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caudal-related homeobox transcription factor CDX2 has a key role in intestinal development and
ntiation. CDX2 heterozygous mutant mice develop colonic polyps, and loss of CDX2 expression is seen
ubset of colon carcinomas in humans. Ectopic CDX2 expression in the stomach of transgenic mice
tes intestinal metaplasia, and CDX2 expression is frequently detected in intestinal metaplasia in the
ch and esophagus. We sought to define CDX2-regulated genes to enhance knowledge of CDX2 function.
colorectal cancer cells have minimal endogenous CDX2 expression, and HT-29 cells with ectopic CDX2
sion were generated. Microarray-based gene expression studies revealed that the Multidrug Resistance 1
/P-glycoprotein/ABCB1) gene was activated by CDX2. Evidence that the MDR1 gene was a direct tran-
onal target of CDX2 was obtained, including analyses with MDR1 reporter gene constructs and chro-
immunoprecipitation assays. RNA interference–mediated inhibition of CDX2 decreased endogenous
expression. In various colorectal cancer cell lines and human tissues, endogenous MDR1 expression
ell correlated to CDX2 expression. Overexpression of CDX2 in HT-29 cells revealed increased resistance
known substrate of MDR1, vincristine and paclitaxel, which was reversed by an MDR1 inhibitor, verap-
hese data indicate that CDX2 directly regulates MDR1 gene expression through binding to elements in
omoter region. Thus, CDX2 is probably important for basal expression of MDR1, regulating drug excre-
the pr

tion and absorption in the lower gastrointestinal tract, as well as for multidrug resistance to chemotherapy
reagent in CDX2-positive gastrointestinal cancers. Cancer Res; 70(17); 6767–78. ©2010 AACR.
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re has long been great interest in defining critical reg-
y factors that direct cell fate determination and differ-
ion in normal and cancer tissues. In mammals, the
and CDX2 homeobox transcription factors apparently
ritical functions in intestinal development, differentia-
nd maintenance of the intestinal phenotype (1, 2).
and CDX2 proteins show significant homology, partic-
omeobox DNA–binding domains, to the pro-
the Drosophila caudal gene, a key regulator of
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or-posterior regional identity (1, 3, 4). Mouse Cdx1 and
genes are quite broadly expressed during early embry-
evelopment. Recent studies indicated that Cdx2 is one
earliest transcription factors essential for formation
aintenance of the trophectoderm lineage in mouse em-
(5, 6). However, in later stages of development and in
l adult tissues, expression of the genes is apparently
ted to epithelium of the small intestine and colon
support of the view that CDX proteins play key roles
ulating proliferation and intestinal cell fate, mice with
itutional inactivating mutations in one Cdx2 allele
±) developed multiple polyps in the proximal colon
. The epithelial cells in these polyps often lose intesti-
fferentiation features, displaying areas of stratified
ous epithelium similar to that in forestomach and
esophagus as well as areas resembling normal gastric
sa (7, 11). Ectopic expression of Cdx2 in the gastric
a of transgenic mice was reported to induce intestinal
lasia (12, 13). In humans, loss of the CDX1 and/or
gene and protein expression was observed in a subset
mary colorectal cancers (CRC) and cancer cell lines
sually in poorly differentiated CRCs (15). Aberrant
ic) expression of CDX2 is detected frequently in intes-
etaplasia of the stomach (16, 17).

prior efforts to identify CDX2-regulated genes indicat-
t liver intestine-cadherin (LI-cadherin) and hephaestin
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) were likely key molecules regulated by CDX2 in nor-
d malignant gastrointestinal epithelium (16, 18).
e, we report on further studies to implicate CDX2 in
ting the expression of intestinal-specific genes by using
ensity oligonucleotide microarrays as a starting point
ntify potential CDX2-regulated genes in HT-29, a CRC
e with significantly decreased endogenous CDX2 ex-
on. In HT-29 cell line engineered to express CDX2 ec-
lly, the gene for Multidrug Resistance 1 (MDR1) was
ly activated.
ome potential interest, MDR1 was originally identified
overexpressed and amplified gene in multiple drug-
nt cells, and its product, P-glycoprotein, seems to play
cal role in drug resistance (19). We provide data here
ating CDX2 as an important factor in regulation of
expression in gastrointestinal tissues.

