Inc.
ular biological pathways (Barkovich et al., 2012; Guerrini and

Dobyns, 2014). Thus, the type of brain malformation in a given

individual and an understanding of its underlyingmolecular path-

ogenesis were used in the prioritization of the potential candidate

genes, which would not have been possible in a cohort of non-

syndromic ID and distinguishes our work from previous publica-

tions (Alazami et al., 2015; Najmabadi et al., 2011). This

approach is underlined bymany of our findings, such as a homo-

zygous AGBL2 truncating mutation in a severe cortical dysplasia

family and aKIF23 variant in a patient with primarymicrocephaly.

KIF23 is predicted to interact with several genes previously asso-

ciated with microcephaly (Figure 7).

Contrary to the widely held paradigm that a genetic syn-

drome is associated with a singular unifying molecular diag-

nosis, recent studies reported that in �5% of patients with a

molecular diagnosis, the phenotype is attributed to mutations

in two distinct disease loci (Yang et al., 2013, 2014). We iden-

tified three families with blended phenotypes of two variants

affecting at least two genes. These included SNX14 and

RARS2 in a family (HOU2215) with severe microcephaly, severe

ID, cerebellar hypoplasia, seizures, and a relatively coarse face.

SNX14 and RARS2 are in linkage disequilibrium—they lie close

together on chromosome 6 and are found in the same AOH

region in these patients. Family HOU2231 had a complex

phenotype of Smith-Lemli-Opitz syndrome and unrelated

elevated creatine kinase. Systematic use of WES data revealed

that both probands had a homozygous SNV in DHCR7 (MIM:

270400), as well as a hemizygous CNV disrupting the DMD

gene, explaining their complex clinical picture and illustrating



the value of a non-targeted genomic analyses over a single lo-

cus genetic approach. In addition, patient BAB5481 was found

to have both 15q11.2 deletion syndrome (MIM: 615656) and a

homozygous missense mutation in ASXL3. Although 15q11.2

microdeletion could explain DD, seizures, and ID, the patient

also had severe microcephaly, diffuse cortical atrophy, and

gastroesophageal reflux, which have been reported in patients

with ASXL3 mutations (Bainbridge et al., 2013; Dinwiddie et al.,

2013). To our knowledge, all reported mutations of human

ASXL3 gene are de novo heterozygous truncating mutations,

whereas we identified a homozygous missense variant in our

case from a consanguineous family.

In conclusion, our study emphasizes the efficiency of WES to

detect genes with variants contributing to diseases that show

Mendelian inheritance, demonstrates theability to reliably identify

homozygous and heterozygous CNVs in WES data, and

highlights the utility of WES in solving complex phenotypes in

patients with more than one molecular diagnosis. Our approach

of sequencing two to three affectedmembers from small families

with apparent recessive inheritance, without prior homozygosity

mapping, differentiates this study from classical studies of reces-

sive pedigrees (Alazami et al., 2015; Najmabadi et al., 2011). We

illustrate the utility of this approach and underscore the added

benefits of solving blended phenotypes and observing the muta-

tion load of individual cases within a given pedigree. The work

provides insights into the biology of brain malformations, as

well as the genomics of neurogenetic diseases. In addition, close

interactionsof several candidates found in this cohort,particularly

theones seen inmore thanone family (CLP1,VARS, andPRUNE),

with the RNA processing factors stress the significance of these

genes in the developing human brain (Karaca et al., 2014).

EXPERIMENTAL PROCEDURES

WES Analysis

We applied WES to selected family members through the Baylor-Hopkins

Center for Mendelian Genomics research initiative. The study was approved

by the Institutional Review Board of Baylor College of Medicine and Columbia

University, and informed consent was obtained from all participants (pro-

bands, unaffected siblings, and parents) before their participation in this study.

Genomic sequencing was performed by the Baylor College of Medicine Hu-

manGenome Sequencing Center, (RRID: nif-0000-10162) following previously

reported protocols (Lupski et al., 2013) and at Columbia University and the Re-

generon Genetics Center (RGC). Briefly, samples underwent whole-exome

capture using Human Genome Sequencing Center core design (52 Mb, Roche

NimbleGen, RRID: nif-0000-31466), followed by sequencing on the HiSeq plat-

form (Illumina) with �1503 depth of coverage. Sequence data were aligned

and mapped to the human genome reference sequence (hg19) using the Mer-

cury in-house bioinformatics pipeline. Variants were called using the ATLAS

(an integrative variant analysis pipeline optimized for variant discovery) and

SAMTOOLS (RRID: nlx_154607, the Sequence Alignment/Map) suites and

annotated with an in-house-developed annotation pipeline that uses annota-

tion of genetic variants and additional tools and databases (Challis et al.,

2012; Li et al., 2009; Wang et al., 2010). During the analyses of candidate var-

iants andmutations, we used external publicly available databases such as the

1000 Genomes Project (RRID: nlx_143819, http://www.1000genomes.org)

and other large-scale exome sequencing projects, including the Exome variant

server, the National Heart, Lung, and Blood Institute (NHLBI) Grand

Opportunity Exome Sequencing Project (RRID: OMICS_00277,http://evs.gs.

