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Marinesco-Sjögren syndrome is a rare autosomal recessive multisystem disorder featuring cerebellar ataxia, early-onset cata-

racts, chronic myopathy, variable intellectual disability and delayed motor development. More recently, mutations in the SIL1

gene, which encodes an endoplasmic reticulum resident co-chaperone, were identified as the main cause of Marinesco-Sjögren

syndrome. Here we describe the results of SIL1 mutation analysis in 62 patients presenting with early-onset ataxia, cataracts and

myopathy or combinations of at least two of these. We obtained a mutation detection rate of 60% (15/25) among patients with

the characteristic Marinesco-Sjögren syndrome triad (ataxia, cataracts, myopathy) whereas the detection rate in the group of

patients with more variable phenotypic presentation was below 3% (1/37). We report 16 unrelated families with a total of 19

different SIL1 mutations. Among these mutations are 15 previously unreported changes, including single- and multi-exon

deletions. Based on data from our screening cohort and data compiled from the literature we found that SIL1 mutations are

invariably associated with the combination of a cerebellar syndrome and chronic myopathy. Cataracts were observed in all

patients beyond the age of 7 years, but might be missing in infants. Six patients with SIL1 mutations had no intellectual

disability, extending the known wide range of cognitive capabilities in Marinesco-Sjögren syndrome to include normal intelli-

gence. Modestly constant features were somatic growth retardation, skeletal abnormalities and pyramidal tract signs.

Examination of mutant SIL1 expression in cultured patient lymphoblasts suggested that SIL1 mutations result in severely reduced

SIL1 protein levels irrespective of the type and position of mutations. Our data broaden the SIL1 mutation spectrum and confirm

that SIL1 is the major Marinesco-Sjögren syndrome gene. SIL1 patients usually present with the characteristic triad but cataracts

might be missing in young children. As cognitive impairment is not obligatory, patients without intellectual disability but a

Marinesco-Sjögren syndrome-compatible phenotype should receive SIL1 mutation analysis. Despite allelic heterogeneity and

many families with private mutations, the phenotype related to SIL1 mutations is relatively homogenous. Based on SIL1

expression studies we speculate that this may arise from a uniform effect of different mutations on protein expression.
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Introduction
Marinesco-Sjögren syndrome (MIM 248800) is a long-recognized

autosomal recessively inherited, infantile-onset multisystem dis-

order that affects brain, eyes and skeletal muscles. The clinical

triad of bilateral cataracts, ataxia and intellectual disability was

noted in the first half of the last century (Moravcsik, 1904;

Marinesco et al., 1931; Sjögren, 1947) and later confirmed in a

series of additional reports. Pathoanatomical and brain imaging

studies revealed cerebellar atrophy as the cause of the cerebellar

syndrome (Todorov, 1965; Georgy et al., 1998). From histopatho-

logical and neurophysiological investigations chronic myopathy

emerged as an additional feature (Chaco, 1969; Herva et al.,

1987) and electron microscopy revealed particular electron-dense

membranous structures around degenerating myonuclei (Herva

et al., 1987; Sewry et al., 1988). Hypergonadotropic hypogonad-

ism, skeletal abnormalities and short stature are additional features

that have been reported with variable frequency (Berg and Skre,

1976; Brogdon et al., 1996). Although most patients are severely

handicapped, life span in Marinesco-Sjögren syndrome is at least

not drastically reduced as the oldest reported patients are in their

70s (Anttonen et al., 2005). More recently, using positional clon-

ing strategies, we and others have shown that Marinesco-Sjögren

syndrome is caused by homozygous or compound heterozygous

point mutations in the SIL1 gene on chromosome 5q31.2

(Anttonen et al., 2005; Senderek et al., 2005). Following the

two original reports, 14 additional families with SIL1 mutations

have been described in the medical literature (Karim et al.,

2006; Annesi et al., 2007; Anttonen et al., 2008; Eriguchi et al.,

2008; Riazuddin et al., 2009; Takahata et al., 2010; Terracciano

et al., 2012). A subgroup of patients with Marinesco-Sjögren syn-

drome was found to be negative for SIL1 point mutations, sug-

gesting alternative mutation mechanisms or locus heterogeneity

(Senderek et al., 2005; Anttonen et al., 2008).

SIL1, the human homolog of yeast Sil1p (suppressor of the

Dire1 Dlhs1 double mutant number 1), is an evolutionary con-

served, ubiquitously expressed 461 amino-acid N-linked glycopro-

tein (Chung et al., 2002). SIL1 acts as a co-chaperone and

nucleotide exchange factor for the HSP70 (heat-shock protein

70) ATPase BiP (immunoglobulin binding protein, also referred

to as 78-kDa glucose-regulated protein GRP78) (Haas and Wabl,

1983; Munro and Pelham, 1986). BiP is a stress-inducible molecu-

lar chaperone and controls a plethora of essential processes in the

endoplasmic reticulum including translocation of nascent proteins

into the endoplasmic reticulum, accurate subsequent folding of the

newly synthesized proteins in the endoplasmic reticulum lumen,
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elimination of proteins that fail to mature properly, response to cell

stress, and calcium homeostasis (Hendershot, 2004). As at least

some functions of BiP require its ATPase activity, it seems plausible

to assume that the nucleotide exchange factor SIL1 is involved in

the regulation of endoplasmic reticulum-associated processes

through control of the BiP ATPase cycle and that impaired BiP

activation is the relevant pathomechanism in Marinesco-Sjögren

syndrome.