rials and Methods

ids
ll-length, wild-type CDX2 and CDX1 allele were ampli-
y PCR using hexamer-primed complementary DNA
) from normal human colon tissue as a template. Se-
e coding Flag epitope was added to the 5′ ends of CDX1
The CDX2 and Flag-CDX1 allele were inserted into the
le cloning site of the retroviral expression vector
CMV-CITE-neo (pPGS-neo, provided by G. Nabal,
ethesda, MD) to generate pPGS-CDX2. The full-length,
ype CDX2 allele was also subcloned into the retroviral
pBabe-Puro ER (provided by A. Friedman, Johns

ns Oncology Center, Baltimore, MD; ref. 20) to generate
2-ER. The pCDX2-ER vector encodes a chimeric protein
ch full-length CDX2 sequences are fused upstream of a
ed estrogen receptor (ER) ligand–binding domain. The
ed ER ligand–binding domain no longer binds estro-
ut retains the ability to bind tamoxifen. Fragments from
MDR1 and glyceraldehyde-3-phosphate dehydrogenase
H) genes were generated by PCR using hexamer-
d cDNA from Caco2 cells as a template (16). A
fragment of MDR1 cDNA was amplified using forward

r 5′-CAGTGAACTCTGACTCTATGAGATG-3′ and re-
primer 5′-AGCAAGGCAGTCAGTTACAGTCC-3′. The
and GAPDH cDNA fragments were subcloned into

GEM-T Easy Vector (Promega). Genomic DNA se-
es from the promoter regions of the human MDR1 gene
loned by PCR, using genomic DNA purified from DLD-
as a template, with the reverse primer 5′-GGCTCGAG-
CAGGTTGAATTTCCAGG-3′ and the following forward
rs: 5′-GCGGGTACCAGGCATTTAGCCTACTAGTG-3′
−4 , 0 03 ) , 5 ′ -ATGGTACCACATGTGAAAGG-
AGAGTG-3 ′ ( f rom −3 ,414 ) , 5 ′ -CCGGTACC-
CAGTGGAGCAAAGAAATG-3′ (from −1,711), and
GGTACCGTGAACAATGCTGTACACTTGC-3′ (from
). The PCR products were digested with Kpn1 and
(sites underlined in the primers) and subcloned into
10 [luc2] vector (Promega). PCR-based approaches

used to introduce mutations into the presumptive
-binding sites in the pGL4.10-MDR1 (−4,203/+50)

reprob
and R

r Res; 70(17) September 1, 2010

Research. 
on February 18, 20cancerres.aacrjournals.org ownloaded from 
ter gene construct. Sequence of presumptive CDX2
g site A (ATTTATG) and B (TTTTATG) were changed
TGCG and TCCTGCG in the primer using the primers:
GGTACCAGGCATTTAGCCTACTAGTGTAATTTCC-
GTC-3 ′ and 5 ′ -GAGCGGGCTTCTCAGATGA-

TGCTTTTCACTCTGTGC-3′ (for binding site A), and
GGGTACCAGGCATTTAGCCTACTAGTG-3′ , 5′-
GTCCTTCATACGCAGGAATCATTACATGTG-3′ ,
GTATGAAGGACATGTGATGATAGGGG-3′ , and
GCTTCTCAGATGATATGTGCTTTTCACTC-3′ (for
g site B). All fragments generated by PCR were verified
tomated sequencing of the respective plasmid con-
s. Plasmid pGL4.74 [hRluc/TK] vector (Promega) was
s control for transfection efficiency in reporter assays.

ulture and retrovirus infections
amphotropic Phoenix packaging cell line was provided
Nolan (Stanford University, Stanford, CA). All other cell
ere obtained from the American Type Culture Collec-
1998 to 2000. Frozen stock was made immediately and
in liquid nitrogen until the initiation of this study. Af-

awing frozen stock, the cells were kept at low passage
hout the study. The cell morphology was monitored by
scopy and confirmed that their morphologic images
aintained in comparison with the original morpholog-
ges. Details of cell culture conditions were previously
bed (16). The Phoenix packaging cells were transfected
etroviral expression constructs (pPGS-CDX2, pPGS-neo,
Flag-CDX1, and pCDX2-ER); the supernatant contain-
nreplicating amphotropic virus was harvested as previ-
described (16). HT-29 cells were infected with virus,
ed, and maintained in media containing G418 (Invitro-
r Puromycin (Sigma). In HT-29 cells expressing the
-ER fusion protein (HT-29/CDX2-ER), CDX2 function
tivated by addition of 4-hydroxytamoxifen (4-OHT; Sig-
the growth medium at a final concentration of 500

