EHRA Position paper

European Journal of Preventive Cardiology 2017, Vol. 24(1) 4–40 © The European Society of Cardiology 2016 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav DOI: 10.1177/2047487316676037 ejpc.sagepub.com

European Heart Rhythm Association (EHRA)/European Association of Cardiovascular Prevention and Rehabilitation (EACPR) position paper on how to prevent atrial fibrillation endorsed by the Heart Rhythm Society (HRS) and Asia Pacific Heart Rhythm Society (APHRS)

EHRA Scientific Committee Task Force: Bulent Gorenek (chair)^{1,*}, Antonio Pelliccia (co-chair)², Emelia J. Benjamin³, Giuseppe Boriani⁴, Harry J. Crijns⁵, Richard I. Fogel⁶, Isabelle C. Van Gelder⁷, Martin Halle⁸, Gulmira Kudaiberdieva⁹, Deirdre A. Lane¹⁰, Torben Bjerregaard Larsen¹¹, Gregory Y. H. Lip¹⁰, Maja-Lisa Løchen^{12,13}, Francisco Marin¹⁴, Josef Niebauer¹⁵, Prashanthan Sanders¹⁶, Lale Tokgozoglu¹⁷, Marc A. Vos¹⁸ and David R. Van Wagoner¹⁹

Document reviewers: Laurent Fauchier²⁰, Irina Savelieva²¹, Andreas Goette²², Stefan Agewall²³, Chern-En Chiang²⁴, Márcio Figueiredo²⁵, Martin Stiles²⁶, Timm Dickfeld²⁷, Kristen Patton²⁸, Massimo Piepoli²⁹, Ugo Corra³⁰, Pedro Manuel Marques-Vidal³¹, Pompilio Faggiano³², Jean-Paul Schmid³³ and Ana Abreu³⁴

¹Eskisehir Osmangazi University, Eskisehir, Turkey; ²Institute of Sport Medicine and Science, Rome, Italy; ³Framingham, MA, USA; ⁴University of Modena and Reggio Emilia, Modena Italy; ⁵Maastricht University Medical Centre, Maastricht, The Netherlands; ⁶St Vincent Medical Group, Indiana, USA; ⁷University Medical Center Groningen, Groningen, The Netherlands; ⁸Prevention and Sports Medicine, Technical University Munich, München, Germany; ⁹Adana, Turkey; ¹⁰University of Birmingham, Birmingham, UK; ¹¹Aalborg University Hospital, Aalborg, Denmark; ¹²UiT The Arctic University of Norway, Tromso, Norway; ¹³Mary MacKillop Institute for Health Research, Centre for Research Excellence to Reduce Inequality in Heart Disease, Australian Catholic University, Melbourne, Australia; ¹⁴Hospital Universitario Virgen De La Arrixaca, Murcia, Spair; ¹⁵Paracelsus Medical University Salzburg, Salzburg, Austria; ¹⁶Royal Adelaide Hospital, Adelaide, South Australia;¹⁷Hacettepe University, Ankara, Turkey; ¹⁸UMC Utrecht, Utrecht, The Netherlands; ¹⁹Cleveland Clinc Foundation, Cleveland, OH, USA; ²⁰Centre Hospitalier Universitaire Trousseau, Tours, France; ²¹St George's University of London, London, UK; ²²St. Vincenz-Krankenhaus Gmbh Paderborn, Germany; ²³Oslo University Hospital Ulleval, Norway; ²⁴Taipei Veterans General Hospital, Taipei, Taiway; ²⁵State University of Campinas, San Paolo, Brazil; ²⁶Waikato Hospital, Hamilton, New Zealand; ²⁷Baltimore, MD, USA; ³¹University Hospital of Lausanne, Lausanne, Switzerland; ³²Unita' Operativa di Policardiografia, Brescia, Italy; ³³Spital Tiefenau, Bern, Switzerland; and ³⁴Hospital de Santa Marta, Lisboa, Portugal

Keywords

Arrhythmias, Atrial fibrillation, Prevention, Risk factors, Obesity, Hyperlipidaemia, Diet, Caffeine, Alcohol, Obstructive sleep apnoea, Diabetes, Hypertension, Smoking, Air pollution, Recreational drugs, Psychological distress, Physical activity, Genetic predisposition, Hyperthyroidism, Supraventricular arrhythmias, Post-operative atrial fibrillation, Therapy, Stroke, Patient preferences, Health economics, Medications

This article is being co-published in the following journals: European Journal of Preventive Cardiology and Europace. To request permission to re-use any part of this article, please contact SAGE Publishing: http://online.sagepub.com/

^{*}Corresponding author: Bulent Gorenek, Department of Cardiology, Faculty of Medicine, Eskisehir Osmangazi University, Eskisehir, Turkey. E-mail address: bulent@gorenek.com

Table of contents

Abbreviations and acronyms
Introduction
Health economic considerations
Obesity
General diet considerations
Blood lipids and fish consumption
What is the impact of blood lipids on risk of AF?6
Dietary fish consumption vs. studies with fish oil
supplements6
Obstructive sleep apnoea6
Hypertension
Diabetes mellitus
Smoking10
Air pollution
Caffeine
Alcohol consumption
Recreational drugs16
Medications
Psychological distress18
Physical activity and inactivity19
Genetic predisposition
Hyperthyroidism and other endocrine disorders22
Electrophysiological considerations
Atrial premature beats triggering AF
Supraventricular tachyarrhythmias causing AF23
Post-operative AF
Upstream therapies to prevent AF
Risk factors leading to AF development as risk factors
for thromboembolic complications25
Patient values and preferences
Conclusions
References

Abbreviations and acronyms

ACEI,	angiotensin converting enzyme inhibitors
AF, ARB, AVNRT,	atrial fibrillation angiotensin receptor blockers atrioventricular nodal re-entry tachycardia
BMI,	body mass index
CHADS2,	cardiac failure, hypertension, age, diabetes, stroke (doubled)
CHA2DS2-VASc,	congestive heart failure or left ventricular dysfunction, hyper- tension, age \geq 75 (doubled), dia- betes, stroke/transient ischaemic attack (doubled)-vascular dis- ease, age 65–74, sex category (female)
CI,	confidence interval

FU,	follow-up
HR,	hazard ratio
HDL,	high-density lipoprotein
,	cholesterol
ICD,	implantable cardioverter
,	defibrillators
LA,	left atrium
LDL,	low-density lipoprotein
2	cholesterol
LV.	left ventricle
NOAC,	non-VKA oral anticoagulant
OAC,	oral anticoagulation
OR,	odds ratio
OSA,	obstructive sleep apnoea
n3-PUFA,	v-3 polyunsaturated fatty acids
RAAS,	renin-angiotensin-aldosterone
	system
RR,	relative risk
SBP,	systolic blood pressure
SAMe-TT2R2,	sex (female), age (<60 years),
	medical history, treatment
	(interacting drugs, e.g. amiodar-
	one for rhythm control), tobacco
	use (within 2 years) (doubled),
	Race (non-Caucasian) (doubled)
SVT,	supraventricular
	tachyarrhythmia
VKA,	vitamin K antagonist

Introduction

Atrial fibrillation (AF) is an important and highly prevalent arrhythmia, which is associated with significantly increased morbidity and mortality, including a four- to five-fold increased risk for stroke,1,2 a two-fold increased risk for dementia,^{3,4} a three-fold risk for heart failure,² a two-fold increased risk for myocardial infarction,^{5,6} and a 40-90% increased risk for overall mortality.^{2,7} The constantly increasing number of AF patients and recognition of increased morbidity, mortality, impaired quality of life, safety issues, and side effects of rhythm control strategies with antiarrhythmic drugs, and high healthcare costs associated with AF have spurred numerous investigations to develop more effective treatments for AF and its complications.⁸ Although AF treatment has been studied extensively, AF prevention has received relatively little attention, while it has paramount importance in the prevention of morbidity and mortality, and complications associated with arrhythmia and its treatment. Current evidence shows a clear association between the presence of modifiable risk factors and the risk of developing AF.

By implementing AF risk reduction strategies aiming at risk factors such as obesity, hypertension, diabetes, and obstructive sleep ap-noea (OSA), which are interrelated, we impact upon the escalating incidence of AF in the population and ultimately decrease the healthcare burden of associated co-morbidities of AF.

To address this issue, a Task Force was convened by the European Heart Rhythm Association and the European Association of Cardiovascular Prevention and Rehabilitation, endorsed by the Heart Rhythm Society and Asia-Pacific Heart Rhythm Society, with the remit to comprehensively review the published evidence available, to publish a joint consensus document on the prevention of AF, and to provide up-to-date consensus recommendations for use in clinical practice. In this document, our aim is to summarize the current evidence on the association of each modifiable risk factor with AF and the available data on the impact of possible interventions directed at these factors in preventing or reducing the burden of AF. While the evidence on AF prevention is still emerging, the topic is not fully covered in current guidelines and some aspects are still controversial. Therefore, there is a need to provide expert recommendations for professionals participating in the care of at-risk patients and populations, with respect to addressing risk factors and lifestyle modifications.

Health economic considerations

Atrial fibrillation is a costly disease, both in terms of direct, and indirect costs, the former being reported by cost of illness studies as per-patient annual costs in the range of US \$2000–14 200 in North America and of €450–3000 in Europe.⁹

In individuals with AF or at risk of developing AF, any effective preventive measure, intervention on modifiable risk factors or comorbidities, as well as any effective pharmacological or non-pharmacological treatment has the aim to reduce AF occurrence, thromboembolic events and stroke, morbidity and, possibly, mortality related to this arrhythmia. Apart from the clinical endpoints, achievement of these goals has economic significance, in terms of positive impact on direct and indirect costs and favourable cost–effectiveness at mid- or long-term, in the perspective of healthcare systems.^{10–12}

In view of the epidemiological profile of AF and progressive aging of the population,¹³ an impressive increase of patients at risk of AF or affected by AF,¹⁴ also in an asymptomatic stage, is expected in the next decades, inducing a growing financial burden on healthcare systems, not only in Europe and North America, but also worldwide.^{15,16}

In consideration of this emerging epidemiological threat due to AF, it is worth considering a paradigm shift, going beyond the conventional approach of primary prevention based on treatment of AF risk factors, but, instead, considering the potential for 'primordial' prevention, defined as prevention of the development of risk factors predisposing to AF in the first place.¹⁷ This approach, aimed at avoiding the emergence and penetration of risk factors into the population, has been proposed in general terms for the prevention of cardiovascular diseases¹⁷ and should imply combined efforts of policymakers, regulatory and social service agencies, providers, physicians, community leaders, and consumers, in an attempt to improve social and environmental conditions, as well as individual behaviours, in the pursuit of adopting healthy lifestyle choices.¹⁶ Since a substantial proportion of incident AF events can be attributable to elevated or borderline levels of risk factors for AF,¹⁸ this approach could be an effective way to reduce the financial burden linked to AF epidemiology. In terms of individual behaviour and adoption of a 'healthy lifestyle', it is worth considering that availability of full healthcare coverage (through health insurance or the healthcare system) may in some cases facilitate the unwanted risk of reducing, at an individual level, the motivation to adopt all the preventive measures that are advisable, in line with the complex concept of 'moral hazard effect'.¹⁹ Patient education and patient empowerment are the correct strategies for avoiding this undesirable effect.

Obesity

Obesity is associated with the development of AF and has an important impact on AF-related clinical outcomes (Table 1).²⁰⁻²⁵ A strategy of weight control may reduce the increasing incidence of AF making it an important subject in the prevention of AF^{22,26,27} and long-term benefit for patients at risk for developing AF.²⁸ The strongest evidence for adverse clinical outcomes comes from various large cohort studies (Table 1). The Framingham Heart Study²³ revealed that obesity is an important predictor of development of AF in adults and demonstrated via echocardiographic data, that the relationship between body size and AF is mediated by left atrial enlargement and inflammation.²⁹ A recent communitybased study in the Netherlands confirmed that, in addition to the conventional risk factors for AF, body mass index (BMI) was strongly associated with AF with a 45% increased risk of AF with every five points of BMI increase.²⁵ This study supports the notion that BMI should be regarded as a validated risk factor for incident AF.²⁵ Indeed, obesity was the strongest contributor to incident AF in a number of studies, worldwide.^{20,21,25,30} In the Guangzhou Biobank Cohort Study, for example, both general and central obesity were associated with increased risk of AF in an Asian population with generally much lower levels of obesity compared with Western countries.²¹

A large Danish prospective population-based cohort study,²⁴ among 55 273 men and women aged 50–64 years of age at recruitment, also confirmed the association between obesity and incident AF. In addition, bioelectrical impedance derived measures of body composition and combinations of anthropometric measures of body fat distribution were associated with the increased risk of developing AF.²⁴ Also, diabetes at baseline increased proportionally from 6.9% with a BMI < 25 kg/m² to 26% in those with a BMI > 30 kg/m².²⁴ This is probably important since a meta-analysis has shown that patients with diabetes had an ~40% greater risk of AF compared with those without diabetes.³¹

Study	Design	Subjects	FU	BMI groups (kg/m ²)	AF, %	Risk ^a (95% CI)
Dublin et al. ²⁰	Population based, case-control design	1410 cases 2203 controls	N/A	Obese: (BMI ≥30)	N/A	OR: 1.40 (1.15–1.71)
Long et al. ²¹	Nested case-control study	5882 men 14 548 women	N/A	Overweight (BMI 23 to <25) Obese (BMI ≥25)	0.8	Overweight: 1.18 (0.78–1.79), Obese: 1.47 (1.01–2.13)
Tedrow et al. ²² Women's Health Study	Prospective cohort study	34 309	12.9 ± 1.9 yrs	Overweight (BMI 25 to <30) Obese (BMI ≥30)	2.4	Overweight: HR 1.22 (1.02 1.45) Obese: HR: 1.65 (1.36–2.00)
Wang et al. ²³ Framingham Heart Study	Prospective cohort study	5282	13.7 yrs	Normal (BMI 18.5 to <25) Overweight (BMI 25 to <30) Obese (BMI ≥30)	10.0	Obese: men 1.52 (1.09–2.13) women 1.46 (1.03–2.07)
Frost et al. ²⁴	Prospective cohort study	55 273	13.5 yrs	Underweight (BMI <18.5) Normal (BMI 18.5 to <25) Overweight (BMI 25 to <30) Obese (BMI ≥30)	Men 3% (1669) Women 1.6% (912)	1.29 (1.24–1.33)
Vermond et al. ²⁵	Dutch community based cohort study	8265	9.7 yrs	Continuous BMI	AF incidence 3.3 per 1000 person-year	BMI, per 5 kg/m ² HR: 1.45 (1.21–1.74)

AF, atrial fibrillation: BMI, body mass index; CI, confidence interval; FU, follow-up; HR, hazard ratio; INA, not available; OR, odds ratio; pts, patients; SD, standard deviation; yrs, years. "HR per 1 sex-specific standard deviation (5D) or the adjusted HR for 1 sex-specific SD increment.

The potential implications of these findings are amplified by the fact that obesity has reached epidemic proportions worldwide.³² As both AF and obesity are increasing in lowand middle-income countries, the results should have significant public health implications. Importantly, obesity may contribute to the risk of AF-related complications. For example, another large cohort study from Denmark has shown that the combination of overweight and AF can increase the risk of stroke and death,33 demonstrating that being either overweight or obese increases the risk for ischaemic stroke, thromboembolism and death in patients with AF, even after adjustment for the CHADS₂ and CHA₂DS₂-VASc risk scores. However, an obesity paradox exists. As an example, The Atrial Fibrillation Follow-up Investigation of Rhythm Management study, one of the largest multicentre trials of AF including 4060 patients, found that obese patients with AF appear to have better long-term outcomes than nonobese patients.34

A logical consequence of these studies is that overweight/ obese patients should be informed that there is not only a risk for the commonly known consequences such as diabetes, hypertension, coronary artery disease, and heart failure, but also that there is a greater risk of developing AF and a subsequent risk of stroke and death.

General dietary considerations

There is currently a paucity of evidence on the effect of unhealthy or extreme weight-loss diets on the development of AF (Table 2),^{35–40} and therefore the association between specific dietary factors and AF is tenuous at this time. Only one study falls under this topic, by Al Suwaidi et al.⁴² which enrolled 465 outpatients who were fasting during the month of Ramadan. Of the ~5% who had AF at enrolment, only one had to be hospital admitted. There were no reports on conversion to or from AF in other patients. All other studies refer to specific dietary habits or interventions,⁴¹ rather than to extreme diets. Other data are limited by virtue of selective

reporting, multiple testing, and positive publication bias. Also, many studies are small, some are retrospective, and the effect sizes of dietary exposures are modest leading to potential residual confounding, especially since diet is inextricably linked with age, race, sex, socioeconomic status, etc.

Blood lipids and fish consumption

Among the modifiable risk factors that can be targeted for AF prevention, caloric intake, and physical activity are critical factors that significantly impact weight, blood pressure, risk of diabetes mellitus and atherosclerosis, and atrial structure/function.⁴³

What is the impact of blood lipids on risk of AF?

Table 3A summarizes two recent cohort-based studies that evaluated the association of blood lipid components with the development of AF during follow-up.^{44,45} In both, with adjustments for age, sex, and race, but no adjustment for BMI, low levels of HDL cholesterol, and high levels of plasma triglycerides were associated with increased risk of AF. Low-density lipoprotein cholesterol levels (LDL) were not associated with AF risk in either study; elevated total cholesterol was associated with risk of AF in one study.⁴⁴ Both studies note the impact of comorbid conditions confounding the association of blood lipid levels with AF risk. Thus, evidence for selectively targeting lower plasma LDL or total cholesterol as a means of reducing AF risk is weak.

Despite the uncertain association of lipids with incident AF, there is evidence that statins protect against AF in patients with chronic stable coronary artery disease, independently of reductions in plasma total cholesterol level.⁵⁰ In experimental studies, statin use protected against electrical remodelling associated with atrial tachycardia pacing⁵¹ and decreased AF inducibility in a canine model of sterile pericarditis.⁵² Recent meta-analyses suggest that statins reduce new onset AF following cardiac surgery, a setting in which

Study	Design	Subjects	FU	Intervention	AF risk (95% CI)	Comment
(a) Population cohorts						
Shen et al. ³⁵ Framingham Heart Study	Prospective	4526 from original and off-spring cohort; participants without AF	4 yrs	None	No association with alcohol, caffeine, fibre and fish-derived polyunsaturated fatty acids; limited attributable risk of AF->4 servings of dark (rish/wk had HR 6.53 (2.65–16.06) vs. <1 serving	Alcohol, caffeine, fibre, and fish-derivec polyunsaturated fatty acids were not associated with AF risk
Khawaja et <i>al.</i> ³⁶ Physicians' Health Study	Prospective	21 054 men	20 yrs (median 24 yrs)	None	-	No association between nut consumption and incident AF
Fretts et al. ³⁷ Cardiovascular Health Study	Prospective	4337 >65 years; no prevalent CHD or AF	up to 19 yrs	None	-	No association between plasma phospholipid or dietary alpha linoleic acid and incident AF
Costanzo et al. ³⁸	Prospective	217; cardiac surgery	ICU stay +1 wk post-surgery unit	None	Highest tertile of dietary total antioxidant capacity vs. 2 lowest tertiles: OR 0.46 (0.22–0.95)	Antioxidant-rich foods are associated with reduced incidence of post-operative AF
Mattioli et al. ³⁹	Case-control	800; 400 first detected AF episode	-	None	(a) OR 1.9 (1.58–2.81) (b) OR 1.8 (1.56–2.99)	 (a) Lower adherence to Mediterranean diet and lower antioxidant intake in patients with AF compared to control population; (b) Patients with arrhythmia who had higher Mediterranean score had higher probability of spontaneous conversion from AF to sinus rhythm
Pastori et al. ⁴⁰	Prospective	709 anticoagula-ted pts with AF	39.9 months	None	-	Reduction in CV events; antioxidant effects such as down-regulation of NOX2 and decreased excretion of F2-isoprostanes
(b) Intervention studies						· - · · · F · · · · · · · · · · · · · ·
Martínez-González et dl. ⁴¹ PREDIMED- Prevención con Dieta Mediterránea	Randomized primary prevention trial; post hoc analysis	6705	Median 4.7 yrs	Three diets: Mediterranean diet enriched with extra virgin olive oil, or mixed nuts; control group	Mediterranean diet enriched with extra virgin olive oil vs. mixed nuts; HR 0.89 (0.65–1.2) Mediterranean diet enriched with extra virgin olive oil vs. control group: HR 0.62 (0.45–0.85)	Mediterranean diet with olive oil reduced AF risk compared with control group; however, with no effect in a group with nuts Reduced incidence of stroke, myocardial infarction, and CV mortality; consumption of extra virgin olive oil but not nuts was associated with a lower risk of AF

AF, atrial fibrillation; CHD, coronary heart disease; CI, confidence interval; CV, cardiovascular; FU, follow-up; HR, hazard ratio; ICU, intensive care unit; OR, odds ratio; pts, patients; wk, week; yrs, years.

Table 3 Relationship of blood lipids, fish, and n-3 polyunsaturated fatty acids to incident AF risk per total duration of follow-up

Study	Design	Subjects	FU, yrs	LDL/HDL, TG, TC levels	AF, n (%)	Risk HR (95% CI), P-value
(A) Blood lipids						
Lopez et al. ⁴⁴ ARIC	Community cohort study; baseline age: 45–64 yrs	13 969	18.7	HDL ≥60 mg/dL, vs. ≤40 mg/dL TC >240 mg/dL vs. <200 mg/dL TGs ≥200 mg/dL vs. ≤150 mg/dL LDL (not significant)	1433 (10.25)	0.63 (0.53–0.74) ^a , <i>P</i> < 0.0001 0.89 (0.77–1.02), <i>P</i> = 0.03 1.4 (1.21–1.62), <i>P</i> < 0.0001
Alonso et al. ⁴⁵ MESA Framingham Heart Study	Community cohorts; average baseline age 60.5 yrs (10)	7142	9.6	HDL ≥60 mg/dL, vs. ≤40 mg/dL TGs ≥200 mg/dL vs. ≤150 mg/dL TC, LDL not significant	480 (6.7)	0.64 (0.48–0.87) 1.6 (1.25, 2.05)
(B) Fish intake and plasr	ma n-3 fatty acid levels					
Gronroos et al. ⁴⁶ ARIC	Community cohort study, baseline age 45–64 yrs	14 222	17.6	Intake of canned tuna/oily fish >2/week, vs. none Dietary DHA + EPA (Q4 vs. Q1) Plasma DHA + EPA (Q4 vs. Q1) Plasma DHA (Q4 vs. Q1) Plasma EPA (Q4 vs. Q1)	1604 (11.3)	0.86 $(0.72-1.03)$, $P = 0.09$ 0.95 $(0.82-1.10)^3$, $P = 0.42$ 0.79 $(0.60, 1.03)$, $P = 0.18$ 0.74 $(0.57, 0.97)$, $P = 0.10$ 1.12 $(0.85, 1.49)$, $P = 0.33$
Rix et al. ⁴⁷ Danish Diet, Cancer and Health cohort study	Cohort study, baseline ages 50–64 yrs	57 053	13.6	Dietary intake: Q1 (<0.39 g/day) Q2 vs. Q1 Q3 vs. Q1 Q4 vs. Q1 Q5 vs. Q1	3345 (5.9)	1 0.92 (0.82-1.03), P = 0.16 0.87 (0.78-0.98), P = 0.02 0.96 (0.86-1.08), P = 0.49 1.05 (0.93-1.18), P = 0.42
Rix et al. ⁴⁸ Danish Diet, Cancer and Health cohort study	Cohort study, baseline ages 50–64 yrs	3440 with adipose tissue specimens	13.6	Total adipose n3-PUFA T2 vs. T1 T3 vs. T1 Adipose DHA T2 vs. T1 T3 vs. T1 Adipose EPA T2 vs. T1 T3 vs. T1 T3 vs. T1	179 (5.2)	0.87 (0.60-1.24) 0.77 (0.53-1.1) 1.03 (0.73-1.46) 0.73 (0.5-1.06) 0.67 (0.46-0.99) 0.86 (0.61-1.22)
Virtanen et al. ⁴⁹ Kuopio Ischemic Heart Disease Risk Factor Study	Cohort study, baseline ages 42–60 yrs	1941 with serum specimens	17.7	Plasma DHA + EPA + DPA Q2 vs. Q1 Q3 vs. Q1 Q4 vs. Q1 Plasma DHA (Q4 vs. Q1) Plasma EPA (Q4 vs. Q1)	240 (11.0)	$\begin{array}{c} 0.65 & (0.46-0.93) \\ 0.82 & (0.58-1.14) \\ 0.65 & (0.46-0.93) \\ 0.64 & (0.45-0.92) \\ 0.93 & (0.065-1.33) \end{array}$

AF, atrial fibrillation; CI, confidence interval; DHA, docosahexaenoic acid; FU, follow-up; HDL, high-density lipoprotein cholesterol; HR, hazard ratio; EPA, eicosapentaenoic acid; LDL, low-density lipoprotein cholesterol; n3-PUFA, ω-3 polyunsaturated fatty acids; Q, quartile; T, tertile; TC, total cholesterol; TG, triglyceride; yrs, years.