The prominent cerebellar atrophy seen in patients with

Marinesco-Sjögren syndrome is caused by loss of Purkinje and

granule cells (Todorov, 1965; Mahloudji et al., 1972; Skre and

Berg, 1977). The same histopathological findings are present in

the spontaneous mouse mutant woozy, which lacks a functional

Sil1 gene resulting in adult-onset ataxia (Zhao et al., 2005).

However, woozy mice seem to differ from humans with

Marinesco-Sjögren syndrome as no symptoms like cataracts or

myopathy have been described in this animal model. SIL1 is ex-

pressed in all tissues and organs in vertebrates with highest levels

in secretory tissues such as liver, placenta and kidney (Chung

et al., 2002). It remains unknown why loss of SIL1 function in

man and mice does not cause lethality and why certain tissues and

cell types such as cerebellum (in mice and humans), eye and skel-

etal muscle (in humans) are more vulnerable to loss of SIL1 func-

tion than other tissues. As in yeast (Tyson and Stirling, 2000), the

presence of the additional nucleotide exchange factor HYOU1

(also known as ORP150 and GRP170) in various organs of mam-

mals may be able to compensate the loss of SIL1 function. This

hypothesis has recently been supported by the finding that the

cerebellar atrophy in the woozy mouse can be compensated by

over-expression of HYOU1 (Zhao et al., 2010).

Here, we screened a cohort of unselected patients referred for

molecular genetic testing of the SIL1 gene. We extend the pheno-

typic and mutation spectrum in patients with Marinesco-Sjögren

syndrome and suggest inclusion criteria for SIL1 mutation screen-

ing based on compilation of clinical data of all reported patients

with SIL1 mutations.

Materials and methods

Patients
All patients included in this study were referred to our molecular gen-

etic diagnostic laboratory for SIL1 mutation analysis between 2005 and

2011. The general inclusion criteria for this study required definite or

probable clinical evidence of early-onset cataracts, cerebellar atrophy/

ataxia and chronic myopathy (n = 25). We also enrolled a cohort of

patients presenting with two out of the three cardinal features plus at

least one of the following additional features: short stature, intellectual

disability, delayed motor milestones, muscular hypotonia, hypogonad-

ism, peripheral neuropathy, skeletal deformities (e.g. scoliosis, pes

cavus) (n = 37). All biological materials (blood samples, DNA samples,

cell lines, archived specimens of diagnostic muscle biopsies), medical

and neurophysiological reports, clinical photographs, ultrasound

images, and brain MRI scans were obtained under appropriate

informed consent of the patients or their legal guardians. Muscle biop-

sies were processed as described previously (Weis and Schröder, 1988,

1989).

SIL1 gene sequence analysis
Primer sets for PCR amplification of human SIL1 coding exons 2–10

(NM_022464.4) with 40 to 50 bp of flanking intronic sequences have

been described previously (Senderek et al., 2005). The resulting PCR

products were subjected to fluorescence-based cycle sequencing using

the BigDye� Terminator Cycle Sequencing Ready Reaction Kit, version

3.1 (Applied Biosystems). Samples were run and analysed on an ABI

PRISM 3100 Genetic Analyzer (Applied Biosystems). Sequencing elec-

tropherograms were assessed by visual inspection in order to identify

variants.

Identification of SIL1 exon-deletion
mutations
In Patient MSS87.1 we identified a seemingly homozygous mutation in

exon 9 whereas we observed heterozygosity for two variants in exon 3

and intron 4. Based on these findings we assumed that Patient

MSS87.1 might harbour a heterozygous intragenic deletion encom-

passing at least exon 9. High resolution genome wide single-nucleotide

polymorphism array analysis was performed by using an Affymetrix

250K Nsp SNP array (Affymetrix), in accordance with the supplier’s

instructions, and copy-number data were analysed with the Affymetrix

Genotyping Console 3.0.2 software. For confirmation and fine map-

ping of a copy number deviation, we developed quantitative real-time

PCR assays for 12 fragments located in introns 7 and 9 and 3’ of the

SIL1 gene (Fig. 1B). As reference locus, exon 3 of the factor VIII gene

(Wilke et al., 2000) was used. Quantitative real-time PCR was carried

out on an ABI PRISM 7000 sequence detection system (Applied

Biosystems) using the quantitative real-time PCR core kit for SYBR

Green I according to the manufacturer’s protocol (Eurogentec). Data

evaluation was performed using the ABI PRISM 7000 sequence detec-

tion software as described previously (Wilke et al., 2000) and the

ratios of test and reference fragments were calculated to determine

copy numbers of the test fragments. Primers from the fragments

found to be situated just outside the deletion (i.e. fragments yielding

results in favour of two copies) were used in an attempt to amplify the

breakpoint region by long-range PCR.