L. To assessMDR1 as a direct CDX2-regulated target gene,
/CDX2-ER cells were treated with the protein synthesis
or cycloheximide (Sigma) at a concentration of 1 μg/mL.

lementary RNA synthesis and gene
ssion profiling
al RNA was prepared by Trizol (Invitrogen) extraction
urification with the RNeasy Cleanup kit (Qiagen). Gene
sion analyses were performed with GeneChip Human
e U95Av2 and U133A (Affymetrix, Inc.) following sup-

nstructions. Affymetrix arrays were scanned using the
rray scanner (Affymetrix); image analysis was per-
d with the GeneChip 4.0 software (Affymetrix).

ern blot analysis
each sample, 10 μg of total RNA were fractionated by
ophoresis and transferred to a Zeta-Probe GT mem-
(Bio-Rad Laboratories). Hybridization was performed
32P-radiolabeled cloned cDNA fragments of MDR1, as
usly described (16). The membrane was stripped and

ed with GAPDH cDNA to confirm equivalent loading
NA transfer.
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rn blot assays
tern blot analysis was performed essentially as previ-
escribed (16). Anti-CDX2mousemonoclonal antibodies
7C7/D4, BioGenex Laboratories, Inc.), antihuman
monoclonal antibody (clone C219, Calbiochem), and
lag M2 monoclonal antibody (Sigma) were used at
0, 1:50, and 1:500 dilutions, respectively. The membrane
ripped and reprobed with an anti–β-actin monoclonal
dy (clone AC-15; Sigma) to verify loading and transfer.

nterference
small interfering RNA (siRNA) duplexes targeting

(5′-AACCAGGACGAAAGACAAAUA-3′, CDX2 siRNA-1;
′-AAGCCUCAGUGUCUGGCUCUG-3′, CDX2 siRNA-2)
nonsilencing siRNA duplex (5′-AAUUCUCCGAACGU-
CGU-3′) were synthesized by Qiagen-Xeragon. Cells
ultured in antibiotic-free medium for 24 hours before
ection. They were then transfected with siRNA (340
using DharmaFECT1 (Dharmacon). Silencing was ex-
d 72 hours after transfection. Each sample was reverse
ribed using the ReverTra Ace qPCR RT kit (Toyobo)
ing supplier protocols. Quantitative PCR (qPCR) analy-
s performed on an ABI 7500HT with Power SYBR Green
aster Mix (Applied Biosystems).MDR1 primers were as
s: forward, 5′-ATAATGCGACAGGAGATAGG-3′; and
e, 5′-CCAAAATCACAAGGGTTAGC-3′. GAPDH primers
s follows: forward, 5′-TTGAGGTCAATGAAGGGG-3′;
verse, 5′-GAAGGTGAAGGTCGGAGTC-3′. All experi-
were conducted three times. Human GAPDH was mea-
as the internal control.

ter gene assays
8 hours before transfection, cells were seeded in 35-mm
. HT29/PGS-CDX2 and HT29/PGS-neo cells were trans-
at 50% to 80% confluency with 4 μL of Lipofectamine
Invitrogen), 0.5 μg of pGL4.10 reporter gene construct,
.05 μg of control plasmid pGL4.74. At 40 hours after
ection, cells were collected and resuspended in passive
uffer (Promega). Luciferase activity was determined
dual luciferase assay system (GloMax96 Microplate
ometer, Promega).

atin immunoprecipitation assay
chromatin immunoprecipitation (ChIP) assays were
med using the ChIP-IT Express kit (Active Motif) fol-
supplier instructions. Chromatin extracts containing

ragments (average size, 500 bp) were immunoprecipi-
sing 2 μg monoclonal anti-CDX2 antibody (7C7/D4) or
onimmunized mouse IgG whole molecule (negative
l, Active Motif). Fragments (200 bp) of the MDR1
ter regions were PCR amplified using the primers 5′-
GGAGACAGAGTAATAC-3 ′ ( forward) and 5 ′ -
CTGGACAGAGACTTATAC-3′ (reverse; −4,100/−3,882,
ing binding site A), and 5′-ATCCCCTATCAAGTA-
C-3′ (forward) and 5′-CTCAGTCCAAAGAGCAAGAC-
verse; −3,482/−3,296, including binding site B). As a

ve control, a .4-kb DNA fragment from exon 3 of the
gene was amplified by PCR using previously described

in HT
MDR1

acrjournals.org

Research. 
on February 18, 20cancerres.aacrjournals.org ownloaded from 
rs (18). Each immunoprecipitated DNA sample was
ified using the average of duplicate qPCRs. All ChIP-
signals were normalized to the input (labeled as IP/
. Each primer gave a single product of the right size,
firmed by agarose gel electrophoresis.