Study Design		Subjects	FU, yrs	OSA, n (%)	AF, %	Risk (95% CI)	
Gami et al. ⁶⁹	Olmsted County cohort study	3542	4.7	2626 (74)	14.0	HR 2.18 (1.34–3.54)	
Cadby et al. ⁷⁰	Sleep-clinic cohort study	6841	11.9	100%	6.7	HR 1.55 (1.21–2.00)	

AF, atrial fibrillation; CI, confidence interval; FU, follow-up; HR, hazard ratio; OSA, obstructive sleep apnoea; pts, patients; yrs, years.

inflammatory processes are strongly implicated in AF onset.^{53,54} In contrast to the post-surgical setting, large meta-analyses have not demonstrated the efficacy of statins for the primary prevention of AF, whilst a heterogeneous benefit is reported for secondary AF prevention.^{55,56} Statins, which impact oxidant and inflammatory mechanisms in addition to lowering plasma LDL levels, most likely attenuate AF risk primarily due to effects independent of LDL reduction.

In recognition of this 'uncoupling', recent ACC/AHA guidelines for the prevention of coronary heart disease have changed from a primary focus on specific LDL target levels to one that focuses on the overall risk factor profile of the patient.⁵⁷ A similar logic may apply to AF prevention as well.

Dietary fish consumption vs. studies with fish oil supplements

Older epidemiological studies have suggested that consumption of fatty fish is associated with significant health benefits, including reduced risk of AF.58 One recent study in the USA (Table 3B) noted a non-significant trend for a lower incidence of AF with higher intake of fatty fish (P = 0.09).⁴⁶ Fish oil is enriched in ω -3 polyunsaturated fatty acids (ω 3-PUFA), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), and docosapentaenoic acid (DPA). The Kuopio study found a trend for the highest vs. lowest quartile of plasma EPA + DHA + DPA to be associated with lower risk of AF (P=0.07). This relationship was modestly significant for DHA (P=0.02).⁴⁹ A retrospective analysis of a large Danish cohort (n = 55 246), which was a population with high fish consumption, suggests that the relationship between fish consumption and AF risk is more complex and U-shaped, with both low- and high-levels of either fatty fish consumption or consumption of the individual ω-3-fatty acids associated with increased risk of AF.47 Also, in the Danish population (Table 3B), analysis of adipose DHA and EPA content identified non-significant trends for benefit with elevated levels of both DHA and EPA.48 An obvious and important confounding factor is the individual burden of adiposity.

While fish oil extracts have demonstrated significant effects on the development of atrial fibrosis in the setting of experimental heart failure,⁵⁹ and on the inducibility of AF after experimental cardiac surgery,⁶⁰ highly purified *n*3-PUFA supplements, often formulated as ethyl esters, have demonstrated either poor or no efficacy in randomized clinical trials for the prevention of new onset AF following cardiac surgery,⁶¹ or for the prevention of AF recurrence.^{62,63} It remains unclear if the lack of efficacy is related to differences in bioavailability,⁶⁴ to loss of other components in fish that are functionally important, or to intrinsic differences between studies in younger experimental animals and those in older patients at greatest risk of AF. At present, there is no compelling argument for the use of commercially available fish oil supplements for either primary or secondary AF prevention.^{65,66}

On the basis of the available epidemiological studies, the current AHA/ACC guidelines for individuals with elevated blood LDL levels now recommends consumption of a diet 'that emphasizes intake of vegetables, fruits, and whole grains; includes low-fat dairy products, poultry, fish, legumes, non-tropical vegetable oils, and nuts; and limits intake of sweets, sugar-sweetened beverages, and red meats'.⁶⁶

While quite reasonable, this and other similar guidelines do not specifically address diet in relation to AF risk. Lacking direct evidence, the above dietary suggestions coupled with an emphasis on physical activity and maintenance of a healthy lifestyle and weight seem reasonable as interim guidance for AF patients, and for those with significant risk of AF.

Obstructive sleep apnoea

Sleep related breathing disorders are common and $\sim 25\%$ of adults are at risk for sleep apnoea of some degree,⁶⁷ with OSA commonly seen in patients with cardiovascular diseases, especially in obese patients and those with Type 2 diabetes mellitus.⁶⁸ Various studies have established that patients with OSA, particularly those with more severe disease, are significantly more likely to develop AF, and patients with AF have about twice the risk for developing OSA (Table 4).^{69,70}

Patients with AF and those with OSA share several similar characteristics. For example, hypertension is common (one-third of OSA) in both conditions, and both occur more frequently in men and increase with advancing age.⁶⁸ Furthermore, increasing BMI plays an important role in the development of both OSA and AF.^{28,71}

The mechanisms for this may be multifactorial, but autonomic dysregulation may connect sleep apnoea and AF, independent of other known risk factors. This has been confirmed experimentally in dogs⁷² and clinically.⁷³ In a prospective cohort study,⁷³ a relationship among the severity of sleep apnoea syndrome, cardiac arrhythmias, and autonomic imbalance was demonstrated.

These observations may have important clinical implications, and large observational studies suggest that OSA may be a modifiable risk factor for recurrent AF after cardioversion or ablation.^{74,75} Furthermore, some data support a role for continued positive airway pressure (CPAP) therapy in abolishing nocturnal ventricular asystole and improving other arrhythmias in patients with OSA.^{76–79} CPAP therapy was effective in several other studies,^{80–83} but not in heart failure patients.⁸⁴

Based on the evidence, routine screening for OSA and other sleep-related breathing disorders in general practice and in cardiac rehabilitation programmes may be considered if clinically indicated. More data are needed to show the benefit of prevention and the treatment of OSA and associated improvement of AF incidence, recurrence rate and outcomes in patients with new onset or recurrent AF.

Hypertension

Hypertension is a major risk factor for AF (Table 5). In the Framingham Heart Study,⁸⁵ the odds ratios for the development of AF in men and women with hypertension were 1.5 and 1.4, respectively. Data from the Atherosclerotic Risk in Communities Study¹⁸ show that approximately one-fifth of the risk of developing AF was attributable to hypertension. The optimal systolic blood pressure appears to be 120–130 mmHg with both higher and lower blood pressures associated with an increased incidence of AF.^{25,86,93}

Proposed mechanisms include sympathetic activation, activation of the renin-angiotensin-aldosterone system, atrial dilation, fibrosis, and left ventricular remodelling including diastolic dysfunction and left ventricular hypertrophy.⁴³ Hypertension may also lead to coronary disease and myocardial infarction, subsequently increasing the risk for AF. Alcohol consumption is also a common predisposing factor to both AF and hypertension.

For the primary prevention of AF in a hypertensive population, the optimal on-treatment systolic BP goal appears to be $<130 \text{ mmHg.}^{89}$ Nevertheless, it remains unclear whether different antihypertensive medications affect the development of AF independent of blood pressure reduction. In the Losartan Intervention for End Point Reduction in Hypertension Study,⁸⁷ for example, new onset AF occurred less frequently in patients treated with losartan compared with patients treated with atenolol, although blood pressure reduction was similar in both groups. In another study,⁸⁸ ACE inhibitors and angiotensin II-receptor blocker (ARB) were superior to β -blockers and diuretics for the primary

prevention of AF. These two studies suggest that the inhibition of the renin-angiotensin system may be associated with a decreased risk of new onset AF, incremental to the effect of BP reduction alone.

ARB therapy has also been studied for the secondary prevention of AF. For example, the GISSI-AF study⁹⁰ evaluated the secondary prevention of AF using valsartan, but was not superior to placebo. Follow-up was only for 1 year and it remains possible that the beneficial effects of ARBs on atrial remodelling might be seen with a longer study duration.⁹⁴ In the ANTIPAF trial,⁹¹ olmesartan did not decrease AF burden compared with placebo in patients without structural heart disease.

Additionally, Lip *et al.*,⁹² retrospectively analysing data from the SPORTIF III and SPORTIF V trials, found that ACEI and ARBs did not result in any difference in stroke or systemic embolism in a controlled, anticoagulated AF population. Mortality was lower in the AF population over 75 years of age treated with ACEI or ARBs.

The role of aldosterone antagonists in the treatment of AF has been evaluated in the setting of heart failure,⁹⁵ but not in its absence. Given the increasing incidence of AF, additional well-conducted studies are needed to clarify the impact of renin–angiotensin–al- dosterone system (RAAS) inhibitors on both the primary and secondary prevention of AF.^{8,96}

Diabetes mellitus

Diabetes and elevated blood glucose have been recognized for several years as potential risk factors for AF, although there are conflicting results⁹⁷ (Table 6). Multiple studies ^{31,85,98-104} report an increased incidence of AF in patients with diabetes. However, there are methodological differences that make comparisons among studies difficult. In particular, some studies adjusted the results for confounding variables including obesity and hypertension, while others did not. When these other risk factors were considered, the risk attributable to the development of AF from diabetes was limited. In a metaanalysis of 7 cohort studies and 4 case-control studies including more than 1 600 000 subjects, Huxley et al.³¹ found that patients with diabetes had a 39% greater risk of developing AF compared with individuals without diabetes. In studies that adjusted the risk for confounding variables, the relative risk decreased to 1.24 (95% CI 1.06-1.44).

Using a population based, case-control design, Dublin et al. found that patients with longer durations of diabetes had a greater risk of AF development. Specifically, the risk of AF was 3% higher for each year of diabetes treatment, and the risk of AF correlated with worsened glycemic control. Hence, better glycemic control (as measured by haemoglobin A_{1c}) was associated with a lower risk of AF development. High basal haemoglobin A_{1c} level, increased BMI and

Study	Design	Subjects	FU	BP levels, mmHg/ treatment	AF	Risk (95% CI)
AF incidence trials			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
Benjamin et al. ⁸⁵ Framingham Heart Study	Cohort	2090 men 2641 women	38 yrs	SBP >160 DBP >95		OR for AF Men 1.5 (1.2–2.0) Women 1.4 (1.1–1.8)
Huxley et al. ¹⁸ ARIC Study	Cohort	14 598	17.1 yrs	SBP >140 DBP >90		21.6% (16.8–26.7) of risk of AF is attributable to HT
Thomas et al. ⁸⁶	Case-control	433 pts with AF 899 controls	20 yrs (median)	SBP < 120 120-129 130-139 140-149 150-159 160-169 > 170		OR 1.99 (1.10-3.62) Reference 1.19 (0.78-1.81) 1.40 (0.93-2.09) 2.02 (1.30-3.15) 2.27 (1.31-3.93) 1.84 (0.89-3.80)
Vermond et al. ²⁵	Dutch community-based cohort study	8265	9.7 yrs	Per 10 mm SBP	AF incidence 3.3 per 1000 person-year	SBP, per 10 mmHg HR 1.11 (1.01–1.22)
ntervention trials						
rimary prevention						
Wachtell et al. ⁸⁷ LIFE Study	Randomized, double blind comparison of losartan vs. atenolol	Losartan 4298 Atenolol 4182	4.8 yrs (mean)	Losartan Atenolol	New AF 150 New AF 221	RR 0.67 (0.55-0.83)
Marott er al. ⁸⁸	Registry analysis: comparison of AF incidence in pts with HT treated with ACEI and ARB compared with BB, diuretics and CCB	725 680 Danish pts treated with anti-HT monotherapy	5.9–6.8 yrs depending on comparison	ACEI vs. BB ARB vs. BB ACEI vs. diuretic ARB vs. diuretic ACEI vs. CCB ARB vs. CCB		$\begin{array}{c} 0.12 \ (0.10-0.15) \\ 0.10 \ (0.07-0.14) \\ 0.51 \ (0.44-0.59) \\ 0.43 \ (0.32-0.58) \\ 0.97 (0.81-1.16) \\ 0.78 \ (0.56-1.08) \end{array}$
Okin et al. ⁸⁹	Analysis of the effect of BP reduction using losartan or atenolol (randomly assigned) on the risk of new AF	8831patients with HT, ECG evidence of LVH and no history of AF	4.6 yrs	SBP <130 SBP 131-141 SBP >142	Overall new AF in 701 pts (7.9%)	Compared with SBP >142, SBP <130 is associated with 40% lower risk of AF (18–55%). Compared with SBP >131–141, SBP <13 is associated with 24% lower risk of AF (7–38%)
Secondary prevention						
GISSI-AF ⁹⁰	Randomized double blind comparison of valsartan vs. placebo for prevention of recurrent AF	1442 pts Valsartan 722 Placebo 720	1 yr	Valsartan Placebo	Recurrent AF 371 (51.4%) Recurrent AF 375 (52.1%)	HR 0.97 (0.83–1.14)
ANTIPAF	Randomized double blind comparison of olmesartan vs. placebo for prevention of recurrent AF burden	425 pts w/o structural heart disease; ~49% with htn	12 months	Olmesartan Placebo	% of AF days 15.1% % of AF days 14.7%	No difference ($P = 0.77$)
Lip et al. ⁹² ₉₁	Retrospective longitudinal analysis of participants in SPORTIF III and V trials. Comparison of clinical event rates and mortality in ACEI and ARB users compared with non-users in an anti-coagulated AF population	4760 ACEI or ARB users 2569 ACEI or ARB non-users	18.7 months ACEI ARB users 18.4 months ACEI ARB non-users	ACEI-ARB users ACEI-ARB non-users		No difference in stroke, systemic embolic event, or mortality in ACEI, ARB users compared with non-users in the entire cohort For age >75 years lower mortality in ACEI ARB users compared with non-users: HR 0.71 (0.52–0.95)

advanced age were also associated with higher recurrence of AF after catheter ablation in patients with diabetes.¹⁰⁷

Recently, investigators using the Taiwan National Health Insurance Research Database developed a time-dependent Cox proportional hazard model to study the effects of metformin on the development of AF.¹⁰⁵ The study population included 645 710 patients with diabetes taking metformin but not other diabetic medications. Over a 13-year follow-up, fewer patients taking metformin developed AF, suggesting that metformin had a protective effect on the development of AF in diabetic patients.

Additionally, the duration of diabetes appears to be related to a higher risk of thromboembolic events in patients with AF. Using data from multiple Danish registries, Overvad et al.¹⁰⁶ identified 13 722 patients with AF, 12.4% of whom had diabetes. Compared with AF patients without diabetes, thromboembolism was more prevalent and this

relationship was time-dependent with longer diabetes duration being associated with higher rates of thromboembolism and death. A longer diabetes duration was not associated with an increased risk of bleeding among AF patients treated with vitamin K antagonists.

In summary, diabetes appears to confer an increased risk for the development of AF, but this risk seems less than for other factors including hypertension, obesity, and smoking.¹⁸ Furthermore, a longer diabetes duration and worse glycemic control increases the risk for AF and its complications, and in one retrospective study,¹⁰⁵ treatment with metformin appeared to reduce this risk.

Smoking

Smoking is reported to predict incident AF in individuals of European,^{98,108–111} African,^{108,112} and Japanese¹¹³ ancestry

Study	Design	Subjects	FU	FBG or HbA1c levels/ DM duration	AF	Risk (95% CI)
ncidence					•••••••	
Benjamin et <i>al.</i> ⁸⁵ Framingham Heart Study	Cohort	2090 men 2641 women	38 yrs	FBG >140 mg/dL Non-fasting BG >200 mg/ dL		OR for AF Men 1.4 (1.0–2.0) Women 1.6 (1.1–2.2) After adjustment for valve disease Men 1.1 (0.8–1.7) Women 1.5 (1.0–2.3)
Alonso et al. ⁹⁸	Meta-analysis of 3 cohorts: ARIC, CVH and FHS	18 556 pts				HR 1.27 (1.10, 1.46) for 5-year AF risk in pts wit DM
Huxley et al. ⁹⁹ ARIC Study	Cohort	13 025	14.5 yrs	FBG >126 mg/dL or HbA1c >6.5% or use of diabetic meds		Diabetes is associated with increased incidence of AF: HR 1.35 (1.14–1.60) HbA1c levels are independently associated with AF: HR 1.13 (1.01–1.20) per 1% increase in HbA1c level
Ostgren et al. ¹⁰⁰	Cohort	171 HT + DM 147 DM only 597 HT only 825 no HT or DM		FBG >6.6 mmol/L or 2 hr glucose after oral glucose tolerance test >11.0 mmol/L		HT + DM: OR 3.3 (1.6–6.7) DM only: OR 2.0 (0.9–4.7) HT only: OR 0.7 (0.3–1.5) Reference no HT or DM: ORR 1.0
Pfister et al. ¹⁰¹	Analysis of development of new AF in the PROactive trial	5233 pt with DM	36 months			Incidence of new AF at: 12 months—0.8% 24 months—1.5% 36months—2.4%
Schoen et al. ¹⁰² Womens Health Study	Cohort	34 720 women health professionals	16.4 yrs		At baseline 937 (2.75%) had DM	Compared with women without DM, women wit DM had HR for new AF of 1.95 (1.49–2.56). In models that adjusted for HT, obesity (BMI) an inter-current cardiovascular events, HR for new AF decreased to 1.14 (0.93–1.40)
Dublin et al. ¹⁰³	Case-control	1410 new AF pts 2203 control pts	21 yrs—AF pts 20 yrs— control pts	HbA1c <7% HbA1c 7-8% HbA1c 8-9% HbA1c >9%	252 (17.9%) AF pts had DM 311 (14.1%) control pts had DM	OR for AF 1.40 (1.15–1.71) for pts with DM compared with those without DM Compared with pts without DM risk (OR): 1.06 (0.74–1.51) 1.48 (1.09–2.01) 1.46 (1.02–2.08) 1.96 (1.22–3.14)
Aksnes et <i>al.</i> ¹⁰⁴ VALUE Trial	Prospective randomized trial comparing valsartan and amlodipine for treatment of htn	15 245 total pts with htn 5250 diabetes at baseline 1298 developed diabetes during FU	4.2 yrs	FBG >140 mg/dL	551 pts developed AF during the trial	HR 1.49 (1.14, 1.94) new onset diabetes for development of AF HR 1.19 (0.99, 1.42) baseline diabetes for development of AF
Huxley et al. ³¹	Meta-analysis of cohort (7) and case control (4) studies	1 686 097 subjects combined allstudies				RR of pts with DM for AF: 1.39 (1.10–1.75) Studies with adjustment for other risk factors, Rf of pts with DM for AF: 1.24 (1.06–1.44)
ntervention trials						
Chang et al. ¹⁰⁵	Registry	645 710 pts with diabetes	13 yrs		9983 pts developed AF, incidence rate 1.5% (287/ 100 000 person/yrs)	Metformin use protected against the developmer of AF, HR 0.81 (0.76–0.86)
Overvad <i>et al.</i> ¹⁰⁶	Registry	137 222 pts with AF		No DM 120 204 DM 0-4 yrs 7922 DM 5-9 yrs 4781 DM 10-14 yrs 2435 DM >15 yrs 1880		Risk of thromboembolism or death No DM reference 1.0 HR 1.24 (1.20–1.29) HR 1.42 (1.37–1.48) HR 1.45 (1.37–1.53) HR 1.72 (1.62–1.82)

ARIC, Atherosclerotic Risk in Communities; CVH, Cardiovascular Health Study; FHS, Framingham Heart Study; VALUE; Valsartan Anti-hypertensive Long-term Use Evaluation Trial; AF, atrial fibrillation; BG, blood glucose; BMI, body mass index; DM, diabetes mellitus; FBG, fasting blood glucose; FU, follow-up; HbA1c, glycated haemoglobin; HR, hazard ratio; HT, hypertension; OR, odds ratio; pts, patients; yrs, years.

(Table 7). Risks of developing incident AF with smoking are similar in men and women,^{98,108–114} and in blacks and whites.¹⁰⁸ Multivariable risk prediction models for AF indicate that compared with nonsmokers, both current,^{109,110} and ever smokers¹¹⁰ have a higher risk of incident AF. Current smoking was responsible for ~10% of the variability in AF risk.¹⁸ Some data also suggest a dose–response relationship, with the highest risk of AF observed in individuals with the greatest cigarette-years of smoking¹⁰⁸ and current smokers with increasing number of cigarettes per day.¹¹⁴ However, not all studies have reported an adjusted association between smoking and AF,^{2,30,115–119} but the lack of association has been ascribed to several factors including modest numbers of cases of AF, combining current, and former smokers,¹²² adjusting for factors along the causal pathway such as

myocardial infarction, heart failure, and lung disease¹¹⁴ and competing risks of death among smokers.^{108,122}

Whether other forms of tobacco exposure are associated with AF is more equivocal. One case report of an elderly woman with several comorbidities suggests a possible temporal relation between electronic cigarettes and paroxysms of AF.¹²³ To our knowledge, there is no published research linking electronic cigarettes with AF. Similarly, there are no prospective data regarding the relation of secondhand smoke to AF. However, one recent retrospective study suggested that being exposed to second-hand smoke gestationally or living with a smoker during childhood were associated with an increased risk of AF as an adult.¹²¹ In another study, AF risk was associated with the environmental tobacco use.¹²⁴

Study	Design	Subjects	FU	Tobacco	AF, %		Multivariable Risk (95% CI)
(a) Population cohorts							
Alonso et <i>al.</i> ⁹⁸ CHARGE-AF Study	Meta-analysis 3 cohorts, replication 2 cohorts	18 556 B and W; 1186 incident AF 7672 W; 585 incident AF	5 yrs	Current smoking			HR 1.44 (1.20–1.72)
Chamberlain et al. ¹⁰⁸ ARIC	Cohort Incident AF	15 329 B and W 876 incident AF	Mean 13.1 yrs	Smoking status Never Ever Former Current Cigarette-years. 0 3000 >300 to ≤675 >675 Continued vs. quit smoking		ex adjust. incidence ate/10 000 py 28 41 36 48 28 28 28 41 55	Reference 1.58 (1.35–1.85) 1.32 (1.10–1.57) 2.05 (1.71–2.47) Reference 1.04 (0.83–1.30) 1.60 (1.30–1.95) 2.10 (1.74–2.53) 0.88 (0.65–1.17)
Pfister et al. ¹⁰⁹ EPIC Norfolk	Cohort Incident AF	24 020 W 236 incident hospitalized AF	5 yrs	Current smoking Incident AF No Incident AF Yes	11.6% 14.0%		1.86 (1.28–2.69) Observed in EPIC cohort free of CVD, HT, DM: H 2.03 (1.26, 3.27)
Friberg et al. ¹¹⁰ Copenhagen City Heart Study	Cohort Incident AF	10 955 W 379 incident hospitalized AF	7 yrs	Never smokers Current smoking Current or ex	NA		Multivariable-adjusted Reference 2.0 (1.4–2.8) 1.8 (1.3–2.5)
Everett <i>et al.</i> ¹¹¹ Women's Health Study	Cohort Incident AF	20 822 mostly W women 616 incident AF	Median 14.5 yrs	Never Ever smoker	NA		Multivariable-adjusted Reference 1.29 (1.06–1.57) P = 0.01
Rodriguez et <i>al.</i> ¹¹² Multi-Ethnic Study of Atherosclerosis	Cohort Incident AF	6721 Multi-ethnic 305 incident AF	Mean 6.98 yrs	All races Never Former Current Chinese Hispanics Non-Hispanic B Non-Hispanic W	AF [⊳] 42.9% 46.2% 10.9% NA	No AF⁵ 50.7% 36.1% 13.2% NA	Age- and sex-adjusted population attributable fraction curren smoking -0.7 (-17.7 to 46.9) -0.9 (-21.1 to 15.8) 27.0 (5.8 to 43.5) 6.9 (-1.3 to 14.4)
Heeringa et al. ¹¹⁴ Rotterdam Study	Cohort Incident AF	5668 W 371 incident AF	Median 7.2 yrs	Never smoker Current Former	78/1280 160/2159		Multivariable adjusted 1.51 (1.07–2.12) 1.48 (1.12–1.96)

chewing nicotine gum.^{125–127} In contrast, a pooled analysis of Swedish studies found current use of snus, a powdered smokeless tobacco product, was not significantly associated with incident AF (RR, 1.07; 0.97–1.19).¹²⁰ Whether nicotine per se, or other chemicals associated with smoking are responsible for the increased risk of AF is uncertain.

Both experimental and human studies support multiple mechanisms linking smoking to AF. Nicotine and cigarettes predispose to in-flammation,¹²⁸ atrial electrical alterations,^{129,130} atrial fibrosis,^{131–133} reduced lung function,^{134,135} myocardial infarction,¹⁰⁸ and heart failure,¹⁰⁸ all of which predispose to AF. Smoking also may be a marker of deprivation and unhealthy lifestyle.^{136,137} An inverse association between socioeconomic status and incident AF has been reported, which is partially mediated by other risk factors.^{138,139}

In individuals with AF, most studies examining the risk of events such as stroke, dementia, heart failure, myocardial infarction,^{5,6} and death have included smoking as a covariate, but have not specifically identified risk factors for events.¹⁴⁰ Smoking was not a risk factor for incident heart failure in individuals with AF.^{141,142} Neither the CHADS₂ nor the CHA₂DS₂–VASc scores include smoking as a risk factor for stroke. However, smoking is a risk factor of stroke in AF, even accounting for coexisting risk factors,^{143,144} but this relationship was not evident in one study.¹⁴⁵ Smoking has also

been reported to predict an increased risk for intracranial bleeding, mortality,^{144,146} and the combined outcome of stroke or death¹⁴⁵ in people with AF.