PCR amplification of SIL1 exon 5 consistently failed in the DNA

sample of the index patient of Family MSS150.1 whereas amplification

of exons 4 and 6 was normal. To obtain further evidence for a pre-

sumed intragenic deletion removing exon 5, total RNA was isolated

from a fresh blood sample of the index patient, reverse transcribed and

used as template for PCR with primers in SIL1 exons 1 and 10

(Fig. 1C). Sequencing of the PCR product was performed using ABI

Prism BigDye� technology as described above. At the genomic level,

the extent of the presumed deletion was defined using amplification of

several short 100–200 bp genomic fragments placed every 2–3 kb

within the 25 kb genomic region encompassing intron 4, exon 5 and

intron 5. Primers from fragments found to lie just outside the deletion

(i.e, these fragments yielded amplification in patient’s DNA while frag-

ments situated in the genomic region flanked by these markers gave

no products) were combined to amplify a junction fragment charac-

teristic for the deletion (Fig. 1D). The junction fragment was subjected

to cycle sequencing in order to identify the precise positions of the

deletion breakpoints.

Cell culture and western blotting
Epstein-Barr virus-immortalized B lymphoblast cell lines from control sub-

jects and patients with Marinesco-Sjögren syndrome were established
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Figure 1 SIL1 mutations. (A) Graphical overview of mutations found in this and other studies. Different mutation types are marked with

different symbols. Circles = missense mutations and small in-frame indels; rhombi = nonsense mutations; triangles = frameshift mutations;

squares = splice site mutations; two-sided arrows = exon-deletion mutations. Previously unreported sequence variations identified in this

study are coloured in red. Exon, nucleotide and amino acid numbering is according to NM_022464.4 and NP_071909.1. Introns are not

drawn to scale. AA = amino acid. (B) Heterozygous multi-exon deletion in Patient MSS87.1. Sequencing electropherograms show het-

erozygous variants in exon 3 (rs3088052, open rhombus) and intron 4 (c.353 + 38T4A, open circle) as well as a seemingly homozygous

frameshift mutation c.947dupT, p.R317fs in exon 9 (filled triangle, the electropherogram below represents the wild-type sequence).

A high-density genome-wide single nucleotide polymorphism array (upper left) and copy number analysis of fragments located in the

potential deletion region by quantitative real-time PCR (vertical bars above the schematic representation of the SIL1 gene, red: one copy,

black: two copies) were suggestive of a partial, �68–77 kb deletion involving exons 8–10 (boxed with dotted red lines). Long-range PCR

with primers from the fragments found to be situated just outside the deletion failed to amplify a deletion specific junction fragment

leaving the possibility of a more complex genomic rearrangement although routine-karyotyping had previously shown two normal

chromosomes 5. (C and D) Homozygous exon 5 deletion in Patient MSS150.1. (C) Reverse transcription PCR using patient’s messenger

RNA (P) yielded a shorter 1370-bp fragment (C: control messenger RNA, 1470 bp). Positions of pimers are indicated by arrowheads

underneath the schematic representation of the SIL1 messenger RNA. Sequencing electropherograms representing the normal exon 4/

exon 5 and normal exon 5/exon 6 junctions are shown above the schematic representation of the SIL1 messenger RNA; the exon 4/exon 6

junction resulting from the genomic deletion is shown below. Removal of the 100-bp exon 5 from the mature messenger RNA is predicted

to result in frameshift and premature stop of translation (asterisk). (D) Sequencing of a PCR-amplified deletion-specific junction fragment

at the genomic level. Primers placed in intron 4 and intron 5 of the SIL1 gene yielded a �2.5 kb shorter product when using patient’s (P)

DNA (C: control DNA, 4029 bp). Positions of primers are indicated by arrowheads underneath the schematic representation of the SIL1

gene genomic region (not drawn to scale). The borders of the deletion which encompasses 2660 bp including exon 5 were determined by

DNA sequencing with internal primers. The extent of the deletion is indicated as a grey box.
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according to standard protocols (Tohda et al., 1978). The immortalized

lymphoblasts were cultured in RPMI-1640 growth medium, harvested

by centrifugation (800 rpm, 7 min), washed twice in cold PBS and pel-

leted by centrifugation (14 000 rpm, 5 min, 4�C). Cell pellets were

homogenized in lysis buffer (10 mM Tris-HCl, 5 mM EDTA, 150 mM

NaCl, 1% TritonTM X-100) containing protease and phosphatase inhibi-

tors. Post-nuclear supernatants were boiled in sample buffer (80 mM Tris

pH 6.8, 10% glycerol, 2% SDS, 0.002% bromphenol blue), resolved by

SDS–PAGE and electroblotted onto polyvinylidene fluoride membranes

(Hybond-C; GE Healthcare). Immunoblots were developed by incubation

with appropriate antibodies followed by horseradish peroxidase-

phosphatase chemiluminescence detection (ECL; GE Healthcare). The

following antibodies were used: mouse monoclonal anti-SIL1 clone

1F9 (Origene Technologies; dilution 1:1000), mouse monoclonal anti-

GAPDH (Genetex; dilution 1:1000), goat anti-rabbit immunoglobulin

G antibody conjugated to horseradish peroxidase (Invitrogen; dilution

1:5000), goat anti-mouse immunoglobulin G conjugated to horseradish

peroxidase (Invitrogen; dilution 1:5000).