nohistochemical staining
malin-fixed, paraffin-embedded tissues were stained
the avidin-biotin complex method as previously de-
d (16). Mouse monoclonal anti-CDX2 antibody 7C7/D4
ouse monoclonal anti-MDR1 antibody (clone C494;
Laboratories) were used at 1:1,000 and 1:10 dilution,

tively.

oxicity assay
litaxel and verapamil were purchased from Sigma, and
rouracil was provided by Kyowa Hakko Kogyo Co. Ltd.
ubicin and vincristine were provided by Nippon Kayaku.
tothecin and cisplatin were purchased from LKT Labo-
s. MTT cytotoxicity assay was used to examine cell sur-
fter exposure to chemotherapeutic agents. Cells were
d at 5,000 cells/100 μL per well in 96-well microtiter
. After a 48-hour incubation period, cells were treated
range of concentrations of each chemotherapeutic agent.
mine the effect of verapamil, a known P-glycoprotein in-
r (21), 2 μmol/L were administered together with each
therapeutic agent. A pilot experiment showed that this
ntration was not cytotoxic to HT-29/PGS-CDX2 or
/PGS-neo cells (data not shown). After 72 hours, 10 μL
T dye (5 mg/mL) was added to each well, and plates were
ted for 4 hours at 37°C in a humidified 5% CO2 atmo-
. Dark blue formazan crystals formed by live cells were
ved in 100 μL of solubilization solution (10% SDS in
ol/LHCl). Absorbance in individualwells was determined
nm using anMTP-300 microplate reader (CORONA Elec-
. Ltd.). Results were expressed in terms of the concentra-
equired to inhibit cell growth by 50% relative to
ated cells [IC50 (72 h)].

lts

and MDR1 expression are correlated in colon
oma cells
ilar to a few selected other human CRC cell lines, the
line shows very low endogenous CDX2 expression
o identify candidate CDX2-regulated genes, we gener-
olyclonal populations of HT-29 CRC cells ectopically
ssing CDX2, by infecting the cells with replication-
ive retroviruses carrying full-length human CDX2 cDNA
A). Comparison of gene expression in the HT-29/PGS-
cells versus control populations (HT-29/PGS-neo) was
rmed using microarrays with focus on the MDR1
1) gene. Affymetrix data indicated that MDR1 gene
sion was upregulated by CDX2 by roughly 31.14-fold
-29 cells (Fig. 1A). Northern and Western blot studies
med robust induction of MDR1 transcripts and protein

-29/PGS-CDX2 cells (Fig. 1B). To determine whether
is a selective CDX2 target, we also generated polyclonal
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tions of HT-29 cells ectopically expressing CDX1 (HT-
S-Flag-CDX1). In this cell line, MDR1 expression was not
d by overexpression of CDX1 (Supplementary Fig. S1).
assess the correlation between endogenous CDX2 and
expression in other CRC cell lines, Northern andWestern
alyses were performed on 12 additional lines.MDR1 pro-
pression was detected in six cell lines with high levels of
transcripts. In all of these cell lines, strong CDX2 expres-
as observed (Fig. 1C, lanes 1, 2, 5, 9, 11, and 12, 5, 9, 11, and
owever, none of the cell lines with weak or undetectable
expression had detectable MDR1 transcripts or protein.

DR1 gene is a primary target of CDX2 activity

better assess the relationship between CDX2 function
DR1 gene expression, we studied MDR1 expression in

ulated
hexim

r Res; 70(17) September 1, 2010

Research. 
on February 18, 20cancerres.aacrjournals.org ownloaded from 
-29–derived line with tightly regulated CDX2 activity.
ed a polyclonal HT-29 cell line that had been trans-
with a vector encoding a chimeric CDX2-ER fusion
n. In the chimeric CDX2-ER protein, full-length CDX2
nces are present upstream of a mutated ER ligand–
g domain. The mutant ER ligand–binding domain is
le of binding to 4-OHT, but not estrogen. Expression
CDX2-ER fusion protein in HT-29/CDX2-ER polyclonal
e was confirmed (data not shown). Treatment of HT-
X2-ER cell line with 4-OHT strongly induced MDR1 ex-
on within 12 hours, with further increased expression
day 2 of 4-OHT treatment (Fig. 2A). Consistent with
tion that MDR1 is a direct or primary target gene reg-
Fig
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1. CDX2 activates MDR1 expression in
cells. A, top, a monoclonal anti-CDX2
y detects the roughly 40-kDa CDX2
in HT-29/PGS-CDX2 cells but not in
PGS-neo cells. A, bottom, relative level
1 gene expression in HT-29/PGS-CDX2
-29/PGS-neo in Affymetrix microarray
. B, Northern and Western blot analysis
MDR1 transcripts and products in