Although there are no randomized trials proving that smoking cessation reduces the risk of AF, the preponderance of evidence supports efforts to encourage individuals to avoid uptake or to quit smoking to reduce their risk. Mirroring population trends, smoking rates in individuals with AF have declined significantly over time.¹⁴ Current smoking was more strongly and consistently associated with AF compared with former smoking status in most,^{98,113} but not all¹¹⁴ studies (Table 7). In models excluding individuals with prior coronary heart disease and heart failure, former smoking was no longer significantly associated with incident AF.⁹⁸ One biracial observational study noted a nonsignificant trend towards reduced rates of AF in individuals who had quit smoking.⁹⁸

The results of smoking cessation interventions in AF have not been well studied. Despite the potential benefits of smoking cessation in AF, individuals with AF were less likely to be prescribed smoking cessation aids than those without AF.¹⁴⁷ One randomized trial of aggressive risk factor reduction, which included smoking cessation in individuals post-AF catheter ablation, demonstrated that those randomized to risk factor reduction had lowered AF frequency, duration, and symptoms.¹⁴⁸

Study	Design	Subjects	FU	Tobacco	AF, %		Multivariable Risk (95% CI)
Huxley et al. ¹⁸ Atherosclerosis Risk in Communities	Cohort Incident AF	14 598 B and W 1520 incident AF	Mean 17.1 yrs	Never Former Current	Incidence rate/1000 py 4.23 5.76 7.45	Population attributable fraction 0 2.06 (-2.05 to 6.05) 9.78 (6.74 to 12.9)	Relative hazard—adjusted Note reference is current smokers 0.55 (0.48–0.62) 0.60 (0.52–0.68) Reference
Schnabel <i>et al.</i> ¹¹⁵ Framingham Heart Study	Cohort Incident AF	4764 W 457 incident AF	Max 10 yrs	Current	NA		Age- and sex-adjusted 1.08 (0.88–1.33) P = 0.47 Not included in multivariable risk prediction instrument
Psaty et al. ¹¹⁶ Cardiovascular Health Study	Cohort Incident AF	4844 B and W 304 incident AF	Mean 3.28 yrs	Current smoking	NA		Did not enter multivariable model
Frost et al. ¹¹⁷ Danish Diet, Cancer, and Health Study	Cohort Incident AF	47 589 W 553 incident AF	Mean 5.7 yrs	Never—Reference Former Current	NA		Men Women 0.80 (0.62- 0.94 (0.65- 1.04) 1.36) 0.83 (0.64- 0.95 (0.66- 1.07) 1.35)
Wilhelmsen et <i>al.</i> ¹¹⁸ Multifactor Primary Prevention Study, Göteborg	Cohort Incident hospitalized AF	7495 W Men 754 incident AF	Mean 25.2 yrs	Never + ex-smoker 1–14 cig/day >15 cig/day	10.6 9.1 11.8		Reference ^a age-adjusted 0.83 (0.71–0.97) 1.16 (0.73–1.86)
Nyrnes et al. ³⁰ Tromsø study	Cohort Incident AF	22 815 W 822 incident AF	Mean 11.1 yrs	Current smoking No AF AF	Men 37.1% 24.3%	Women 36.7% 22.7%	Not included in multivariabl model
Stewart et al. ¹¹⁹ Renfrew/Paisley study	Cohort Prevalent AF Incident AF	15 406 W 100 prevalent AF 537 incident of 8532 in f/u	20 yrs	Current or former Prevalent AF No AF $(n = 15 \ 306)$ AF $(n = 100)$	Men ^ª 81.2% 79.0%	Women ^a 54.1% 65.8%	^a Age-adjusted prevalence Not significantly associated i age-adjusted analyses; no selected for inclusion in multivariable analyses for prevalent or incident AF
Hergens et al. ¹²⁰ Swedish cohort studies	7 Cohort studies Incident AF	127 907 W men never smoker 3494 incident AF		Prevalence of Snus use 25%			Adjusted for age and BMI 1.07 (0.97–1.19)
(b) Hospital-based							
Suzuki et <i>al.</i> ¹¹³ Shinken database	New patients attending Cardiovascular Institute Incident AF	15 221 Japanese 190 incident AF	Mean 2 yrs Max 8.1 yrs	Nonsmokers Smokers Former Current Brinkman index >800	5.0/1000 py 9.0/1000 py 8.6/1000 py 9.8 /1000 py 10.6/1000 py		Reference, adjusted analyses 1.47 (1.09–2.00) 1.33 (0.94–1.89) 1.81(1.17–2.79) 1.69 (1.05–2.70)
(c) Internet-based survey				-	.,		· · · ·
Dixit et al. ¹²¹ Health eHeart Study	Self-referred internet self-report Prevalent AF	4976 ~80% W 593 prevalent AF	Cross-sectional	Never Past Current	AF 52.7% 43.6% 3.8%	No AF 66.5% 29.5% 4.0%	Unadjusted P-value, P < 0.001
				Median yrs smoked, past and current smokers	18	12	Unadjusted P-value P < 0.001
				Secondhand smoke Smoking parent during gestation Residing with smoker	AF 68% 39%	No AF 51% 26%	Multivariable adjustment OR 1.37 (1.08–1.73) P = 0.009 OR 1.40(1.10–1.79) P = 0.007

AF, atrial fibrillation; B, Black; BMI, body mass index; CI, confidence interval; cig., cigarette; CVD, cardiovascular disease; DM, diabetes mellitus; FU, follow-up; HR, hazard ratio; HT, hypertension; NA, not available; OR, odds ratio; pts, patients; py, Ar, and a nonadon, o. pack, Brit, odoy massindex, Cl, connected measures person years; W, White; yrs, years. "Af incidence not depicted by smoking status. ^bPersonal communication Carlos J. Rodriguez, MD, MPH 10/26/2015.

Air pollution

Experimental and epidemiological studies have indicated that air pollution is related to an increased prevalence of cardiovascular risk factors, for example diabetes mellitus and hypertension, as well as cardiovascular disease.^{149–154} Fine particular matter (PM2.5) produced by burning fossil fuels may contribute to this relationship. The underlying pathophysiology has been attributed to an increased inflammatory response to high particle exposure, influencing the autonomous nervous system.153

Although fine particle pollution has been linked to stroke in several studies, ^{155–157} it has not been found to be associated with the induction of AF. Likewise, epidemiological studies have failed to show a relationship between permanently higher fine particle ex-posure and AF incidence^{158,159} (Table 8). Short-term exposure may directly enhance AF susceptibility in patients with cardiac disease.^{160,161}

Caffeine

Caffeine is a methylxanthine compound that is chemically similar to theophylline. Caffeine is present in tea, coffee, cola, or energy drinks. It has several cardiovascular effects increasing neurohormonal and sympathetic nervous system stimulation.¹⁶² Therefore, caffeine has been addressed as a potential trigger for AF.

The acute effects of high caffeine loading or even intoxication show minor and overall inconsistent evidence for increased susceptibility to supraventricular arrhythmias.¹⁶³⁻¹⁶⁵ Habitual caffeine ingestion has been investigated in several prospective cohort studies (Table 9), but these failed to show

Study	Design	Subjects	FU	Particle pollution	AF	Risk
Link et al. ¹⁶⁰ Tufts Medical Center Cardiac Arrhythmia Center	Prospective cohort study; acute exposure 24 hrs prior	176; ICD pts	1.9 yrs	PM _{2.5} , sulphate, NO ₂ , SO ₂ , O ₃	328 episodes of AF >30 s	Odds of AF increased by 26% for each 6.0 $\mu g/m^3$ increase in PM _{2.5} in the 2 h prior to the event (P = 0.004)
Milojevic et al. ¹⁵⁸ Myocardial Ischaemia National Audit Project (MINAP)	Case-cross-over design	2 867 473 CV events; mean age 73 yrs	6 yrs	CO, NO ₂ , PM ₁₀ , PM _{2.5} , SO ₂ , O3; Lags up to 4 days	310 568 pts with AF	NO ₂ increased risk for AF 2.8% (0.3–5.4)
Bunch et al. ¹⁵⁹ Utah's Wasatch Front	Case-crossover study design	10 457 AF hospitalizations	15 yrs	PM _{2.5} ; day Exposure and cumulative lagged exposures for up to 21 days	100%	No association between PM _{2.5} and hospitalization for AF

AF, atrial fibrillation; CV, cardiovascular; FU, follow-up; ICD, implantable cardioverter-defibrillator; PM_{2.5}, particular fine particular matter; pts, patients; hrs, hours; yrs, years; s, seconds.

Study	Design	Subjects	FU	Caffeine assessment	AF	Caffeine consumption in mg/dL (corresponding hazard ratio)
Conen et al. ¹⁶⁶ Women's Health Study	Cohort, USA	33 638 100% female mean age 53 yrs	14.4 yrs	Food Frequency Questionnaire	n = 945	Quintiles: 22 (1.0) 135 (0.88) 285 (0.78) 402 (0.96) 656 (0.89)
Shen et al. ³⁵ Framingham Heart Study	Cohort, USA	4 526 56% female mean age 62 yrs	4 yrs	Food Frequency Questionnaire	n = 296	Quartiles: 23 (1.0) 142 (0.84) 347 (0.87) 452 (0.98)
Frost et al. ¹⁶⁷ Danish Diet, Cancer, and Heart Study	Cohort, Denmark	47 949 54% female mean age 56 yrs	5.7 yrs	Food Frequency Questionnaire	n = 555	Quintiles: 248 (1.0) 475 (1.12) 584 (0.85) 769 (0.92) 997 (0.91)

any significant relationship to incident AF.¹⁶⁸ Also, heavy coffee drinking¹⁶⁷ failed to demonstrate a significant relationship between caffeine and AF or flutter even in very high consumers (10 cups, 1000 mg/day). Overall, caffeine consumption on a habitual and regular basis does not seem to increase the incidence of AF.^{35,166,167} However, other forms of caffeine ingestion such as energy drinks containing other stimulants such as taurine in combination with alcohol, may possibly contribute to an increase of risk, at least in case reports.¹⁶⁹

Alcohol consumption

Alcohol as a cause of AF has been recognized in the setting of acute consumption, commonly described as the 'holiday

heart'.¹⁷⁰ Binge drinking (>5 drinks on a single occasion) is associated with an increased risk of new onset AF.¹⁷¹

A variety of mechanisms has been proposed for the role of alcohol in contributing to AF as triggers or substrate for the arrhythmia including decreased vagal tone, hyper-adrenergic state, direct toxic effect on the cardiomyocytes, altered atrial conduction, and shortening of refractoriness.^{172–174}

In evaluating the contribution of chronic alcohol consumption to the development of AF, an important limitation is that unlike the objective measures available for many of the established risk factors for AF, the quantification of alcohol consumption is based on self-reported levels. Most studies have found an association between heavy alcohol consumption and incident AF (Table 10). For example, the

Study	Design	Subjects	FU	Alcohol, drinks/day (week)	AF , n	Risk (95% CI)
(a) Population cohor	ts					
Mukamal et <i>al</i> . ¹⁷⁵ Copenhagen City Heart study	Prospective cohort	16 415 men and women free of AF at baseline	26 yrs	Men Multivariable risk <1 drinks/week ≥35 drinks/week: Adjusted for CHD, CHF, BP Women Multivariable risk <1 drinks/week 21–27 drinks/week	1071	Reference (risk in HR) 1.45 (1.02–2.04) HR 1.63 (1.15–2.31) In men 5% of incident AF is attributable for heavy drinking Reference (risk in HR) 1.04 (0.64–1.70) <i>P</i> = 0.87 for trend
Conen <i>et al</i> . ¹⁷⁶ Women Health Study	Prospective cohort	34 715 women <45 yrs free of AF	12.4 yrs median	0 drinks/day ≥2 drinks/day	653	Reference (risk in HR) 1.6 (1.13–2.25)
Djousse <i>et al</i> . ¹⁷⁷ Framingham Heart Study	Prospective cohort Case–control analysis	1055 who developed AF 4672 controls men and women	>50 yrs	0 g/day >36 g/day	1055	Reference (risk in OR) 1.34 (1.01–1.78)
Larsson et al. ¹⁷⁸ Swedish Cohort Study	Prospective cohort	79 019 men and women free of AF at baseline	12 yrs	Dose response ^a <1 drink/week 15–21 drinks/week >21 drinks/week Binge drinking (>5 drinks/ single occasion) Type of drinks Liquor 7–14 drinks/week >14 drinks/week Wine >14 drinks/week Beer	7245	Reference (risk—RR) 1.14 (1.01–1.28) 1.39 (1.22–1.58) 1.13 (1.05–1.32) 1.13 (1.01–1.28) 1.43 (1.14–1.74) 1.30 (1.06–1.61) NS
Kodama et al. ¹⁷⁹	Meta-analysis 14 observational cohort and case–control studies	14 studies 130 820 participants 7558 cases 9 studies 126 051 participants 6341 cases	2.5–44 yrs	Overall Highest vs. lowest alcohol intake Dose-response (4-86.4 g/day)	7558 6341	Pooled OR/RR 1.51 (1.31–1–74) RR 1.8 (1.05–1.10) per 10 g alcohol per day
Larsson et al. ¹⁷⁸	Meta-analysis 7 prospective cohort studies	206 073 participants 12 554 cases men, women	4.7 to >50 yrs	0 drinks/day ^a 1 drink/day 2 drinks/day 3 drinks/day 4 drinks/day 5 drinks/day Overall	12 554	Reference (risk in RR) 1.08 (1.06–1.10) 1.17 (1.13–1.21) 1.26 (1.19–1.33) 1.36 (1.27–1.46) 1.47 (1.34–1.61) 1.08 (1.06–1.10) 8% (6–10%) increase in AF risk per 1 drink/day increment
(b) Intervention stud Pathak et al. ¹⁴⁸	ies Prospective	281 pts with AF	2 yrs	RFM—alcohol <30 g/	_	RFM predictor of
ARREST-AF	cohort study	20 Fpts with AF undergoing catheter ablation 68 pts RFM 88 pts controls	2 yrs	week + BP, lipids and glycemic control, weight reduction, smoking cessation vs. control	_	Arri predicto of arrhythmia free survival HR 4.8 (2.04–11.4)

AF, atrial fibrillation; BP, blood pressure; CHD, coronary heart disease; CHF, chronic heart failure; Cl, confidence interval; FU, follow-up; HR, hazard ratio; OR, odds ratio; RR, relative risk; RFM, risk factor modification; pts, patients; yrs, years. aStandard drinks = 12 g alcohol. One standard drink corresponds to \sim 40 mL liquor, 80 mL strong wine, 150 mL wine, 330 mL class III beer (alcohol by volume, >3.5%), 50 mL Class II beer (2.8–3.5%), or 660 mL class I beer (<2.25%).

Copenhagen City Heart Study observed that men consuming >35 drinks/week had a high risk of AF.¹⁷⁵ Similarly, the Framingham cohort study suggested that heavy alcohol consumption (>36 g/day) significantly increased the risk of AF.¹⁷⁷ The Women's Health Study showed that consumption of >2 drinks/day was associated with an increased risk of AF.¹⁷⁶ A consistent increase in risk of AF with chronic, heavy alcohol consumption was confirmed in a meta-analysis, which also demonstrated that the association between AF and alcohol consumption was linear.¹⁷⁹

Although these large epidemiological datasets have confirmed the association of heavy alcohol consumption with AF, recent studies have implicated a contributory role of even small quantities of alcohol with an increased risk of AF. Data from 2 large prospective Swedish cohorts comprising 79 000 individuals show that, when compared with < 1 drink per week, the consumption of 15–21 and >21 drinks per week conferred significant risks of developing AF on multivariable analysis.¹⁷⁸ This study identified that the risk for AF may be most pronounced with liquor; modest for wine and no excess risk was detected with beer. In addition, one meta-analysis of seven prospective studies suggested that there was a greater risk of AF with even low levels of alcohol consumption.¹⁷⁸ In both men and women, each drink of alcohol was associated with an 8% increase in relative risk of AF.

The consistent epidemiological relationship between alcohol and AF has led to the suggestion that lowering alcohol consumption may be an effective AF preventive strategy.¹⁸⁰ Recent studies have also highlighted the importance of aggressive risk factor management, including reducing alcohol consumption, in maintaining sinus rhythm in patients with established AF. In obese and overweight individuals, these studies have established an ultimate goal of reducing alcohol consumption to <30 g/week.¹⁴⁸ In the context of a directed management of risk factors, reducing alcohol consumption has contributed to short-term improvements in AF burden²⁶ and AF ablation outcomes,¹⁴⁸ as well as long-term maintenance of sinus rhythm.²⁸ The above evidence perhaps confirms some atrial toxicity related to alcohol consumption. Thus, physicians must not neglect obtaining a detailed history on alcohol consumption and providing appropriate counselling to reduce alcohol intake, when necessary, in patients with AF.

Recreational drugs

There are numerous reports on the effects on myocardial infarction, ventricular arrhythmias, and sudden cardiac death caused by recreational (illicit) drugs such as amphetamine, cocaine, and cannabis.¹⁸¹

However, data on these drugs as risk factors for AF per se are sparse. AF has not been reported to be associated with amphetamine, heroin, or LSD abuse and there are limited reports on the abuse of cannabis, cocaine, ecstasy, and anabolic-androgenic steroids with AF. Cannabis is the most commonly used recreational drug, which is increasing in Europe. A systematic review and a case series with literature review reported that all cases of cannabis-related AF were among young people without comorbidities.^{182,183} The underlying mechanism is probably adrenergic stimulation and disturbance in microvascular flow facilitating AF development by increased pulmonary vein ectopy. Cannabis abuse leading to AF is not benign in young and healthy subjects as it may contribute to atrial remodelling long-term.¹⁸² AF caused by cannabis abuse may be more malignant in older patients having other risk factors for thromboembolism. The burden of this problem is probably underestimated, given that most illicit cannabis users avoid seeking medical care unless serious disease is present.

Physicians should carefully examine for recreational drug abuse in young new onset AF patients without known predisposing factors. One case report describes AF in a healthy adolescent who had used ecstasy.¹⁸⁴ Anabolic–androgenic steroids are often used by young athletes to increase their capacity. Thus AF in a young healthy athlete should raise the suspicion that illicit drugs may be a possible cause and lead to careful search for drug abuse in order to prevent AF and more serious cardiac consequences.^{185,186}

Medications

A number of cardiovascular and non-cardiovascular drugs have been associated with increased risk of AF (Table 11). Drug-induced AF has received relatively little attention, and the exact incidence is not known.

Many cardiovascular (adenosine, dobutamine, ivabradine) and non-cardiovascular [non-steroidal anti-inflammatory drugs (NSAIDS), high-dose corticosteroids, and respiratory medications as aminophylline] drugs can induce AF.^{187,189,193} Adenosine is reported to induce AF when used for terminating supraventricular tachycardia with atrioventricular nodal involvement. Many patients undergoing cardiac surgery and treated with the inotrope dobuta-mine may develop postoperative AF. However, AF is usually transient and of short duration. Evidence of chemotherapy-induced AF has been summarized.^{187,188} Anthracyclines, melphalan,

Table I I	Medications associated with risk of incident
AF	

	Medications
Common (>20%)	Dobutamine, ¹⁸⁷ Cisplatin ^{187,188}
Infrequent (5–20%)	Anthracyclines, ^{187,188} Melphalan, ^{187,188} Interleukin-2, ^{187,188} NSAIDS, ¹⁸⁹ Bisphosphonates ^{190,191}
Rare (<5%)	Adenosine, ¹⁸⁷ Corticosteroids, ¹⁸⁷ Aminophylline, ¹⁸⁷ Antipsychotics, ¹⁹² Ivabradine ¹⁹³ Ondansetron ¹⁸⁷

arrhythmogenic milieu.¹⁹⁴ Several case reports of antipsychotic drugs associated with AF have been published,¹⁹² include with olanzapine (used for the treatment of schizophrenia and bipolar disorder). The antiemetic drug ondanse-tron is probably related to AF.¹⁸⁷

Whether bisphosphonate drugs against osteoporosis are associated with AF remains somewhat controversial. A systematic review and meta-analysis from 2014 concluded that AF risk is increased by 40% with intravenous use and 22% by oral use.¹⁹⁰ A more recent meta-analysis stated that bisphosphonates may modestly increase the risk of AF, but given the large reduction in fractures with these drugs, the authors did not recommend changes in treatment.¹⁹¹

Drug-induced AF can occur through pharmacological stimulation promoting ectopic impulses or by modulating the underlying substrate. Further research is perhaps needed to determine the incidence and risk factors of drug-induced AF, and particularly whether specific medications increase the risk of thromboembolism or mortality. In patients with a new-onset AF, it is reasonable to review the pharmacological history to identify whether any of the prescribed drugs may be responsible for the arrhythmia and make a balanced judgement on the risks and benefits of the drug use. Drug-induced AF may appear in healthy patients, but occurs more frequently in the elderly, after cardiac surgery, and if comorbidities and risk factors associated with AF are present. These risk factors include polypharmacy, hypertension, major heart disease, chronic obstructive pulmonary disease, and sleep apnoea.

Psychological distress

Psychological distress is prevalent among AFpatients;^{195–199} \sim 25–50% have symptoms of anxiety and/or depression and fear and worry are common.^{195–202} There is some evidence from ICD patients that acute emotional distress (particularly anger and anxiety)^{197,203,204} and depression²⁰⁵ may be antecedents to ventricular arrhythmias but there are no data in ICD patients regarding atrial arrhythmias. Only three studies have specifically examined the impact of psychological distress on incident AF.^{206–208}

The Framingham Offspring Study examined the association between Type A behaviour, anger, and hostility and incident AF. In age-adjusted analyses, anger-out predicted incident AF in women, while trait anger, symptoms of anger, and hostility predicted onset of AF in men²⁰⁶ (Table 12). On multivariable analyses, symptoms of anger, hostility, and trait-anger predicted the 10-year incidence of AF in men but not in women.²⁰⁶ Another analysis of this cohort investigated the effect of tension and anxiety on the development of AF.²⁰⁷ In age-adjusted analyses, tension, and anxiety predicted development of AF in men only. After adjustment for confounders, only tension was an independent predictor of incident AF but only among men.²⁰⁷ The absence of an association between psychological distress and the development of AF in women was confirmed in the Women's Health Study.²⁰⁸ In this cohort of 30 746 female health professionals aged \geq 45 years who were free from cardiovascular disease at baseline, 771 (2.51%) developed AF over a median 10-year follow-up period. Psychological distress was not associated with incident AF in age-adjusted or multivariable analyses.²⁰⁸ These findings require replication in other more diverse populations since these cohorts were predominantly white, middle-class, and middle-aged^{204–208} and the effect sizes in the Framingham Offspring study were modest.^{207,208}

Psychological distress, particularly depression, is more commonly associated with adverse lifestyle choices (smoking, excessive alcohol intake, poor diet, physical inactivity), poorer adherence to medication, etc., all of which may increase the likelihood of development of other risk factors for AF, and hence predispose people to incident AF. It is also plausible that the autonomic nervous system may be the conduit by which AF is linked with psychological distress and vice versa. The current evidence is therefore limited and equivocal, and future research is needed.

Physical activity and inactivity

Physical activity has profound benefits on lowering cardiovascular morbidity and mortality and physical inactivity is a major risk factor for cardiovascular disease. The effects of physical activity on the development of AF are less well documented and intervention studies on physical activity and the development of AF are lacking (Table 13).

The risk of AF depends on the interaction between individual susceptibility, environment, and the degree of physical activity.²¹⁷ Vigorous exercise may increase risk of sudden cardiac death, and even AF in some instances; however, habitual moderate physical activity may have several benefits that can reduce the incidence of AF. Lowering heart rate, blood pressure, better glucose and lipid control, weight loss, improved endothelial function, and lower systemic inflammation are some of the benefits of exercise that may decrease the development of AF.⁹⁷ On the other hand, vigorous activity can cause acute cathecholamine fluxes, autonomic tone changes, and atrial stretch, all contributing to AF risk.^{218–223} Autonomic influences should also be taken into consideration to decrease aggravation of AF ^{218,224}

The Euro Heart Survey on AF showed that an autonomic trigger pattern, either adrenergic, vagal, or mixed was present in 33% of patients; however, physicians did not choose rhythm or rate control medications according to those triggers,²²⁴ and inappropriate therapy in vagal AF patients enhanced progression of AF.