Results
Mutation screening of the SIL1 gene in a diagnostic sample of 62 un-

related, previously unreported index patients with Marinesco-Sjögren

syndrome or Marinesco-Sjögren syndrome-like conditions revealed

pathogenic sequence variants in 16 families of diverse ethnic back-

grounds, representing roughly 25% of the total cohort. The muta-

tion detection rate reached 60% (15/25) in the cohort of patients

presenting with the clinical triad of cerebellar atrophy, myopathy and

cataracts whereas the mutation detection rate was 53% (1/37)

among Marinesco-Sjögren syndrome-like cases (two of the cardinal

features and at least one of the following symptoms: short stature,

intellectual disability, delayed motor milestones, hypotonia, hypo-

gonadism, peripheral neuropathy, skeletal deformities).

We observed a total of 19 different SIL1 mutations consisting of

a missense mutation, a two-amino acid in-frame deletion, seven

frameshift mutations, four nonsense mutations, four nucleotide

changes affecting splice sites and two genomic deletions (Fig. 1

and Table 1). Among these mutations, 15 had not been reported

previously. None of these so far unrecognized changes was pre-

sent in databases containing information on the ‘normal’ variability

of the human genome (dbSNP version 135, www.1000genomes.

org/; 1000 Genomes database, www.ncbi.nlm.nih.gov/projects/

SNP/; Exome Variant Server, evs.gs.washington.edu/EVS/). In

addition, analysis of DNA samples obtained from healthy control

individuals, adjusted to the type of mutation (i.e. at least 100 for

each truncating and at least 400 for each missense mutation), did

not yield any of the identified genotypes. All patients were identi-

fied with bi-allelic mutations, either in the homozygous or com-

pound heterozygous state. When DNA from family members was

available, we observed that the disease phenotype co-segregated

with recessive inheritance of the SIL1 mutations. The parents car-

ried mutations in the heterozygous state, and unaffected siblings

carried either one heterozygous mutation or were homozygous for

the wild-type alleles.

Detailed clinical, electrophysiological and muscle biopsy findings of

23 patients from the 16 families carrying pathogenic SIL1 mutations

are provided in Supplementary Table 1. All patients came to medical

attention with symptoms suggestive of Marinesco-Sjögren syndrome

within the first 5 years of life. Initial presenting symptoms were

nonetheless variable: some patients presented very soon after birth

with severe hypotonia, whereas most showed delay in motor mile-

stones or truncal ataxia when starting to sit or stand, after a normal

neonatal period. The mean age at onset of cataracts was 3.7 years

(�1.5 years). Congenital cataracts were only noted in one patient

and the latest manifestation of cataracts was reported at the age of

7 years. In line with this observation, one girl did not show any lens

opacities at the age of 4 years. Apart from this exception, all patients

invariably presented with a cerebellar syndrome, symptoms and signs

of a myopathy and bilateral cataracts. Modestly constant features

were skeletal deformities, somatic growth retardation and pyramidal

tract signs. Mental capacities of patients with SIL1 mutations were

highly variable, ranging from normal (n = 6) over mild (n = 7) to

moderate (n = 8) and severe intellectual disability (n = 2). Other clin-

ical features were only occasionally recorded (e.g. epilepsy or micro-

cephaly) or could only be reasonably assessed in a too small

subgroup of patients to give meaningful figures (e.g. hypogonadism

in postpubertal patients). Although motor development was often

markedly delayed, patients generally became mobile with a walker

or other orthopaedic devices (canes, crutches, braces). Marked atro-

phy of the cerebellum was observed in all patients who received

brain MRI) (Fig. 2B–D). Serum creatine kinase (CK) levels were usu-

ally only slightly or moderately elevated (377 � 159 U/l). Through a

review of the medical literature we recorded 65 additional patients

with Marinesco-Sjögren syndrome with confirmed SIL1 mutations

(30 families). We combined these data with information from our

patient cohort to determine the relative frequency of signs and

symptoms in SIL1-associated Marinesco-Sjögren syndrome

(Supplementary Table 2 and Fig. 2A).

We reassessed muscle biopsy specimens that had been taken for

diagnostic purposes from four patients with identified SIL1 muta-

tions (MSS33.1, MSS87.1, MSS91.1, and MSS94.1). Histologically

we observed different degrees of degeneration of skeletal muscle

fibres (Fig. 3A): sarcoplasmic vacuoles, often associated with myo-

nuclei, greater-than-normal variability in fibre size, rounded atro-

phic fibres, myofibre hypertrophy and splitting, increased numbers

of internal nuclei, endomysial fibrosis and proliferation of fat

tissue. At the ultrastructural level (Fig. 3B–D), autophagic vacu-

oles, which were often associated with degenerating myonuclei,

were encountered frequently. Several degenerating myonuclei

were surrounded by an electron-dense, membrane-like structure.

