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Cerebral small vessel disease: Capillary
pathways to stroke and cognitive decline
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Abstract

Cerebral small vessel disease (SVD) gives rise to one in five strokes worldwide and constitutes a major source of

cognitive decline in the elderly. SVD is known to occur in relation to hypertension, diabetes, smoking, radiation therapy

and in a range of inherited and genetic disorders, autoimmune disorders, connective tissue disorders, and infections.

Until recently, changes in capillary patency and blood viscosity have received little attention in the aetiopathogenesis of

SVD and the high risk of subsequent stroke and cognitive decline. Capillary flow patterns were, however, recently shown

to limit the extraction efficacy of oxygen in tissue and capillary dysfunction therefore proposed as a source of stroke-like

symptoms and neurodegeneration, even in the absence of physical flow-limiting vascular pathology. In this review, we

examine whether capillary flow disturbances may be a shared feature of conditions that represent risk factors for SVD.

We then discuss aspects of capillary dysfunction that could be prevented or alleviated and therefore might be of general

benefit to patients at risk of SVD, stroke or cognitive decline.
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Introduction

Cerebral small vessel disease (SVD) denotes a range of
pathological processes, which affect the small arteries,
arterioles, capillaries and small veins of the brain.1 SVD
is associated with small subcortical infarcts, lacunes,
white matter hyperintensities, enlarged perivascular
spaces, microbleeds, and cortical atrophy,2 gives rise
to one in five strokes worldwide, and constitutes a
major source of cognitive decline, particularly in the
elderly.1

Until recently, changes in capillary morphology and
blood–brain barrier (BBB) function have received little
attention in a etiopathogenesis of SVD and associated
stroke and cognitive decline.3,4 In addition, capillary
flow patterns have now been shown to limit the extrac-
tion efficacy of oxygen in tissue,5 and capillary dysfunc-
tion proposed as a source of stroke-like symptoms6 and
neurodegeneration,7 even in the absence of flow-limit-
ing vascular pathology.

Here, we briefly review the properties of capillary
dysfunction and the evidence for capillary involvement

in SVD and in conditions that impose risk of SVD. We
then examine whether capillary dysfunction may play a
role in the aetiopathogenesis of SVD and the subse-
quent development of stroke or cognitive decline.
Finally, we discuss whether capillary dysfunction may
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serve as a common therapeutic target in efforts to pre-
vent or ameliorate stroke and cognitive decline across
the diverse range of conditions associated with SVD.

Capillary dysfunction

In normal brain, only 30–40% of blood’s oxygen passes
into the brain parenchyma from small arteries, arteri-
oles and capillaries to fuel cerebral metabolism.8

Oxygen extraction is known to be inefficient from capil-
laries with high flow velocities.9 The heterogeneity of
flow velocities across the capillary bed of normal, rest-
ing brain tissue is extremely high10–12 and therefore
limits net oxygen extraction5,13,14 – a biophysical prop-
erty referred to as functional shunting. In the normal
brain, capillary flow patterns homogenize when cere-
bral blood flow (CBF) increases in relation to cortical
activation10,12,15,16 and thereby facilitate more efficient
oxygen extraction.5,14 This homogenization is partly a
passive property of normal microvascular networks: as
CBF increases, the blood tends to distribute in a more
homogenous way across ‘ideal’ capillary networks.17 In
a later section, we discuss how cerebral pericytes regu-
late capillary diameter during functional activation18

and possibly provide active regulation of capillary
flow patterns.19

Capillary dysfunction refers to conditions in which
changes in capillary function and/or patency, or in
blood rheology, disturb either capillary flow patterns,
their homogenization during hyperaemia or both. To
determine the effects of capillary dysfunction on oxygen
extraction, the distribution of erythrocyte velocities or
transit times across the capillary bed must be
known.5,14,17,20,21 For convenience, we quantify capil-
lary dysfunction by the accompanying capillary transit
time heterogeneity (CTH) and use accepted transit time
distributions for which the standard deviation describes
CTH by a single parameter.5,13,14,17,21 Figure 1 illus-
trates how CBF and its microvascular distribution
(CTH), combined, affect oxygen uptake in brain tissue.

If changes in capillary patency or blood rheology
become severe, our analyses predict that the
flow-metabolism coupling, which is crucially required
for tissue function and survival, modifies CBF in a
counterintuitive direction.6 While homogenization of
capillary flows (CTH reduction) maintains efficient
oxygen extraction during hyperaemia in normal
brain,5 only the suppression of CBF can reduce func-
tional shunting if CTH can no longer be reduced.
Attenuated CBF responses (reduced cerebrovascular
reserve capacity) are therefore expected in both capil-
lary dysfunction and flow-limiting conditions – but to
represent the maintenance of flow-metabolism coupling
in the former and flow limitations at the level of resist-
ance vessels in the latter.

Figure 1. The green isocontour surface corresponds to all

combinations of CBF, CTH, and PtO2 for which brain oxygen-

ation – according to our model5 – matches the metabolic rate of

oxygen in resting brain.187 Transitions to combinations of CBF,

CTH and PtO2 that correspond to points located outside the

resulting, bell-shaped surface are therefore predicted to result in

immediate neurological symptoms, and tissue damage if they

persist. The red plane marks the boundary, left of which vaso-

dilation reduces tissue oxygen availability (dubbed malignant

CTH). The maximum value that CTH can attain at a PtO2 of

25 mmHg, if oxygen availability is to support the metabolic needs

of resting brain tissue, is indicated by the label A. As CTH

increases further (progressive capillary dysfunction), CBF must

be attenuated in order to reduce the level of ‘physiological

shunting’. Importantly, continued tissue oxygen metabolism

reduces tissue oxygen tension, and thereby improves blood-

tissue concentration gradients and net extraction. As a result, the

bell-shaped surface widens towards its base, reflecting that higher

levels of CTH (more severe capillary dysfunction) can be

accommodated by attenuating CBF and CBF responses. A critical

limit is reached, however, as PtO2 approaches zero – label B. At

this point, the metabolic needs of tissue are met by ‘delaying’

mean transit time (MTT) to a threshold of approximately 4 s,

corresponding to CBF¼ 21 ml/100ml/min. As a result, slight

increases in CTH (e.g. caused by an infection or dehydration) or

a slight change in CBF (small flow reductions as well as flow

increases) can trigger a critical reduction in tissue oxygen avail-

ability, and thereby stroke-like symptoms. The blue arrow indi-

cates progressive capillary flow disturbances, which cause CTH

to increase and tissue oxygen availability to approach the meta-

bolic requirements of resting brain tissue (the green iso-con-

tour). Note that the traditional notion of ischemia (which

disregards capillary flow patterns) considers only a reduction in

CBF (increase in MTT), that is, a transition along the x-axis in the

three-dimensional plot. Source: Reproduced and modified from

the literature.6 CBF: cerebral blood flow; CTH: capillary transit

time heterogeneity; PtO2: tissue oxygen tension.
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In cerebral ischemia, tissue function and survival are
threatened by tissue hypoxia as a result of limited blood
supply, whereas in capillary dysfunction, the source of
hypoxia is inefficient oxygen extraction from the micro-
circulation. Notably, stroke-like symptoms and hypoxic
tissue injury can therefore, in principle, be caused by
capillary flow disturbances, in the absence of a
flow-limiting condition.6,7 We have shown that CTH
can reach a critical biophysical threshold CTHmax,
above which net oxygen extraction can no longer meet
the metabolic demands of resting brain tissue, although
CBF is suppressed to minimize net functional shunting.6

Notably, the CBF value that optimizes net oxygen
extraction for CTH¼CTHmax seems almost identical
to the classical ischemic threshold of approximately
20ml/100ml/min,6 making critical capillary dysfunction
and cerebral ischemia22 indistinguishable in terms of their
low CBF and elevated oxygen extraction fraction (OEF).