As stated earlier, obesity begets AF, and increased cardiorespiratory fitness is protective against incident AF. Indeed, the CARDIO-FIT study showed that arrhythmia free time was greatest in obese patients with high cardiorespiratory

Study	Design	Subjects n (% women)	FU, yrs	Psychological distress measures	AF , n (%)	Age-adjusted risk RR (95% CI)	Multivariable-adjusted risk RR (95% CI)
Eaker <i>et al.</i> ²⁰⁶ Framingham Offspring Study	Prospective, observational cohort	3682 (52%) Mean age 48.5 (10.1) yrs	10	Type A behaviour Anger Hostility	Women: 62/ 1908 (3.2%) Men: 132/1750 (7.5%) ^b	Women: Anger-out 1.3(1.0-1.6); P < 0.05 Men: Trait anger 1.2 (1.0-1.4); P < 0.05 Symptoms of anger 1.2 (1.1-1.4); P < 0.05 Hostility 1.3 (1.1-1.6); $P < 0.05$	Women ^a : NS Men ^a : Trait anger 1.1 (1.0–1.4): $P = 0.04$ Symptoms of anger 1.2 (1.1–1.4): $P = 0.008$ Hostility 1.3 (1.1–1.5): $P = 0.03$
Eaker et al. ²⁰⁷ Framingham Offspring Study	Prospective, observational cohort	3682 (52%) Mean age 48.5 (10.1) yrs	10	Tension Anxiety	Women: 62/ 1908 (3.2%) Men: 132/1750 (7.5%) ^b	Women: ^c Men: Tension 1.28 (1.08–1.52) Anxiety 1.16 (1.01–1.33)	Women ^a : Tension 0.83 (0.63–1.11) Anxiety 1.03 (0.81–1.31) Men ^a : Tension 1.24 (1.04–1.48) Anxiety 1.10 (0.95–1.27)
Whang et al. ²⁰⁸ Women's Health Study	RCT, plus observational follow-up	30 746 women without CVD at baseline Age: ≥45 yrs	10.5	MHI-5 ^d MHI-5 score: 86–100 76–85 53–75 <53	359 235 129 48	Reference 0.86 (0.73–1.02) 0.91 (0.74–1.11) 1.08 (0.80–1.47) P-value for trend 0.61	Reference 0.87 (0.73–1.03) 0.89 (0.72–1.09) 0.99 (0.72–1.35) P-value for trend 0.34

AF, atrial fibrillation; CI, confidence interval; CVD, cardiovascular disease; FU, follow-up; MHI-5, Mental Health Inventory 5-items; NS, not significant in multivariable analyses; RCT, randomized controlled trial; RR, relative risk; SD, standard deviation; yrs, years.

^aAdjusted for age, diabetes, hypertension, history of myocardial infarction or history of congestive heart failure, and valvular heart disease (defined as any diastolic murmur or \geq 3 out of 6 systolic murmur).

^bNot reported by each psychological measure.

^cNot reported for women.

^dScore <53 indicates significant global distress

fitness. In this study, AF burden and symptom severity significantly decreased in the group with cardiorespiratory fitness gain over two metabolic equivalent tasks (METs).²⁷

Different studies have suggested a possible relationship between endurance training and the development of AF, although this has not been confirmed in all studies or a Cochrane meta-analysis.^{212,214,225–230}

Most studies have looked at the effects of endurance training and vigorous exertion in young and middle-aged adults. In a study of 44410 men, intense endurance training at age 30 increased risk of AF later in life whereas moderate intensity decreased AF risk.²³¹ Similar findings were reported in older athletes.²¹¹ A meta-analysis of several small studies showed that risk of AF development in athletes was more than in non-athletes, but referents were not age matched and there was variance in the level of endurance across studies.²³² Age, years of training, and type of sport will all affect the outcome, therefore it is not possible to deduct a net conclusion from these studies except that vigorous endurance exercise may have a possible and small facilitating effect on AF.

In older adults, prospective epidemiological studies have shown a U-shaped relationship between level of physical activity and risk of AF. For example, the Cardiovascular Health Study demonstrated that leisure time activity was associated with lower AF incidence in a graded manner with lower risk as the intensity increased.²¹¹ AF incidence was lower in those with moderate exercise compared with no exercise (HR 0.72, 95% CI 0.58-0.89). However, highintensity exercise was not associated with a significantly reduced risk of AF (HR 0.87, 95% CI 0.64-1.19). There is also a graded inverse relationship between cardiorespiratory fitness and incident AF especially in obese patients.²⁰⁹ In a large population-based Swedish cohort, the risk of AF decreased with increased leisure time exercise in middle aged and elderly women.²¹⁰ Inactivity and obesity may lead to diastolic dysfunction and left atrial enlargement, and therefore increased AF risk whereas exercise training improves diastolic function and reduces left atrial volume.²³³

Current evidence would suggest that moderate physical activity is associated with better cardiovascular health, decreased mortality and decreased risk of AF. The on-going Routine vs. Aggressive upstream rhythm Control for prevention of Early atrial fibrillation in moderate heart failure (RACE 3) trial is investigating whether the combination of

Study	Design	Subjects	Age, yrs	FU, yrs	Physical activity	AF, %	Risk
Population cohorts							
Qureshi et al. ²⁰⁹ (FIT project) patients referred for treadmill	Retrospective	69 885	54.5	5.4	Graded by treadmill	7	1 Met higher decreases AF risk by 7%
Drca <i>et al.</i> ²¹⁰ Swedish Mammography Cohort Healthy	Prospective	36 513 women	60	10	Level of leisure activity	7.9	AF risk decreases with increased level of activity
Mozaffarian et al. ²¹¹ Cardiovascular Health Study	Prospective	5446 men and women	Over 65	10	Exercise intensity	19	AF less with low to moderate exercise
Grimsmo et al. ²¹² Cross country skiers	Prospective	122 and 117	Over 54	28-30	High in all	12.8	Endurance training increases AF
Myrstad et al. ²¹³ Male, cross country skiers	Retrospective	3712	Over 53		High in all	12.5	Endurance training increases AF
Lee et al. ²¹⁴ Leisure-time running	Longitudinal cohort study	309 540 men and women	40–45	4	Leisure time activity	0.4	AF increases with self-reported activity in men
Thelle et al. ²¹⁵ Walkers and runners	Proportional hazards analysis of	14 734	All ages	6.2	Walking or running	1.9–2.7 (arrhythmia)	AF similar in walkers and runners Arrhythmia decreases per MET
Aizer et al. ²¹⁶ Physicians Health Study Healthy men	Prospective	16 921	40-84	12	Degree of physical activity	9.8	Vigorous activity increases AF

Table 13 Physical activity and risk of AF

RAAS modulators, statins, and cardiac rehabilitation interventions to promote a better lifestyle including physical activity, weight reduction, and a healthy diet, may reduce progression of AF.²³⁴

Genetic predisposition and risk of AF

About 5% of patients with AF and 15% with lone AF referred for the evaluation of arrhythmias have family history of arrhythmias.²³⁵ Population-based studies demonstrated association between family history and risk of AF development^{236–241} (Table 14), which become stronger with increased numbers of affected first degree relatives and younger age. Several genes and loci linked to AF and its substrate were identified in families, individuals, and different populations,^{242–244} still there are genes in development state with unknown effects and risk associated with AF.^{245,246} AF with genetic predisposition is defined as monogenic when related to inherited cardiomyopathies and as polygenic in the presence of common gene variants associated with early AF onset in population.^{247,248}

The evidence of genetic predisposition to AF is evolving, and more studies are needed to clarify the role of various genes in AF development and as the genetic predisposition is a non-modifiable risk factor more studies are needed to establish whether intervention on modifiable risk factors can decrease risk of AF in populations with genetic predisposition.

Hyperthyroidism and other endocrine disorders

Among endocrine disorders, hyperthyroidism and diabetes mellitus (see above) are commonly associated with risk of developing AF,^{31,103,249,250} while hypothyroidism poses no or reduces risk for arrhythmia.^{249,251,252}

Observational cohort and registry studies (Table 15) reported AF incidence rates of 4.6–13.8% in overt hyperthyroidism, 8.512.7% in subclinical hyperthyroidism, and 7.3% in high-normal euthyroidism [based on thyroid stimulating hormone (TSH) level].^{249–251,253–257}

The risk of new-onset AF in hyperthyroidism depends on the level of thyroid dysfunction. AF is increased by 42% in overt hyperthyroidism, by 31% in subclinical hyperthyroidism, and by 12% in high-normal euthyroidism.²⁴⁹ Patients with subclinical forms are 1.68-fold more likely to develop AF during long-term follow-up, and those with suppressed TSH values have been shown to possess 2.54-fold higher risk of incident AF compared with euthyroid populations.^{249,251,253,255,256} Though the evidence on risk of AF in

Study	Design	Subjects	FU	Familial AF history	AF, %	Risk* (95% CI)
Fox et al. ²³⁶ Framngham Heart Study	Prospective cohort Population-based epidemiological study	2243 O 1165 women 1078 men At least 30 yrs	16 yrs	681—at least 1 parent had documented AF	n = 70	Parental AF vs. no FH OR 1.85 (1.12–3.06; P = 0.02) Parental AF vs. no FH <75 years (O and P) OR 3.23 (1.87–5.58; P < 0.001) Parental AF vs. no FH <75 years (O w/o overt clinical heart disease) OR 3.17 (1.71–5.86; P < 0.001)
Arnar et al. ²³⁷ Iceland cohort	Population-based cohort	5269 pts with AF	_	AF risk in first to fifth degree relatives	-	First degree relative RR 1.77 ($1.67 = 1.88 P = 0.001$) First degree relative <60 years old RR 4.67 ($3.57 - 6.08, P = 0.001$)
Gundlund <i>et al.</i> ²³⁸ Denmark cohort	Population-based study	New-onset AF 67 310 mothers—64 yrs 103 822 fathers—70 yrs 11 800 siblings—46 yrs		AF screening: 133 516 maternal O 221 774 paternal O 21 448 sibling O	2536 (1.9%) 2906 (1.3%) 292 (1.4%)	RR compared with general Denmark population 3.37 (3.21–3.53) 2.81 (2.69–2.93) 5.20 (4.61–5.85)
Zoller et <i>al.</i> ²³⁹ Sweden cohort	Population-based case-controlled study	300 586 individuals with AF/AFI multiplex families		1 parent ≤49 yrs 2 parents ≤49 yrs ≤49 yrs ≥2 siblings ≤49 yrs	Case vs. control 22.6 vs. 13.6% 22.8 vs. 11.9% 2.0 vs. 0.2% 2.1 vs. 0.5% 14.7 vs. 5.6% 8.1 vs. 2.3% 2.9 vs. 0.6% 1.4 vs. 0.2%	OR 1.95 (1.89–2.00) OR 2.33 (2.23–2.44) OR 3.6 (3.3–3.92) OR 5.04 (4.36–5.28) OR 3.08 (3.0–3.16) OR 4.06 (3.79–4.41) OR 5.72 (5.28–6.19) OR 8.51 (6.49–11.15)
Lubitz et al. ²⁴⁰ Framingham Heart Study	Prospective cohort	4421 participants	-	Familial AF—1185 Premature familial AF (<65 yrs) —351	Overall 440 Familial AF vs. no FH 5.8 vs. 3.1%	Presence of any first degree familial AF vs. no HR 1.4 (1.13–1.74, P = 0.002) Presence of premature familial AF (<65 years) HR 2.01 (1.49–2.71, P < 0.001) Number of first degree relative with AF—risk per each additional affected member HR 1.24 (1.05–1.46, P=0.01)
Oyen et al. ²⁴¹ Denmark cohort	Prospective cohort	3 985 446 individuals Lone AF—9507 subjects <60 yrs	31 yrs	First degree relative Second degree relative Number of affected first degree relatives	n = 269 n = 19	IRR 3.48 (3.08–3.93) IRR 1.64 (1.04–2.59)
				1 affected ≥2 affected Age at onset of lone AF for cohort member and first degree relative	n = 264 n = 5	IRR 3.45 (3.05–3.9) IRR 6.24 (2.59–15.0)
				<30 yrs for both <40 yrs for both	N/A n = 31	IRR 8.53 (3.82–19.0) IRR 5.42 (3.8–7.72)

AF, atrial fibrillation; CI, confidence interval; FH, family history; FU, follow-up; HR, hazard ratio; IRR, incidence rate ratio; O, offspring; OR, odds ratio; P, parent; pts, patients; RR, relative risk; yrs, years

individuals with high-normal euthyroidism is limited, the Rotterdam study demonstrated an increased risk of AF in individuals with high-normal thyroid function (based on TSH level)²⁵⁷ and in subjects <65 years old with higher free thyroxine levels within normal range.²⁵⁸ Nonetheless the evidence on demographic and cardiovascular disease risk factors associated with AF in thyroid dysfunction is scarce. In overt hyperthyroidism, age > 65 years, male sex, comorbidities like coronary artery disease, chronic heart failure, and valvular heart disease were reported as predictors of arrhythmia.²⁵⁹ In the subclinical form, age and sex were shown to affect the incident risk of AF, being significant in all age categories in women, and young male individuals, except in the older (>65 years) male population.²⁴⁹ In a recent meta-analysis,²⁵⁶ the risk of AF in subclinical hyperthyroidism was associated with male sex, but was not altered by the presence of cardiovascular disease or its risk factors. In another study, subclinical hyperthyroidism was shown to be a predictor of AF in elderly individuals, along with advanced age category (>75 years), male sex, diabetes mellitus, hypertension, and heart failure.257

AF risk diminishes during antithyroid treatment,²⁴⁹ with spontaneous restoration of sinus rhythm in \sim 76% of

patients²⁶⁰ and reduction of arrhythmia on long-term monitoring.²⁵⁹ Sinus rhythm restoration rates are also higher in elderly patients with overt and subclinical hyperthyroidism without cardiovascular disease and its risk factors, when compared with those with comorbidities.²⁵³ After restoration of an euthyroid state and electrical cardioversion or catheter ablation for persistent AF, long-term sinus rhythm maintenance rates have been shown to be either higher in patients with hyperthyroidism²⁶¹ or did not differ from those without history of thyroid dysfunction.^{262,263}

Hyperthyroidism had been long considered to be associated with higher thromboembolic risk,⁶⁵ but recent studies demonstrated that thyroid disease is not an independent predictor of AF-related complications such as thromboembolism and stroke.^{264–266}

Thus, prevention of AF in overt and subclinical hyperthyroidism should include measures, such as controlling thyroid function, treatment of associated cardiovascular diseases, and modification of risk factors. More research is needed regarding risk factors and prevention of AF in populations with high-normal euthyroidism based on TSH level and normal thyroid function with higher free thyroxine levels within normal range.

Study	Design	Subjects	FU	Thyroid function	AF, %	Risk (95%CI)
Selmer et al. ²⁴⁹	Cohort	586 460	5.5 yrs	Euthyroid	2.9	Reference
			,	Overt Hyperthyroid	4.6	IRR 1.42 (1.22-1.63
				Subclinical Hyperthyroid	-	IRR 1.31 (1.19–1.44
				Overt Hypothyroid	2.5	IRR 0.67 (0.5-0.9)
				Subclinical Hypothyroid	-	IRR 0.87 (0.7-0.97)
				TSH levels		
				Reduced TSH	-	IRR 1.16 (0.99-1.36)
				Suppressed TSH	-	IRR 1.41 (1.35–1.89)
				High-normal Euthyroid (TSH levels)	-	IRR 1.12 (1.03–1.21)
Cappola et al. ²⁵¹	Cohort	3233	13 yrs	Euthyroid	5.2	Reference
Cardiovascular Health study		>65 yrs	,	Subclinical Hyperthyroid	8.5	HR 1.98 (1.29-3.03)
,		,		Overt Hypothyroid	4.8	HR 0.96 (0.52-1.79)
				Subclinical Hypothyroid	3.9	HR 1.13 (0.94–1.36)
Frost et al. ²⁵⁰	Cohort	40 628	30 days	Overt Hyperthyoid	8.3	-
Auer et al. ²⁵³	Retrospective	23 638 elderly	_	Euthyroid	2.3	-
		,		Overt Hyperthyroid	13.8	_
				Subclinical Hyperthyroid	12.7	RR 5.2 (2.1-8.7)
Gammage et al. ²⁵⁴	Cohort	5860	_	Euthyroid	4.7	Reference
6		>65 yrs		Subclinical Hyperthyroid	9.5	OR 1.87(1.01-3.57)
		,		Subclinical Hypothyroid	4.2	- ,
				Serum free T4	_	OR 1.09 (1.03-1.15)
Sawin et al. ²⁵⁵	Cohort	2007	10 yrs	Euthyroid	8.4	, ,
Framingham Heart study			,	Reduced TSH 0.1–0.4 μU/L	12.2	RR 1.6 (1.0-2.5)
				Suppressed TSH $< 0.1 \mu$ U/L	21.3	RR 3.8 (1.7–8.3)
Colett et al. ²⁵⁶	Meta-analysis	52 674	8.8 yrs	Subclinical Hyperthyroid	_	HR 1.68 (1.16-2.43)
Thyroid studies collaborators	r rota anatysis	52 67 1	0.0 /10	Reduced TSH	_	HR 1.63 (1.1–2.4)
				Suppressed TSH	_	HR 2.54 (1.08–5.99)
Heeringa et al. ²⁵⁷	Registry	1426	8 yrs	High-normal Euthyroid (TSH levels)	7.3	HR 1.94 (1.13–3.34)
riceringa et ut	i cegisti y	1120	0 713	TSH - $0.4 - 1.04$ mU/L	1.5	THC 1.7 T (1.15-5.54)
Kim et al. ²⁵²	Cohort	5055	10 yrs	TSH 0.45–4.5 μU/L	5.4	Reference
Framingham Heart study				TSH 4.5−10.0 μU/L	7.0	HR 1.23 (0.77-1.97)
. , , , , , , , , , , , , , , , , , , ,				TSH 10.0–19.9 μU/L	4.0	HR 0.57 (0.21–1.54)

Table 15 Risk of AF in thyroid dysfunction

Definitions of thyroid dysfunction.²⁴⁹

Euthyroidism: TSH 0.2-5.0 mIU/L; free thyroxine 9-22 pmol/L; total thyroxine 60-140 mmol/L.

Overt hypothyroidism: TSH >5.0 mIU/L; free thyroxine <9 pmol/L; total thyroxine <60 mmol/L.

Subclinical hypothyroidism: TSH >5.0 mIU/L; free thyroxine 9-22 pmol/L; total thyroxine 60-140 mmol/L.

Overt hyperthyroidism: TSH <0.2 mIU/L; free thyroxine >22 pmol/L; total thyroxine >140 mmol/L.

- Subclinical hyperthyroidism: TSH <0.2 mIU/L; free thyroxine 9–22 pmol/L; total thyroxine 60–140 mmol/L.
- TSH level dependent thyroid dysfunction.²⁴

Euthyroidism: TSH 0.4-5.0 MiU/L; free thyroxine 9-22 pmol/L; total thyroxine 60-140 mmol/L.

High normal euthyroidism: TSH 0.2-0.4 mIU/L; free thyroxine 9-22 pmol/L; total thyroxine 60-140 mmol/L.

Subclinical hyperthyroidism (reduced TSH): TSH 0.1-0.2 mIU/L; free thyroxine 9-22 pmol/L; total thyroxine 60-140 mmol/L.

Subclinical hyperthyroidism (suppressed TSH): TSH <0.1 mIU/L; free thyroxine 9–22 pmol/L; total thyroxine 60–140 mmol/L.

AF, atrial fibrillation; BMI, body mass index; CI, confidence interval; CVD, cardiovascular disease; d, days; DM, diabetes mellitus; HF, heart failure; HR, hazard ratio; HT, hypertension; IRR, incidence rate ratio; LVF, left ventricular function; MI, myocardial infarction; OR, odds ratio; pts, patients; RR, relative risk; SBP, systolic blood pressure; TSH, thyroid stimulating hormone; VHD, valvular heart disease; yrs, years.

^aAdjusted for age, sex, CVD, thyroid medication use, atrial size, SBP, fasting glucose. VHD, β -blockers and diuretics use.

^bAdjusted for male, age >70, DM, HF, HT.

^cAdjusted for age, sex, smoking, BMI, SBP, HT, HF, MI, LVF, DM.

Electrophysiological considerations

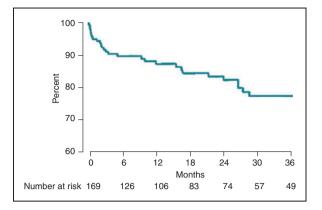
Atrial premature beats triggering AF

Atrial fibrillation can be maintained by rapid focal firing or by reentrant activity. The actual mechanism by which triggers (ectopic beats) initiate AF is unclear, but an important topic of research. Prior reports have mapped spontaneous ectopic triggers for AF and demonstrated their spatial diversity in both atria and prematurity in rate.²⁶⁷ Several mechanisms produce abnormal impulse formation that can cause focal ectopic activity: abnormal automaticity and triggered activity. Abnormal automaticity relies on an increased Phase 4 depolarization in cells that normally have a flat Phase 4. The (upre-gulation of the) pacemaker current/_f (funny current) may play an important role in this mechanism.

Triggered activity consists of depolarizations occurring after the action potential: delayed after depolarizations (DADs) or within the action potential: late Phase 3 early after depolarizations. These triggers often originate from predilected sites in the atria, such as the ostia of the pulmonary vein sleeves.²⁶⁷ DADs are thought the most common cause of focal atrial ectopic firing and are caused by diastolic Ca^{++} leak from the sarcoplasmic reticulum via SR Ca^{++} -release channels (RyR2) and the Na⁺/Ca⁺⁺ exchange (NCX)²⁶⁸

To maintain AF, these ectopic beats must be sustained to produce rapid driver activity or form the trigger to initiate reentry in a vulnerable substrate. AF remodels the atrial electrical properties to promote both initiation and propagation. It is well known that electrical remodelling consists of shortening of the duration of the action potential and depressed intracellular Ca⁺⁺ transients. Besides the involvement of the regular ion channels, also the /_{Na} late current plays a possible role.

Structural remodelling plays another important role in the initiation and maintenance of AF.²⁶⁹ Various pathways play a role including the RAAS, inflammation, and fat deposition leading to enlarged atria, hypertrophy, fibrosis, and myolysis.^{270–276} Indeed, the first manifestation of AF usually occurs after years of atrial remodelling.²⁷³ Once AF develops, it causes marked changes in atrial electrophysiology (electrical remodelling) in addition to further deterioration of the structural remodelling processes, constituting a vicious cycle in which 'AF begets AF',²⁷¹ making it challenging to restore and maintain sinus rhythm.^{273,274}


Molecular mechanisms

Abnormal cellular Ca^{++} handling is typically seen in AF patients. Defective Ca^{++} handling promotes spontaneous ryanodine receptor (RyR2)-mediated Ca^{++} release in atrial cells of patients with AF. Phosphorylation of RyR2 and CAMKII is increased in AF. Increases in NCX expression/ activity are also common noted in AF.

Supraventricular tachyarrhythmias causing AF

Supraventricular tachyarrhythmias (SVT) and pre-excitation may associate with AF.^{275–278} In 169 paroxysmal SVT outpatients, AF incidence was 19% over 2.5 years, assessed by remote monitoring (Figure 1).²⁷⁷ Atrial flutter and AF coexist even more often, one arrhythmia potentially reinforcing the other.²⁷⁹ Finally, flutter is frequently accompanied by atrioventricular nodal re-entry tachycardia (AVNRT)²⁸⁰

Causal mechanisms include tachycardia-related atrial ischaemia or dispersion of conduction and refractoriness, which can be facilitated by background atrial remodelling. Enhanced vagal tone is another mechanism.²⁸¹ Digitalis may cause shortening of atrial refractoriness²⁸² and also associate SVT or atrial flutter with AF. The same may hold for adenosine, which may elicit AF when given for the termination of SVT, and potentially cause haemodynamic deterioration.²⁸³ Due to conduction slowing, flutter may emerge under drug treatment for AF through activation of a sleeping circuit, seen especially with flecainide or propafenone (class-lc flutter).²⁸⁴ Late onset AVNRT may occur upon

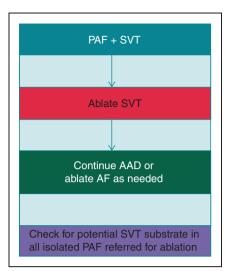


Figure 1. Graph showing time to occurrence of symptomatic atrial fibrillation in all 169 patients with paroxysmal supraventricular tachycardia. YAxis reflects the percentage of patients free from atrial fibrillation. (Reprinted from reference 277: J Am Coll Cardiol Vol.25, Hamer ME, Wilkinson WE, Clair WK, Page RL, McCarthy EA, Pritchett EL. Incidence of symptomatic atrial fibrillation in patients with paroxysmal supraventricular tachycardia. number, p. 984–8, Copyright 1995, with permission from Elsevier.)

cardiovascular ageing, in turn producing triggers and substrate for both AVNRT, as well as AF and flutter.²⁸⁵ Similarly, atrial remodelling (e.g. in the setting of hypertension) may connect atrial tachycardia and atrial flutter to AF. Last, but not least, AF and SVT may also simply associate due to the presence of both arrhythmia mechanisms including frequent pulmonary vein ectopy, as part of paroxysmal AF, but triggering the SVT substrate meanwhile.

In pre-excitation syndrome, the very presence of the accessory atrioventricular pathway (i.e. in the absence of atrial remodelling like in 'classic' AF) has been associated with local atrial arrhythmo-genesis and hence AF. Conduction dispersion emerges during retrograde pathway conduction after ventricular premature beats or during orthodromic tachycardia. Asymptomatic pre-excitation usually is not associated with AF, although younger patients as well as those with inducible SVT or AF and those with a short anterograde refractory period may be at risk.²⁸⁶ AF and pre-excitation, together with premature conduction disease, may occur in a rare genetic form of hypertrophic cardiomyopathy due to AMP kinase gene mutation deregulating cellular energy homoeostasis.²⁸⁷

When PAF and SVT associate, medical (including upstream antiremodelling) therapy may apply for both although ablation of both mechanisms seems most appropriate. Ablation of SVT or flutter may abolish AF or make it better amenable to rhythm control, although frequently electrophysiologists will perform pulmonary vein isolation at the same time. Ablation of the accessory pathway, in patients with overt pre-excitation suffering from AF, may prevent further AF attacks²⁸⁸ and is the preferred treatment also to prevent rare sudden death due to ventricular fibrillation. If these

Figure 2. Management of supraventricular tachycardias causing AF. AF, atrial fibrillation; AAD, antiarrhythmic drug; PAF, parox-ysmal AF; SVT, supraventricular tachycardia.

patients refuse ablation or complications are expected (e.g. atriovenricular block), then medical therapy may be indicated.^{236,289} Usually flecai- nide or propafenone are prescribed and amiodarone may be needed in the presence of concurrent cardiac disease. After ablation of class Ic flutter it is advocated to continue drug treatment for suppression of the initial AF although after isthmus ablation AF attacks may subside spontaneously. To avoid repeat procedures, SVT mechanisms should be checked electrophysiologically during any AF ablation, especially in the younger non-remodelled AF patients (Figure 2).