PGS-CDX2 with low or absent MDR1
ion in HT-29/PGS-neo cells. In Western
alysis, a mouse monoclonal anti-MDR1
y detects the roughly 170-kDa MDR1
t in HT-29/PGS-CDX2 cells but not in
PGS-neo cells. C, expression of CDX2
R1 in 13 CRC cell lines. In the indicated
cell lines, Western blot analyses of

and CDX2 expression were performed
mouse monoclonal antibody against
MDR1 and a mouse monoclonal
y against human CDX2. The membranes
ripped and reprobed with a monoclonal
y against β-actin to verify loading and
r. Northern blot analysis of MDR1
ion was performed using an MDR1
robe. The membrane was stripped and
d with a GAPDH cDNA probe to verify
f new protein synthesis by cyclo-
not inhibit induction of MDR1
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ripts at the 12-hour time point (Fig. 2B). However, as
ted, cycloheximide treatment blocked induction of
protein expression in 4-OHT–treated HT-29/CDX2-
ls (Fig. 2B).

ition of CDX2 by RNA interference results in the
regulation of MDR1 in colon cancer cells
determine whether CDX2 is necessary for MDR1 ex-
on in mammalian cells, we analyzed the effect of inhi-
CDX2 expression by RNA interference in the level of
expression. DLD-1, a CRC cell line with high endoge-
DX2 and MDR1 expression, was used. CDX2-specific
s significantly suppressed CDX2 protein expression
after transfection, and expression of MDR1 transcript
ownregulated roughly 50% by CDX2 siRNAs in DLD1
ared with its levels in parental and control siRNA-
d cells (Fig. 2C). These data indicate that CDX2 is

ed in maintaining MDR1 gene expression in gastroin-
l cell lines.

seque
activit

D.
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Research. 
on February 18, 20cancerres.aacrjournals.org ownloaded from 
′-flanking region of the MDR1 gene contains a
-responsive element
identify potential CDX2-binding sites in the MDR1 pro-
region, genomic sequences immediately 5′ to the

ent transcription start site were searched, using a
nsus-binding element for the Cdx A chicken caudal–
protein (5′-A, A/T, T, A/T, A, T, A/G-3′; ref. 23) and

iously described search algorithm (24). Four candidate
-binding sites were found in the −4.0-kb region up-
of the presumptive transcription initiation sites: site
ATTTATG-3′, from −3,974 to −3,980), site B (5′-
ATG-3′, from −3,421 to −3,427), site C (5′-TTTTATG-
m −1,489 to −1,495), and site D (5′-ATTTATG-3′, from
to −1,469; Fig. 3A). To assess the role of these presump-
DX2-binding sites in regulating MDR1 transcription,
l reporter gene constructs were generated (Fig. 3A).
ter gene constructs containing 4.0 kb of a 5′-flanking

nce (−4,003/+50) from the MDR1 gene showed strong
y in the HT29/PGS-CDX2 cell lines (Fig. 3B).
2. The MDR1 gene is a
target of CDX2 action.
course of MDR1 gene
n in response to activation
X2-ER fusion protein by
B, induction of MDR1

ipt in response to activation
X2-ER fusion protein by
is not inhibited by the
synthesis inhibitor
ximide, but protein
is is blocked. C, inhibition
2 expression by siRNA
g leads to decreased
expression in CRC cell line
Assays were performed
ate; columns, mean;
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the MDR1 reporter gene constructs with deletions
stream of the 4.0-kb pair site showed decreased
ty in HT29/PGS-CDX2 cell lines; thus, sequences
en −3.4- and −4.0-kb pairs are important in activat-
DR1 transcription. Analysis of single and multiple
ions in the presumptive CDX2-binding sites in this
n using HT29/PGS-CDX2 and HT29/PGS-neo
d that the presumptive CDX2-binding sites A and

y crucial roles in activating MDR1 transcription
C).