If CBF suppression fails to compensate for capillary
dysfunction, tissue hypoxia and injury can occur at
CBF values above the ischemic threshold and even
above normal brain perfusion. The ‘luxury perfusion
syndrome’,23 which is sometimes observed upon reper-
fusion of tissue after prolonged or severe ischemia, may
represent an instance of tissue damage caused by exces-
sive functional shunting, keeping in mind that capillary
constrictions can be observed after ischemia.19,24

Reductions of CBF to levels below the ischemic
threshold can cause neurological symptoms and tissue
injury irrespective of whether vascular patency is
reduced at the arterial or the capillary level, but some
vascular causes of neurological symptoms and tissue
injury are specific to capillary dysfunction: capillary
dysfunction can thus cause neurological deterioration
and hypoxic tissue injury (a) in the absence of primary,
flow-limiting pathology (e.g. no severe stenosis, throm-
bosis, embolism) (b) under conditions of augmented
CBF (iatrogenic or spontaneous) and (c) due to
increased blood viscosity if this increases CTH
beyond CTHmax.

We discuss additional signatures of capillary dys-
function below.

Sources of capillary dysfunction in
conditions that represent risk factors
for SVD

We now review factors that may affect blood flow
through individual capillaries in normal and diseased
brain. In Tables 2 to 7, we list microvascular changes
(middle column) in conditions considered risk factors
for SVD according to Pantoni’s classification.1

Cutaneous leukocytoclastic angiitis is now classified
as a single-organ vasculitis25 and therefore omitted
from the list. We used Web of ScienceTM and

PubMed to search for occurrences of the terms listed
in the leftmost column of Tables 2 to 7 in combination
with ‘capillary’, ‘endothelium’, ‘glycocalyx’, ‘basement
membrane’, ‘pericyte’ or ’viscosity’. Examples of SVD-
related infections are adapted from Younger.26

Literature searches for Table 5 were conducted between
30 December 2014 and 18 January 2015, while the
remaining literature searches were conducted from 21
July 2014 to 26 September 2014.

Pericyte dysfunction

Pericytes are embedded in layers of the basement mem-
brane that surround the capillary endothelium.27

Pericytes are thought to cover most capillaries in the cen-
tral nervous system where they regulate BBB function28

and aspects of the brain’s immune response.29 Pericytes
are involved in the regulation of capillary development
(angiogenesis), stabilization, maturation and remodel-
ing30 and communicate with endothelial cells through
peg-socket contacts as they – among other functions –
jointly form and maintain the basement membrane.27

Neurogenic locus notch homolog protein 3 (NOTCH3)
signalling is crucial for the postnatal differentiation of
vascular cells into their ‘correct’ arterial, capillary and
venous phenotypes27,31 and their ability to adapt to
changes in pressure and vascular strain.32,33 While peri-
cytes are characterized by their relation to microvessels,
they share cellular and functional characteristics with
vascular smooth muscle cells (VSMCs) encircling arteri-
oles and venules. The distinction between VSMC and
pericytes recently became a matter of debate with regards
to the attribution of CBF-regulation19,34,35 – see discus-
sion in the literature.36

Cerebral pericytes are contractile, and they have
been shown to contract and relax in response to neuro-
mediators, vasoactive drugs and, importantly, to sen-
sory stimulation in brain slices as well as in vivo.18,19,35

Thus, cerebral pericytes have been shown to regulate
capillary diameter during functional activation,18 dilat-
ing about 1 s before arteriolar dilation and thereby pos-
sibly controlling both CBF and CTH.19 Retinal
pericytes have been characterized extensively in vitro:
retinal pericytes constrict in response to high oxygen
tension and relax in response to lactate and low pH,37

possibly providing a mechanism by which capillary
flows can redistribute to meet local cellular metabolic
demands during activation.37 Much like VSMCs, ret-
inal pericytes react to a range of vasoactive substances,
constricting when exposed to mechanical stretch, angio-
tensin II (AT2)38 and endothelin-1 (ET1)39 by a Caþþ-
dependent mechanism40 and relaxing when exposed to
adenosine,41 ATP42 and nitric oxide (NO)43,44 and in
response to cholinergic45 and adrenergic40 stimulation.
See the study by Attwell et al.46 for a review of
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neurovascular coupling mechanisms and the control of
VSMC and pericyte tone.

Pericyte loss and basement membrane thickening are
observed in conditions that represent major risk factors
for SVD, such as ageing, hypertension and diabetes –
see Table 2. Cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy
(CADASIL – Table 3) is associated with mutations in
the NOTCH3 gene.47 The receptor protein encoded by
the NOTCH3 gene is expressed in both VSMCs and
pericytes,48 and recent evidence suggests that
CADASIL is associated not only with degeneration
and damage to VSMCs in small arteries and arterioles
but also to microvascular pericytes. Dziewulska and
Lewandowska49 observed pericyte loss and pericyte
fragments within thickened basement membranes in
skin and muscle biopsies in CADASIL. They reported
that pericyte-endothelial peg-socket contacts were dis-
rupted, seemingly giving rise to basement membrane
thickening, endothelial swelling and protrusions into
the capillary lumen.49 Recent animal models of
CADASIL show evidence of reduced capillary dens-
ity50 and pericyte degeneration51 and suggest that
reduced pericyte coverage is related to impaired BBB
function.52

When exposed to viral and bacterial proteins, peri-
cytes initiate inflammatory responses that facilitate the
recruitment of immune cells from the blood stream – see
the study by Hill et al.53 for a recent review. As neutro-
phils pass through the surrounding basementmembrane,
they pass between embedded pericytes, which in turn
remodel the laminin-rich basement membrane to
permit extravasation.54 Importantly, pericytes seemingly
change their phenotype during inflammation to become
migratory,54 a phenomenon also observed in CNS
injury.55 The ability of pericytes to undertake BBB func-
tion28 and capillary flow control19may therefore be com-
promised during infection and inflammation.

Pericyte exposure to parenchymal waste:
Amyloid and hemoglobin

Molecules the size of haemoglobin and amyloid b (Ab)
are cleared from the subarachnoid space and brain par-
enchyma along the basement membranes of arteries
and capillaries.56,57 Indeed, impaired glymphatic clear-
ance has recently emerged as a potential therapeutic
target.58 Located in the layers of capillary basement
membrane, pericytes are therefore exposed to amyloid
during its perivascular removal and clearance across the
BBB.59–61 Pericytes undergo degeneration when
exposed to certain Ab types in vitro,62,63 and although
the role of pericytes in the pathogenesis of cerebral
amyloid angiopathy (CAA) and Alzheimer’s disease
(AD) remains poorly understood, evidence from Ab

transgenic mice and in vitro models suggest they may
be involved in neurodegeneration.64,65 For recent
reviews, see the study by Hamilton et al.66 and
Winkler et al.67

Microbleeds are associated with SVD, and the vaso-
active properties of hemoglobin breakdown-products
are described in detail in the literature.68,69 Briefly,
spontaneous autoxidation of oxyhemoglobin (HgbO)
to methemoglobin and the iron released from hemoglo-
bin cause the release of highly reactive superoxide rad-
icals.68,69 Superoxides are thought to cause
vasoconstriction by depleting vascular NO levels70,71

and to induce lipid peroxidation and peroxynitrite for-
mation, which in turn cause vasoconstriction and struc-
tural damage to cerebral microvessels, including the
endothelial cell layer.72 The breakdown of heme into
bilirubin under such oxidative conditions results in
the formation of bilirubin oxidation products
(BOXes) that change the contractility, signalling and
metabolism in large vessels – see also the study by
Pyne-Geithman et al.73

Endothelial function

Endothelial cells are mechanically coupled by
tight junctions, which ensure BBB integrity and pre-
vent leakage of toxic molecules into the brain intersti-
tium – see discussion in the literature.3,4 Endothelial
cells are also electrically and metabolically coupled
to each other as well as to nearby VSMCs via gap junc-
tions composed of connexins.74 This rapid, bidirectional
signalling pathway seemingly provides efficient coordin-
ation of vessel function across the microvascular
bed.75–77 Disruption of the signalling between endothe-
lial cells has been shown to cause profound breakdowns
in vascular control across the capillary bed, resulting in
extreme degrees of capillary shunting through the short-
est arteriolo-venular pathways.78

In small-vessel vasculitides (Table 4) associated with
antineutrophilic cytoplasmic antibodies (ANCAs), neu-
trophils adhere to capillary endothelial cells and cause
the release of reactive oxygen species (ROS) and lyso-
somal enzymes. This abnormal inflammatory reaction
causes endothelial cells to undergo necrosis and detach
from the basement membrane, after which they can be
found in peripheral blood.79 While the activation of
neutrophils and endothelial cells in the capillary lumen
may disturb capillary flow patterns in itself, the disrup-
tion of endothelial cell-to-cell signalling described above
is expected to cause severe capillary dysfunction.

