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To date, six genes are known to cause nemaline (rod) myopathy (NM), a rare congenital neuromuscular
disorder. In an attempt to find a seventh gene, we performed linkage and subsequent sequence analyses in
12 Turkish families with recessive NM. We found homozygosity in two of the families at 1q12-21.2, a region
encompassing the c-tropomyosin gene (TPM3) encoding slow skeletal muscle a-tropomyosin, a known NM
gene. Sequencing revealed homozygous deletion of the first nucleotide of the last exon, c.913delA of TPM3
in both families. The mutation removes the last nucleotide before the stop codon, causing a frameshift and
readthrough across the termination signal. The encoded aTmslow protein is predicted to be 73 amino acids
longer than normal, and the extension to the protein is hypothesised to be unable to form a coiled coil.
The resulting tropomyosin protein may therefore be non-functional. The affected children in both families
were homozygous for the mutation, while the healthy parents were mutation carriers. Both of the patients
in Family 1 had the severe form of NM, and also an unusual chest deformity. The affected children in Family
2 had the intermediate form of NM. Muscle biopsies showed type 1 (slow) fibres to be markedly smaller
than type 2 (fast) fibres. Previously, there had been five reports, only, of NM caused by mutations in TPM3.
The mutation reported here is the first deletion to be identified in TPM3, and it is likely to be a founder
mutation in the Turkish population.
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Introduction
The congenital myopathies include a spectrum of neuro-

muscular disorders defined on the basis of structural

abnormalities in the muscle fibres. The most common of

these disorders is the genetically and clinically hetero-

geneous nemaline (rod) myopathy (NM). The main

symptom is muscle weakness, and muscle biopsy shows

disorganisation of the muscle Z discs and accumulation of
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nemaline bodies, that is, aggregates consisting of filament

proteins originating from sarcomeric Z discs.1 NM has been

divided into six clinical categories varying from very

severe, sometimes even lethal forms, to milder muscle

disease (MIM 609284, 256030, 161800, 609285, 605355,

and 609273).2,3

The six known NM genes all encode proteins for the thin

filament of the muscle sarcomere: nebulin (NEB, MIM

161650),4 a-skeletal muscle actin (ACTA1, MIM 102610),5

a-slow tropomyosin (TPM3, MIM 191030),6 b-tropomyosin

(TPM2, MIM 190990),7 slow troponin T (TNNT1, MIM

191041),8 and cofilin 2 (CFL2, MIM 601443).9 Mutations in

NEB and ACTA1 cause most of the NM cases. Mutations in

TNNT1, TPM2, TPM3 and CFL2 are rare. While mutations

in tropomyosins have been reported in a few families each,

TNNT1 and CLF2 mutations have been found respectively

only in the Amish and in a singleton family.

In an attempt to find a seventh gene for NM, we

performed a linkage study using samples from 12 Turkish

families with consanguinity or familial NM. Our hypothesis

was that there could be a Turkish founder mutation in

either a known or a novel NM gene. Two of the families

were found to be homozygous for the same haplotype

around the TPM3 locus on chromosome 1, and subsequent

sequencing of TPM3 identified the same deletion in both of

the families.

Materials and methods
Subjects
Family 1 In Family 1, the healthy parents were not

known to be related but originated from the same small

village. There were three children, two affected boys with

severe NM and one younger, healthy boy. Both affected

boys were born with contractures of the knees and ankles

and showed delayed motor development. Specifically,

weakness of the neck muscles was noted. The older brother

(17 years) did not achieve walking, while the younger

brother (12 years) walked slowly with a waddling gait from

the age of 2.5–3 years. There was no evidence of cardiac

involvement. Restricted vital capacity was documented in

both patients who received nocturnal non-invasive venti-

lation from the beginning of the second decade. They had

a peculiar pectus carinatum deformity and scoliosis, and

facial weakness (Figure 1a). A muscle biopsy of the older

brother showed hypotrophic type 1 fibres containing

nemaline bodies, a nerve biopsy did not display significant

pathological changes.