Post-operative atrial fibrillation

AF after cardiac surgery occurs in $\sim 30\%$ of patients,²⁹⁰ and is also frequent after thoracic surgery. This arrhythmia is associated with higher occurrence of heart failure and stroke, both resulting in increased hospitalization and healthcarecosts ²⁹¹ and also correlating with a higher rate of other serious complications [increased risk of in-hospital morbidity and mortality, and increased long-term risk of stroke] ²⁹² Post-operative AF usually is developed between Days 1 and 4 after surgical intervention. The mechanisms underlying the development of AF after cardiac surgery are not completely understood, but are thought to be multifactorial.²⁹¹ Numerous predisposing factors such as advanced age, hypertension, diabetes, left atrial enlargement, left ventricular hypertrophy, type of intervention, and the presence of cardiac valvular disease, intraoperative and post-operative factors such as atrial injury or ischaemia, can favour the development of postoperative AF.293

Different drugs have been investigated to prevent postoperative AF. Centrally acting β -adrenergic receptor-blocking agents tend to reduce sympathetic efferent activity and promote cardiac vagal outflow.²⁹⁴ Current guidelines strongly recommend using b-blockers to reduce post-operative AF incidence⁶⁵ and for that reason, preoperative b-blocker administration is standard in all patients without contraindications. Indeed, the European guidelines recommend that treatment should be started at least 1 week before surgery with a b1-blocker without intrinsic sympathomimetic activity.⁶⁵ A large meta-analysis of 27 randomized controlled trials with 3 840 patients, reported that the incidence of post-operative AF in control patients was 33% compared with 19% in those taking b-blockers, although an inexplicable and marked heterogeneity was found between trials.²⁹⁵ The importance of b-blockers is also affirmed by the two- to five-fold increase in AF after cardiac surgery, when b-blockers are discontinued post-operatively.²⁹⁶

The effectiveness of sotalol vs. placebo and sotalol vs. conventional β -blockers in preventing AF after surgery has been analysed in several clinical trials. A recent meta-analysis²⁹⁷ analysed 8 trials (1294 patients in total) evaluating the effect of sotalol to reduce post-operative AF, and demonstrated a reduction in AF incidence (37% in placebo group vs. 17% in sotalol group) with no significant heterogeneity between trials. Sotalol and other β -blockers were compared directly in 4 trials including 900 patients.²⁹⁵ Once again, sotalol reduced the incidence of post-operative AF from 22% in the other β -blocker group to 12% in the sotalol group with no significant heterogeneity. However, the use of sotalol places patients at risk of bradycardia and torsade de pointes, especially in those with electrolyte disturbances, reason why its use in post-operative AF is limited.⁶⁵

Several studies have analysed the impact of amiodarone on postoperative AF, with more than 10 randomized placebocontrolled trials. In a recent meta-analysis,²⁹⁷ prophylactic amiodarone decreased the incidence of post-operative AF (OR 0.43; 95% CI 0.34–0.54) and significantly shortened the duration of hospital stay, reduced the incidence of stroke and of post-operative ventricular tachyarrhythmia, but not post-operative mortality.²⁹⁸ European guidelines recommend considering preoperative amiodarone for patients at high risk for post-operative AF.

It is recognized that the use of statins is associated with a 22–34% lower risk of post-operative AF.⁶⁵ The largest and most robust trial of atorvastatin carried out to date, the Atorvastatin for Reduction of Myocardial Dysrhythmia After cardiac surgery study (ARMYDA-3),²⁹⁹ demonstrated that atorvastatin treatment conferred a 61% reduction in risk of post-operative AF in multivariable analyses. A recent large randomized trial did not show beneficial effects of rosuvastatin on incidence of complications or AF after cardiac surgery.³⁰⁰

Other drugs have been studied,^{297,301} but most show conflicting results. For example, no significant effect of RAAS-related medications on the occurrence of AF following cardiac surgery²⁹¹ and safety concerns about the potential risk of associated renal dysfunction. A meta-analysis demonstrated a significant reduction in postoperative AF using corticosteroids,³⁰² but we should take into account the potential adverse effects on glucose metabolism, wound healing, and infection. Other drugs explored included magnesium supplements, colchicine, non-steroidal anti-inflammatory drugs, and antioxidant agents (i.e. polyunsaturated fatty acids or N-acetylcysteine).³⁰¹

Current European guidelines recommend b-blockers and amio-darone as prophylactic therapies for post-operative AF. However, new pharmacological agents, with anti-inflammatory, and remodelling properties could take a place in the prevention of postoperative AF. Further research in this field is needed.

Upstream therapies to prevent AF

Upstream therapy refers to the use of non-ion-channel antiarrhyth-mic drugs that modify the atrial substrate upstream of AF to prevent new-onset AF (i.e. primary prevention) or recurrent AF (i.e. secondary prevention). It includes treatment with RAAS blockers [ACEIs, ARBs, and mineralocorticoid receptor antagonists (MRAs)], statins, and possibly *n*3-PUFAs.^{303,304} RAAS blockers may prevent or reduce atrial structural remodelling by decreasing fibrosis and improving haemodynamics. Interestingly, recent data support the favourable effects of physical activity, i.e. moderate exercise on AF burden.²¹¹

Upstream therapy has been encouraging in animal experiments, hypothesis-generating small clinical studies, and primary prevention studies.^{303,304} However, only few data support its beneficial effect for secondary prevention of AF. ACEIs and ARBs seem valuable, especially when added to amiodarone.^{274,305} Mineralocorticoid receptor antagonists may be even more effective in preventing AF recurrences but few data are available.^{306,307}

Statins, known for their lipid-lowering capacities, have pleiotropic properties such as reduction of inflammation and oxidative stress. Through these properties, statins may play a protective role against AF development. However, results regarding effectiveness of statins have been inconclusive.³⁰⁴

The effects of PUFAs have been well demonstrated in animal model, but limited evidence in secondary prevention of AF is available.^{303,304}

Favourable effects of lifestyle changes, including moderate exercise, have been demonstrated in selected patients.^{26,27,148,201} In a recent randomized trial, in obese AF patients, weight management, including physical activity and counselling, was compared with general lifestyle advice.²⁶ In addition to a significant reduction of BMI, AF symptoms and burden were significantly reduced in the aggressive weight management group. This finding was confirmed in the Longterm Effect of Goal directed weight management on AF Cohort: a 5 Year follow-up (LEGACY) trial, again in obese AF patients.²⁸ Progressive weight loss was associated with a reduced AF burden and symptoms and, interestingly, left atrial volume.

Overall, upstream therapy may be effective in primary prevention. The disappointing results regarding secondary prevention of AF may have been caused by inclusion of patients in whom the extent of remodelling was too severe and irreversible due to a long history of AF and underlying diseases.^{273,274} Inclusion of patients, in whom remodelling processes are less advanced, may improve outcome, in addition to tailoring certain upstream therapies to distinct patient groups (e.g. lifestyle changes in obese inactive patients).

Risk factors leading to AF development as risk factors for thromboembolic complications

Stroke prevention is central to the management of AF,³⁰⁸ and many of the risk factors leading to AF development are also risk factors for its thromboembolic complications. Whilst AF increases the risk of stroke five-fold, this risk is not homogeneous and depends on the presence of various stroke risk factors.³⁰⁹ Some risk factors are independent predictors of stroke risk, and have been used to formulate various stroke risk stratification schemes, such as the CHA₂DS₂-VASc score, which is now recommended in guidelines.³¹⁰ There are also various stroke risk modifiers, such as OSA³¹¹ and renal impairment,³¹² that have been associated with an increased stroke risk per se, although their additive predictive (and practical) value over and above validated stroke risk scores is less certain. Whether treatment of sleep apnoea with continuous positive airway pressure reduces stroke risk is unproved.³¹¹

Some risk factors within the CHA₂DS₂-VASc score, such as age, prior stroke, or thromboembolism, vascular disease, and female sex, are non-modifiable. Also, prior heart failure especially if associated with a hospital admission with decompensation, confers an excess of stroke risk.³¹³ Hence, efforts to minimize hospitalizations and decompensation of heart failure may help. Diabetes mellitus is less modifiable, but the duration of diabetes may predispose to an even higher risk of stroke and thromboembolism 107).

In a systematic review of stroke risk factors, a history of hypertension or uncontrolled hypertension conferred an increase in stroke risk,³⁰⁹ but clearly, well-controlled hypertension has a lower risk of stroke compared with uncontrolled hypertension.³¹⁴ Hypertension is also the commonest comorbidity associated with AF. Thus, patients with AF should have blood pressures ~130/80 mmHg, reflecting the fact that AF could be considered a manifestation of hypertensive target organ damage, and given that stroke risk starts to rise beyond SBPs of 130 mmHg.³¹⁴

Other potentially modifiable risk factors such as obesity, smoking, and alcohol excess have been related to an increased risk of stroke and mortality,^{33,315,316} although intervention studies to show how these would successfully decrease the risk of stroke in AF are lacking. Data from cohort studies

Risk factor/ trigger	Recommendations for clinical practice	Recommendations for research
Obesity	Inform overweight and obese patients of greater risk of developing AF and a subsequent risk of stroke and death. Assess BMI and start lifestyle programmes if BMI is overweight or obese	More studies are needed on how to effectively prevent weight gain and promote weigh loss in individuals who are overweight or obese More randomized controlled studies with long-term follow-up (>5 years) are needed t clarify the obesity paradox
General dietary considerations	Recommend healthy nutrition and lifestyle to reduce risk of AF Mediterranean diet enriched with olive oil may reduce risk of AF and its complications	More studies are needed on: the effect of unhealthy nutrition on risk of AF Whether modification of diet reduces risk of arrhythmia
Blood lipids, fish consumption	Inform patients with low HDL (\leq 40 mg/dL) and high triglyceride (TGs \geq 200 mg/dL) levels of risk of AF and its complications Recommend to patients with abnormal blood lipids to consume of a diet 'that emphasizes intake of vegetables, fruits, and whole grains; includes low-fat dairy products, poultry, fish, legumes, non-tropical vegetable oils, and nuts; and limits intake of sweets, sugar-sweetened beverages, and red meats ⁶⁶ Recommend combination of diet with moderate physical activity and maintenance of a healthy lifestyle and weight	Lacking direct evidence, more studies are needed to define whether modification of bloo lipids reduces the risk of AF.
Obstructive sleep apnoea	Inform patients with obstructive sleep apnoea that there is a greater risk of developing AF and their subsequent risk of stroke and death. Assess by anamnesis (snoring, daytime fatigue) the possibility of OSA. Refer to specialised clinic, as needed.	More studies are needed: To investigate how comorbidity in patients with obstructive sleep apnoea affects the ris of AF. To show the benefit of diagnostic efforts and the effect of treatment with CPAP. On adequate assessment of presence of OSA in AF population. To show reduced risk of AF in well powered RCTs using systematic therapeutic approac together with other lifestyle changes
Hypertension	Uncontrolled blood pressure is associated with AF risk Adequately assess patients at risk Control BP to reduce AF risk	Additional well-conducted secondary AF prevention trials will be important to define target SBP optimal to prevent AF Implement in RCTs together with other lifestyle management
Diabetes mellitus	Longer duration of diabetes and worse glycemic control are associated with increased AF risk	More research is needed on the effect of glycemic control on AF risk in patients with diabetes
Tobacco smoking	Control diabetes to reduce AF risk Intensively encourage children, young and older adults not to begin smoking. In individuals who smoke support smoking cessation to prevent AF incidence, recurrence, symptoms, and complications. Primordial prevention. Support efforts to prevent the uptake of tobacco smoking. Primary prevention. Encourage individuals to quit smoking. Secondary prevention. In individuals with AF promote efforts to quit smoking to improve AF frequency, duration, and symptoms	Investigate whether electronic cigarettes and second hand smoke are associated with a increased risk of new-onset AF, and in individuals with prevalent AF, whether electroni cigarettes and second hand smoke are associated with AF recurrence and AF symptoms. In individuals with AF, examine the efficacy and effectiveness of smoking cessation interventions to decrease the risk of stroke, myocardial infarction, chronic kidney disease, dementia, and all-cause mortality.
Air pollution	No association with chronic synptems pollution exposure.	Overall data are scarce and should be increased specifically aimed at incidence of AF in patients with known cardiac disease.
Caffeine	No increase in risk, rather a reduced association, even for heavy consumption.	Data should be extended to randomized intervention studies addressing caffeine consumption in patients with paroxysmal AF
Alcohol	Moderate-heavy and binge drinking increases AF risk To reduce AF risk: Recommend to avoid binge drinking (>4 drinks in women and >5 drinks in men on a single occasion) Recommend to refrain consumption to no more than 2 drinks per day for men and 1 drink per day for women Obtain a detailed history on alcohol consumption Provide appropriate counselling to reduce alcohol consumption in patients with AF	More intervention studies are needed on the effect of alcohol consumption reduction o AF risk
Medications	Many drugs increase AF risk: common (>20%) - dobutamine, cisplatin; infrequent (5–20%) - anthracyclines, melphalan, interleukin, NSAIDS, bisphosphonates; rare (<5%) - adenosine, corticosteroids, aminophylline, antipsychotics, ivabradin, ondansetron. In patients with new-onset AF, review the pharmacological history to identify whether any of the prescribed drugs may cause the arrhythmia.	More research on the effects on AF incidence for drug induced new-onset AF is needed, a many studies show conflicting results. Also more research is needed on which medications cause increased risk of AF.
Recreational drugs	Recreational drugs (cannabis, ecstasy and anabolic–androgenic steroids) may increase risk of AF. Examine for recreational drug abuse in new-onset AF	More research is needed on the effect of illicit drugs, particularly cannabis, on new-onse AF, as most of the evidence is from case reports
Psychological distress	Encourage avoidance of recreational drugs. Identify significant psychological distress, particularly depression and anxiety, and treat appropriately to reduce the likelihood of adverse lifestyle choices (smoking, excessive alcohol intake, poor diet, physical inactivity) and poorer adherence to medication and lifestyle modification, all of which may increase the likelihood of development of other risk factors for AF, and hence predispose people to incident AF and other chronic diseases.	Further investigation of the impact of psychological distress on the development of AF more diverse populations is warranted since the current limited evidence is based predominantly on white, middle-class, and middle-aged cohorts, and is only evident men.
Physical activity	Recommend daily moderate exercise to reduce risk of AF	Role of physical activity clearly warrants further research, plus genetics involved in AF i excessive sports

very recently indicated that weight reduction and improvement in physical fitness may reduce the recurrence of AF.²⁷ Also, rhythm control measures, such as cardioversion and ablation, may help in symptom management, and improve functional status, but randomized trials, clearly showing that such interventions reduce stroke in a broad range of unselected AF cohorts are lacking.³¹⁷ Observational data, in selected cohorts, suggest that successful catheter ablation may be associated with a lowered stroke risk³¹⁸ but, given that asymptomatic recurrences and late recurrence are recognized phenomena,

guidelines recommend continuation of oral anticoagulation (OAC), in patients with a CHA₂DS₂-VASc score of \geq 2, irrespective of apparent success of rhythm control.317

Modifiable factors to reduce the risk of stroke can include attention to quality of anticoagulation control for a patient taking a VKA (e.g. warfarin). The quality of anticoagulation control is usually quantified by the average time in therapeutic range (TTR) and a TTR of >70% is recommended.³¹⁹ However, TTR can be influenced by various clinical risk factors, especially in inception cohorts where warfarin is

Risk factor/trigger	Recommendations for clinical practice	Recommendations for research
Hyperthyroidism	Overt and subclinical hyperthyroidism increase AF risk Control thyroid function in patients at risk of AF Treat associated cardiovascular diseases and consider modification of risk factors	More research is needed regarding risk factors and prevention of AF in populations with high-normal thyroid function (based on TSH level) and individuals with higher level of free thyroxin within normal range.
Supraventricular tachyarrhythmias and paroxysmal AF	In patients with SVT and paroxysmal AF: Ablate SVT, continue antiarrhythmic drugs or ablate AF as needed. Checking for potential SVT substrate should be considered in patients with isolated PAF referred for ablation	Additional studies on prevention of AF in patients with SVT are needed
Post-operative AF	β-Blockers and amiodarone are indicated for prophylaxis of post-operative AF	More research is needed on use of pharmacological agents with anti-inflammatory and anti-remodelling properties, statins and other possible drugs for prevention of post-operative AF
Upstream therapies	_	Investigation of the long term effects of sustained secondary prevention with upstream therapies starting before AF in people at risk and early after AF diagnosis are required

Table 17	Consensus statements on AF	prevention II: mana	gement of associated conditions
----------	----------------------------	---------------------	---------------------------------

introduced.³²⁰ Thus, in newly diagnosed and previously anticoagulated naive AF patients, a 'trial of warfarin' prior to considering a non-VKA oral anticoagulant (NOAC) is not recommended given that TTR is likely to be subtherapeutic in the early phase of warfarin initiation, leading to an increased risk of stroke.³²¹ The SAMe-TT₂R₂ score³²² has been proposed to help decision-making between patients who are likely to do well on a VKA with high TTR (i.e. SAMe-TT₂ R_2 score 0–2) and those unlikely to do well on a VKA with poor TTR (SAMe-TT₂ R_2 score >2), where a NOAC would be a better first option.^{323,324} Thus, simple clinical decisionmaking, based on clinical risk factors that influence poor TTR as a stroke risk factor (within the SAMe- TT_2R_2 score), can help inform treatment decisions that would reduce the likelihood of labile INRs, and its adverse consequences such as stroke, bleeding, and death.³²⁵

Patient values/preferences

Many of the risk factors for the development of AF are to a certain extent preventable and/or modifiable via lifestyle choices such as diet, smoking, alcohol, recreational drug use, physical activity, maintenance of a healthy weight, and adherence to medication to control concomitant conditions (hypertension, diabetes, hyperthyroidism, etc.) and therefore potentially under individuals' conscious control.³²⁶ In addition, risk factors are likely to be cumulative in increasing risk of incident AF.^{98,111,115} However, an individual's ability to 'control' these factors may be limited by socioeconomic circumstances, access to healthcare and medications, health literacy, etc. Therefore, primary prevention of disease requires greater public awareness of the causes and consequences of the disease and how a person can modify his/her own risk of developing it. Thus, improving the general populations' understanding and

perception of AF (what it is, how it develops, associated stroke risk), of how their lifestyle impacts their risk of developing AF, and identifying strategies to change their health beliefs and health behaviours to reduce their risk of progressing to AF, requires both an individual approach plus global public health campaigns. Since lifestyle choices have significant impacts on all diseases, healthcare professionals should utilize contacts with patients to discuss diet, smoking, alcohol/drug use, and exercise, offer appropriate education, advice, and intervention(s), and support people to adopt and maintain healthpromoting behaviours to help reduce their risk of developing AF (and other diseases) Tables 16 and 17.

Conclusions

In the present document, the determinants and triggers of atrial fibrillation (AF) are extensively discussed and it appears clear that prevention of this disorder requires a tailored approach to the individual patient. Moreover, certain modifiable risk factors, such smoking, alcohol abuse, and lack of physical activity, are deemed important components of a preventive strategy.^{33,315,316}

In order to reduce the risk of AF, both an individual approach and global public health campaigns are required.

Many of the risk factors for AF are preventable and/or modifiable via lifestyle choices. As explained, modifying an inappropriate diet, quitting smoking, abstaining from alcohol and recreational drugs, and participating in regular physical activity programmes are efficient strategies under the patient's control.

A lifetime approach to cardiovascular risk modification is required (Figure 3). General physicians have a relevant role in this strategy, by monitoring their patients closely and adopting a lower threshold for educational intervention.

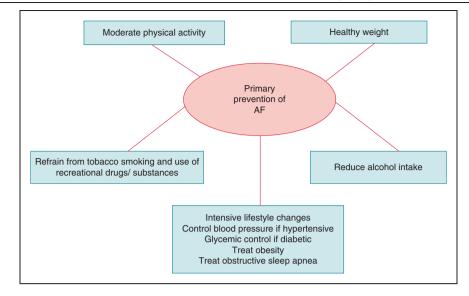


Figure 3. Lifetime approach to primary prevention of AF. AF, atrial fibrillation.

A particular relevance to the scope is assigned to the implementation of nutritional interventions and to promote regular exercise programmes and sport participation. However, the greatest effort should be paid by policy makers in order to improve the population's capability to achieve and maintain a healthy cardiovascular lifestyle. The most adverse risk profile is actually prevalent among individuals with low-socioeconomic status, poorer educational attainment, and limited access to healthcare.

The prevention of AF, more than other cardiovascular disorders, requires an approach that targets the global population, and a new political vision in the management of the healthcare system. In a society with available limited financial resources, it appears wise to modify the risk factors and quality of life of the largest majority of general population, more than developing sophisticated devices to shortly prolong the life of a few terminal patients.

Finally, special attention should be paid to the adolescent and young generations, who paradoxically are not at low cardiac risk, because of the epidemic incidence of obesity, inappropriate nutritional behaviour, smoking and alcohol abuse, and a widespread sedentary lifestyle.

Acknowledgments

Prof. Gregory Lip (chair), Prof. Bulent Gorenek (co-chair), Prof. Christian Sticherling, Prof. Laurent Fauchier, Prof. A. Goette, Prof. Werner Jung, Prof. Marc A Vos, Dr Michele Brignole, Dr. Christian Elsner, Prof. Gheorghe-Andrei Dan, Dr Francisco Marin, Prof. Giuseppe Boriani, Dr Deirdre Lane, Prof. Carina Blomstrom Lundqvist, Dr Irina Savelieva.

Conflict of interest

None declared.