Glycocalyx dysfunction

The luminal surface of the capillary endothelium is
covered by a 0.5-mm thick glycocalyx.80,81 This
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carbohydrate-rich matrix affects the passage of blood
cells through the capillary bed.82 reducing capillary
haematocrit to 20–50% of that found in the systemic
circulation. Glycocalyx damage, in turn, disrupts capil-
lary flow regulation, causing capillary hematocrit to
approach that of the systemic circulation.83,84 The gly-
cocalyx constitutes a fluid barrier in the vascular system
and has been implicated in oedema formation.85,86 The
glycocalyx is degraded by direct oxidative stress and
exposure to oxidized lipoproteins,83,87,88 by hypergly-
caemia89 and by ischemia.88,90

Blood viscosity

The dimensions of white blood cells (WBC) and
erythrocytes exceed the average capillary diameter.
Experimental studies have shown that capillary flow
patterns are sensitive to the size, deformability, viscos-
ity, number and endothelial adhesion of blood cells. In
infections and low-grade vascular inflammation, blood
is hence increasingly redirected to thoroughfare chan-
nels which act as functional shunts.91 In a classical
study, hyperviscosity was demonstrated in diabetic
patients (Table 2) compared to age-matched controls
and the viscosity found to correlate with the extent of
microvascular diabetic complications. Accordingly,
erythrocyte deformability was lower in those diabetic
patients who had the most extensive microangiopathy
compared to either diabetics with no complications or
to controls.92

In cryoglobulinaemic vasculitis (Table 5), cryoglobu-
lins precipitate and lead to hyperviscosity.26

Hematocrit is lower in capillaries than in the systemic
circulation, and since cryoglobulins precipitate more
easily under conditions of serum excess, capillary
flows may be particularly sensitive to this phenomenon.

Signs of capillary dysfunction

The previous section suggests that capillary morph-
ology and function may be disturbed in conditions con-
sidered risk factors for SVD. Neuropathological data
and direct in vivo observations of the microcirculation
in these conditions are sparse, however, and it remains
unclear whether capillary dysfunction might antedate
changes in the morphology and function of upstream
arteries and arterioles.

The neurovascular coupling mechanisms,93 which
control local CBF according to the metabolic needs
of tissue, are expected to account for the oxygen extrac-
tion efficacy downstream, including changes related to
capillary dysfunction. Below we discuss how CBF has
to be adjusted in order to compensate for the reduced
oxygen extraction efficacy that accompanies various
degrees of capillary dysfunction. Some CBF changes

are highly suggestive of capillary flow disturbances as
opposed to a flow-limiting pathology, and neurovascu-
lar coupling studies may therefore serve as an indirect
means of addressing the role of capillary dysfunction
in the evolution of SVD from its risk factors.
These changes are listed in the right-most column in
Tables 2–7.

We used Web of ScienceTM and PubMed to search
for occurrences of the terms listed in the leftmost
column of Tables 2–7 in combination with ‘CBF’,
‘blood-oxygen-level-dependent (BOLD)’, ‘oxygen’,
‘metabolism’, ‘functional hyperemia’, ‘vasoreactivity’
and ‘stroke’. Literature searches for column 3 in
Tables 2–7 were conducted concurrently with those
for column 2 (previous section).

Mild capillary dysfunction: CBF increases in
conditions that represent risk factors for SVD

For mild capillary disturbances, the reduction in
oxygen extraction efficacy is so small that it can be
compensated for by elevated CBF. Observations of
increased resting CBF or increased CBF responses
early in the course of SVD precursors therefore suggest
that capillary dysfunction (elevated CTH), rather than
primary changes in the morphology or function of
upstream arterioles, is involved in the early etiology
of the condition. Meanwhile, the BOLD signal is
often used to localize brain activity through its sensitiv-
ity to tissue deoxyhemoglobin concentrations [dHgb].
Mild capillary dysfunction is characterized by reduced
OEF and proportionately higher CBF responses during
functional activations, both of which reduce [dHgb]
and thereby increase BOLD signal amplitudes before
resting CBF and OEF become affected. In asymptom-
atic subjects presented with identical tasks, BOLD
responses are therefore expected to be higher in those
with mild capillary dysfunction than in controls, despite
identical changes in metabolic activity. CBF and
BOLD responses are recorded in grey matter and are
hence sensitive to changes in capillary function in the
cortex and subcortical nuclei. Subcortical lesions may
result in secondary changes in cortical function, and, in
theory, even compensatory hyperactivity in some
regions.

In streptozotocin (STZ)-induced diabetes (Table 1)
in rats, both total and cortical CBF values are indeed
elevated compared to control animals early after induc-
tion of the disease,94–96 and cortical oxygen tension
elevated.96 In early-stage hypertension (Table 2), ele-
vated CBF and BOLD responses to hypercapnia have
been reported in spontaneously hypertensive rats com-
pared to age matched control animals.97 The apolipo-
protein (APOE) "4 allele is associated with both CAA
and the development of AD98 (Table 2), and carriers of
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this allele have therefore been studied extensively. In
asymptomatic APOE "4 carriers aged 19–28, both rest-
ing- and activity-related CBF levels are elevated,99,100

and BOLD signal changes during memory encoding
tasks are elevated in the asymptomatic APOE "4 car-
riers,101–103 consistent with reduced OEF and compen-
satory hyperaemia. Similarly, BOLD responses are
elevated in patients with systemic lupus erythematosus

(SLE – Table 6) but little or no cognitive defects, com-
pared to controls.104 In asymptomatic human immuno-
deficiency virus 1 (HIV-1) infected patients (Table 5),
elevated BOLD signals can be observed105 in propor-
tion to signs of glial activation.106 The notion that viral
replication in brain parenchyma is associated with mild
capillary dysfunction is consistent with findings that
BOLD signal amplitudes are elevated in seropositive
patients with low BBB penetration of combination anti-
retroviral therapy, but comparable to those found in
controls and in patients with high penetrance and
thereby virological control.107 It should be noted that
relative BOLD signal changes depend on both resting
and activation-related CBF and OEF levels. The inter-
pretation of such changes in terms of the underlying
microvascular pathology therefore requires detailed
analysis of the underlying physiology and magnetic res-
onance signal mechanisms.17,108

Moderate capillary dysfunction: Transition from
hyperperfusion to CBF suppression

If capillary flow disturbances become more severe, then
hyperemia fails as a means to compensate for reduced
oxygen extraction efficacy. Instead, CBF responses –
and ultimately resting CBF – must be attenuated in
order to limit functional shunting. The transition
from mild to moderate capillary dysfunction is there-
fore predicted to require dramatic, yet characteristic
changes in CBF in order to maintain flow-metabolism
coupling.

Such a transition, from hyper- to hypoperfusion,
was indeed observed in a follow-up study of asymptom-
atic APOE "4 carriers and controls.109 At the time of
their initial examination, APOE "4 carriers showed
higher resting CBF values in vulnerable brain regions
than did control subjects, while CBF reductions in these
regions 8 years later were significantly larger in APOE
"4 carriers than in controls.109

If flow responses are limited by a physical, flow-lim-
iting condition, then CBF cannot increase beyond a
certain upper limit, irrespective of the metabolic
requirements of brain tissue. If CBF suppression
instead serves to maintain flow-metabolism coupling,
then CBF, tissue metabolism and the extent of capillary
dysfunction determine whether flow suppression is
necessary. We briefly discuss how this phenomenon
might have revealed itself in studies of SVD and its
precursor states.

In a mouse genetic model of CADASIL, Joutel
et al.50 examined CBF responses to functional activa-
tion, CO2 inhalation and reduced perfusion pressure in
5- to 6-month-old animals, at a time-point where no
changes in arterial structure or signs of BBB break-
down could be observed. Animals with and without

Table 1. Abbreviations.