Family 2 The parents of the two affected children of

Family 2 are second cousins. Both children had muscle

hypotonia during the first month of life. Particular features

were pronounced facial weakness, lack of head control, lax

distal joints, and scoliosis already visible during the first

year (Figure 1b). Motor milestones were delayed; at 2 years

of age, the children were able to sit unaided, but unable to

reach the sitting position independently. The boy achieved

his best motor function, taking a few steps with support,

between four and 6 years of age. The girl was a little better

and walked unaided for short distances from age 2–3 years

to 6–7 years, but even at this stage she was unable to get up

to a sitting position independently. At the age of 6 years,

both children could lift their hands to their mouths, but

could not elevate their arms completely. At the age of 10

Figure 1 (a) The younger of the two affected brothers of family 1 at age 11. The severe, unusual chest deformity (pectus carinatum) can be seen.
There is pronounced weakness of neck muscles and also facial weakness. (b) The affected children of family 2 have pronounced facial weakness and
foot drop. The children are 5 and 6 years of age at the time that the picture was taken.
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(the girl) and 11 (the boy), they were unable to feed

themselves and needed help for dressing and undressing.

The joints were hyperextendable, and from the age of 8

years onwards, both children developed contractures, first

of the ankles, then of the knees and elbows. Both have

developed a mild chest deformity over time. At age 13 (the

boy) and 12 years (the girl), they were started on non-

invasive ventilation; vital capacity was 28%. The girl had

suffered three pneumonias in the years before. At age 13

and 14, thoracic surgery was considered but not performed

as vital capacity was o20% and the procedure was

considered too dangerous. The diagnosis of NM

was established by muscle biopsy in the girl when she was

aged 3 months and admitted to hospital for bronchitis. The

biopsy showed the type 1 fibres to be markedly smaller

than the type 2 fibres (Figure 2a). The biopsy slides were no

longer available for precise calculation of the fibre size

disproportion. Electron microscopy showed nemaline

bodies in the hypotrophic fibres (Figure 2b). Her older

brother at this time was aged 15 months and was unable to

walk. The children were equipped with electric wheelchairs

at the age of 5 (the girl) and 6 years (the boy).

DNA samples were available from all members of both

families. After the identification of the mutation, we

screened 16 further probands of Turkish NM families, and

120 control individuals for the mutation.

Linkage studies

To exclude from the search for a seventh NM gene in those

Turkish families that might have a mutation in a known

NM gene, we analysed the families for linkage to the

known NM gene loci, and also to the mixed core-rod

myopathy ryanodine receptor (RYR1) (OMIM 180901)

locus on chromosome 19,10,11 and to the core-rod locus

on chromosome 15.12

In the chromosomal region 1q12-21.2 where TPM3

is located, we analysed eight microsatellite markers

encompassing a region of 18 cM; D1S252, D1S498,

D1S2347, D1S2858, D1S305, D1S2624, D1S2635, and

D1S484. In addition to TPM3, other muscle genes located

within this region include the transformation suppressor

gene (YL-1, MIM 600607), and the tropomodulin 4

(muscle) gene (TMOD4, MIM 605834).

The subsequent search for the seventh NM gene was

performed as a genome-wide linkage analysis using 358

microsatellite markers covering all autosomes. The dis-

tance between these markers was on average 10 cM. This

work was carried out at the Finnish Genome Centre.

Mutation analyses
PCR To perform mutation screening for TPM3 by sequen-

cing, we designed primers to amplify in PCR reactions the

exons expressed in the muscle isoform of the protein

(TPM3 sequence sources in GenBank: cDNA accession no.

X04201, protein accession no. P05753, and accession

no. NM_152263). We used AmpliTaq Gold as the poly-

merase enzyme for the PCR reactions. Detailed PCR

reaction conditions will be provided on request.

RNA extraction from muscle biopsy and RT-PCR To

verify the presence of the alteration in the mRNA of the

muscle isoform of TPM3, we performed RT-PCR using a

frozen muscle biopsy sample from the proband of Family 2.