by bin
promo
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binds to elements in the 5′-flanking region of the
gene

previously noted, using the HT-29/CDX-ER cell line
he protein synthesis inhibitor cycloheximide, we
that the MDR1 gene was a direct or primary target
X2. Additionally, MDR1 reporter gene studies with lo-
d mutations of CDX2-binding sites implied that
plays a major role in activating MDR1 transcription
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ly to sequences in the MDR1 promoter region, we un-
k ChIP assays using HT-29/CDX-ER cells. Before treat-
of HT-29/CDX-ER cells with 4-OHT, the CDX2-ER
protein was expressed but remained inactive in the
ikely because it was complexed with heat shock pro-
As would be predicted for cells lacking appreciable
of functional CDX2, before 4-OHT treatment, we failed
over DNA fragments of the promoter regions of MDR1
P experiments with anti-CDX2 antibody (Fig. 4A). In
st, on day 2 after 4-OHT–mediated activation of the
-ER fusion protein, we readily recovered DNA frag-

containing the MDR1 promoter (Fig. 4A). The specific-
recovery of the MDR1 promoter region following ChIP

transc
flankin

values are shown.
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nti-CDX2 antibody was shown by the fact that other
ant DNA fragments lacking CDX2-binding sites (e.g.,
of the CDX1 gene) were not recovered (Fig. 4A). Ad-

ally, mock immunoprecipitation (mouse IgG whole
ule) yielded few MDR1 or CDX1-specific DNA frag-
(Fig. 4A). To confirm these data in endogenous

, we performed the same ChIP assay in Caco2, CRC cell
which has strong endogenous CDX2 expression. We al-
overed DNA fragments containing the MDR1 promoter
following ChIP with anti-CDX2 antibody (Fig. 4B). All
findings strongly suggest that CDX2 activates MDR1

ription by directly binding to sequences in the 5′-
g region of the gene.
4. CDX2 binding to MDR1
er region shown by ChIP.
2 function was activated in
CDX2-ER cells by treatment
ells with 4-OHT, and the
ere harvested at the
d time points. B, specificity
very of DNA fragments of
promoter region following
ith anti-CDX2 antibody was
ed in Caco2, which has
nous strong CDX2
ion. Assays were
ed in triplicate, and mean
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and MDR1 expression are tightly coupled in
astic tissues in the gastrointestinal tract
previously noted, prior studies of CDX2 expression in
l adult tissues have shown strong CDX2 expression re-
d to epithelial cells of the small intestine and colon,
as MDR1 is expressed in a broad range of normal tis-
ncluding epithelia of the liver; kidney; small and large
ne; and capillary endothelial cells in brain, ovary, and
(25).
examined the correlation between CDX2 and MDR1
sion in human healthy colon epithelium and CRC
microarray by immunohistochemical staining.

ns of CDX2 and MDR1 expression are well correlated
rmal colon epithelium (Fig. 5A). In CRC tissue

array, we analyzed 302 CRC tissues. For statistical
risons, moderate and high MDR1 protein (P-glyco-

press
0.001;
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in) expression was evaluated against low MDR1
ssion. In tissue microarray, 214 showed positive
expression (70.9%), whereas 201 showed positive
expression (66.6%). CDX2 and MDR1 expressions
d a strong positive correlation (Supplementary
S1, P < 0.001). We then evaluated the correlation
en CDX2 and MDR1 expression in stomach cancers
se normal stomach epithelium shows low expres-
f both CDX2 and MDR1 (16, 26). CDX2 was stained
sely in nuclei of stomach cancer cells, whereas
was stained in the inner surface of neoplastic
(Fig. 5B). Of 54 stomach cancers, 22 showed pos-

CDX2 expression (40.7%), whereas 25 showed
ve MDR1 expression (46.3%). CDX2 and MDR1 ex-
Fig
cor
sto
was
par
mo
ant
B, r
sto
ions showed a strong positive correlation (P <
Supplementary Table S2).
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ted in human colon epithelium and
h cancer tissues. Immunohistochemistry
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-embedded tissues with anti-CDX2
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) in (A) human colon epithelium and (B)

http://cancerres.aacrjournals.org/


HT-29
depen
To

as a d
apeuti
(Fig. 6
tothec
tivity i
the kn
showe
(72 h)
To

ducted
verapa
the ac
CDX2
ences
PGS-C
sugges
taxel i
of the

Discu

The
that t
CDX2
velopm
molec
of CDX
To da
genes
(27), g
D9K (
cyclas
(35), h
factor
itself t
strate
ref. 40
In t

rectly
MDR1
tide m
pressi
endog
that e
CDX2
CDX2
tein s
CDX2-
scripti
that tw
says sh
region
and 54
tein ex
ulatio

tissue
predic
perha
Alth

CDX2
ing to
gion,
expre
CDX2
tain se
CDX2
LS174
transc
dence
ing LI
other
pressi
sugge
MDR1
MDR1
future
regula
troint
In o