References

- Wolf PA, Dawber TR, Thomas HE Jr and Kannel WB. Epidemiologic assessment of chronic atrial fibrillation and risk of stroke: the Framingham Study. *Neurology* 1978; 28: 973–7
- Krahn AD, Manfreda J, Tate RB, Mathewson FA and Cuddy TE. The natural history of atrial fibrillation: incidence, risk factors, and prognosis in the Manitoba Followup Study. *Am J Med* 1995; 98: 476–84
- Ott A, Breteler MM, de Bruyne MC, van Harskamp F, Grobbee DE and Hofman A. Atrial fibrillation and dementia in a population-based study: the Rotterdam Study. *Stroke* 1997; 28: 316–21
- Miyasaka Y, Barnes ME, Petersen RC, Cha SS, Bailey KR, Gersh BJ, et al. Risk of dementia in stroke-free patients diagnosed with atrial fibrillation: data from a communitybased cohort. *Eur Heart J* 2007; 28: 1962–7
- Soliman EZ, Lopez F, O'Neal WT, Chen LY, Bengtson L, Zhang ZM, et al. Atrial fibrillation and risk of STsegment-elevation versus non-ST-segment-elevation myocardial infarction: The Atherosclerosis Risk in Communities (ARIC) study. *Circulation* 2015; 131: 1843–50
- Soliman EZ, Safford MM, Muntner P, Khodneva Y, Dawood FZ, Zakai NA, et al. Atrial fibrillation and the risk of myocardial infarction. *JAMA Intern Med* 2014; 174: 107–14
- Benjamin EJ, Wolf PA, D'Agostino RB, Silbershatz H, Kannel WB and Levy D. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. *Circulation* 1998; 98: 946–52
- Benjamin EJ, Chen PS, Bild DE, Mascette AM, Albert CM, Alonso A, et al. Prevention of atrial fibrillation: report from a National Heart, Lung, and Blood Institute workshop. *Circulation* 2009; 119: 606–18

- 9. Wolowacz SE, Samuel M, Brennan VK, Jasso-Mosqueda JG and Van Gelder IC. The cost of illness of atrial fibrillation: a systematic review of the recent literature. *Europace* 2011; 13: 1375–85
- Boriani G, Maniadakis N, Auricchio A, Müller-Riemenschneider F, Fattore G, Leyva F, et al. Health technology assessment in interventional electrophysiology and device therapy: a position paper of the European Heart Rhythm Association. *Eur Heart J* 2013; 34: 1869–74
- Maniadakis N, Vardas P, Mantovani LG, Fattore G and Boriani G. Economic evaluation in cardiology. *Europace* 2011; 13(Suppl 2): ii3–8
- Fattore G, Maniadakis N, Mantovani LG and Boriani G. Health technology assessment: what is it? Current status and perspectives in the field of electrophysiology. *Europace* 2011; 13(Suppl 2): ii49–53
- Boriani G, Diemberger I, Martignani C, Biffi M and Branzi A. The epidemiological burden of atrial fibrillation: a challenge for clinicians and health care systems. *EurHeart J* 2006; 27: 893–4
- Schnabel RB, Yin X, Gona P, Larson MG, Beiser AS, McManus DD, et al. 50 year trends in atrial fibrillation prevalence, incidence, risk factors, and mortality in the Framingham Heart Study: a cohort study. *Lancet* 2015; 386: 154–62
- Chugh SS, Havmoeller R, Narayanan K, Singh D, Rienstra M, Benjamin EJ, et al. Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study. *Circulation* 2014; 129: 837–47
- Boriani G and Diemberger I. Globalization of the epidemiologic, clinical, and financial burden of atrial fibrillation. *Chest* 2012; 142: 1368–70
- Weintraub WS, Daniels SR, Burke LE, Franklin BA, Goff DC Jr, Hayman LL, et al. Value of primordial and primary prevention for cardiovascular disease: a policy statement from the American Heart Association. *Circulation* 2011; 124: 967–90
- Huxley RR, Lopez FL, Folsom AR, Agarwal SK, Loehr LR, Soliman EZ, et al. Absolute and attributable risks of atrial fibrillation in relation to optimal and borderline risk factors: the Atherosclerosis Risk in Communities (ARIC) Study. *Circulation* 2011; 123: 1501–8
- Dave D and Kaestner R. Health insurance and ex ante moral hazard: evidence from Medicare. *Int J Health Care Finance Econ* 2009; 9: 367–90
- Dublin S, French B, Glazer NL, Wiggins KL, Lumley T, Psaty BM, et al. Risk of new onset atrial fibrillation in relation to body mass index. *Arch Intern Med* 2006; 166: 2322–8
- Long MJ, Jiang CQ, Lam TH, Xu L, Zhang WS, Lin JM and ai. Atrial fibrillation and obesity among older Chinese: the Guangzhou Biobank Cohort Study. *Int J Cardiol* 2011; 148: 48–52
- 22. Tedrow UB, Conen D, Ridker PM, Cook NR, Koplan BA, Manson JE and ai. The long- and short-term impact of elevated body mass index on the risk of new atrial fibrillation the WHS (Women's Health Study). *JAmCollCardiol* 2010; 55: 2319–27

- Wang TJ, Parise H, Levy D, D'Agostino RB Sr, Wolf PA, Vasan RS, et al. Obesity and the risk of new-onset atrial fibrillation. *JAMA* 2004; 292: 2471–7
- Frost L, Benjamin EJ, Fenger-Grøn M, Pedersen A, Tjønneland A and Overvad K. Body fat, body fat distribution, lean body mass and atrial fibrillation and flutter. A Danish cohort study. *Obesity (Silver Spring)* 2014; 22: 1546–52
- 25. Vermond RA, Geelhoed B, Verweij N, Tieleman RG, Van der Harst P, Hillege HL, et al. Incidence of atrial fibrillation and relation with cardiovascular events, heart failure and mortality – a community-based studyfrom the Netherlands. J Am Coll Cardiol 2015; 66: 1000–7
- 26. Abed HS, Wittert GA, Leong DP, Shirazi MG, Bahrami B, Middeldorp ME, et al. Effect of weight reduction and cardiometabolic risk factor management on symptom burden and severity in patients with atrial fibrillation: a randomized clinical trial. *JAMA* 2013; 310: 2050–60
- Pathak RK, Elliot A, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, et al. Impact of CARDIOrespiratory FITness on arrhythmia recurrence in obese individuals with atrial fibrillation: the CARDIO-FIT study. J Am Coll Cardiol 2015; 66: 985–96
- Pathak RK, Middeldorp ME, Meredith M, Mehta AB, Mahajan R, Wong CX, et al. Long-term Effect of Goal-Directed Weight Management in an Atrial Fibrillation cohort: a long-term follow-up study (LEGACY). J Am Coll Cardiol 2015; 65: 2159–69
- Rienstra M, Sun JX, Lubitz SA, Frankel DS, Vasan RS, Levy D, et al. Plasma resistin, adiponectin, and risk of incident atrial fibrillation : the Framingham Offspring Study. *Am Heart J* 2012; 163: 119–24
- Nyrnes A, Mathiesen EB, Njolstad I, Wilsgaard T and Lochen ML. Palpitations are predictive of future atrial fibrillation. An 11-year follow-up of 22,815 men and women: the Tromso study. *Eur J Prev Cardiol* 2013; 20: 729–36
- Huxley RR, Filion KB, Konety S and Alonso A. Metaanalysis of cohort and case control studies of type 2 diabetes mellitus and risk of atrial fibrillation. *Am J Cardiol* 2011; 108: 56–62
- 32. Coromilas J. Obesity and atrial fibrillation: is one epidemic feeding the other? *JAMA* 2004; 292: 2519–20
- Overvad TF, Rasmussen LH, Skjøth F, Overvad K, Lip GY and Larsen TB. Body mass index and adverse events in patients with incident atrial fibrillation. *Am JMed* 2013; 126640.e9-17
- Badheka AO, Rathod A, Kizilbash MA, Garg N, Mohamad T, Afonso L, et al. Influence of obesity on outcomes in atrial fibrillation: yet another obesity paradox. *Am JMed* 2010; 123: 646–51
- Shen J, Johnson VM, Sullivan LM, Jacques PF, Magnani JW, Lubitz SA, et al. Dietary factors and incident atrial fibrillation: the Framingham Heart Study. *Am J Clin Nutr* 2011; 93: 261–6

- Khawaja O, Gaziano JM and Djousse L. Nut consumption and risk of atrial fibrillation in the Physicians' Health Study. *NutrJ* 2012; 11: 17
- 37. Fretts AM, Mozaffarian D, Siscovick DS, Heckbert SR, McKnight B, King IB, et al. Associations of plasma phospholipid and dietary alpha linoleic acid with incident atrial fibrillation in older adults: The Cardiovascular Health Study. J Am Heart Assoc 2013; 2: e003814
- 38. Costanzo S, De Curtis A, di Niro V, Olivieri M, Morena M, De Filippo CM, et al. on behalf of the Polyphemus Observational Study Investigators. Postoperative atrial fibrillation and total dietary antioxidant capacity in patients undergoing cardiac surgery: the Polyphemus Observational Study. J Thorac Cardiovasc Surg 2015; 149: 1175–82
- Mattioli AV, Miloro C, Pennella S, Pedrazzi P and Farinetti A. Adherence to Mediterranean diet and intake of antioxidants influence spontaneous conversion of atrial fibrillation. *NutrMetab Cardiovasc Dis* 2013; 23: 115–21
- Pastori D, Carnevale R, Barimoccia S, Nocella C, Tanzilli G, Cangemi R, et al. Does Mediterranean diet reduce cardiovascular events and oxidative stress in atrial fibrillation? *Antioxid Redox Signal* 2015; 23: 682–7
- Martínez-González MA, Toledo E, Arós F, Fiol M, Corella D, Salas-Salvadó J, et al. Extra-virgin olive oil consumption reduces risk of atrial fibrillation. The PREDIMED (Prevencion con Dieta Mediterranea) Trial. *Circulation* 2014; 130: 18–26
- Al Suwaidi J, Zubaid M, Al-Mahmeed WA, Al-Rashdan I, Amin H, Bener A, et al. Impact of fasting in Ramadan in patients with cardiac disease. *Saudi Med J* 2005; 26: 1579–83
- 43. Van Wagoner DR, Piccini JP, Albert CM, Anderson ME, Benjamin EJ, Brundel B, et al. Progress toward the prevention and treatment of atrial fibrillation: a summary of the Heart Rhythm Society Research Forum on the Treatment and Prevention of Atrial Fibrillation, Washington, DC, December 9–10, 2013. *Heart Rhythm* 2015; 12: e5–29
- 44. Lopez FL, Agarwal SK, Maclehose RF, Soliman EZ, Sharrett AR, Huxley RR, et al. Blood lipid levels, lipid-lowering medications, and the incidence of atrial fibrillation: the Atherosclerosis Risk in Communities study. *Circ Arrhythm Electrophysiol* 2012; 5: 155–62
- 45. Alonso A, Yin X, Roetker NS, Magnani JW, Kronmal RA, Ellinor PT, et al. Blood lipids and the incidence of atrial fibrillation: the Multi-Ethnic Study of Atherosclerosis and the Framingham Heart Study. J Am Heart Assoc 2014; 3: e001211
- 46. Gronroos NN, Chamberlain AM, Folsom AR, Soliman EZ, Agarwal SK, Nettleton JA, et al. Fish, fish-derived n-3 fatty acids, and risk of incident atrial fibrillation in the Atherosclerosis Risk in Communities (ARIC) study. *PLoS One* 2012; 7: e36686
- 47. Rix TA, Joensen AM, Riahi S, Lundbye-Christensen S, Tjønneland A, Schmidt EB, et al. A U-shaped association between consumption of marine n-3 fatty acids and development of atrial fibrillation/atrial flutter-a Danish cohort study. *Europace* 2014; 16: 1554–61

- Rix TA, Joensen AM, Riahi S, Lundbye-Christensen S, Overvad K and Schmidt EB. Marine n-3 fatty acids in adipose tissue and development of atrial fibrillation: a Danish cohort study. *Heart* 2013; 99: 1519–24
- Virtanen JK, Mursu J, Voutilainen S and Tuomainen TP. Serum long-chain n-3 polyunsaturated fatty acids and risk of hospital diagnosis of atrial fibrillation in men. *Circulation* 2009; 120: 2315–21
- Young-Xu Y, Jabbour S, Goldberg R, Blatt CM, Graboys T, Bilchik B, et al. Usefulness of statin drugs in protecting against atrial fibrillation in patients with coronary artery disease. *Am J Cardiol* 2003; 92: 1379–83
- Shiroshita-Takeshita A, Schram G, Lavoie J and Nattel S. Effect of simvastatin and antioxidant vitamins on atrial fibrillation promotion by atrial-tachycardia remodeling in dogs. *Circulation* 2004; 110: 2313–9
- Kumagai K, Nakashima H and Saku K. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. *Cardiovasc Res* 2004; 62: 105–11
- 53. Elgendy IY, Mahmoud A, Huo T, Beaver TM and Bavry AA. Meta-analysis of 12 trials evaluating the effects of statins on decreasing atrial fibrillation after coronary artery bypass grafting. *Am J Cardiol* 2015; 115: 1523–8
- 54. Jacob KA, Nathoe HM, Dieleman JM, van Osch D, Kluin J and van Dijk D. Inflammation in new-onset atrial fibrillation after cardiac surgery: a systematic review. *Eur J Clin Invest* 2014; 44: 402–28
- Rahimi K, Emberson J, McGale P, Majoni W, Merhi A, Asselbergs FW, et al. Effect of statins on atrial fibrillation: collaborative meta-analysis of published and unpublished evidence from randomised controlled trials. *BMJ* 2011; 342: d1250
- Fauchier L, Clementy N and Babuty D. Statin therapy and atrial fibrillation: systematic review and updated meta-analysis of published randomized controlled trials. *Curr Opin Cardiol* 2013; 28: 7–18
- 57. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, et al. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. *Circulation* 2014; 129: S1–45
- Mozaffarian D, Psaty BM, Rimm EB, Lemaitre RN, Burke GL, Lyles MF, et al. Fish intake and risk of incident atrial fibrillation. *Circulation* 2004; 110: 368–73
- 59. Sakabe M, Shiroshita-Takeshita A, Maguy A, Dumesnil C, Nigam A, Leung TK, et al. Omega-3 polyunsaturated fatty acids prevent atrial fibrillation associated with heart failure but not atrial tachycardia remodeling. *Circulation* 2007; 116: 2101–9
- 60. Mayyas F, Sakurai S, Ram R, Rennison JH, Hwang ES, Castel L, et al. Dietary omega3 fatty acids modulate the substrate for post-operative atrial fibrillation in a canine cardiac surgery model. *Cardiovasc Res* 2011; 89: 852–61
- 61. Mozaffarian D, Wu JH, de Oliveira Otto MC, Sandesara CM, Metcalf RG, Latini R, et al. Fish oil and postoperative atrial fibrillation: a meta-analysis of

randomized controlled trials. J Am Coll Cardiol 2013; 61: 2194–6

- Darghosian L, Free M, Li J, Gebretsadik T, Bian A, Shintani A, et al. Effect of omega-three polyunsaturated fatty acids on inflammation, oxidative stress, and recurrence of atrial fibrillation. *Am J Cardiol* 2015; 115: 196–201
- Nigam A, Talajic M, Roy D, Nattel S, Lambert J, Nozza A, et al. Fish oil for the reduction of atrial fibrillation recurrence, inflammation and oxidative stress. *J Am Coll Cardiol* 2014; 64: 1441–8
- 64. Visioli F, Rise P, Barassi MC, Marangoni F and Galli C. Dietary intake offish vs. formulations leads to higher plasma concentrations of n-3 fatty acids. *Lipids* 2003; 38: 415–8
- 65. Camm AJ, Kirchhof P, Lip GY, Schotten U, Savelieva I, Ernst S, et al. Guidelines for the management of atrial fibrillation: the Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC). European Heart Rhythm Association; European Association for Cardio-Thoracic Surgery. *Europace* 2010; 12: 1360–420
- 66. Eckel RH, Jakicic JM, Ard JD, de Jesus JM, Houston Miller N, Hubbard VS, et al. 2013 AHA/ACC guideline on lifestyle management to reduce cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol 2014; 63: 2960–84
- Peppard PE, Young T, Barnet JH, Palta M, Hagen EW and Hla KM. Increased prevalence of sleep-disordered breathing in adults. *Am J Epidemiol* 2013; 177: 1006–14
- 68. Somers VK, White DP, Amin R, Abraham WT, Costa F, Culebras A, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College Of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council On Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). *Circulation* 2008; 118: 1080–111
- Gami AS, Hodge DO, Herges RM, Olson EJ, Nykodym J, Kara T, et al. Obstructive sleep apnea, obesity, and the risk of incident atrial fibrillation. *J Am Coll Cardiol* 2007; 49: 565–71
- Cadby G, McArdle N, Briffa T, Hillman DR, Simpson L, Knuiman M, et al. Severity of OSA is an independent predictor ofincident atrial fibrillation hospitalization in a large sleep-clinic cohort. *Chest* 2015; 148: 945–52
- Arias MA, Sánchez AM, Alonso-Fernández A and García-Río F. Atrial fibrillation, obesity, and obstructive sleep apnea. *Arch Intern Med* 2007; 167: 1552–3
- Ghias M, Scherlag BJ, Lu Z, Niu G, Moers A, Jackman WM, et al. The role of ganglionated plexi in apnearelated atrial fibrillation. *J Am Coll Cardiol* 2009; 54: 2075–83
- Roche F, Xuong AN, Court-Fortune I, Costes F, Pichot V, Duverney D, et al. Relationship among the severity of sleep apnea syndrome, cardiac arrhythmias, and

autonomic imbalance. Pacing Clin Electrophysiol 2003; 26: 669-77

- 74. Fein AS, Shvilkin A, Shah D, Haffajee CI, Das S, Kumar K, et al. Treatment of obstructive sleep apnea reduces the risk of atrial fibrillation recurrence after catheter ablation. J Am Coll Cardiol 2013; 62: 300–5
- 75. Neilan TG, Farhad H, Dodson JA, Shah RV, Abbasi SA, Bakker JP, et al. Effect of sleep apnea and continuous positive airway pressure on cardiac structure and recurrence of atrial fibrillation. J Am Heart Assoc 2013; 2: e000421
- 76. Grimm W, Hoffmann J, Menz V, Köihler U, Heitmann J, Peter JH, et al. Electrophysiologic evaluation of sinus node function and atrioventricular conduction in patients with prolonged ventricular asystole during obstructive sleep apnea. *Am J Cardiol* 1996; 77: 1310–4
- 77. Simantirakis EN, Schiza SI, Marketou ME, Chrysostomakis SI, Chlouverakis GI, Klapsinos NC, et al. Severe bradyarrhythmias in patients with sleep apnoea: the effect of continuous positive airway pressure treatment: a long-term evaluation using an insertable loop recorder. *Eur Heart J* 2004; 25: 1070–6
- 78. Naruse Y, Tada H, Satoh M, Yanagihara M, Tsuneoka H, Hirata Y, et al. Concomitant obstructive sleep apnea increases the recurrence of atrial fibrillation following radiofrequency catheter ablation of atrial fibrillation: clinical impact of continuous positive airway pressure therapy. *Heart Rhythm* 2013; 10: 331–7
- 79. Li L, Wang ZW, Li J, Ge X, Guo LZ, Wang Y, et al. Efficacy of catheter ablation of atrial fibrillation in patients with obstructive sleep apnoea with and without continuous positive airway pressure treatment: a metaanalysis of observational studies. *Europace* 2014; 16: 1309–14
- Khan A, Latif F, Hawkins B, Tawk M, Sivaram CA and Kinasewitz G. Effects of obstructive sleep apnea treatment on left atrial volume and left atrial volume index. *Sleep Breath* 2008; 12: 141–7
- Maeno K, Kasagi S, Ueda A, Kawana F, Ishiwata S, Ohno M, et al. Effects of obstructive sleep apnea and its treatment on signal-averaged P-wave duration in men. *Circ Arrhythm Electrophysiol* 2013; 6: 287–93
- Arias MA, García-Río F, Alonso-Fernández A, Mediano O, Martínez I and Villamor J. Obstructive sleep apnea syndrome affects left ventricular diastolic function: effects of nasal continuous positive airway pressure in men. *Circulation* 2005; 112: 375–83
- Shukla A, Aizer A, Holmes D, Fowler S, Park DS, Bernstein S, et al. Effect of obstructive sleep apnea treatment on atrial fibrillation recurrence: a meta-analysis. *JACC-CEP* 2015; 1: 41–51
- Cowie MR, Woehrle H, Wegscheider K, Angermann C, d'Ortho MP, Erdmann E, et al. Adaptive servoventilation for central sleep apnea in systolic heart failure. *N Engl J Med* 2015; 373: 1095–105
- 85. Benjamin EJ, Levy D, Vaziri SM, D'Agostino RB, Belanger AJ, Wolf PA, et al. Independent risk factors for atrial fibrillation in a population-based

cohort: the Framingham Heart Study. JAMA 1994; 271: 840–4

- Thomas MD, Dublin S, Kaplan RC, Glazer NL, Lumley T, Longstreth WT Jr, et al. Blood pressure control and risk ofincident atrial fibrillation. *Am J Hypertens* 2008; 21: 1111–6
- Wachtell K, Lehto M, Gerdts E, Olsen MH, Hornestam B, Dahlöf B, et al. Angiotensin II receptor blockade reduces new-onset atrial fibrillation and subsequent stroke compared to atenolol: the Losartan Intervention for End Point Reduction in Hypertension (LIFE) Study. J Am Coll Cardiol 2005; 45: 712–9
- Marott SCW, Nielsen SF, Benn M and Nordestgaard BG. Antihypertensive treatment and risk of atrial fibrillation: a nationwide study. *Eur Heart J* 2014; 35: 1205–14
- Okin PM, Hille DA, Larstorp ACK, Wachtell K, Kjeldsen SE, Dahlof B, et al. Effect of lower on-treatment systolic blood pressure on the risk of atrial fibrillation in hypertensive patients. *Hypertension* 2015; 66: 368–73
- The GISSI-AF Investigators. Valsartan for prevention of recurrent atrial fibrillation. N Engl J Med 2009; 360: 1606–17
- 91. Goette A, Schon N, Kirchhof P, Breithardt G, Fetsch T, Hausler KG, et al. Angiotensin II-antagonist in paroxysmal atrial fibrillation (ANTIPAF) trial. *Circ Arrhythm Electrophysiol* 2012; 5: 43–51
- 92. Lip GY, Frison L and Grind M. Angiotensin converting enzyme inhibitor and angiotensin receptor blockade use in relation to outcomes in anticoagulated patients with atrial fibrillation. J Intern Med 2007; 261: 577–86
- Emdin CA, Callender T, Cao J and Rahimi K. Effect ofantihypertensive agents on risk of atrial fibrillation: a meta-analysis of large-scale randomized trials. *Europace* 2015; 17: 701–10
- 94. Gillis AM. Angiotensin-receptor blockers for prevention of atrial fibrillation – a matter of timing or target? N Engl J Med 2009; 360: 1669–71
- 95. Mayyas F, Alzoubi KH and Van Wagoner DR. Impact of aldosterone antagonists on the substrate for atrial fibrillation: aldosterone promotes oxidative stress and atrial structural/electrical remodeling. *Int J Cardiol* 2013; 168: 5135–42
- 96. Khatib R, Joseph P, Briel M, Yusuf S and Healey J. Blockade of the renin-angiotensin-aldosterone system (RAAS) for primary prevention of non-valvular atrial fibrillation: a systematic review and meta-analysis of randomized controlled trials. *Int J Cardiol* 2013; 165: 17–24
- Menezes AR, Lavie CJ, DiNicolantonio JJ, O'Keefe J, Morin DP, Khatib S, et al. Atrial fibrillation inthe21st century: a current understanding of risk factors and primary prevention strategies. *Mayo Clin Proc* 2013; 88: 394–409
- 98. Alonso A, Krijthe BP, Aspelund T, Stepas KA, Pencina MJ, Moser CB, et al. Simple risk model predicts incidence of atrial fibrillation in a racially and geographically diverse population: the CHARGE-AF consortium. J Am Heart Assoc 2013; 2: e000102

- 99. Huxley RR, Alonso A, Lopez FL, Filion KB, Agarwal SK, Loehr LR, et al. Type 2 diabetes, glucose homeostasis and incident atrial fibrillation: the Atherosclerosis Risk in Communities study. *Heart* 2012; 98: 133–8
- 100. Ostgren CJ, Merlo J, Rastam L and Lindblad U. Atrial fibrillation and its association with type 2 diabetes and hypertension in a Swedish community. *Diabetes Obes Metab* 2004; 6: 367–74
- 101. Pfister R, Michels G, Cairns R, Schneider CA and Erdmann E. Incidence of new onset bundle branch block and atrial fibrillation in patients with type 2 diabetes and macrovascular disease: an analysis of the PROactive study. *Int J Cardiol* 2011; 153: 233–4
- 102. Schoen T, Pradhan AD, Albert CM and Conen D. Type 2 diabetes mellitus and risk of incident atrial fibrillation in women. J Am Coll Cardiol 2012; 60: 1421–8
- 103. Dublin S, Glazer NL, Smith NL, Psaty BM, Lumley T, Wiggins KL, et al. Diabetes mellitus, glycemic control, and risk of atrial fibrillation. J Gen Intern Med 2010; 25: 853–8
- 104. Aksnes TA, Schmieder RE, Kjeldsen SE, Ghani S, Hua TA and Julius S. Impact of new onset diabetes mellitus on development of atrial fibrillation and heart failure in high risk hypertension (from the VALUE Trial). *Am J Cardiol* 2008; 101: 634–8
- 105. Chang SH, Wu LS, Chiou MJ, Liu JR, Yu KH, Kuo CF, et al. Association of metformin with lower atrial fibrillation risk among patients with type 2 diabetes mellitus: a population-based dynamic cohort and *in vitro* studies. *Cardiovasc Diabetol* 2014; 13: 123
- 106. Overvad TF, Skjøth F, Lip GYH, Lane DA, Albertsen IE, Rasmussen LH, et al. Duration of diabetes mellitus and risk of thromboembolism and bleeding in atrial fibrillation: nationwide cohort study. *Stroke* 2015; 46: 2168–74
- 107. Anselmino M, Matta M, D'ascenzo F, Pappone C, Santinelli V, Bunch TJ, et al. Catheter ablation of atrial fibrillation in patients with diabetes mellitus: a systematic review and meta-analysis. *Europace* 2015; 17: 1518–25
- 108. Chamberlain AM, Agarwal SK, Folsom AR, Duval S, Soliman EZ, Ambrose M, et al. Smoking and incidence of atrial fibrillation: results from the Atherosclerosis Risk in Communities (ARIC) study. *Heart Rhythm* 2011; 8: 1160–6
- 109. Pfister R, Bragelmann J, Michels G, Wareham NJ, Luben R and Khaw KT. Performance of the CHARGE-AF risk model for incident atrial fibrillation in the EPIC Norfolk cohort. *Eur J Prev Cardiol* 2015; 22: 932–9
- 110. Friberg J, Buch P, Scharling H, Gadsbphioll N and Jensen GB. Rising rates of hospital admissions for atrial fibrillation. *Epidemiology* 2003; 14: 666–72
- 111. Everett BM, Cook NR, Conen D, Chasman DI, Ridker PM and Albert CM. Novel genetic markers improve measures of atrial fibrillation risk prediction. *Eur Heart J* 2013; 34: 2243–51
- 112. Rodriguez CJ, Soliman EZ, Alonso A, Swett K, Okin PM, Goff DC Jr, et al. Atrial fibrillation incidence and risk factors in relation to race-ethnicity and the

population attributable fraction of atrial fibrillation risk factors: The Multi-Ethnic Study of Atherosclerosis. *Ann Epidemiol* 2015; 25: 71–6