Ab Amyloid b

AD Alzheimer’s disease

ANCA Antineutrophilic cytoplasmic antibody

APOE Apolipoprotein

AT2 Angiotensin II

ATP Adenoside triphosphate

BBB Blood–brain barrier

BOLD Blood oxygen level dependent

CAA Cerebral amyloid angiopathy

CADASIL Cerebral autosomal dominant

arteriopathy with subcortical

infarcts and leukoencephalopathy

CBF Cerebral blood flow

CMRO2 Cerebral metabolic rate of oxygen

CNS Central nervous system

CTC Concentration–time curve

CTH Capillary transit-time heterogeneity

CTHmax Maximum capillary transit-time heterogeneity

[dHgb] Deoxyhemoglobin concentration

eNOS endothelial nitric oxide synthase

FLAIR Fluid attenuated inversion recovery

HCV Hepatitis C virus

HIV-1 Human immunodeficiency Virus 1

MD Mediterranean diet

MELAS Mitochondrial encephalopathy

with lactic acidosis and

stroke-like episodes

MRI Magnetic resonance imaging

MTT Mean transit time

NCM Nailfold capillary microscopy

NIHSS National Institute of Health Stroke Scale

NO Nitric oxide

NOTCH3 Neurogenic locus notch homolog protein 3

OEF Oxygen extraction fraction

PDE Phosphodisterease

PWI Perfusion weighted imaging

ROS Reactive oxygen species

STZ Streptozotocin

SVD Cerebral small vessel disease

VSMC Vascular smooth muscle cell
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the CADASIL-causing NOTCH3 point-mutation had
similar blood pressure, similar resting CBF and similar
CBF responses to CO2 inhalation, a vasodilatory
stimulus. CBF responses to functional activation, how-
ever, were attenuated in CADASIL mice.50 These find-
ings are consistent with capillary dysfunction that only
limits tissue oxygenation during functional activation –
either by deficient pericyte-mediated capillary dilation
(and CTH reduction) during functional activation,19 or
because only the combination of elevated CBF and
increased metabolic demands ‘unmasked’ capillary dys-
function at this early point in the development of char-
acteristic disease signs.

In asymptomatic APOE "4 carriers aged 50–65, ele-
vated resting CBF values have been reported at a time
where their CBF- and BOLD-responses to functional
activation had been suppressed.110 Suppression of
CBF-responses to sensory stimulation at a time where
resting CBF is elevated has also been observed in

spontaneously hypertensive rats, prior to any changes
in their microvasculature.111 These findings are again
consistent with the gradual transition from mild to
moderate capillary dysfunction which first becomes
apparent in states of high metabolic demand.

The unmasking of capillary dysfunction by combin-
ations of high CBF and CTH that necessitate flow sup-
pression was recently illustrated in a study by Suri
et al.112 who observed flow suppression during hyper-
capnia (a strong vasodilator) in young APOE "4 car-
riers compared to noncarriers. These young APOE "4
carriers showed increased hippocampal BOLD
responses to memory tasks, and the attenuation of
their CBF responses during hypercapnia accounted
for 70% of this increase,112 consistent with the predic-
tion that mild (asymptomatic) capillary dysfunction
links the two findings.

Attenuation of functional hyperemia can also be
observed immediately after administration of AT2

Table 2. Type 1: Arteriolosclerosis (age- and vascular risk-factor-related SVD). Type 2: CAA, sporadic or hereditary.

Risk factor Changes in capillary morphology or blood rheology Signs of capillary dysfunction

Ageing Human brain: Pericyte loss. Variable capillary diam-

eters, increased capillary tortuosity, twisting, and

looping. Thickened basement membranes with

inclusions. Pericapillary fibrosis.194,195 Figure 2,

panel B

Hypertension Animal brain: Pericyte degeneration, swelling of

endothelium and surrounding astrocyte endfeet.

Thickened basement membranes.196,197

In vitro: Angiotensin II, endothelin-1 constrict retinal

pericytes.38,39

Animal models: Elevated CBF and

BOLD responses to hypercapnia

in early-stage hypertension.97

Elevated resting flow at time of

suppressed functional

hyperemia.111

Diabetes Human: Thickened basement membranes.198,199

Hyperviscosity and reduced erythrocyte deform-

ability in proportion to microvascular complica-

tions.92

Animal models: Pericyte loss and thickening of capil-

lary basement membrane.196,200,201 Pericyte loss

in STZ-induced diabetes is caused by oxidative

stress in diabetic retinopathy.186 Glycocalyx deg-

radation by oxidative stress, oxidized lipoproteins,

hyperglycemia.83,87,88

In vitro: Hyperglycemia-induced oxidative stress

in pericytic mitochondria cause pericyte

apoptosis.202

Animal models: Elevated CBF early

after disease induction by

STZ.94–96

Cerebral amyloid angiopathy

AD

APOE "4 genotype

Human brain: Pericyte degeneration, pericapillary

fibrosis.190

In vitro: Cultured human pericytes undergo degen-

eration when exposed to certain subtypes of

Ab.62 Pericytes express Ab receptors involved in

amyloid internalization and pericyte death.63

Human: Elevated resting and

activity-related CBF in young

APOE "4 carriers,99,100 elevated

BOLD.101,102,110

AD: Alzheimer’s disease; APOE: apolipoprotein; Ab: amyloid b; BOLD: blood oxygen level dependent; CAA: cerebral amyloid angiopathy;

CBF: cerebral blood flow; STZ: streptozotocin; SVD: small vessel disease.
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and Ab in animal models of hypertension and AD/
amyloidosis, respectively (Table 2)113–115 and antedates
any morphological changes in the vessel wall or brain
parenchyma and even the development of high blood
pressure in the model of hypertension.116 Although the
effects of AT2 and Ab on pericyte tone in living brain
remain to be studied, these findings are consistent with
capillary dysfunction caused by pericyte constrictions

and compensatory increase in VSMC tone to limit
flow responses.

Flow suppression and small vessel changes

The flow suppression observed in animal models of
hypertension and AD/amyloidosis is caused by vascular
production of ROS,117,118 which reacts with NO to

Table 3. Type 3: Inherited or genetic SVD other than CAA.

Risk factor

Changes in capillary morphology or blood

rheology Capillary dysfunction signs

CADASIL/CARASIL Human brain: Deposits of N3ECD48 and GOM

in capillary walls, pericytes.204,49,205

Human skin, muscle: Pericyte loss, thickened

capillary basement membrane with pericyte

fragments. Pericyte-endothelial peg-socket

contact disruption. Endothelial swelling and

luminal processes.49

Animal models: Reduced capillary density.50

Pericyte degeneration.51

Mouse model: Attenuated func-

tional hyperemia prior to

arteriolar damage.50

Swedish-type hereditary

multi-infarct dementia203
No data available No data available

MELAS Human: Endothelial protrusions due to mito-

chondrial aggregates in the cerebrum192

and cerebellum.206 Pericytes contain

aggregates of enlarged mitochondria in

brain192 and muscle191,207 – Figure 2, panels

E and F.

Globally elevated CBF, low OEF,

and reduced CMRO2

before130–133 and

after131,132,134 stroke.

Preserved CBF and vasoreac-

tivity in lesions.135

Fabry’s disease Human brain: Endothelial cell swelling, vacuo-

lization, and deposits in arteries, arterioles,

capillaries and veins.208 Granulomatous and

‘zebra’ deposits (approximately 1 mm) in

endothelial cells and pericytes.209

Animal model: In lesions, storage material in

relation to pericytes.210

Hyperperfusion128 and enhanced

vasodilation212 reversed126,127

by therapy that removes

capillary deposits.189 Lesions

develop in previously

hyper-perfused tissue.129

Hereditary cerebroretinal vasculopathy Human retina: Capillary obliterations with

fluorescent leakage, shunt vessels with

leakage.211

HERNS Human brain: Multilayered, thickened capillary

basement membrane.213,214

Human retina: Capillary obliterations with

tortuous telangiectatic microaneur-

isms.213,214 Widespread capillary closure

and fluorescent leakage.213

COL4A1 gene mutations

(codes for type IV collagen a1

basement membrane protein)

Human retina: Arteriolar (no capillary)

involvement215.

Animal models of collagen IV deficiency: Normal

vascular system, but aberrant capillary

organization216 during development.