MDR1
was re
sugges
pressi
specif
ysis fo
naïve
was 1
expre
(25, 41
(jejun
found
epithe
of sub
muco
CDX2
epithe
intesti
tics by
In c

as an
resista
a mem
transm
B, me
phobi
depen
comp
promo
In stu
patho
differe

CDX2 Regulates MDR1

www.a

D

Published OnlineFirst August 10, 2010; DOI: 10.1158/0008-5472.CAN-09-4701 
cells ectopically expressing CDX2 have MDR1-
dent drug resistance
determine whether MDR1 induced by CDX2 functions
rug reflux pump, we analyzed the effects of chemother-
c drugs on HT-29/PGS-CDX2 and HT29/PGS-neo cells
A). The MDR1 nonsubstrates, that is, cisplatin, camp-
in, 5-fluorouracil, and doxorubicin, showed similar ac-
n HT-29/PGS-CDX2 and HT-29/PGS-neo cells, whereas
own MDR1 substrates (25), vincristine and paclitaxel,
d lesser activity [7.7- and 3.0-fold increase in IC50

, respectively] in HT-29/PGS-CDX2 cells (Fig. 6A).
examine MDR1-dependent drug resistance, we con-
the same assay in the presence of the MDR1 inhibitor
mil. Cotreatment with 2 μmol/L verapamil increased
tivities of vincristine and paclitaxel in HT-29/PGS-
cells (Fig. 6B and C). Verapamil reduced the differ-
in the drug-induced cytotoxicity between HT-29/
DX2 and HT-29/PGS-neo cells (Fig. 6B and C). This
ts that increased resistance to vincristine and pacli-
n HT-29/PGS-CDX2 cells is caused by overexpression
MDR1 gene.

ssion

re is now a sizable body of data supporting the idea
he intestine-specific homeobox transcription factor
has a crucial role in directing intestinal epithelial de-
ent and differentiation (1, 2). However, the precise

ular mechanisms underlying tissue-specific expression
2 and its downstream target genes remain undefined.
te, only a limited number of CDX2-regulated target
have been suggested, including sucrase-isomaltase
lucagon (28), carbonic anhydrase 1 (29), calbindin-
30), vitamin D receptor (31), lactase (32), guanylyl
e C (33), clusterin (34), gut-enriched Krüppel-like factor
eparin-binding epidermal growth factor–like growth
(36), MUC2 (37), LI-cadherin (16), HEPH (18), Cdx2
hrough autoregulatory loop (38), insulin receptor sub-
2 (39), and solute carrier family 5, member 8 (SLC5A8;
).
his study, we identified MDR1 as a candidate gene di-
regulated by CDX2. Evidence that CDX2 might regulate
was initially obtained using high-density oligonucleo-
icroarrays to identify genes activated following overex-
on of CDX2 in a CRC cell line showing very low
enous CDX2 expression. Additionally, data indicating
ndogenous MDR1 expression was dependent on
were obtained, along with evidence that activation of
induced MDR1 transcripts even in the presence of pro-
ynthesis inhibitors. We identified four presumptive
binding sites in the 4-kb region upstream of the tran-
on start sites of MDR1. Reporter gene analysis showed
o of these elements were critical. Subsequent ChIP as-
owed that CDX2 binds directly to thisMDR1 promoter
. Immunohistochemical staining analysis for 302 CRCs
stomach cancers showed that CDX2 and MDR1 pro-

pressions were significantly correlated. Given the reg-
n of MDR1 by CDX2 in neoplastic gastrointestinal