- 113. Suzuki S, Otsuka T, Sagara K, Kano H, Matsuno S, Takai H, et al. Association between smoking habits and the first-time appearance of atrial fibrillation in Japanese patients: evidence from the Shinken database. *J Cardiol* 2015; 66: 73–9
- 114. Heeringa J, Kors JA, Hofman A, van Rooij FJ and Witteman JC. Cigarette smoking and risk of atrial fibrillation: the Rotterdam study. *Am Heart J* 2008; 156: 1163–9
- 115. Schnabel RB, Sullivan LM, Levy D, Pencina MJ, Massaro JM, D'Agostino RB, et al. Development of a risk score for atrial fibrillation (Framingham Heart Study): a community-based cohort study. *Lancet* 2009; 373: 739–45
- 116. Psaty BM, Manolio TA, Kuller LH, Kronmal RA, Cushman M, Fried LP, et al. Incidence of and risk factors for atrial fibrillation in older adults. *Circulation* 1997; 96: 2455–61
- 117. Frost L, Hune LJ and Vestergaard P. Overweight and obesity as risk factors for atrial fibrillation or flutter: the Danish Diet, Cancer, and Health study. *Am J Med* 2005; 118: 489–95
- 118. Wilhelmsen L, Rosengren A and Lappas G. Hospitalizations for atrial fibrillation in the general male population: Morbidity and risk factors. J Intern Med 2001; 250: 382–9
- 119. Stewart S, Hart CL, Hole DJ and McMurray JJ. Population prevalence, incidence, and predictors of atrial fibrillation in the Renfrew/Paisley study. *Heart* 2001; 86: 516–21
- 120. Hergens MP, Galanti R, Hansson J, Fredlund P, Ahlbom A, Alfredsson L, et al. Use of Scandinavian moist smokeless tobacco (snus) and the risk of atrial fibrillation. *Epidemiology* 2014; 25: 872–6
- 121. Dixit S, Pletcher MJ, Vittinghoff E, Imburgia K, Maguire C, Whitman IR, et al. Second hand smoke and atrial fibrillation: data from the health Eheart study. *Heart Rhythm* 2016; 13: 3–9
- 122. Okumura Y. Smoking and the risk of the perpetuation of atrial fibrillation: under debate in large cohort studies. *Heart Rhythm* 2011; 8: 1167–8
- 123. Monroy AE, Hommel E, Smith ST and Raji M. Paroxysmal atrial fibrillation following electronic cigarette use in an elderly woman. *Clin Geriatr* 2012; 20: 28–32
- 124. O'Neal WT, Qureshi WT, Judd SE, McClure LA, Cushman M, Howard VJ, et al. Environmental tobacco smoke and atrial fibrillation: The REasons for Geographic And Racial Differences in Stroke (REGARDS) Study. J Occup Environ Med 2015; 57: 1154–8
- 125. Rigotti NA and Eagle KA. Atrial fibrillation while chewing nicotine gum. *JAMA* 1986; 255: 1018
- 126. Stewart PM and Catterall JR. Chronic nicotine ingestion and atrial fibrillation. *BrHeart J* 1985; 54: 222–3
- Choragudi NL, Aronow WS and DeLuca AJ. Nicotine gum-induced atrial fibrillation. *Heart Dis* 2003; 5: 100–1

- 128. Levitzky YS, Guo CY, Rong J, Larson MG, Walter RE, Keaney JF Jr, et al. Relation of smoking status to a panel of inflammatory markers: the Framingham offspring. *Atherosclerosis* 2008; 201: 217–24
- 129. Tuan TC, Chang SL, Tai CT, Lin YJ, Hu YF, Lo LW, et al. Impairment of the atrial substrates by chronic cigarette smoking in patients with atrial fibrillation. *J Cardiovasc Electrophysiol* 2008; 19: 259–65
- Hayashi H, Omichi C, Miyauchi Y, Mandel WJ, Lin SF, Chen PS, et al. Age-related sensitivity to nicotine for inducible atrial tachycardia and atrial fibrillation. *Am J Physiol Heart Circ Physiol* 2003; 285: H2091–8
- Goette A. Nicotine, atrial fibrosis, and atrial fibrillation: do microRNAs help to clear the smoke? *Cardiovasc Res* 2009; 83: 421–2
- 132. Goette A, Lendeckel U, Kuchenbecker A, Bukowska A, Peters B, Klein HU, et al. Cigarette smoking induces atrial fibrosis in humans via nicotine. *Heart* 2007; 93: 1056–63
- 133. Shan H, Zhang Y, Lu Y, Zhang Y, Pan Z, Cai B, et al. Downregulation of mir-133 and mir-590 contributes to nicotine-induced atrial remodelling in canines. *Cardiovasc Res* 2009; 83: 465–72
- 134. Buch P, Friberg J, Scharling H, Lange P and Prescott E. Reduced lung function and risk of atrial fibrillation in the Copenhagen city heart study. *Eur Respir J* 2003; 21: 1012–6
- 135. Li J, Agarwal SK, Alonso A, Blecker S, Chamberlain AM, London SJ, et al. Airflow obstruction, lung function, and incidence of atrial fibrillation: the Atherosclerosis Risk in Communities (ARIC) study. *Circulation* 2014; 129: 971–80
- 136. Bosdriesz JR, Willemsen MC, Stronks K and Kunst AE. Socioeconomic inequalities in smoking cessation in 11 European countries from 1987 to 2012. J Epidemiol Community Health 2015; 69: 886–92
- 137. Hitchman SC, Fong GT, Zanna MP, Thrasher JF, Chung-Hall J and Siahpush M. Socioeconomic status and smokers' number of smoking friends: Findings from the international tobacco control (itc) four- country survey. *Drug Alcohol Depend* 2014; 143: 158–66
- Zoller B, Li X, Sundquist J and Sundquist K. Neighbourhood deprivation and hospitalization for atrial fibrillation in Sweden. *Europace* 2013; 15: 1119–27
- 139. Misialek JR, Rose KM, Everson-Rose SA, Soliman EZ, Clark CJ, Lopez FL, et al. Socioeconomic status and the incidence of atrial fibrillation in whites and blacks: the Atherosclerosis Risk in Communities (ARIC) study. J Am Heart Assoc 2014; 3: e001159
- 140. Piccini JP, Hammill BG, Sinner MF, Hernandez AF, Walkey AJ, Benjamin EJ, et al. Clinical course of atrial fibrillation in older adults: the importance of cardiovascular events beyond stroke. *Eur Heart J* 2014; 35: 250–6
- 141. Schnabel RB, Rienstra M, Sullivan LM, Sun JX, Moser CB, Levy D, et al. Risk assessment for incident heart failure in individuals with atrial fibrillation. *Eur J Heart Fail* 2013; 15: 843–9
- 142. Potpara TS, Polovina MM, Licina MM, Marinkovic JM and Lip GY. Predictors and prognostic implications

of incident heart failure following the first diagnosis of atrial fibrillation in patients with structurally normal hearts: the Belgrade atrial fibrillation study. *EurJ Heart Fail* 2013; 15: 415–24

- 143. Lip GY, Frison L, Halperin JL and Lane DA. Identifying patients at high risk for stroke despite anticoagulation: a comparison of contemporary stroke risk stratification schemes in an anticoagulated atrial fibrillation cohort. *Stroke* 2010; 41: 2731–8
- 144. Nakagawa K, Hirai T, Ohara K, Fukuda N, Numa S, Taguchi Y, et al. Impact of persistent smoking on longterm outcomes in patients with nonvalvular atrial fibrillation. J Cardiol 2015; 65: 429–33
- 145. Wang TJ, Massaro JM, Levy D, Vasan RS, Wolf PA, D'Agostino RB, et al. A risk score for predicting stroke or death in individuals with new-onset atrial fibrillation in the community: the Framingham Heart Study. *JAMA* 2003; 290: 1049–56
- 146. Angoulvant D, Villejoubert O, Bejan-Angoulvant T, Ivanes F, Saint Etienne C, Lip GY, et al. Effect of active smoking on comparative efficacy of antithrombotic therapy in patients with atrial fibrillation: the Loire Valley Atrial Fibrillation Project. *Chest* 2015; 148: 491–8
- 147. Huang Y, Britton J, Hubbard R and Lewis S. Who receives prescriptions for smoking cessation medications? An association rule mining analysis using a large primary care database. *Tob Control* 2013; 22: 274–9
- 148. Pathak RK, Middeldorp ME, Lau DH, Mehta AB, Mahajan R, Twomey D, et al. Aggressive risk factor reduction study for atrial fibrillation and implications for the outcome of ablation: the ARREST-AF cohort study. J Am Coll Cardiol 2014; 64: 2222–31
- 149. Newby DE, Mannucci PM, Tell GS, Baccarelli AA, Brook RD, Donaldson K, et al. ESC Working Group on Thrombosis, European Association for Cardiovascular Prevention and Rehabilitation; ESC Heart Failure Association. Expert position paper on air pollution and cardiovascular disease. *Eur Heart J* 2015; 36: 83–93b
- Rajagopalan S and Brook RD. Air pollution and type 2 diabetes: mechanistic insights. *Diabetes* 2012; 61: 3037–45
- 151. Brook RD, Rajagopalan S, Pope CA, Bhatnagar A III, Diez-Roux AV, Holguin F, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. *Circulation* 2010; 121: 2331–78
- Brook RD and Rajagopalan S. Particulate matter, air pollution, and blood pressure. J Am Soc Hypertens 2009; 3: 332–50
- 153. Pope CA III, Turner MC, Burnett RT, Jerrett M, Gapstur SM, Diver WR, et al. Relationships between fine particulate air pollution, cardiometabolic disorders, and cardiovascular mortality. *Circ Res* 2015; 116: 108–15
- 154. Peters A, Frohlich M, Doring A, Immervoll T, Wichmann HE, Hutchinson WL, et al. Particulate air pollution is associated with an acute phase response in

men; results from the MONICA-Augsburg Study. *Eur Heart J* 2001; 22: 1198–204

- 155. Wellenius GA, Burger MR, Coull BA, Schwartz J, Suh HH, Koutrakis P, et al. Ambient air pollution and the risk of acute ischemic stroke. *Arch Intern Med* 2012; 172: 229–34
- 156. O'Donnell MJ, Fang J, Mittleman MA, Kapral MK and Wellenius GA. Fine particulate air pollution (PM2.5) and the risk of acute ischemic stroke. *Epidemiology* 2011; 22: 422–31
- 157. Wellenius GA, Schwartz J and Mittleman MA. Air pollution and hospital admissions for ischemic and hemorrhagic stroke among medicare beneficiaries. *Stroke* 2005; 36: 2549–53
- 158. Milojevic A, Wilkinson P, Armstrong B, Bhaskaran K, Smeeth L and Hajat S. Shortterm effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality. *Heart* 2014; 100: 1093–8
- 159. Bunch TJ, Horne BD, Asirvatham SJ, Day JD, Crandall BG, Weiss JP, et al. Atrial fibrillation hospitalization is not increased with short-term elevations in exposure to fine particulate air pollution. *Pacing Clin Electrophysiol* 2011; 34: 1475–9
- Link MS, Luttmann-Gibson H, Schwartz J, Mittleman MA, Wessler B, Gold DR, et al. Acute exposure to air pollution triggers atrial fibrillation. J Am Coll Cardiol 2013; 62: 816–25
- 161. Rich DQ, Mittleman MA, Link MS, Schwartz J, Luttmann-Gibson H, Catalano PJ, et al. Increased risk of paroxysmal atrial fibrillation episodes associated with acute increases in ambient air pollution. *Environ Health Perspect* 2006; 114: 120–3
- Rashid A, Hines M, Scherlag BJ, Yamanashi WS and Lovallo W. The effects of caffeine on the inducibility of atrial fibrillation. *J Electrocardiol* 2006; 39: 421–5
- 163. Newcombe PF, Renton KW, Rautaharju PM, Spencer CA and Montague TJ. High dose caffeine and cardiac rate and rhythm in normal subjects. *Chest* 1988; 94: 90–4
- 164. Strubelt O and Diederich KW. Experimental treatment of the acute cardiovascular toxicity of caffeine. J Toxicol Clin Toxicol 1999; 37: 29–33
- 165. Donnerstein RL, Zhu D, Samson R, Bender AM and Goldberg SJ. Acute effects of caffeine ingestion on signal-averaged electrocardiograms. *Am Heart J* 1998; 136(4 Pt 1): 643–6
- 166. Conen D, Chiuve SE, Everett BM, Zhang SM, Buring JE and Albert CM. Caffeine consumption and incident atrial fibrillation in women. *Am J Clin Nutr* 2010; 92: 509–14
- 167. Frost L and Vestergaard P. Caffeine and risk of atrial fibrillation or flutter: the Danish Diet, Cancer, and Health Study. Am J Clin Nutr 2005; 81: 578–82
- 168. Caldeira D, Martins C, Alves LB, Pereira H, Ferreira JJ and Costa J. Caffeine does not increase the risk of atrial fibrillation: a systematic review and meta-analysis of observational studies. *Heart* 2013; 99: 1383–9
- 169. Di R Jr, During A, Morelli PJ, Heyden M and Biancaniello TA. Atrial fibrillation in healthy

adolescents after highly caffeinated beverage consumption: two case reports. J Med Case Rep 2011; 5: 18

- 170. Ettinger PO, Wu CF, De La Cruz C Jr, Weisse AB, Ahmed SS and Regan TJ. Arrhythmias and the 'Holiday Heart': alcohol-associated cardiac rhythm disorders. *Am Heart J* 1978; 95: 555–62
- 171. Liang Y, Mente A, Yusuf S, Gao P, Sleight P, Zhu J, et al. Alcohol consumption and the risk of incident atrial fibrillation among people with cardiovascular disease. *CMAJ* 2012; 184: E857–66
- 172. Mandyam MC, Vedantham V, Scheinman MM, Tseng ZH, Badhwar N, Lee BK, et al. Alcohol and vagal tone as triggers for paroxysmal atrial fibrillation. *Am J Cardiol* 2012; 110: 364–8
- 173. Laszlo R, Eick C, Schwiebert M, Schreiner B, Weig HJ, Weretka S, et al. Alcohol-induced electrical remodeling: effects ofsustained short-term ethanol infusion on ion currents in rabbit atrium. *Alcohol Clin Exp Res* 2009; 33: 1697–703
- 174. Maki T, Toivonen L, Koskinen P, Naveri H, Harkonen M and Leinonen H. Effect of ethanol drinking, hangover, and exercise on adrenergic activity and heart rate variability in patients with a history of alcohol-induced atrial fibrillation. *Am J Cardiol* 1998; 82: 317–22
- 175. Mukamal KJ, Tolstrup JS, Friberg J, Jensen G and Gronbaek M. Alcohol consumption and risk of atrial fibrillation in men and women: the Copenhagen City Heart Study. *Circulation* 2005; 112: 1736–42
- 176. Conen D, Tedrow UB, Cook NR, Moorthy MV, Buring JE and Albert CM. Alcohol consumption and risk of incident atrial fibrillation in women. JAMA 2008; 300: 2489–96
- 177. Djousse L, Levy D, Benjamin EJ, Blease SJ, Russ A, Larson MG, et al. Long-term alcohol consumption and the risk of atrial fibrillation in the Framingham Study. *Am J Cardiol* 2004; 93: 710–3
- Larsson SC, Drca N and Wolk A. Alcohol consumption and risk of atrial fibrillation: a prospective study and dose-response meta-analysis. J Am Coll Cardiol 2014; 64: 281–9
- 179. Kodama S, Saito K, Tanaka S, Horikawa C, Saito A, Heianza Y, et al. Alcohol consumption and risk of atrial fibrillation: a meta-analysis. J Am Coll Cardiol 2011; 57: 427–36
- Conen D and Albert CM. Alcohol consumption and risk of atrial fibrillation: how much is too much? J Am Coll Cardiol 2014; 64: 290–2
- Devlin R and Henry JA. Clinical review: major consequences of illicit drug consumption. *Crit Care* 2008; 12: 202
- Korantzopoulos P, Liu T, Papaioannides D, Li G and Goudevenos JA. Atrial fibrillation and marijuana smoking. *Int J Clin Pract* 2008; 62: 308–13
- 183. Krishnamoorthy S, Lip GY and Lane DA. Alcohol and illicit drug use as precipitants of atrial fibrillation in young adults: a case series and literature review. Am J Med 2009; 122: 851–6.e3
- 184. Madhok A, Boxer R and Chowdhury D. Atrial fibrillation in an adolescent the agony of ecstasy. *Pediatr Emerg Care* 2003; 19: 348–9

- 185. Furlanello F, Serdoz LV, Cappato R and Ambroggi LD. Illicit drugs and cardiac arrhythmias in athletes. *Eur J Cardiovasc Prev Rehab* 2007; 14: 487–94
- 186. Lau DH, Stiles MK, Shashidhar BJ, Glenn D, Young GD and Sanders P. Atrial fibrillation and anabolic steroid abuse. *Int J Cardiol* 2007; 117: e86–7
- 187. Kaakeh Y, Overholser BR, Lopshire JC and Tisdale JE. Drug-induced atrial fibrillation. *Drugs* 2012; 72: 1617–30
- 188. Guglin M, Aljayeh M, Saiyad S, Ali R and Curtis AB. Introducing a new entity: chemotherapy-induced arrhythmia. *Europace* 2009; 11: 1579–86
- 189. Schjerning Olsen AM, Fosbøl EL, Pallisgaard J, Lindhardsen J, Lock Hansen M, Køber L, et al. NSAIDs are associated with increased risk of atrial fibrillation in patients with prior myocardial infarction: a nationwide study. *Eur Heart J Cardiovasc Pharmacother* 2015; 1: 107–14
- 190. Sharma A, Einstein AJ, Vallakati A, Arbab-Zadeh A, Walker MD, Mukherjee D, et al. Risk of atrial fibrillation with use of oral and intravenous bisphosphonates. *Am J Cardiol* 2014; 113: 1815–21
- 191. Kim DH, Rogers JR, Fulchino LA, Kim CA, Solomon DH and Kim SC. Bisphosphonates and risk of cardiovascular events: a meta-analysis. *PLoS One* 2015; 10: e0122646
- 192. Yalaci S, Tamer A, Kocayigit I and Gunduz H. Atrial fibrillation due to olanzapine overdose. *Clin Toxicol* 2011; 49: 440
- 193. Martin RI, Pogoryelova O, Koref MS, Bourke JP, Teare MD and Keavney BD. Atrial fibrillation associated with ivabradine treatment: meta-analysis of randomised controlled trials. *Heart* 2014; 100: 1506–10
- 194. Farmakis D, Parissis J and Filippatos G. Insights into onco-cardiology: atrial fibrillation in cancer. J Am Coll Cardiol 2014; 63: 945–53
- 195. McCabe PJ. Psychological distress in patients diagnosed with atrial fibrillation: the state of the science. *J Cardiovasc Nurs* 2010; 25: 40–51
- 196. Thrall G, Lip GY, Carroll D and Lane D. Depression, anxiety, and quality of life in patients with atrial fibrillation. *Chest* 2007; 132: 1259–64
- 197. Habibovic M, Versteeg H, Pelle AJ, Theuns DA, Jordaens L and Pedersen SS. Poor health status and distress in cardiac patients: the role of device therapy vs. underlying heart disease. *Europace* 2013; 15: 355–61
- 198. von Eisenhart Rothe A, Hutt F, Baumert J, Breithardt G, Goette A, Kirchhof P, et al. Depressed mood amplifies heart-related symptoms in persistent and paroxysmal atrial fibrillation patients: a longitudinal analysis– data from the German Competence Network on Atrial Fibrillation. *Europace* 2015; 17: 1354–62
- 199. von Eisenhart Rothe AF, Goette A, Kirchhof P, Breithardt G, Limbourg T, Calvert M, et al. Depression in paroxysmal and persistent atrial fibrillation patients: a cross-sectional comparison of patients enrolled in two large clinical trials. *Europace* 2014; 16: 812–9
- 200. Gehi AK, Sears S, Goli N, Walker TJ, Chung E, Schwartz J, et al. Psychopathology and symptoms of

atrial fibrillation: implications for therapy. J Cardiovasc Electrophysiol 2012; 23: 473–8

- 201. Patel D, Mc Conkey ND, Sohaney R, McNeil A, Jedrzejczyk A and Armaganijan L. A systematic review of depression and anxiety in patients with atrial fibrillation: the mind-heart link. *Cardiovasc Psychiatry Neurol* 2013; 2013: 159850
- 202. Lip GY, Laroche C, Boriani G, Cimaglia P, Dan GA, Santini M, et al. Sex-related differences in presentation, treatment, and outcome of patients with atrial fibrillation in Europe: a report from the Euro Observational Research Programme Pilot survey on Atrial Fibrillation. *Europace* 2015; 17: 24–31
- 203. Lampert R, Joska T, Burg MM, Batsford WP, McPherson CA and Jain D. Emotional and physical precipitants of ventricular arrhythmia. *Circulation* 2002; 106: 1800–5
- Burg MM, Lampert R, Joska T, Batsford W and Jain D. Psychological traits and emotion-triggering of ICD shock-terminated arrhythmias. *Psychosom Med* 2004; 66: 898–902
- 205. Whang W, Albert CM, Sears SF Jr, Lampert R, Conti JB, Wang PJ, et al. Depression as a predictor for appropriate shocks among patients with implantable cardioverter-defibrillators: results from the Triggers of Ventricular Arrhythmias (TOVA) study. J Am Coll Cardiol 2005; 45: 1090–5
- 206. Eaker ED, Sullivan LM, Kelly-Hayes M, D'Agostino RB Sr and Benjamin EJ. Anger and hostility predict the development of atrial fibrillation in men in the Framingham Offspring Study. *Circulation* 2004; 109: 1267–71
- 207. Eaker ED, Sullivan LM, Kelly-Hayes M, D'Agostino RB Sr and Benjamin EJ. Tension and anxiety and the prediction of the 10-year incidence of coronary heart disease, atrial fibrillation, and total mortality: the Framingham Offspring Study. *Psychosom Med* 2005; 67: 692–6
- 208. Whang W, Davidson KW, Conen D, Tedrow UB, Everett BM and Albert CM. Global psychological distress and risk of atrial fibrillation among women: The Women's Health Study. J Am Heart Assoc 2012; 1: e001107
- 209. Qureshi WT, Alirhayim Z, Blaha MJ, Juraschek SP, Keteyian SJ, Brawner CA, et al. Cardiorespiratory fitness and risk of incident atrial fibrillation: results from the Henry Ford Exercise Testing (FIT) Project. *Circulation* 2015; 131: 1827–34
- 210. Drca N, Wolk A, Jensen-Urstad M and Larsson SC. Physical activity is associated with a reduced risk of atrial fibrillation in middle-aged and elderly women. *Heart* 2015; 101: 1627–30
- 211. Mozaffarian D, Furberg CD, Psaty BM and Siscovick D. Physical activity and incidence of atrial fibrillation in older adults: the Cardiovascular Health Study. *Circulation* 2008; 118: 800–7
- 212. Grimsmo J, Grundvold I, Maehlum S and Arnesen H. High prevalence of atrial fibrillation in long-term endurance cross-country skiers: echocardiographic findings

and possible predictors-a 28-30 years follow-up study. *EurJ Cardiovasc Prev Rehabil* 2010; 17: 100–5

- 213. Myrstad M, Nystad W, Graff-Iversen S, Thelle DS, Stigum H, Aarønæs M, et al. Effect of years of endurance exercise on risk of atrial fibrillation and atrial flutter. *Am J Cardiol* 2014; 114: 1229–33
- Lee DC, Pate RR, Lavie CJ, Sui X, Church TS and Blair SN. Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol 2014; 64: 472–81
- 215. Thelle DS, Selmer R, Gjesdal K, Sakshaug S, Jugessur A, Graff-Iversen S, et al. Resting heart rate and physical activity as risk factors for lone atrial fibrillation: a prospective study of 309,540 men and women. *Heart* 2013; 99: 1755–60
- 216. Aizer A, Gaziano JM, Cook NR, Manson JE, Buring JE and Albert CM. Relation of vigorous exercise to risk of atrial fibrillation. *Am J Cardiol* 2009; 103: 1572–7
- 217. Andrade J, Khairy P, Dobrev D and Nattel S. The clinical profile and pathophysiology of atrial fibrillation: relationships among clinical features, epidemiology, and mechanisms. *Circ Res* 2014; 114: 1453–68
- Coumel P. Paroxysmal atrial fibrillation: a disorder of autonomic tone? *EurHeart J* 1994; 15(Suppl A): 9–16
- 219. D'Ascenzi F, Cameli M, Padeletti M, Lisi M, Zacà V, Natali B, et al. Characterization of right atrial function and dimension in top-level athletes: a speckle tracking study. *Int J Cardiovasc Imaging* 2013; 29: 87–94
- 220. D'Andrea A, Riegler L, Cocchia R, Scarafile R, Salerno G, Gravino R, et al. Left atrial volume index in highly trained athletes. *Am Heart J* 2010; 159: 1155–61
- 221. Brugger N, Krause R, Carlen F, Rimensberger C, Hille R, Steck H, et al. Effect of lifetime endurance training on left atrial mechanical function and on the risk of atrial fibrillation. *Int J Cardiol* 2014; 170: 419–25
- 222. Benito B, Gay-Jordi G, Serrano-Mollar A, Guasch E, Shi Y, Tardif JC, et al. Cardiac arrhythmogenic remodeling in a rat model of long-term intensive exercise training. *Circulation* 2011; 123: 13–22
- 223. Lindsay MM and Dunn FG. Biochemical evidence of myocardial fibrosis in veteran endurance athletes. Br J Sports Med 2007; 41: 447–52
- 224. De Vos CB, Nieuwlaat R, Crijns HJ, Camm AJ, LeHeuzey JY, Kirchhof CJ, et al. Autonomic trigger patterns and antiarrhythmic treatment of paroxysmal atrial fibrillation: data from the Euro Heart Survey. *Eur Heart J* 2008; 29: 632–9
- O'Keefe JH, Schnohr P and Lavie CJ. The dose of running that best confers longevity. *Heart* 2013; 99: 588–90
- 226. Schnohr P, Marott JL, Lange P and Jensen GB. Longevity in male and female joggers: the Copenhagen City Heart Study. Am J Epidemiol 2013; 177: 683–9
- 227. Ofman P, Khawaja O, Rahilly-Tierney CR, Peralta A, Hoffmeister P, Reynolds MR, et al. Regular physical activity and risk of atrial fibrillation: a systematic review and meta-analysis. *CircArrhythm Electrophysiol* 2013; 6: 252–6
- 228. Kwok CS, Anderson SG, Myint PK, Mamas MA and Loke YK. Physical activity and incidence of atrial

fibrillation: a systematic review and meta-analysis. *Int J Cardiol* 2014; 177: 467–76