Total RNA was extracted from the muscle biopsy using the

RNeasy Mini kit (Qiagen Sciences, MD, USA) including

DNase treatment. To sequence the whole length of the

TPM3 cDNA expressed in the patient, we used the primers

designed and published by Wattanasirichaigoon et al.13 We

designed additional primers from exon 7 to exon 9b in the

30UTR region to verify the presence of the 1 bp deletion in

the mRNA as well. Primer information will be provided on

request.

Figure 2 (a) Light microscopic image of the NADH–TR-stained muscle of the proband of family 2 showing disproportion of fibre size with darkly
stained type 1 fibres (arrow) being smaller than the more lightly stained type 2 fibres (arrow head). (b) Numerous nemaline bodies (arrow) in
hypotrophic muscle fibres in the electron microscope images.
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Sequencing The purified PCR products were sequenced

using BigDye version 3.1 sequencing chemistry and an ABI

3730 DNA Analyzer (Applied Biosystems, Foster City, USA).

The sequences were analysed using Sequencher 4.5

software.

Coiled-coil analysis using the COILS tool To perform in

silico prediction of the effect of the c.913delA mutation on

the aTmslow protein coiled-coil structure, we used the tool

COILS, version 2.2. The effect of the c.915A4C mutation

published by Wattanasirichaigoon et al13 was also analysed

using the COILS program for comparison.14–16 The COILS

tool, version 2.2, is available at www.ch.embnet.org/

software/coils/COILS_doc.html.

Results
Linkage results

Linkage analysis showed homozygosity in the TPM3 region

on chromosome 1 in two of the families. Haplotypes and

linkage results in the chromosomal region 1q12-21.2 are

shown together with the pedigrees in Figure 3. The two

families shared the same homozygous haplotype for the

markers D1S498 and D1S305. The distance between these

two markers is 2.4 cM. This is the minimum length of the

shared haplotype, while the maximum shared haplotype,

the distance between the markers D1S252 and D1S2624 for

which the patients were no longer homozygous, is

11.28 cM.

There was no other shared haplotype at any of the

remaining known NM gene loci. However, only the NEB

locus could be excluded with certainty in two families.

Genome-wide screening in the remaining cohort also did

not show any significant shared haplotype for any two or

more families anywhere else in the genome.

Sequencing results

Sequence analysis of TPM3 in the affected sib pairs revealed

a homozygous deletion of the first nucleotide, an adenine,

of the last exon (exon 9b) of the TPM3 isoform expressed in

skeletal muscle, c. 913delA (Figure 4a and b)6,13,17 –19. All

four parents were found to be healthy mutation carriers.
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Figure 3 The family trees of families 1 and 2. The shared homozygous haplotype is shown on grey background. The distance between the markers
D1S498 and D1S305 is 2.4 cM, while it is 11.28 cM between the markers D1S252 and D1S2624 (source: deCode).
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RT-PCR frommuscle tissue confirmed the presence of the

mutation in the cDNA. The deletion of the last nucleotide

before the stop codon disrupts the reading frame, causing

readthrough across the position of the normal stop codon,

which is predicted to result in an aTmslow elongated by 73

amino acids (p.X285NextX74).

Sequencing samples from probands of the 10 remaining

Turkish families in our series, and 6 from additional

Turkish families, making a total of 18 families, the same

deletion was not found neither in any other families nor in

the 120 control individuals studied.

In the patients included in this linkage-based study, no

mutations were found by sequencing of other known NM

genes. ACTA1 and all the exons of TPM3 were sequenced in

all the families. Mutation analysis of NEB has been

completed in two of the families, and no mutations were

found.

The results of the COILS analysis

The 73 amino-acid C-terminal elongation (NYHRFCSVL

DLPPLLLGEPKAPLSLWIPFGSAWLVPKALGWGSKKQLMYFL

PPPPQIKMLSCWKPHATLHLCH) of the aTmslow protein is

predicted by the COILS program not to be able to form a

coiled-coil structure. We obtained the same prediction for

the previously published mutation c.915A4C,13 which

elongates the C-terminus of aTmslow with 57 amino acids

(SLSPFLLCSGSAPFTPRGTQGPTLALDSIWVSLAGPQGIRMG

EQKATYVFSST PTPN).