PADMAL Small vessel (but no capillary) changes

reported.217,218

CADASIL/CARASIL: erebral autosomal dominant/recessive arteriopathy with subcortical ischemic strokes and leuko-encephalopathy; GOM: granular

osmophilic material; HERNS: Hereditary endotheliopathy with retinopathy, nephropathy and stroke; MELAS: Mitochondrial encephalo-pathy with lactic

acidosis and stroke-like episodes; N3ECD: NOTCH3 extracellular domains; PADMAL: Pontine autosomal dominant angiopathy and leukoencephalo-

pathy; SVD: small vessel disease.
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form peroxynitrite.119 Both NO depletion and peroxy-
nitrite cause vasoconstriction by impairing normal
smooth muscle cell relaxation,120 but also long-term
remodelling and thickening of the vessel walls and
VSMC damage.121 By evoking flow suppression, capil-
lary dysfunction may therefore contribute to – or even
antedate – the wall damage observed in small arteries
and arterioles before SVD becomes overt. Note that

wall thickening narrows the vascular lumen and may
reduce CBF and attenuate CBF responses. This ‘mech-
anical’ flow suppression would therefore be expected to
make flow suppression by oxidative stress superfluous
over time.

Oxygen diffuses through arteriolar walls to supply
the capillary-free area around arterioles, and it can
reach tissue with capillary supply as well. In fact,

Table 4. Type 4: Inflammatory and immunologically mediated SVD. Vasculitis caused by infection.

Risk factor

Changes in capillary morphology or blood

rheology Capillary dysfunction signs

Varicella Zoster Reactivated Varicella Zoster Virus travels across

axons to infect vessel walls.226

Hepatitis C HCV can infect capillary endothelium.227

HCV-related vasculitis is often the result of

cryoglobulinaemia – See Table 3.

HIV-1 HIV infection is associated with vasculitis228 and

ischemic stroke,229 and vasculitis is identified

as the stroke mechanism in many HIV-related

ischemic strokes.230 The role HIV-1 virus, as

opposed those of immunosuppression, coin-

fections, co-morbidities, and antiviral therapy,

in conferring high risk of SVD231 or stroke232

remains controversial. HAND is associated

with infection of perivascular macrophages and

microglia which then release viral proteins

(gp120, Tat and Vpr) which are neurotoxic

in vitro.233 HIV virus infects cerebral capillary

endothelial cells234 HIV proteins cause human

brain microvascular endothelial cell apop-

tosis.235 HIV proteins induce pericyte migra-

tion and reduce pericyte coverage.236

Elevated BOLD signals in asymptomatic HIV

patients.105 Elevated BOLD signal in sero-

positive patients with low CNS penetration

of antiretroviral therapy compared

to patients with high penetrance, and con-

trols.107 Suppression of functional hyper-

emia partly reversed by viscosity-lowering

phosphodiesterase-inhibitor.239

Treponema pallidum Meningovascular neurosyphilis is dominated by

lymphoplasmacytic infiltrates and intima-pro-

liferation (endarteritis obliterans) in the walls

of leptomeningeal arteries, veins and vasa

vasorum and associated with the development

of multiple cerebral infarcts. In Parenchymatous

neurosyphilis, meninges and nervous tissue of

the brain and/or spinal cord is invaded by

spirochetes parenchymal. Associated with

cortical atrophy, amyloid deposits, neurofibril-

lary tangles and dementia. Spirochetes fre-

quently aggregate around capillaries/

microvessels.237

Significant increase in CMRO2 in the absence

of increases in CBF after antibacterial

treatment147 indicating improved oxygen

extraction.

Borrelia burgdorferi Similar to tertiary neurosyphilis (above), Lyme

neuroborreliosis exists in a meningovascular

form, associated with endarteritis obliterans

and multiple cerebral infarcts,238 and in a par-

enchymatous form, with slowly progressive

dementia. Intraparenchymal, perivascular lym-

phoplasmacytic infiltrates is a frequent

finding.237

Reduced cerebrovascular reserve capacity.240

Cerebral hypoperfusion is partially

reversed by antibiotic therapy.148

BOLD: blood oxygen level dependent; CBF: cerebral blood flow; CMRO2: cerebral metabolic rate of oxygen; HAND: HIV associated neurocognitive

disorder; HCV: hepatitis C virus; HIV: human immunodeficiency virus; SVD: small vessel disease.
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recent studies suggest that arterioles account for as
much as 50% of the total oxygen extraction during
rest, while capillaries serve as the primary site of
oxygen extraction during functional hyperemia.122

Arteriolar oxygen extraction is insensitive to CTH
downstream, and the increased arteriolar tortuosity
and length observed in some SVD precursor states123

may therefore, paradoxically, increase arteriolar
oxygen extraction capacity by increasing arteriolar sur-
face area and transit time. The long, tortuous medul-
lary arteries observed in SVD, however, are generally
thought to cause hemodynamic insufficiency. Studies of
retinal vessels in SVD patients suggest that venules are
generally wide in SVD precursor states.124,125 While the
restricted venular lumen observed in venous collageno-
sis123 (Table 7) would be expected to facilitate tissue
oxygen extraction by prolonging blood’s transit time

through the capillary bed, complete venous occlusions,
instead, cause venous infarcts to develop.

Moderate capillary dysfunction: Failure to
suppress CBF

If the microcirculation cannot evoke intrinsic mechan-
isms to limit CBF and CBF responses, then functional
shunting can become so severe that stroke-like symp-
toms and hypoxic tissue injury may develop at CBF
values well above the classical ischemic threshold.

Fabry’s Disease (Table 3) is associated with cerebral
hyperperfusion,126–128 which is reversed or attenuated
by therapies that remove the capillary deposits shown
in Figure 2.126,127 This hyperperfusion might, in
principle, represent flow metabolism coupling, with
hyperaemia compensating for mild capillary

Table 5. Type 4: Inflammatory and immunologically mediated SVD.

Risk factor Changes in capillary morphology or blood rheology Capillary dysfunction signs

ANCA-associated vasculitides:

Granulomatosis with poly-angiitis

(formerly Wegener’s)

Churg-Strauss syndrome

Microscopic polyangiitis

ANCAs cause neutrophil adhesion to capillary

endothelium and trigger their release of toxic

proteases and oxidants in close proximity to the

endothelium, resulting in endothelial cell necrosis

and increased capillary permeability.79,219 The

diseases are dominated by capillaritis in the

kidney, lung or heart, but fibrinoid necrosis of

intracerebral small arteries, arterioles, capillaries

and venules also occurs.26

BOLD responses to fatiguing

stimulus was attenuated in

patients with granulomatosis

with poly-angiitis compared to

controls with similar degree

of fatigue.225

Henoch-Schönlein purpura Arteriolar, capillary and venular interstitial infiltration

by polymorphonuclear lymphocytes, eosinophils

and mononuclear cells, with fibrinoid necrosis and

perivascular granuloma formation.26

Cryoglobulinaemic vasculitis Cryoglobulins, composed of IgG, IgM, complement,

lipoprotein and antigenic moieties, precipitate and

lead to hyperviscosity in serum excess.26

Intravascular activation of complement- and clot-

ting cascades in arterioles and capillaries.26

Primary angiitis of the CNS Affects medium-sized arteries, arterioles, capillaries

and venules of the brain parenchyma and lepto-

meninges.220 Exists in a granulomatous form with

frequent Ab deposit, in a lymphocytic form with

occasional vessel destruction, and a necrotizing

form with transmural fibrinoid necrosis. Strokes

and transient ischemic attacks occur in 30–50% of

patients.220

Sneddon’s syndromej

(Livedo reticuaris)

Human skin: Skin discoloration caused by capillary

stasis and thickening of the arteriolar wall.221

Proliferating capillary endothelial cells with luminal

and abluminal protrusions.222

Human retina: Capillary occlusions/neovasculariza-

tion,223 arteriolar occlusions.224

ANCA: antineutrophil cytoplasmic antibodies; Ab: amyloid b; BOLD: blood oxygen level dependent; CNS: central nervous system; SVD: small vessel

disease.
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dysfunction. The relative hyperemia is, however,
observed in patients with severe neurological symp-
toms127 and seemingly antedates the development of
white matter lesions that may occur in the disease,129

suggesting that tissue damage is the result of insufficient
suppression of excessive vasodilation and functional
shunting in this disease.