(43). S
expres
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s, CDX2, as well as MDR1, may be a useful marker for
ting the status of drug resistance in the stomach and
ps elsewhere.
ough our data offer reliable support for the view that
plays a role in regulating MDR1 transcription by bind-
one or more elements in the proximal promoter re-
CDX2 might not be sufficient for activating MDR1
ssion. It is possible that other factors along with
may be required to activate MDR1 transcription in cer-
ttings, such as in HT-29 cells, because two of the eight
-positive CRC cell lines we studied (namely SW48 and
T) expressed very low or undetectable levels of MDR1
ripts and protein. Previously, we obtained similar evi-
that CDX2 was required but not sufficient for activat-
-cadherin and HEPH transcription (16, 18). On the
hand, our data indicated that inhibition of CDX2 ex-
on by siRNA leads to decreased MDR1 transcription,
sting that CDX2 does play a key role in maintaining
expression in certain settings, such as in CDX2- and
-expressing CRC cells. It will be interesting in the
to define other factors that cooperate with CDX2 in
ting MDR1, LI-cadherin, and HEPH expression in gas-
estinal tissues.
ur study, we showed that expression of CDX2 induced
-dependent drug resistance in a CRC cell line, which
versed by the MDR1-specific inhibitor verapamil (21),
ting a role of CDX2 in the regulation of MDR1 gene ex-
on in drug resistance. Consistent with the intestine-
ic expression of CDX2 in humans and mice, recent anal-
r tissue-specific murine Mdr1a gene expression in
animals revealed that the basal Mdr1a expression level
00-fold higher in the intestine than in other MDR1-
ssing tissues such as the liver, kidney, and spleen
). In epithelial cells of the lower gastrointestinal tract
um, ileum, and colon), high levels of MDR1 protein are
only on the apical surfaces of superficial columnar
lial cells, which suggests a function to prevent uptake
strates and perhaps to facilitate excretion across the
sa of the gastrointestinal tract (26). Given the role of
in the establishment and maintenance of intestinal
lium, CDX2 may play a critical role in protecting the
nal epithelium and the human body from toxic xenobio-
stably inducing MDR1 even under naïve conditions.
ancer tissue, the MDR1 gene was originally identified
overexpressed and amplified gene in multiple drug-
nt cells (19, 25). TheMDR1 gene encodes P-glycoprotein,
ber of the large ATP-binding cassette superfamily of
embrane proteins (ATP-binding cassette, sub family
mber 1) that transports structurally different hydro-
c chemotherapeutic agents outward in an energy-
dent manner. Regulation of MDR1 gene expression is
lex because like many TATA-less promoters (42), the
ter of the MDR1 gene contains multiple start sites.
dies of CRCs, expression of MDR1 was correlated with
logic grading of tumors, being most intense in well-
ntiated tumors and low in poorly differentiated ones

imilarly, moderately differentiated gastric carcinomas
sed a higher level of MDR1 than poorly differentiated
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6. HT29 cells ectopically expressing CDX2 have MDR1-dependent drug resistance. A, effect of chemotherapeutic drugs on HT29/PGS-CDX2 (○)
29/PGS-neo (•) cell lines. B, effect of additional verapamil on vincristine and paclitaxel in HT29/PGS-CDX2 (○) and HT29/PGS-neo (•) cell lines.
(72 h)] determined by MTT assay on HT29/PGS-CDX2 and HT29/PGS-neo cells. Cotreatment with verapamil significantly recovered the sensitivity

istine and paclitaxel on HT-29/PGS-CDX2 cells. The cytotoxic assays were performed in triplicate; points, mean; bars, SD.
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44). Although studies of CRCs arising in humans have
fered definitive proof of a causal role for CDX2 inacti-
in the cancer process, it is quite clear that loss of
expression is seen in a subset of primary CRCs, partic-
tumors with minimal differentiation (45). Consistent
ur previous observation in large cell minimally differ-
ed adenocarcinoma of the colon, recent multivariate
is also indicates that loss of CDX2 expression is asso-
with less-differentiated carcinoma and advanced
although CDX2 loss is not independently associated
patient survival (15, 46). Considering the roles of
in promoting cellular differentiation and inhibiting
ration (45), CDX2 loss could conceivably contribute
ressive tumor behavior, although MDR1 loss induced
X2 suppression may have some beneficial influence
tient survival with reduced drug resistance.
onclusion, our findings implicating CDX2 in regulation
R1 offer data on specific factors and mechanisms reg-
g MDR1 expression in gastrointestinal cancers. Howev-
eral outstanding issues regarding the transcriptional
tion of MDR1 by CDX2 remain to be addressed. Due
sm of drug resistance, fur- Rece
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intestinal cancers should help to enhance understand-
the mechanism of aberrant (ectopic) expression of
and its downstream target MDR1, and in the develop-
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