Discussion
The mutation identified in this study is the first deletion to

be identified in TPM3, and also the first homozygous

deletion to be identified in any of the tropomyosin genes.

This mutation is likely to be a founder mutation in the

Turkish population.

The tropomyosins exist as double-stranded coiled-coil

homo- or heterodimers forming head-to-tail polymers,

along the actin filament. The main roles of tropomyosins

in muscle are to stabilise the sarcomeric thin (actin)

filament20 and to regulate muscle contraction.21 The

tropomyosin protein family of more than 40 different

tropomyosin isoforms is encoded by four different genes;

aTm, that is, TPM1 (MIM 191010), bTm, that is, TPM2, gTm,

that is, TPM3, and dTm, that is, TPM4 (MIM 600317),22

which have a potential to generate all these isoforms due to

the use of different promoters or variable intragenic

splicing.22–24 TPM1, TPM2, and TPM3 encoding the

isoforms aTmfast, bTm, and aTmslow are expressed in

skeletal muscle. TPM2 is expressed in both slow (type 1),

and, to a lesser extent, fast (type 2) muscle fibres, whereas

TPM3 encodes the slow-specific isoform aTmslow.
25

Mutations in slow muscle fibre-specific TPM3 cause

NM6,13,17,18,26 and have recently been shown to perhaps

be a relatively common cause of congenital fibre type

disproportion (CFTD),27 while mutations of TPM2,

expressed in all muscle fibres, have been reported in

patients either with NM,7 distal arthrogryposis,28 or cap

disease.29 TPM1 mutations are known to cause dilated and

hypertrophic cardiomyopathies (MIM 115196).30–32

The five previously published NM mutations in TPM3

include both recessively (AR) and dominantly (AD)

inherited forms of NM, among these the first NM-causing

mutation identified by Laing et al.6 This was the mutation

p.M8R in a large family with a juvenile onset, AD form of

NM predominantly affecting the lower limbs. Another AD

NM mutation, p.R167H, has been reported first as a de novo

mutation in a sporadic case, again with a predilection of

weakness for the lower limbs,26 and the same mutation was

A B C D,E

9d9c9b9a876b6a5431b2b1a

F

Figure 4 (a) Schematic illustration of the TPM3 gene and
mutations identified in it to date. The boxes represent exons; black
boxes represent exons expressed in all TPM3 isoforms, grey represent
the muscle-specific exons, and white boxes represent exons not
present in the muscle TPM3 isoform aTmslow. The lines show the
splicing pattern of TPM3 for the isoform aTmslow. Letters mark the NM-
causing mutations identified in TPM3. A¼heterozygous missense
mutation p.M8R,6,18 B¼homozygous mutation p.Q31X,17

C¼heterozygous p.R167H, D¼ compound heterozygous splice site
mutation in intron 9a c.855G4A together with E¼ another com-
pound heterozygous mutation; p.X285NextX57 identified in one
patient.13 F¼ the mutation described in this article – a homozygous
frameshift mutation eliminating the stop codon p.X285NextX74.
Protein accession no. P05753, cDNA accession no. X04201; exon
numbering as in Dufour et al.19 (b) The sequence chromatogram of
the intron 9a – exon 9b boundary of TPM3. The WT (topmost), the
sequence of a heterozygous carrier (on line two ; ‘A’ underlined is
deleted from one of the alleles), the sequence of a homozygous
patient (on line three).
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recently identified in a large French family.18 The French

patients had typical or mild forms of NM. In addition, two

patients with AR NM have been described; the first had a

homozygous nonsense mutation p.Q31X and another two

different compound heterozygous mutations (c.855-1G4A

(splice site mutation) and p.X285S). The former patient

had a severe and the latter had the intermediate form of

NM.13,17 (Figure 4a).

The mutation described here causes a frameshift and

eliminates the normal stop codon of TPM3. A different

mutation altering the stop codon has been published

previously. That mutation is predicted to make the

tropomyosin 57 amino acids longer and was confirmed

by western blotting to alter the size of the protein

produced.13 This patient was a compound heterozygote

and the second mutation was a splice site mutation in the

exon 9sk splice acceptor site leading to skipping of the last

exon of the muscle isoform of TPM3 and inclusion of the

last exon of the non-muscle specific isoform of TPM3.