Mitochondrial encephalopathy with lactic acidosis
and stroke-like episodes (MELAS – Table 3) is also
associated with severe hyperperfusion, which seemingly
contributes to tissue infarction. Studies have revealed
globally elevated CBF, low OEF and reduced cerebral
metabolic rate of oxygen (CMRO2) in MELAS patients
both before130–133 and after131,132,134 stroke. In these
patients, the mitochondrial enzymes needed for

oxidative phosphorylation are deficient, and it is there-
fore unclear how tissue levels of oxygen, ATP and lac-
tate affect neurovascular coupling. The lack of
metabolic feedback mechanisms to limit excessive vaso-
dilation in this condition is underscored by the finding
that normal vasodilation is preserved, even in hyperper-
fused stroke lesions.135

Vascular endothelium is extremely vulnerable to
radiation and post-radiation angiopathy (Table 7) is
associated with capillary rarefaction and tissue hyp-
oxia.136,137 Mineura et al.138 found hyperperfusion
and low OEF early after radiation therapy in
humans, and Hahn et al.139 demonstrated a dose-
dependent CBF increase three months after irradiation.
If this hyperaemia was a compensatory response to

Table 6. Type 4: Inflammatory and immunologically mediated SVD. Vasculitis caused by connective tissue disorders.

Risk factor

Changes in capillary morphology or blood

rheology Capillary dysfunction signs

SLE Increased capillary length, tortuosity, looping

and hemorrhage on NCM.241
Elevated task-active and task-negative BOLD

responses compared to controls in child-

hood-onset SLE partients with little or no

cognitive defects.104

Systemic sclerosis

(scleroderma)

Mega-capillaries and reduced capillary density

by NCM is a strong predictor of the

development of systemic sclerosis in

patients with Raynaud’s phenomenon242.

In brain, perivascular lymphocytic infil-

trates243 and calcifications of arterial and

arteriolar walls244 have been observed. The

development of cerebral hypoperfusion243

parallels disease development as defined by

NCM in some245 but not all246 patients.

Negative CBF response to pain in areas with

pre-existing hypoperfusion/MRI lesions.141

Dermatomyositis Necrosis of capillary endothelium247 Negative CBF response to pain in areas with

pre-existing hypoperfusion/MRI lesions141.

Sjögren’s syndrome

Rheumatoid vasculitis Rare complication of longstanding, severe

rheumatoid arthritis.

BOLD: blood oxygen level dependent; MRI: magnetic resonance imaging; NCM: nailfold capillary microscopy; SLE: systemic lupus erythematosus; SVD:

small vessel disease.

Table 7. Type 5: Venous collagenosis, and type 6: Other SVDs.

Risk factor

Changes in capillary morphology or blood

rheology Capillary dysfunction signs

Post-radiation angiopathy Post-radiation angiopathy is associated with

capillary rarefaction and tissue hypoxia and

thought to be the result of endothelial

vulnerability to radiation.136,137

Mineura et al.138 found hyperperfusion and

low OEF early after radiation therapy in

humans, and Hahn et al.139 demonstrated a

dose-dependent CBF increase three

months after irradiation, both consistent

with elevated CTH caused by capillary

endothelial damage.

CTH: capillary transit time heterogeneity; OEF: oxygen extraction fraction; SVD: small vessel disease.
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mild capillary dysfunction, then tissue oxygen tension
would be elevated rather than reduced and hyperaemia
limited by flow-metabolism coupling rather than radi-
ation dose. Instead, these observations suggest that
microvascular signalling is severely disturbed, possibly
due to a loss of endothelial regulatory signalling. After
radiation exposure, initial hyperperfusion is often fol-
lowed by normalization of CBF,138 but OEF remains
low,138 indicating reduced tissue metabolism as a result
of tissue damage. Hahn et al.139 observed that neuro-
psychological performance deteriorated when the dose-
dependent CBF increase three months after irradiation
was followed by a reduction in CBF by six months.
These findings suggest that uncontrolled hyperemia
contributes to on-going tissue damage at least three
months after radiation, but also lends hope to the
notion that dose fractionation might ameliorate tissue
damage and cognitive decline.

Severe capillary dysfunction

In severe capillary dysfunction, oxygen availability
gradually approaches the metabolic needs of brain

tissue. The parallel reduction in tissue oxygen tension,
in turn, is highly conducive to BBB breakdown, Ab
deposition and loss of trophic support. See litera-
ture7,140 for a discussion of capillary dysfunction in
dementia and preliminary data.

If capillary changes become so severe that CTH
approaches CTHmax, then even increases in viscosity
might reduce tissue oxygenation enough to trigger
neurological symptoms or tissue injury. This suggests
a mechanism by which dehydration or bacterial infec-
tions (during which WBC count is elevated) can cause
neurological deterioration or stroke-like symptoms in
patients with preexisting, capillary dysfunction.6 We
discuss therapeutic implications of this pathophysio-
logical process below.

In severe capillary dysfunction, resting CBF is pre-
dicted to approach the classical ischemic threshold at
which oxygen extraction is optimal, even for high CTH
values. This biophysical feature implies that, paradox-
ically, tissue oxygenation may be improved to meet the
metabolic demands of functional activation by reducing
CBF to reduce physiological shunting. Indeed,
Ferraccioli et al.141 observed inverted CBF responses

Figure 2. Panel (a) illustrates the organization of endothelial cells, basement membrane and pericytes in the vessel wall. Capillaries

are ensheathed by astrocytic endfeet, and neuronal terminals are closely apposed to capillaries and pericytes.66 Source: Reproduced

from Hamilton et al.66 according to the Creative Commons terms. Panel (b) shows a cross section of normal capillary with a thin

basement membrane (arrow) and normal appearing endothelial cell (e). In ageing (Panel (c)), thickened basement membranes (arrows),

pericapillary fibrosis and pericyte loss are often found. Source: Panels (b) and (c) are reproduced from Farkas et al.188 Panel (d) shows

a capillary cross section from the skin of a patient with Fabry’s disease. Note the lamellar sphingolipid inclusions in the capillary

endothelium (arrow). These inclusions disappear upon enzyme replacement therapy. Source: Reproduced from Eng et al.189 Panel (e)

shows typical cerebral capillary wall pathology in human AD. The arrow indicates pericyte degeneration. The symbols denote lumen

(l), endothelial cell (e), basement membrane (*) and pericyte (p). Source: Reproduced from Farkas et al.190 Panel (f) shows a cross

section of a muscle capillary from a patient with MELAS. Note the thickened basement membrane and increased number and size of

mitochondria in the pericyte. Source: Reproduced from Sakuta and Nonaka.191 Panel (g) shows a cross section of a cerebral capillary

from the motor cortex of a MELAS patient with accumulation of mitochondria in the endothelial cell. Source: Reproduced from

Ohama et al.192 with permission from the publisher. AD: Alzheimer’s disease; MELAS: mitochondrial encephalopathy with lactic

acidosis and stroke-like episodes.

Østergaard et al. 313



to painful stimuli (Raynaud’s phenomenon) in the sen-
sorimotor cortex of patients with scleroderma or SLE
vasculitis (Table 6).

What determines the course of tissue
damage in SVD?

The analysis presented here suggests that progressive
capillary dysfunction inevitably leads to tissue damage
– either gradually, by loss of trophic support, amyloid
pathology, hypoxic injury or inflow of toxic substances
through a failing BBB – or suddenly, in relation to
stroke-like episodes. The precise cause of the small sub-
cortical infarcts, lacunes, white matter hyperintensities,
microbleeds and cortical atrophy that accompany SVD
has been the subject of intense scrutiny – see recent
work by Wardlaw et al.3,4,142

Hassan et al.143 showed that the intron 4ab poly-
morphism of the endothelial NO synthase (eNOS)
gene protects against the development of SVD in the
form of symptomatic, small subcortical infarctions, but
not of SVD with white matter hyperintensities, suggest-
ing that insufficiency of NO may be associated with the
development of small subcortical infarctions. Similarly,
the intron 4aa genotype appears to be protective for
lacunar infarctions.144 In mammals, dietary nitrite is a
major source of NO,145 and eNOS may be involved in
the conversion of nitrate to NO in tissue.146 The finding
that blood nitrite levels depend on endothelial nitric
oxide gene haplotype143 may indicate that interactions
between genotype and dietary habits (see below) is one
of many factors which determine whether SVD pro-
gresses along a ‘stroke-like’ clinical presentation or
along one of white matter hyperintensities and cogni-
tive decline.

Cognitive decline or stroke-like phenotype?