- 229. Mont L, Elosua R and Brugada J. Endurance sport practice as a risk factor for atrial fibrillation and atrial flutter. *Europace* 2009; 11: 11–7
- 230. Calvo N, Ramos P, Montserrat S, Guasch E, Coll-Vinent B, Domenech M, et al. Emerging risk factors and the dose-response relationship between physical activity and lone atrial fibrillation: a prospective casecontrol study. *Europace* 2016; 18: 57–63
- 231. Drca N, Wolk A, Jensen-Urstad M and Larsson SC. Atrial fibrillation is associated with different levels of physical activity levels at different ages in men. *Heart* 2014; 100: 1037–42
- 232. Abdulla J and Nielsen JR. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. *Europace* 2009; 11: 1156–9
- 233. Edelmann F, Gelbrich G, Düngen HD, Fröhling S, Wachter R, Stahrenberg R, et al. Exercise training improves exercise capacity and diastolic function in patients with heart failure with preserved ejection fraction: results of the Ex-DHF (Exercise training in Diastolic Heart Failure) pilot study. JAm Coll Cardiol 2011; 58: 1780–91
- 234. Alings M, Smit MD, Moes ML, Crijns HJ, Tijssen JG, Brugemann J, et al. Routine versus aggressive upstream rhythm control for prevention of early atrial fibrillation in heart failure: Background, aims and design of the RACE 3 study. *Neth Heart J* 2013; 21: 354–63
- 235. Darbar D, Herron KJ, Ballew JD, Jahangir A, Gersh PG, Shen WK, et al. Familial AF is a genetically heterogeneous disorder. J Am Coll Cardiol 2003; 41: 2185–92
- 236. Fox CS, Parise H, D'Agostino RB Sr, Lloyd-Jones DM, Vasan RS, Wang TJ, et al. Parental atrial fibrillation as a risk factor for atrial fibrillation in offspring. JAMA 2004; 291: 2851–5
- 237. Arnar DO, Thorvaldsson S, Manolio TA, Thorgeirsson G, Kristjansson K, Hakonarson H, et al. Familial aggregation of atrial fibrillation in Iceland. *Eur Heart* J 2006; 27: 708–12
- 238. Gundlund A, Christiansen MN, Hansen ML, Olesen JB, Zahir D, Køber L, et al. Familial clustering and subsequent incidence of atrial fibrillation among first-degree relatives in Denmark. *Europace* 2016; 18: 658–64
- 239. Zöller B, Ohlsson H, Sundquist J and Sundquist K. High familial risk of atrial fibrillation/atrial flutter in multiplex families: a nationwide family study in Sweden. J Am Heart Assoc 2012; 2: e003384
- 240. Lubitz SA, Yin X, Fontes JD, Magnani JW, Rienstra M, Pai M, et al. Association between familial atrial fibrillation and risk of new-onset atrial fibrillation. *JAMA* 2010; 304: 2263–9
- 241. Oyen N, Ranthe MF, Carstensen L, Boyd HA, Olesen MS, Olesen SP, et al. Familial aggregation of lone atrial fibrillation in young persons. J Am Coll Cardiol 2012; 60: 917–21
- 242. Brugada R, Tappscot T, Czernuszewicz GZ, Marian AJ, Iglesias A, Mont L, et al. Identification of a genetic

locus for familial atrial fibrillation. New Engl J Med 1997; 336: 905-11

- 243. Tucker NP and Ellinor PT. Emerging directions in genetics of atrial fibrillation. *CircRes* 2014; 114: 1462–82
- 244. Sinner MF, Tucker NR, Lunetta KL, Ozaki K, Smith JG, Trompet S, et al. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. *Circulation* 2014; 130: 1225–35
- 245. Smith JG, Almgren P, Engstrom G, Hedblad B, Platonov PG, Newton-Cheh C, et al. Genetic polymorphisms for estimating risk of atrial fibrillation: a literature-based meta-analysis. *J Intern Med* 2012; 272: 573–82
- 246. Mohanty S, Santangeli P, Bai R, Di Biase L, Mohanty P, Pump A, et al. Variant rs2200733 on chromosome 4q25 confers increased risk of atrial fibrillation: evidence from a meta-analysis. *J Cardiovasc Electrophysiol* 2013; 24: 155–61
- 247. Kirchhof P, Breithardt G, Aliot E, Al Khatib S, Apostolakis S, Auricchio A, et al. Personalized management of atrial fibrillation: proceedings from the fourth atrial fibrillation competence NETwork/ European Heart Rhythm Association consensus conference. *Europace* 2013; 15: 1540–56
- 248. Fabritz L, Guasch E, Antoniades C, Bardinet I, Benninger G, Betts TR, et al. Expert consensus document: defining the major health modifiers causing atrial fibrillation: a roadmap to underpin personalized prevention and treatment. *Nat Rev Cardiol* 2016; 13: 230–7
- 249. Selmer C, Olesen JB, Hansen ML, Lindhardsen J, Schjerning Olsen AM, Clausager J, et al. The spectrum of thyroid disease and risk of new onset atrial fibrillation: a large population cohort study. *BMJ* 2012; 345: e7895
- 250. Frost L, Vestergaard P and Mosekilde L. Hyperthyroidism and risk of atrial fibrillation or flutter. a population-based study. *Arch Intern Med* 2004; 164: 1675–8
- 251. Cappola AR, Fried LP, Arnold AM, Danese MD, Kuller LH, Burke JL, et al. Thyroid status, cardiovascular risk and mortality in older adults. *JAMA* 2006; 295: 1033–41
- 252. Kim EJ, Lyass A, Wang N, Massaro JM, Fox CS, Benjamin EJ, et al. Relation of hypothyroidism and incident atrial fibrillation (from the Framingham Heart Study). *Am Heart J* 2014; 167: 123–6
- 253. Auer J, Scheibner P, Mische T, Langsteger W, Eber O and Eber B. Subclinical hypothyroidism as a risk factor for atrial fibrillation. *Am Heart J* 2001; 142: 838–42
- 254. Gammage MD, Parle JV, Holder RL, Roberts LM, Hobbs FDR, Wilson S, et al. Association between free thyroxine concentration and atrial fibrillation. *Arch Intern Med* 2007; 167: 928–34
- 255. Sawin CT, Geller A, Wolf PA, Belander AJ, Baker E, Bacharach P, et al. Low serum thyrotropin concentrations as a risk factor for atrial fibrillation in older persons. *N Engl J Med* 1994; 331: 1249–52
- 256. Collet TH, Gussekloo J, Bauer DC, den Elzen WPJ, Wendy PJ, Cappola AR, et al. Subclinical

hyperthyroidism and the risk of coronary heart disease and mortality. Arch Intern Med 2012; 172: 799-809

- 257. Heeringa J, Hoogendoorn EH, van der Deure WM, Hofman A, Peeters RP, Hop WCJ, et al. Highnormal thyroid function and risk of atrial fibrillation. *Arch Intern Med* 2008; 168: 2219–24
- 258. Chaker L, Heeringa J, Dehghan A, Medici M, Visser WE, Baumgartner C, et al. Normal thyroid function and the risk of atrial fibrillation: the Rotterdam Study. *J Clin Endocrinol Metab* 2015; 100: 3718–24
- Von Olshausen K, Bischoff S, Kahaly G, Mohr-Kahaly S, Erbel R, Beyer J, et al. Cardiac arrhythmias and heart rate in hyperthyroidism. *Am J Cardiol* 1989; 63: 930–3
- Nakazawa HK, Sakurai K, Hamada N, Momotani N and Ito K. Management of atrial fibrillation in the postthyrotoxic state. *Am J Med* 1982; 72: 903–6
- 261. Siu CW, Jim MH, Zhang X, Chan YH, Pong V, Kwok J, et al. Comparison of atrial fibrillation recurrence rates after successful electrical cardioversion in patients with hyperthyroidism-induced versus non-hyperthyroid-ism-induced persistent atrial fibrillation. *Am J Cardiol* 2009; 103: 540–3
- 262. Machino T, Tada H, Sekiguchi Y, Yamasaki H, Kuroki K, Igarashi M, et al. Prevalence and influence of hyperthyroidism on the long-term outcome of catheter ablation for drug-refractory atrial fibrillation. *CircJ* 2012; 76: 2546–51
- 263. Wongcharoen W, Lin YJ, Chang SL, Lo LW, Hu YF, Chung FP, et al. History of hyperthyroidism and longterm outcome of catheter ablation of drug-refractory atrial fibrillation. *Heart Rhythm* 2015; 12: 1956–62
- 264. Chan PH, Hai J, Yeung CY, Lip GY, Lam KS, Tse HF, et al. Benefit of anticoagulation therapy in hyperthyroidism-related atrial fibrillation. *Clin Cardiol* 2015; 38: 476–82
- 265. Friberg L, Rosenqvist M and Lip GYH. Evaluation of risk stratification schemes for ischaemic stroke and bleeding in 182 678 patients with atrial fibrillation: the Swedish Atrial Fibrillation cohort study. *Eur Heart J* 2012; 33: 1500–10
- 266. Bruere H, Fauchier L, Bernard Brunet A, Pierre B, Simeon E, Babuty D, et al. History of thyroid disorders in relation to clinical outcomes in atrial fibrillation. *Am J Med* 2015; 128: 30–7
- 267. Haissaguerre M, Jais P, Shah DC, Takahashi A, Hocini M, Quiniou G, et al. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N Engl J Med 1998; 339: 659–66
- Voigt N and Dobrev D. Cellular and molecular correlates of ectopic activity in patients with atrial fibrillation. *Europace* 2012; 14(Suppl 5): v97–v105
- 269. Kirchhof P, Lip GY, Van Gelder IC, Bax J, Hylek E, Kaab S, et al. Comprehensive risk reduction in patients with atrial fibrillation: emerging diagnostic and therapeutic options-a report from the 3rd Atrial Fibrillation Competence NETwork/European Heart Rhythm Association consensus conference. *Europace* 2012; 14: 8–27

- 270. De Jong AM, Maass AH, Oberdorf-Maass SU, Van Veldhuisen DJ, Van Gilst WH and Van Gelder IC. Mechanisms of atrial structural changes caused by stretch occurring before and during early atrial fibrillation. *Cardiovasc Res* 2011; 89: 754–65
- 271. Schotten U, Verheule S, Kirchhof P and Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. *Physiol Rev* 2011; 91: 265–325
- 272. Venteclef N, Guglielmi V, Balse E, Gaborit B, Cotillard A, Atassi F, et al. Human epicardial adipose tissue induces fibrosis of the atrial myocardium through the secretion of adipofibrokines. *Eur Heart J* 2015; 36: 795–805
- 273. Cosio FG, Aliot E, Botto GL, Heidbuchel H, Geller CJ, Kirchhof P, et al. Delayed rhythm control of atrial fibrillation may be a cause of failure to prevent recurrences: reasons for change to active antiarrhythmic treatment at the time of the first detected episode. *Europace* 2008; 10: 21–7
- 274. Nattel S, Guasch E and Savelieva I. Early management of atrial fibrillation to prevent cardiovascular complications. *Eur Heart J* 2014; 35: 1448–56
- 275. Wellens HJ and Durrer D. Wolff-Parkinson-White syndrome and atrial fibrillation. Relation between refractory period of accessory pathway and ventricular rate during atrial fibrillation. *Am J Cardiol* 1974; 34: 777–83
- 276. Campbell RW, Smith RA, Gallagher JJ, Pritchett EL and Wallace AG. Atrial fibrillation in the preexcitation syndrome. *Am J Cardiol* 1977; 40: 514–22
- 277. Hamer ME, Wilkinson WE, Clair WK, Page RL, McCarthy EA and Pritchett EL. Incidence of symptomatic atrial fibrillation in patients with paroxysmal supraventricular tachycardia. *JAm Coll Cardiol* 1995; 25: 984–8
- 278. Ozcan C, Strom JB, Newell JB, Mansour MC and Ruskin JN. Incidence and predictors of atrial fibrillation and its impact on long-term survival in patients with supraventricular arrhythmias. *Europace* 2014; 16: 1508–14
- 279. Waldo AL. Mechanisms of atrial flutter and atrial fibrillation: distinct entities or two sides of a coin? *Cardiovasc Res* 2002; 54: 217–29
- 280. Lin CH, Chang SL, Huang HK, Lo LW, Lin YJ, Chiang CH, et al. Novel electrophysiological characteristics of atrioventricular nodal continuous conduction curves in atrioventricular nodal re-entrant tachycardia with concomitant cavotricuspid isthmus-dependent atrial flutter. *Europace* 2015; pii: euv345
- 281. Chen YJ, Chen SA, Tai CT, Wen ZC, Feng AN, Ding YA, et al. Role of atrial electrophysiology and autonomic nervous system in patients with supraventricular tachycardia and paroxysmal atrial fibrillation. *JAm Coll Cardiol* 1998; 32: 732–8
- 282. Sticherling C, Oral H, Horrocks J, Chough SP, Baker RL, Kim MH, et al. Effects of digoxin on acute, atrial fibrillation-induced changes in atrial refractoriness. *Circulation* 2000; 102: 2503–8
- 283. Crijns HJGM and Lie KI. Hemodynamic deterioration after treatment with adenosine. *Br Heart J* 1995; 73: 103

- 284. Nabar A, Rodriguez LM, Timmermans C, Van den Dool A, Smeets JLRM and Wellens HJJ. Observations in four patient groups having type I atrial flutter with or without associated atrial fibrillation. *Circulation* 1999; 99: 1441–5
- 285. Pentinga ML, Meeder JG, Crijns HJGM, De Muinck ED, Wiesfeld ACP and Lie KI. Late onset atrioventricular nodal tachycardia. *Int J Cardiol* 1993; 38: 293–8
- 286. Wellens HJ. When to perform catheter ablation in asymptomatic patients with a Wolff-Parkinson-White electrocardiogram. *Circulation* 2005; 112: 2201–16
- 287. McKenna W. Hypertrophic cardiomyopathy. *Lancet* 2004; 363: 1881–91
- 288. Haissaguerre M, Fischer B, Labbe T, Lemetayer P, Montserrat P, d'Ivernois C, et al. Frequency of recurrent atrial fibrillation after catheter ablation of overt accessory pathways. *Am J Cardiol* 1992; 69: 493–7
- 289. Pappone C and Santinelli V. Catheter ablation should be performed in asymptomatic patients with Wolff-Parkinson-White syndrome. *Circulation* 2005; 112: 2207–16
- 290. McKeown PP and Gutterman D. Executive summary: American College of Chest Physicians guidelines for the prevention and management of postoperative atrial fibrillation after cardiac surgery. *Chest* 2005; 128: 1S–5S
- 291. Shariff N, Zelenkofske S, Eid S, Weiss MJ and Mohammed MQ. Demographic determinants and effect of pre-operative angiotensin converting enzyme inhibitors and angiotensin receptor blockers on the occurrence of atrial fibrillation after CABG surgery. BMC Cardiovasc Disord 2010; 8: 10–7
- 292. Shantsila E, Watson T and Lip GY. Atrial fibrillation post-cardiac surgery: changing perspectives. *Curr Med Res Opin* 2006; 22: 1437–41
- 293. Sanchez-Quiñones J, Marín F, Roldán V and Lip GY. The impact of statin use on atrial fibrillation. *QJM* 2008; 101: 845–61
- 294. Nair SG. Atrial fibrillation after cardiac surgery. Ann Card Anaesth 2010; 13: 196–205
- 295. Crystal E, Connolly SJ, Sleik K, Ginger TJ and Yusuf S. Interventions on prevention of postoperative atrial fibrillation in patients undergoing heart surgery: a metaanalysis. *Circulation* 2002; 106: 75–80
- 296. Jidéus L, Blomström P, Nilsson L, Stridsberg M, Hansell P and Blomström-Lundqvist C. Tachyarrhythmias and triggering factors for atrial fibrillation after coronary artery bypass operations. *Ann Thorac Surg* 2000; 69: 1064–9
- 297. Arsenault KA, Yusuf AM, Crystal E, Healey JS, Morillo CA, Nair GM, et al. Interventions for preventing post-operative atrial fibrillation in patients undergoing heart surgery. *Cochrane Database Syst Rev* 2013; 1: CD003611
- 298. Bagshaw SM, Galbraith PD, Mitchell LB, Sauve R, Exner DV and Ghali WA. Prophylactic amiodarone for prevention of atrial fibrillation after cardiac surgery: a meta-analysis. *Ann Thorac Surg* 2006; 82: 1927–37
- 299. Patti G, Chello M, Candura D, Pasceri V, D'Ambrosio A, Covino E, et al. Randomized trial of atorvastatin for reduction of postoperative atrial fibrillation in patients

undergoing cardiac surgery: results of the ARMYDA-3 (Atorvastatin for Reduction of MYocardial Dysrhythmia After cardiac surgery) study. *Circulation* 2006; 114: 1455–61

- 300. ESC Press Release Office. STICS-Short-term perioperative statin treatment does not reduce complications after cardiac surgery. 02 Sep 2014. http://www.escardio.org/The-ESC/Press-Office/Press-releases/Last-5years/STICS-Shortterm-peri-operative-statin-treatmentdoes-not-reduce-complications (6 December 2015, date last accessed)
- 301. Orenes-Piñero E, Montoro-García S, Banerjee A, Valdés M, Lip GYH and Marín F. Pre and post-operative treatments for prevention of atrial fibrillation after cardiac surgery. *Mini Rev Med Chem* 2012; 12: 1419–31
- 302. Ho KM and Tan JA. Benefits and risks of corticosteroid prophylaxis in adult cardiac surgery: a dose-response meta-analysis. *Circulation* 2009; 119: 1853–66
- 303. Savelieva I, Kakouros N, Kourliouros A and Camm JA. Upstream therapies for management of atrial fibrillation: review of clinical evidence and implications for European Society of Cardiology guidelines. Part I: primary prevention. *Europace* 2011; 13: 308–28
- 304. Savelieva I, Kakouros N, Kourliouros A and Camm JA. Upstream therapies for management of atrial fibrillation: review of clinical evidence and implications for European Society of Cardiology guidelines. Part II: secondary prevention. *Europace* 2011; 13: 610–25
- 305. Madrid AH, Bueno MG, Rebollo JM, Marin I, Peña G, Bernal E, et al. Use of irbesartan to maintain sinus rhythm in patients with long-lasting persistent atrial fibrillation: a prospective and randomized study. *Circulation* 2002; 106: 331–6
- 306. Swedberg K, Zannad F, McMurray JJ, Krum H, van Veldhuisen DJ, Shi H, et al. Eplerenone and atrial fibrillation in mild systolic heart failure: results from the EMPHASIS-HF (Eplerenone in Mild Patients Hospitalization And SurvIval Study in Heart Failure) study. JAm Coll Cardiol 2012; 59: 1598–603
- 307. Liu T, Korantzopoulos P, Shao Q, Zhang Z, Letsas KP and Li G. Mineralocorticoid receptor antagonists and atrial fibrillation: a meta-analysis. *Europace* 2016; 18: 672–8
- 308. Lip GYHL and Lane D. Stroke prevention in atrial fibrillation. A systematic review. JAMA 2015; 313: 1950–62
- 309. Pisters R, Lane DA, Marin F, Camm AJ and Lip GY. Stroke and thromboembolism in atrial fibrillation. *CircJ* 2012; 76: 2289–304
- 310. Lip GYHL, Nieuwlaat R, Pisters R, Lane DA and Crijns HJ. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the euro heart survey on atrial fibrillation. *Chest* 2010; 137: 263–72
- 311. Lamberts M, Nielsen OW, Lip GY, Ruwald MH, Christiansen CB, Kristensen SL, et al. Cardiovascular risk in patients with sleep apnoea with or without continuous positive airway pressure therapy: follow-up of

4.5 million Danish adults. J Intern Med 2014; 276: 659–66

- 312. Friberg L, Benson L and Lip GY. Balancing stroke and bleeding risks in patients with atrial fibrillation and renal failure: the Swedish Atrial Fibrillation Cohort study. *Eur Heart J* 2015; 36: 297–306
- 313. Agarwal M, Apostolakis S, Lane DA and Lip GY. The impact of heart failure and left ventricular dysfunction in predicting stroke, thromboembolism, and mortality in atrial fibrillation patients: a systematic review. *Clin Ther* 2014; 36: 1135–44
- Lip GYHL, Frison L and Grind M. Effect of hypertension on anticoagulated patients with atrial fibrillation. *Eur Heart J* 2007; 28: 752–9
- 315. Overvad TF, Rasmussen LH, Skjoth F, Overvad K, Albertsen IE, Lane DA, et al. Alcohol intake and prognosis of atrial fibrillation. *Heart (Br Card Soc)* 2013; 99: 1093–9
- 316. Albertsen IE, Rasmussen LH, Lane DA, Overvad TF, Skjoth F, Overvad K, et al. The impact of smoking on thromboembolism and mortality in patients with incident atrial fibrillation: insights from the Danish Diet, Cancer, and Health study. *Chest* 2014; 145: 559–66
- 317. Calkins H, Kuck KH, Cappato R, Brugada J, Camm AJ, Chen SA, et al. 2012 HRS/EHRA/ECAS Expert Consensus Statement on Catheter and Surgical Ablation of Atrial Fibrillation: recommendations for patient selection, procedural techniques, patient management and follow-up, definitions, endpoints, and research trial design. *Europace* 2012; 14: 528–606
- 318. Bunch TJ, May HT, Bair TL, Weiss JP, Crandall BG, Osborn JS, et al. Atrial fibrillation ablation patients have long-term stroke rates similar to patients without atrial fibrillation regardless of CHADS2 score. *Heart Rhythm* 2013; 10: 1272–7
- 319. De Caterina R, Husted S, Wallentin L, Andreotti F, Arnesen H, Bachmann F, et al. Vitamin K antagonists in heart disease: current status and perspectives (Section

III). Position paper of the ESC Working Group on Thrombosis-Task Force on Anticoagulants in Heart Disease. *Thromb Haemost* 2013; 110: 1087–107

- 320. Gallego P, Roldan V, Marin F, Romera M, Valdes M, Vicente V, et al. Cessation of oral anticoagulation in relation to mortality and the risk of thrombotic events in patients with atrial fibrillation. *Thromb Haemost* 2013; 110: 1189–98
- 321. Azoulay L, Dell'Aniello S, Simon TA, Renoux C and Suissa S. Initiation ofwarfarin in patients with atrial fibrillation: early effects on ischaemic strokes. *EurHeartJ* 2014; 35: 1881–7
- 322. Apostolakis S, Sullivan RM, Olshansky B and Lip GY. Factors affecting quality of anticoagulation control among patients with atrial fibrillation on warfarin: the SAMe-TT(2)R(2) score. *Chest* 2013; 144: 1555–63
- 323. Proietti M and Lip GY. Simple decision making between a vitamin K Antagonist and Non-Vitamin K Antagonist Oral Anticoagulant (NOACs): using the SAMe-TT2R2 Score. Eur Heart J Cardiovasc Pharmacother 2015; 1: 150–2
- 324. Dogliotti A and Giugliano RP. A novel approach indirectly comparing benefit-risk balance across anti-thrombotic therapies in patients with atrial fibrillation. *Eur Heart J Cardiovasc Pharmacother* 2015; 1: 15–28
- 325. Lip GY, Haguenoer K, Saint-Etienne C and Fauchier L. Relationship of the SAME-TT2R2score to poor quality anticoagulation, stroke, clinically relevant bleeding and mortality in patients with atrial fibrillation. *Chest* 2014; 146: 719–26
- 326. Lane DA, Aguinaga L, Blomström-Lundqvist C, Boriani G, Dan GA, Hills MT, et al. Cardiac tachyarrhythmias and patient values and preferences for their management: the European Heart Rhythm Association (EHRA) consensus document endorsed by the Heart Rhythm Society (HRS), Asia Pacific Heart Rhythm Society (APHRS), and Sociedad Latinoamericana de Estimulacicon Cardfacay Electrofisiologia (SOLEACE). Europace 2015; 17: 1747–69