This feature was constantly observed in all four muscle biopsies

that were accessible to us. Muscle biopsy findings of 10 additional

patients were available from medical records and were indicative

of a chronic myopathic process. Five biopsy samples had also been

examined by electron microscopy; however, no details concerning

possible nuclear abnormalities were mentioned in the reports.

By immunoblotting, we found that SIL1 levels in lymphoblast

lines of five patients with different SIL1 mutations were substan-

tially reduced compared with the levels in control subjects (Fig. 4).

Importantly, reduced amounts of SIL1 were also seen in patients

with seemingly ‘milder’ mutations [small in-frame deletion

(MSS24.1), missense mutation (MSS32.1) and frameshift mutation

in the last exon which is expected to escape nonsense-mediated

messenger RNA decay (MSS64.1)].
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Discussion
In this study we report the results of SIL1 mutation screening in

patients who were referred to our laboratory for molecular genetic

testing of Marinesco-Sjögren syndrome during the past 5 years.

Our study confirms the previous findings of mutations in SIL1

being the major cause of Marinesco-Sjögren syndrome. Our data

extend the spectrum of Marinesco-Sjögren syndrome-causing SIL1

mutations, increasing the number of different mutations to 36 and

bringing the total number of published molecular-genetically

confirmed families to 46 (88 patients). Based on these data we

describe the relative frequency of signs and symptoms of patients

with Marinesco-Sjögren syndrome with identified SIL1 mutations.

This information may help to decide which patients should

undergo SIL1 mutation analysis.

We confirm that Marinesco-Sjögren syndrome caused by SIL1

mutations is a panethnic condition. Some SIL1 mutations have

been found as recurrent events in more than one family and

four mutations have been found repeatedly (53� ) in independ-

ent families (p.R111X, p.D170fs, p.R317fs, p.F345fs, Table 1).

Table 1 SIL1 mutations in patients with Marinesco-Sjögren syndrome identified in this study and earlier reports

Location Nucleotide change Effect on coding sequence Ethnic origin References

Exon 3 c.178G4T p.E60X Vietnam Senderek et al., 2005

Exon 3 c.212dupA p.H71fs France Anttonen et al., 2005

Intron 3 c.244 + 1G4A splice error predicted Turkey This study

Exon 4 c.274C4T p.R92W Pakistan Riazuddin et al., 2009

Exon 4 c.302_303delAG p.E101fs Pakistan This study

Exon 4 c.331C4T p.R111X Iran, Turkey, Italy Senderek et al., 2005
Anttonen et al., 2005

Annesi et al., 2007

Terracciano et al., 2012

Exon 4 c.347delG p.G116fs Vietnam Senderek et al., 2005

Exon 5 chr5:g.138376244_138378903del p.L119fs India This study

Exon 5 c.424delG p.A142fs Germany This study

Exons 6, 7 chr5:g.138311133_138369401delinsTGCA p.A152fs Japan Takahata et al., 2010

Exon 6 c.460C4T p.Q154X France This study

Exon 6 c.506_509dupAAGA p.D170fs Finland, Sweden, Norway Anttonen et al., 2005

Exon 6 c.603_607delGAAGA p.E201fs Japan Takahata et al., 2010

Intron 6 c.645 + 1G4A p.A152_Q215del Turkey, Argentina Senderek et al., 2005
This study

Intron 6 c.645 + 2T4C p.A152_Q215del Sweden Anttonen et al., 2005

Exon 7 c.691_696delGTGATC p.V231_l232del Turkey This study

Intron 7 c.768-1G4A p.S256fs Italy This study

Exons 8, 9, 10 chr5:g.(138271912_138277581)
_(138345106_138349134)del

p.S256_R461del Russia This study

Exon 8 c.811C4T p.Q271X Turkey This study

Exon 9 c.866dupT p.L290fs France This study

Exon 9 c.934G4A p.G312R USA This study

Exon 9 c.936dupG p.L313fs Japan, Argentina Eriguchi et al., 2008
Anttonen et al., 2008

This study

Exon 9 c.947dupT p.R317fs Germany, Russia Senderek et al., 2005
This study

Intron 9 c.1029 + 1G4A p.V289_K343del Bosnia Senderek et al., 2005

Intron 9 c.1030-9G4A p.F345fs Norway, USA, Pakistan Anttonen et al., 2008
This study

Intron 9 c.1030-18G4A p.M344fs Germany Senderek et al., 2005

Exon 10 c.1035delC p.F345fs Germany This study

Exon 10 c.1126C4T p.Q376X Pakistan This study

Exon 10 c.1137C4A p.C379X Iraq This study

Exon 10 c.1240C4T p.Q414X Pakistan Riazuddin et al., 2009

Exon 10 c.1249C4T p.Q417X Mali Senderek et al., 2005

Exon 10 c.1276_1282delCAGGCTG p.Q426fs Germany This study

Exon 10 c.1312C4T p.Q438X Egypt Karim et al., 2006

Exon 10 c.1367delT p.L456fs Russia Senderek et al., 2005

Exon 10 c.1367T4A p.L456X Turkey Anttonen et al., 2008

Exon 10 c.1370T4C p.L457P Japan Anttonen et al., 2008

Exon, nucleotide and amino acid numbering is according to NM_022464.4 and NP_071909.1. Genomic coordinates are based on GRCh37/hg19.
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However, most mutations are private mutations identified in single

families only making diagnostic recommendations for selected

screening of exons or testing of selected mutations arguable.