Unfortunately, muscle biopsies were not available from any

of our patients for protein analysis, but RT-PCR and

sequencing showed the mutation to be present at the

mRNA level. Therefore, it appears likely that an elongated

aTmslow protein is expressed in our patients as well.

The present mutation is expected to render the tropo-

myosin protein non-functional. Seventy-three amino acids

are added to a protein normally 285 amino acids long, an

approximately 25% increase in protein length. The amino-

acid sequence translated from the 30UTR due to the

frameshift is not predicted to be able to form a coiled-coil

and the C-terminal sequence of the tropomyosin protein is

altered. The C-terminal and N-terminal sequences of

tropomyosin are crucial to the normal head-to-tail poly-

merisation of tropomyosin.33

Therefore, it might be surmised that the tropomyosin

resulting from the mutation described here, with added

uncoiled protein at the C-terminal end of the molecule,

would not be able to form the coiled-coil polymer that

normally runs the length of the thin filament. On the

other hand, tropomyosins fused to non-coiled-coil fluores-

cent proteins can incorporate into sarcomeres suggesting

that the mutant tropomyosin in these families might not

be completely non-functional.34 If, however, the extended

mutant a-tropomyosin in the present patients is non-

functional, it would make these patients comparable to the

NM patient homozygous for an early nonsense mutation in

the TPM3 gene described by Tan et al.17 The present

patients would then have no functional slow a-tropomyo-

sin in their slow, type 1, muscle fibres, explaining why the

type 1 muscle fibres are severely hypotrophic. The only

functional tropomyosin in the patients’ type 1 fibres would

be whatever b-tropomyosin is present. Fast, type 2 muscle

fibres do not express TPM3, and are therefore relatively

unaffected, as seen in the patients’ muscle biopsies.

Although there is a wide variability in histology and

clinical features in patients with TPM3 mutations, a

similarity is that the patients reported hitherto consistently

show smallness and definite abnormality of type 1 fibres.

The mutation in the present patients should also affect the

function of the cytoskeletal isoforms Tm5NM3 and

Tm5NM11, which include the mutated exon and this too

may play a role in the overall clinical phenotype.25

On the basis of clinical and histological data of

previously reported cases and of the two families described

here, it appears that dominant mutations of TPM3 give rise

to milder forms of NM than recessively inherited muta-

tions. The phenotype as well as the histology does,

however, vary between the AR and AD NM cases and even

between patients with exactly the same mutation. The

dominant mutation p.R167H reported first as a de novo

mutation in one patient and recently segregating in a large

French family caused different histological patterns. The

affected children in family 1 in this article have an unusual

chest deformity, while in the patients of family 2, the chest

deformity is only mild. Still, both of the families have the

same homozygous deletion eliminating the stop codon of

the muscle-specific TPM3. The underlying reason for this

clinical variability in patients with the same mutation

remains unclear. A significant component of the variability

may result from diffrences in splicing of alternative exons

between different individuals as creation of different

isoforms through alternative splicing is extensive in the

tropomyosins.25 Variation in expression of the different

tropomyosin genes in different individuals, as well as the

effects of other muscle genes, modifier genes, and/or

normal variability in the genome may all influence the

patients’ outcome.

Our results of linkage studies in AR NM (unpublished

observations) and studies by others in AD NM,35 though

the latter did not specifically exclude the then unknown

CFL2, indicate that there is probably a seventh NM gene

yet to discover.

Both of the families described here with the 1bp deletion

in TPM3 are Turkish families residing in Germany. They are

not known to be related, and they originate from villages

located some 300 km apart, but the shared haplotype

indicates that the mutation discussed is a founder muta-

tion. We did not, however, detect this mutation in any of

the additional 16 Turkish families studied. These families

also showed no other mutation in TPM3. Thus, we

succeeded in identifying a founder mutation in the Turkish

families, but only in a known NM gene, and only

accounting for the NM in some Turkish families. Never-

theless, we suggest that it is warranted to examine NM

patients of Turkish origin for this mutation.
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