Both capillary dysfunction and arteriolar narrowing can
lead to hypoxic tissue injury – but what determines
whether a SVD precursor state develops along a
‘dementia-like’7 or a ‘stroke-like’6 pathway? Although
‘mixed’ cases exist, chronic spirochete infections by
Treponema pallidum and Borrelia burgdorferi both
come in a meningovascular form, which is dominated
by lymphoplasmacytic infiltrates and intima-
proliferation in the walls of leptomeningeal arteries,
veins and vasa vasorum and associated with the
development of multiple cerebral infarcts, that is, a
stroke-like phenotype. In their parenchymal form, spiro-
chetes invade brain tissue to aggregate around micro-
vessels, and particularly capillaries.147 In this form, the
infection is instead associated with cortical atrophy and
dementia – and often amyloid deposits and neurofibril-
lary tangles. In severe neurosyphillis, antibacterial

treatment in some cases leads to significant increases in
CMRO2without increases in CBF from its near-ischemic
levels.147 Such an ‘isolated’ improvement of OEF and
cerebral metabolism is difficult to reconcile with flow-
limiting SVD, or the reversal of infection-specific sup-
pression of neuronal function.147 We speculate that the
pericapillary invasion of spirochetes may be associated
with severe capillary dysfunction, causing CTH to
exceed CTHmax in general paresis. Reduction of capil-
lary flow disturbances by antibiotic therapy would then
be expected to improve CMRO2 and neurological func-
tion, but only to normalize CBF if CTH was reduced
considerably. In patients with neuroborreliosis and less
severe neurological symptoms, cerebral hypoperfusion
is partially reversed by antibiotic therapy.148

Similar correlates between microvascular histopath-
ology and the progression along pathways dominated
by stroke-like symptoms or cognitive decline may exist
for other SVD risk factors and help elucidate what sep-
arates these etiologically related, but clinically separate,
presentations.

SVD risk factors versus comorbidities

Many regard hypertension as the single strongest risk
factor for SVD, but not all patients with SVD have
hypertension or diabetes, and it has been debated
whether hypertension might be secondary to impaired
cerebral perfusion. Here we briefly discuss whether
hypertension and type-2 diabetes are risk factors for
SVD – or whether they themselves reflect evolving
capillary dysfunction.

We argued above that the attenuation of functional
hyperemia observed after administration of AT2 – a
likely source of capillary dysfunction38 – may represent
flow suppression to maintain flow-metabolism coupling
in brain tissue. This phenomenon was shown to ante-
date the development of high blood pressure in AT2
animal models of hypertension.116 Is it conceivable
that hypertension itself represents a systemic response
to maintain tissue oxygenation in certain organs as
their level of capillary dysfunction reaches the thresh-
olds at which flow-suppression becomes necessary? If
so, which organs? Dickinson proposed that essential
hypertension serves to overcome increased vascular
resistance in the brain’s large, feeding vessels.149

While studying large vessel resistance in hypertension,
however, he points out that histopathological studies
show early changes in capillaries and veins, rather
than small arteries and arterioles, in brain tissue from
hypertensive patients.149,150 These observations are
consistent with capillary changes as a primary event
in hypertension and with the notion that capillary dys-
function require proximal adjustments of vascular
resistance to preserve brain oxygenation.
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If hypertension represents an early sign of capillary
dysfunction, either in brain or other in other organs,
then antihypertensive therapy may be warranted at an
early stage in patients at risk of SVD.151 Further studies
should address whether the antihypertensive effects of
AT2 inhibitors, angiotensin converting enzyme (ACE)
inhibitors and Caþþ channel blockers are linked to
inhibition of AT2 and Caþþ-dependent pericyte con-
striction. Specific antihypertensive agents may also
prove useful in targeting organ- and cell-specific aspects
of capillary dysfunction.

Measurements of glucose-analogue extraction in the
human brain suggest that capillary transit time hetero-
geneity limits glucose extraction.152 Although glucose
extraction differs somewhat from that of oxygen,153 our
analysis suggests that capillary dysfunction also limits
the clearance of glucose from blood.5,154 In prediabetic
rats, impaired glucose tolerance is indeed accompanied
by reduced oxygen extraction efficacy,155 and the benefi-
cial effects of Mediterranian Diet (MD) (see discussion
below) extend to both ambulatory blood pressure and
blood glucose levels.156 Our preliminary analysis indi-
cates that capillary dysfunction favours the extraction
of glucose over that of oxygen.157 As capillary dysfunc-
tion becomes severe, tissue is therefore predicted to
reveal somedegree of aerobic glycolysis.157 This property
may contribute to findings of reduced respiratory coeffi-
cient in patients with severe hypertension.149

Therapeutic implications

Despite the heterogeneity and complexity of the condi-
tions known to contribute to the development of SVD
and to subsequent stroke or cognitive decline, we specu-
late that capillary flow disturbances may be a shared
feature of some if not most of these conditions. Below,
we therefore discuss aspects of capillary dysfunction
that can be prevented or alleviated and therefore
might be of general benefit to patients at risk of SVD,
stroke or cognitive decline.

Blood viscosity

Dehydration and infection-induced leukocytosis
increase blood viscosity. These common occurrences
can therefore reduce the brain’s oxygen supply by
increasing CTH. Influenza vaccinations are offered to
the elderly in order to reduce the incidence of influenza
and secondary infections, and this is known to reduce
the number of stroke deaths.158–160 Infections may trig-
ger thromboembolism by destabilizing atheromatous
plaques in the walls of cerebral vessels, but we speculate
that increases in blood viscosity may elicit stroke-like
symptoms in patients with preexisting, severe capillary
dysfunction as well. Therefore, influenza vaccinations

may be beneficial for SVD patients, irrespective of age.
The impact of bacterial infections on cerebral oxygen-
ation and thereby cognition may also be reflected in the
observation that eradication of chronic helicobacter
pylori infections in AD patients dramatically improves
their cognitive scores and overall survival.161,162

CTH may be reduced by lowering blood viscosity,
and aggressive management of hyperlipidaemia may
therefore be warranted in SVD patients. Similarly,
high homocysteine levels increase blood viscosity,
increase the adhesion of monocytes to the capillary
wall and cause oxidation of low-density lipoproteins163

and could therefore represent a source of capillary dys-
function. Indeed, Hassan et al.164 showed that elevated
homocysteine levels represent an independent risk
factor of SVD. A meta-analysis has suggested that
homocysteine-lowering therapy may reduce stroke
risk in regions where folate levels are low.165

Phosphodiesterase (PDE) inhibitors reduce platelet
aggregation,166 decrease blood viscosity167 and increase
the flexibility of erythrocytes.167 While reduced platelet
aggregation might increase bleeding risk, the haemor-
heologic PDE inhibitor effects would be expected to
reduce CTH and thereby improve tissue oxygenation.
For a recent review of pharmacological approaches to
SVD management, see literature.168

Nicotine up-regulates the expression of adhesion
molecules in the capillary endothelium169 and increases
leukocyte rolling,170 keeping in mind that the latter is
observed mainly in post-capillary venules where selectin
density and glycocalyx properties provide optimal
adhesion for leukocyte recruitment.171 In additions to
nicotine’s effects on larger vessels and large vessel ather-
omatous plaques, smoking would therefore be expected
to worsen capillary flow disturbances, to accelerate the
development of SVD from its risk factors and to
increase the risk of an ischemia-like event. Indeed,
pack years of smoking are associated with an increased
risk of stroke in CADASIL172 and with a higher burden
of SVD lesions in patients with sporadic lacunar
stroke.173 Patients with SVD precursor states should
therefore receive help to reduce not only smoking, but
also nicotine consumption in general, in order to reduce
their risk of later cognitive decline or stroke.

Hyperaemia, anaemia and poor oxygen saturation

Hyperaemia is predicted to be harmful in patients with
capillary dysfunction.

Obstructive sleep apnea (OSA) is associated with
periods of severe nocturnal hypercapnia and hypox-
emia, both of which cause dramatic increases in CBF
in the normal brain. In addition, reductions in oxygen
saturation cause a proportionate reduction in the net
oxygen metabolism that can be supported for a given
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level of capillary dysfunction – increasing the risk of
neurological symptoms. The risk that hyperaemia
poses to patients who suffer from capillary dysfunction
may in part be reflected in the observation that con-
tinuous positive airway pressure (CPAP) treatment
reduces the incidence of strokes.174

The vulnerability of patients with capillary dysfunc-
tion to increased blood viscosity and reduced arterial
oxygen content may contribute to the strong associ-
ation between delirium and dementia:175 declining
haemoglobin levels, dehydration and minor infections
are known to herald delirium in the elderly. In patients
with severe capillary dysfunction, small reductions in
haemoglobin concentration or blood saturation, as
well as increases in blood viscosity, may trigger regional
cerebral hypoxia and thus, in principle, contribute to
delirium symptoms. For patients with SVD precur-
sor states, stricter definitions of anaemia and special
attention to pulmonary function may therefore be war-
ranted to reduce the risk of delirium and to alleviate the
long-term consequences of chronic brain tissue
hypoxia.