Most pathogenic variants identified in this study and reported ear-

lier are micromutations affecting one or a few nucleotides.

Moreover, we and others (Takahata et al., 2010) found that the

SIL1 mutation spectrum also includes deletions of several kb of

DNA. Although it is conceivable that some patients without an

identified SIL1 mutation are compound heterozygous for non-

overlapping genomic deletions in the huge SIL1 gene (spanning

�0.25 Mb of genomic DNA), data from whole-genome single

nucleotide polymorphism genotyping and copy number variation

analysis available for 29 out of the 46 SIL1 mutation-negative

patients (A. Roos and S. Spengler, unpublished data) showed no

genetic imbalances of the SIL1 gene that is covered by 115 mar-

kers on the microarrays used (Affymetrix GeneChip Genome-Wide

Human SNP 6.0-Array, Supplementary Fig. 1). Nevertheless, it is

probably warranted to extend future SIL1 mutation screening to

investigate the presence of pathogenic copy number aberrations.

In addition to mutations missed by commonly applied diagnostic

strategies there is evidence for locus heterogeneity as well. We

excluded linkage or homozygosity to the SIL1 region on chromo-

some 5 in four families with a typical Marinesco-Sjögren syndrome

phenotype confirming that at least one additional locus does exist

(Families MSS96, MSS136, MSS144, MSS174). Others have

explored functional candidate genes for mutations in unclarified

Marinesco-Sjögren syndrome cases without success (Anttonen

et al., 2008).

Although Marinesco-Sjögren syndrome is caused by a wide

spectrum of SIL1 mutations, patients present with a relatively

homogeneous phenotype and show almost invariably the hallmark

clinical features of cerebellar atrophy and ataxia, cataracts, intel-

lectual disability and myopathy (Fig. 2). These somewhat contra-

dictory observations might be reconciled by the notion that all

SIL1 mutations are expected to eventually lead to loss of the pro-

tein or its critical functional domains. This has been predicted or

experimentally confirmed for most nonsense and frameshift muta-

tions, for two splice-site mutations resulting in in-frame deletions

(Senderek et al., 2005) and for mutations altering the very

C-terminus of the protein (Howes et al., 2012). In the present

study we have shown that a SIL1 missense mutation (p.G312R),

a two amino acid in-frame deletion (p.V231_I232del) and a

frameshift mutation in the last exon, which is predicted to

escape nonsense-mediated messenger RNA decay (p.Q426fs),

also result in a prominent reduction of SIL1 protein levels in cul-

tured lymphoblasts (Fig. 4). Although we cannot conclude from

these data that reduced protein levels are a general consequence

of seemingly ‘milder’ SIL1 mutations, such a mechanism might

exist for at least a subset of mutations, and for some it has

been experimentally shown that mutant proteins are particularly

Figure 2 Clinical presentation of patients with Marinesco-Sjögren syndrome with identified SIL1 mutations. (A) Relative frequency of

signs and symptoms based on data compiled from our patient cohort and reports from the literature (Anttonen et al., 2005; Senderek

et al., 2005; Karim et al., 2006; Annesi et al., 2007; Anttonen et al., 2008; Eriguchi et al., 2008; Riazuddin et al., 2009; Takahata et al.,

2010; Terracciano et al., 2012). For details see Supplementary Tables 1 and 2. (B–D) Sagittal MRI scans of three patients with Marinesco-

Sjögren syndrome showing marked cerebellar atrophy. (B) Patient MSS25.2 at age 14 years, T1-weighted image; (C) Patient MSS33.1 at

age 24 years, T1-weighted image; (D) Patient MSS87.1 at age 3 years, T1-weighted image.
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unstable and either form large aggregates in the endoplasmic

reticulum or are rapidly degraded through the proteasome

(Howes et al., 2012).

Our data confirm that the clinical triad of cataracts, cerebellar

atrophy and myopathy strongly suggests the presence of SIL1

mutations (detection rate 60%) whereas patients presenting with

variant phenotypes are unlikely to have SIL1 mutations (detection

rate 2.7%). The only mutation-positive case in the latter cohort

was a girl who had not developed cataracts until the age of

4 years (Patient MSS24.1). Two additional patients without cata-

racts (at age 1 and 4 years, respectively) have been reported

(Senderek et al., 2005; Terracciano et al., 2012). As the latest

reported onset of cataracts was in a 7-year-old girl in our cohort

(Patient MSS142.1), these patients are likely to develop cataracts

within the next few years. It has been noted previously that cata-

racts may develop unusually fast within a few weeks in patients

with Marinesco-Sjögren syndrome (Ishikawa et al., 1993).