washington.edu/EVS/), our in-house-generated exome database (�5,000 indi-

viduals) at the Baylor College of Medicine Human Genome Sequencing Cen-

ter, and the Atherosclerosis Risk in Communities Study Database (http://
drupal.cscc.unc.edu/aric/). The ExAC (RRID: nlx_158505, http://exac.

broadinstitute.org) was used to search for homozygous LOF variants in spe-

cific candidate genes. All experiments and analyses were performed accord-

ing to previously described methods (Bainbridge et al., 2013).

Exome sequencing at the RGC used similar protocols. Exome capture was

performed using the VCRome design (Roche NimbleGen) and sequencing us-

ing the HiSeq platform (Illumina). Mapping and alignment of sequence reads

were performed through the RGC in-house-developed cloud-based American

Bobtail pipeline. Analysis of variants was performed using in-house-developed

bioinformatics pipelines.

AOH and CNV Analysis

To examine AOH regions surrounding candidate variants, we calculated

B-allele frequency using WES data as a ratio of variants reads to total reads.

These data were then processed using the Circular Binary Segmentation

(CBS) algorithm (Olshen et al., 2004) to identify AOH regions.

To identify heterozygous CNVs, we used bothWES and genotype data from

Illumina’s Human Exome (v1-2) arrays. Segmentation of the log ratio signal

from genotype arrays was performed using CBS (Olshen et al., 2004) whereas

WES data were processed using Copy Number Inference from Exome Reads

(CoNIFER, RRID: OMICS_00330) software (Krumm et al., 2012; O’Roak et al.,

2012).

The homozygous CNVs were detected using an in-house-developed algo-

rithm implemented in the R programming language (R Project for Statistical

Computing, RRID: nif-0000-10474). First, for every individual, we computed

the total number of reads in each exon and normalized the read depth values

(RPKM, i.e., reads per kilobase per million mapped reads) using the utility pro-

vided with CoNIFER (Krumm et al., 2012). Next, we identified homozygous de-

letions by analyzing exons for which the RPKM value was lower than 0.5 in less

than 2% of individuals and the RPKM values for remaining individuals were

greater than 1. The second condition ensures that poorly captured regions

are excluded from the analysis. RPKM thresholds were determined based

on the analysis of distribution of RPKM values in previously identified and

confirmed homozygous deletions. Finally, we filtered out homozygous CNVs

that did not overlap with larger (>0.5 Mb) AOH regions. RPKM values were

also used for further visualization of detected deletions. CNVs detected by

informatics analyses were further verified by array comparative genomic hy-

bridization and/or breakpoint junction sequencing.
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D’Angelo, A., Garzia, L., André, A., Carotenuto, P., Aglio, V., Guardiola, O.,

Arrigoni, G., Cossu, A., Palmieri, G., Aravind, L., and Zollo, M. (2004). Prune

cAMP phosphodiesterase binds nm23-H1 and promotes cancer metastasis.

Cancer Cell 5, 137–149.

de la Cruz, J., Kressler, D., and Linder, P. (1999). Unwinding RNA in

Saccharomyces cerevisiae: DEAD-box proteins and related families. Trends

Biochem. Sci. 24, 192–198.

de Ligt, J., Willemsen, M.H., van Bon, B.W., Kleefstra, T., Yntema, H.G., Kroes,

T., Vulto-van Silfhout, A.T., Koolen, D.A., de Vries, P., Gilissen, C., et al. (2012).

Diagnostic exome sequencing in persons with severe intellectual disability.

N. Engl. J. Med. 367, 1921–1929.

Dinwiddie, D.L., Soden, S.E., Saunders, C.J., Miller, N.A., Farrow, E.G., Smith,

L.D., and Kingsmore, S.F. (2013). De novo frameshift mutation in ASXL3 in a

patient with global developmental delay, microcephaly, and craniofacial

anomalies. BMC Med. Genomics 6, 32.

Gilissen, C., Hehir-Kwa, J.Y., Thung, D.T., van de Vorst, M., van Bon, B.W.,

Willemsen, M.H., Kwint, M., Janssen, I.M., Hoischen, A., Schenck, A., et al.

(2014). Genome sequencing identifies major causes of severe intellectual

disability. Nature 511, 344–347.