NO depletion

Capillary NO depletion due to oxidative stress and
tissue hypoxia may represent a modifiable aspect of
capillary dysfunction. Mediterranean diet is rich in
green-leafed vegetables, a major source of dietary
nitrate (see above). One might expect this diet to offer
some protection towards NO depletion in patients with
capillary dysfunction, and hence the development of
SVD pathology. Preference for MD is indeed asso-
ciated with a lower burden of white matter hyperinten-
sities176 and, more generally, with a lower risk of
ischemic stroke.177,178 Keeping in mind that this pro-
tective effect may be attributable to other MD constitu-
ents, these observations may warrant further studies of
dietary interventions in SVD and its risk factors. See
also the study by Bath and Wardlaw.168

Stroke management in SVD patients

Given the deleterious effects of dehydration and poor
saturation on tissue oxygenation, pre-hospital rehydra-
tion and efforts to reach full blood saturation may be
warranted in patients with capillary dysfunction. While
recanalization therapy clearly limits infarct size if large
vessel occlusion is the cause of tissue hypoxia, it is
important to keep in mind that means of restoring
capillary flow patterns should also be explored.19,24,179

Since SVD risk factors are generally prevalent in the
stroke population irrespective of mechanisms of indi-
vidual events, these interventions may be of general
benefit.

Diagnostic considerations

Flow-limiting conditions and moderate capillary dys-
function are both predicted to reduce cerebrovascular
reserve capacity and increase OEF. We showed
recently that elevated CTH can contribute significantly
to the elevated OEF observed in patients with carotid
stenosis140 and proposed that concurrent capillary dys-
function may contribute to the non-superiority of
bypass surgery over aggressive cardiovascular risk
factor management for stroke prevention in patients
with severe carotid disease.180 Assessment of CTH and
thus the ‘capillary contribution’ to elevated OEF may
therefore be warranted when revascularization therapy
is considered in patients with carotid stenosis
and SVD progenitor states such as diabetes and
hypertension.

The detection of capillary dysfunction may also
prove important in the management of acute stroke in
SVD patients. In acute ischemic stroke, perfusion
weighted imaging (PWI) is widely used in the identifi-
cation of salvageable tissue prior to recanalization ther-
apy. Based on dynamic computerized tomography (CT)
or magnetic resonance imaging (MRI) during bolus
injection of an intravascular contrast agent, concentra-
tion–time curves (CTC) can be estimated in each image
voxel and corrected for arterial contrast profile in each
patient. The resulting transit time metrics, such as the
mean transit time (MTT) and time-to-maximum (Tmax),
can then be compared to thresholds above or below
which literature studies have shown high likelihood of
infarction in the absence of recanalization. Such studies
of the relation between perfusion metrics and tissue
outcome have found inconsistent transit time thresh-
olds.181 We speculate that this finding relates to the
fact that tissue outcome depends on the extent of capil-
lary dysfunction in ‘hypoperfused’ tissue: first, the
tissue CTC recorded during PWI depends on both
CBF and CTH, but the PWI algorithms used in studies
so far cannot disentangle the two.182 The success of
current recanalization therapies, however, clearly
hinges on whether hypoperfusion is the result of a vas-
cular occlusion, exacerbated capillary dysfunction, or
both. Differences in the proportion of stroke subtypes
and the incidental dependence of preferred transit time
metric on oxygen extraction efficacy6 may therefore
explain the difficulty in establishing ‘universal’ transit
time thresholds to define tissue-at-risk in acute stroke
patients from cohort studies.

Figure 3 shows acute PWI maps from an 84-year-old
man with a history of hypertension and smoking who
presented with mild (NIHSS 4) stroke symptoms. We
note that MTT was prolonged and OEF predicted to be
high in relation to tissue that subsequently went on to
infarction (red circle). Prolonged MTT and high OEF
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are indeed central characteristic of penumbral tissue,22

yet areas with white matter hyperintensities showed
similar changes in this patient. Our preliminary data
suggest that knowledge of CTH is necessary to predict

OEF as obtained by positron emission tomography
(PET).140 Needless to say, further studies are needed
to disentangle the effects of limited flow (low CBF)
and capillary dysfunction (high CTH relative to

Figure 3. The two leftmost columns in Figure 3 show acute FLAIR and ADC at four identical slice-positions in an 84-year-old patient

who presented with acute stroke symptoms three hours earlier. Acute ischemic changes are visible as areas of low ADC (red circles),

consistent with reduced extracellular water diffusion and often ascribed to anoxic depolarizations. The FLAIR images show discrete

(purple ellipses) and confluent (brown circles) white matter hyperintensities. The rightmost column show FLAIR images in the same

slice positions 30 days later. The green overlays on bright tissue lesions (within the red circles) indicate tissue that infarcted in relation

to the stroke episode. Note that areas of elevated CTH and MTT are observed in relation to the area of low ADC.

The COV is relatively independent of CBF in normal microvascular network, and this map therefore helps visualize areas where CTH

are higher or lower than expected.17 Note that COV is elevated in the tissue areas with elevated ADC, indicating that microvascular

flow patterns are disturbed beyond what would be expected based on reduced CBF alone. It should be kept in mind that PWI is

sensitive to the tracer retention in a large tissue volume, in which small arteries/arterioles, capillaries and venules/small veins each take

up roughly one-third of the blood volume. The gradient-echo pulse sequence used in this study is equally sensitive to tracer in these

vessels, irrespective of their size, while PWI by spin-echo MRI is weighted towards capillary-size vessels.193 Our preliminary

experience shows that disease may alter COV, as determined by gradient- and spin-echo PWI, respectively, in opposing directions

(results not shown). We speculate that areas of reduced COV in this patient may reflect that flow through small arteries and arterioles

become more uniform as their walls undergo morphological changes in chronic SVD. The OEF as determined by our biophysical

model5 is also shown. Widespread areas of elevated white matter OEF are noted, especially in the hemisphere affected by the stroke.

Detailed studies of well-characterized SVD patients are clearly needed to understand how changes in capillary morphology and local

tissue oedema (elevated ADC) affect CTH values determined by PWI methods. ADC: apparent diffusion coefficient; CBF: cerebral

blood flow; MTT: Mean Transit Time; COV: CTH/MTT ratio; CTH: capillary transit-time heterogeneity; FLAIR: fluid attenuated

inversion recovery; MRI: magnetic resonance imaging; OEF: oxygen extraction fraction; PWI: perfusion weighted imaging; SVD: small

vessel disease.
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MTT) on oxygen extraction in SVD and SVD-related
strokes.

Conclusion

The morphology and function of cerebral capillaries in
conditions considered risk factors for SVD remains
relatively understudied. This review suggests that capil-
lary dysfunction may be an early and shared feature of
SVD risk factors, and a source of neurodegeneration,
stroke and cognitive decline, despite considerable dif-
ferences in the aetiologies and clinical presentations of
these syndromes. We propose that the study of parallel
changes in capillary and arteriolar morphology and
function may represent an important area of preclinical
SVD research. Except for studies in animal models of
hypertension, diabetes and CADASIL and in human
APOE-"4 carriers, we identified few reports of neuro-
vascular coupling in the early or presymptomatic phase
of SVD risk factors. Given that altered neurovascular
coupling may reveal capillary dysfunction before symp-
toms are predicted to arise, studies using BOLD con-
trast or CBF-sensitive methods might provide new
insights into the aetiopathogenesis of SVD. Similarly,
direct measurements of CTH as an index of capillary
dysfunction should be applied to SVD risk factors to
test the sensitivity of PWI as an investigative or diag-
nostic tool.

In this review, the pericyte emerged as a critical
determinant of several aspects of capillary function.
Recent breakthroughs in the understanding of this
cell19,24,64,67,183–185 have already contributed to our
understanding of neurodegeneration and stroke.
Studies in stroke179 and diabetic retinopathy186 lend
hope to the notion that pericytes and other components
of the neurovascular unit that are affected in SVD may
represent targets in future efforts to prevent capillary
dysfunction.
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