Therefore it might be appropriate to include infants and preschool

age children with cerebellar atrophy and myopathy without cata-

racts in SIL1 mutation screening while the full-blown phenotype

including cataracts should be expected after the age of 10 years.

Historical descriptions of patients with Marinesco-Sjögren

syndrome stressed the presence of profound intellectual disability

in most cases (Müller, 1962; Hayabara et al., 1975). More recent

reports showed a large spectrum of mental impairment in

Marinesco-Sjögren syndrome with most patients exhibiting only

mild cognitive impairment and only few cases with severe intel-

lectual deficits. In our cohort of patients with SIL1 mutations we

identified six cases with normal intellectual capacities but an other-

wise typical Marinesco-Sjögren syndrome phenotype (Fig. 5).

Patients without intellectual disability should be considered for

SIL1 mutation analysis if their clinical presentation was compatible

with the diagnosis of Marinesco-Sjögren syndrome.

The differential diagnosis of Marinesco-Sjögren syndrome

includes several conditions featuring combinations of brain, skel-

etal muscle and eye abnormalities. Congenital cataracts, facial

dysmorphism, and neuropathy syndrome shares with Marinesco-

Sjögren syndrome the features of cataracts and muscle weakness

or hypotonia. The presence of cerebellar atrophy in Marinesco-

Sjögren syndrome and demyelinating neuropathy in congenital

cataracts, facial dysmorphism, and neuropathy syndrome distin-

guishes the two syndromes (Lagier-Tourenne et al., 2002).

Congenital cataracts, facial dysmorphism, and neuropathy syn-

drome is caused by a founder mutation in the CTDP1 gene

Figure 3 Histopathological and electron microscopic findings in skeletal muscle biopsies of patients with Marinesco-Sjögren syndrome.

(A) Patient MSS33.1. Black arrows: abnormal nuclei and autophagic material. White arrow: normal myonucleus. Semi-thin section of

glutaraldehyde-fixed, epon-embedded tissue; toluidine blue. Scale bar = 20 mm. (B) Patient MSS87.1. Arrows: autophagic vacuoles in the

perinuclear sarcoplasm. Ultra-thin section of glutaraldehyde-fixed, epon-embedded tissue; electron microscopy. Scale bar = 3 mm.

(C) Patient MSS87.1. Black arrows: autophagic vacuoles in the perinuclear sarcoplasm of an atrophic muscle fibre. White arrows:

perinuclear osmiophilic membrane-like structure characteristic for Marinesco-Sjögren syndrome. The myonucleus shows degenerative

condensation of chromatin. Electron microscopy. Scale bar = 2.5 mm. (D) Patient MSS33.1. Arrows: degenerating myonucleus ensheathed

by a prominent osmiophilic membrane-like structure. Electron microscopy. Scale bar = 1.5 mm.
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(Varon et al., 2003) that seems to be restricted to the Gypsy

population. In fact, two patients from our cohort of Marinesco-

Sjögren syndrome-like cases, both of Gypsy origin and presenting

with congenital cataracts and a history of hypotonia, muscle

weakness and elevated creatine kinase levels initially suggesting

a myopathic process were found to carry the CTDP1 founder mu-

tation. Careful clinical and neurophysiological re-evaluation re-

vealed a demyelinating neuropathy as the cause of the

neuromuscular features (Patients MSS21.1 and MSS73.1,

Supplementary Table 3). Cerebrotendinous xanthomatosis is an

inherited disorder associated with the deposition of cholestanol

in the brain and other tissues and is characterized by progressive

cerebellar ataxia, cataracts, and tendineous or tuberous xanthomas

(Van Bogaert et al., 1937). The diagnosis can be made by elevated

serum cholestanol levels and identification of mutations in the

CYP27A1 gene (Cali et al., 1991). Importantly, cerebrotendinous

xanthomatosis is a treatable condition warranting proper diagnos-

tic measures to be taken (Berginer et al., 1984). One patient with

juvenile cataracts and neurological problems starting during ado-

lescence included in our series (Patient MSS48.1, Supplementary

Table 3) was found to have cerebrotendinous xanthomatosis.

Other differential diagnoses include ataxia-microcephaly-cataract

syndrome (Ziv et al., 1992), cataract-ataxia-deafness-retardation

syndrome (Begeer et al., 1991) and VLDLR-associated cerebellar

hypoplasia (Schurig et al., 1981; Boycott et al., 2005). Finally,

Marinesco-Sjögren syndrome shares clinical features with mito-

chondrial disorders (Schapira, 2006) and disorders of defective

N- and O-glycosylation of proteins (Eklund and Freeze, 2006;

Muntoni et al., 2011). One of the SIL1 mutation-negative patients

in our series (Patient MSS53.1, Supplementary Table 3) was diag-

nosed with Sengers syndrome, a form of mitochondrial DNA de-

pletion disorder caused by an AGK gene mutation (Calvo et al.,

2012; Mayr et al., 2012).