Granese, B., Scala, I., Spatuzza, C., Valentino, A., Coletta, M., Vacca, R.A., De

Luca, P., and Andria, G. (2013). Validation of microarray data in human lym-

phoblasts shows a role of the ubiquitin-proteasome system and NF-kB in

the pathogenesis of Down syndrome. BMC Med. Genomics 6, 24.

Guerrini, R., and Dobyns, W.B. (2014). Malformations of cortical development:

clinical features and genetic causes. Lancet Neurol. 13, 710–726.

Hirata, H., Ogino, K., Yamada, K., Leacock, S., and Harvey, R.J. (2013).

Defective escape behavior in DEAH-box RNA helicase mutants improved by

restoring glycine receptor expression. J. Neurosci. 33, 14638–14644.

Hurov, K.E., Cotta-Ramusino, C., and Elledge, S.J. (2010). A genetic screen

identifies the Triple T complex required for DNA damage signaling and ATM

and ATR stability. Genes Dev. 24, 1939–1950.

Jankowsky, E., and Fairman, M.E. (2007). RNA helicases—one fold for many

functions. Curr. Opin. Struct. Biol. 17, 316–324.

Jankowsky, E., Gross, C.H., Shuman, S., and Pyle, A.M. (2001). Active disrup-

tion of an RNA-protein interaction by a DExH/D RNA helicase. Science 291,

121–125.

Jiang, G., Cao, Q., Li, J., Zhang, Y., Liu, X., Wang, Z., Guo, F., Chen, Y., Chen,

Y., Chen, G., and Wang, X. (2013). Altered expression of vesicular monoamine

transporter 2 in epileptic patients and experimental rats. Synapse 67, 415–426.

Karaca, E., Weitzer, S., Pehlivan, D., Shiraishi, H., Gogakos, T., Hanada, T.,

Jhangiani, S.N., Wiszniewski, W., Withers, M., Campbell, I.M., et al.; Baylor

Hopkins Center for Mendelian Genomics (2014). Human CLP1 mutations alter

tRNA biogenesis, affecting both peripheral and central nervous system func-

tion. Cell 157, 636–650.

Kleijnen, M.F., Shih, A.H., Zhou, P., Kumar, S., Soccio, R.E., Kedersha, N.L.,

Gill, G., and Howley, P.M. (2000). The hPLIC proteins may provide a link be-

tween the ubiquitination machinery and the proteasome. Mol. Cell 6, 409–419.

Knouf, E.C., Wyman, S.K., and Tewari, M. (2013). The human TUT1 nucleotidyl

transferase as a global regulator of microRNA abundance. PLoS ONE 8,

e69630.

http://exac.broadinstitute.org/about
http://exac.broadinstitute.org/about
https://www.bcm.edu/geneticlabs/
https://www.bcm.edu/geneticlabs/
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref1
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref1
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref1
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref1
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref2
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref2
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref2
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref2
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref2
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref3
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref3
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref3
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref3
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref4
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref4
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref4
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref5
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref5
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref5
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref5
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref6
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref6
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref6
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref6
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref7
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref7
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref7
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref8
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref8
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref8
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref8
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref9
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref9
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref9
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref9
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref10
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref10
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref11
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref11
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref12
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref12
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref12
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref12
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref13
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref13
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref13
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref14
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref14
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref14
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref14
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref15
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref15
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref15
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref16
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref16
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref17
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref17
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref17
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref17
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref18
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref18
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref18
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref19
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref19
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref19
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref19
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref20
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref20
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref20
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref20
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref21
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref21
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref21
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref21
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref22
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref22
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref22
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref22
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref23
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref23
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref24
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref24
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref24
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref25
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref25
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref25
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref26
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref26
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref27
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref27
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref27
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref28
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref28
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref28
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref29
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref29
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref29
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref29
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref29
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref30
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref30
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref30
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref31
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref31
http://refhub.elsevier.com/S0896-6273(15)00837-5/sref31


Kobayashi, T., Hino, S., Oue, N., Asahara, T., Zollo, M., Yasui, W., and Kikuchi,

A. (2006). Glycogen synthase kinase 3 and h-prune regulate cell migration by

modulating focal adhesions. Mol. Cell. Biol. 26, 898–911.

Krumm, N., Sudmant, P.H., Ko, A., O’Roak, B.J., Malig, M., Coe, B.P., Quinlan,

A.R., Nickerson, D.A., and Eichler, E.E.; NHLBI Exome Sequencing Project

(2012). Copy number variation detection and genotyping from exome

sequence data. Genome Res. 22, 1525–1532.
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