To our knowledge, there are no comprehensive screening

studies that have explored a potential role of SIL1 mutations in

cohorts of patients with non-syndromic, isolated myopathy, cata-

racts or ataxia. However, we assume that SIL1 has only a minor

relevance in the screening of these patients. Data obtained using

whole-exome sequencing and next generation sequencing ataxia

panels (including all known genes for isolated or syndromic atax-

ias) did not reveal clearly pathogenic SIL1 alleles in a cohort of

490 patients with early-onset ataxia that had already been

screened negative for all common early-onset ataxia genes (i.e.

FXN, AOA2, AOA1, POLG), thus highly enriched for mutations

in rarer early onset ataxia genes (M. Synofzik and P. Bauer, un-

published data).

Muscle biopsies obtained from patients with Marinesco-Sjögren

syndrome show various non-specific signs indicating degeneration

of skeletal muscle fibres. At the ultrastructural level, degenerating

myonuclei are occasionally surrounded by an electron-dense,

membrane-like structure (Herva et al., 1987; Sewry et al.,

1988). We have confirmed this finding in all muscle biopsies of

patients with Marinesco-Sjögren syndrome that were available for

electron microscopy in this study (n = 4; MSS33.1, MSS87.1,

MSS91.1 and MSS94.1) and in our earlier report (n = 6)

(Senderek et al., 2005) suggesting that this finding is a character-

istic feature related to SIL1 pathology. In general, muscle biopsies

are considered invasive procedures that are best avoided if a diag-

nosis can be established using other methods. Although with the

availability of SIL1 sequencing there is no longer a diagnostic need

Figure 4 SIL1 mutations result in substantially decreased SIL1

protein levels. Immunoblot of SIL1 in immortalized lymphoblasts

of patients with Marinesco-Sjögren syndrome. Cell lysates of

Patients MSS24, MSS32, MSS33, MSS64 and MSS94 and two

healthy control individuals were immunoblotted with an anti-

SIL1 antibody (top) and an anti-GAPDH antibody (as loading

control, bottom). SIL1 levels in patients’ lymphoblasts were se-

verely reduced compared to the levels in control subjects. Note

that seemingly ‘milder’ mutations [small in-frame deletion

(MSS24.1), missense mutation (MSS32.1) and frameshift

mutation in the last exon (MSS64.1)] have similar effects as

truncating mutations that are expected to lead to nonsense-

mediated messenger RNA decay (MSS33.1 and MSS94.1).

Figure 5 Patient MSS64.1 without intellectual disability but an

otherwise characteristic Marinesco-Sjögren syndrome pheno-

type. (A) Brain MRI scan at age 20 months shows profound

atrophy of the cerebellum (T2-weighted image). (B) Cataract of

the right eye which developed within a few weeks at age 3.5

years. (C and D) Sonography of the M. quadriceps at the age of

6.75 years shows an increase in echogenicity, especially in the

area of the M. rectus femoris with poorly identifiable structures

of fascia and lack of echogenicity of the bone.
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for muscle biopsies in patients with Marinesco-Sjögren syndrome

with typical symptoms, this procedure still may be important in the

diagnosis of Marinesco-Sjögren syndrome, especially in less clear-

cut cases. First of all a muscle biopsy can be helpful in differentiat-

ing myopathy from other causes of hypotonia and weakness.

Secondly, the full Marinesco-Sjögren syndrome phenotype might

not be seen in very young children as cataracts tend to develop

later making the differentiation from other causes of a cerebellar

syndrome and hypotonia more difficult. In addition, as parts of the

EMG procedure (to establish a myopathy) are uncomfortable and

not well tolerated by young children, results might be inconclusive.

In this scenario, electron microscopy of a muscle biopsy unveiling

vacuolar myopathy and the characteristic perinuclear membrane-

like structures can help to consider Marinesco-Sjögren syndrome

as a differential diagnosis and can direct to SIL1 mutation analysis

(Terracciano et al., 2012).

The current study contributes to our understanding of the clinical

and genetic basis of Marinesco-Sjögren syndrome. A molecular diag-

nosis was obtained in �60% of patients from a screening cohort of

25 unrelated index patients with a full-blown Marinesco-Sjögren

syndrome phenotype leaving a considerable proportion of patients

without genetic diagnosis to date. This further underscores the fact

that other still unknown mutations must exist in known or unknown

disease associated genes. As a co-chaperone for BiP, SIL1 is involved

in protein synthesis and quality control in the endoplasmic reticulum.

Thus, secretory pathway proteins not properly processed or not

reaching their site of action in SIL1 deficient cells will represent

plausible functional candidates. No such factors have been identified

so far, but appropriate tools for proteomic analysis of cell compart-

ments and cell surface proteins are now at hand. Combining such

data with data obtained by high-throughput DNA sequencing pro-

jects in non-SIL1 Marinesco-Sjögren syndrome families will likely

disclose the missing Marinesco-Sjögren syndrome gene(s) within

the next few years and may also hold promise to identify potential

therapeutic targets.
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Sjögren syndrome. Report of an autopsy. Brain 1972; 95: 675–80.
Marinesco G, Draganescu S, Vasiliu D. Nouvelle maladie familiale carac-
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