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Rationale: Unsupervised statistical learning techniques, such as ex-
ploratory factor analysis (EFA) andhierarchical clustering (HC), have
been used to identify asthma phenotypes, with partly consistent
results. Some of the inconsistency is caused by the variable selection
anddemographic and clinical differences among study populations.
Objectives: To investigate the effects of the choice of statistical
method and different preparations of data on the clustering results;
and to relate these to disease severity.
Methods: Several variants of EFA andHCwere applied and compared
usingvarious sets of variables anddifferent encodings and transforma-
tions within a dataset of 383 children with asthma. Variables included
lung function, inflammatory and allergy markers, family history, envi-
ronmental exposures, andmedications. Clusters and original variables
were related to asthma severity (logistic regression and Bayesian net-
work analysis).
Measurements and Main Results: EFA identified five components
(eigenvalues> 1) explaining 35%of the overall variance. Variations
of the HC (as linkage-distance functions) did not affect the cluster
inference; however, usingdifferent variable encodings and transfor-
mationsdid. Thederived clusterspredictedasthmaseverity less than
theoriginal variables. Prognostic factors of severityweremedication
usage, current symptoms, lung function, paternal asthma, bodymass
index, and age of asthma onset. Bayesian networks indicated condi-
tional dependence among variables.
Conclusions: The use of different unsupervised statistical learning
methods and different variable sets and encodings can lead to mul-
tiple and inconsistent subgroupings of asthma, not necessarily cor-
relatedwith severity. The search for asthmaphenotypes needsmore
careful selection of markers, consistent across different study pop-
ulations, and more cautious interpretation of results from unsuper-
vised learning.
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Despite efforts made by the pharmaceutical industry and acade-
mia, asthma remains poorly understood, with a modest drug ar-
mamentarium (1). There is increasing recognition that asthma
is a heterogeneous disease with multiple disease variants,
which may have a similar clinical presentation, but differ in
their etiology and pathogenesis (2, 3). It is likely that these
different asthma subgroups (sometimes referred to as asthma
endotypes [3]) have different causative mechanisms, and may
require different treatments. Appropriate identification of
such asthma subgroups is a critically important first step to-
ward understanding their specific underlying biologic mecha-
nisms, which is a key building block for therapeutic target
identification and the development of novel treatments (4).
This is a prerequisite for the move toward personalized or
stratified health care to optimize clinical management and pre-
vention of asthma (5).

Computer-assisted reasoning can facilitate the exploration of
rich clinical data sets to enable better understanding of disease
subgroups and their pathophysiology, and optimization of exist-
ing treatments. A data-driven approach with unsupervised statis-
tical learning techniques can be used for discovery of latent
asthma phenotypes, which can be derived based on a series of
observable disease manifestations, instead of using predeter-
mined classifications proposed by committees of experts. Several
previous studies applied principal components analysis, explor-
atory factor analysis (EFA), partitioning clustering, hierarchical
clustering (HC), and other techniques to identify latent groups
and associated symptom patterns among adults (6–8) and chil-
dren (9–12) with asthma. The results have been inconsistent.
This inconsistency may be explained in part by natural hetero-
geneity (differences in the demographic or clinical characteristics
of the populations studied), and in part by artifacts of data
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AT A GLANCE COMMENTARY

Scientific Knowledge on the Subject

Unsupervised statistical learning techniques have been used
to identify latent subgroups of children and adults with
asthma who display different patterns of clinical features.
The results were only partly consistent across different studies,
giving rise to different subgroupings.

What This Study Adds to the Field

The observed heterogeneity reflects differences in demo-
graphic and clinical characteristics of the populations exam-
ined. However, we also demonstrate that such inconsistencies
may be an artifact of the clustering techniques used, and of the
variable encodings and transformations (e.g., discretization
and dimension reduction).
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processing and analysis. We hypothesize that the subgrouping of
asthma from typical study datasets is influenced by investiga-
tors’ choice of factors, encoding/categorization and transforma-
tion (including dimensionality reduction) of variables, and choice
of statistical method. To investigate this hypothesis, we compared
variations of HC and EFA, with respect to different encodings
and subsets of symptoms, markers, and diagnoses studied in pop-
ulations of children with asthma. We then related the clustering
to physician-reported asthma severity, and also considered which
of the original variables (apart from cluster memberships) best
predicted severity.

METHODS

Study Population

Children aged 6–18 years were recruited from the Pediatric Asthma
Clinic at the Hacettepe University, Ankara, Turkey. Parents were inter-
viewed by a pediatrician using a modified ISAAC questionnaire (13) to
ascertain information on symptoms and prescribed medications. Chil-
dren completed skin tests, spirometry (14), and measurement of broncho-
dilator reversibility. Those with a negative reversibility test underwent
either methacholine or exercise challenge test to measure airway hyper-
responsiveness (15–17). Blood sample was collected for measurement of
eosinophils and total serum IgE.

Asthma was defined as all three of the following: (1) physician-
diagnosed asthma, (2) current use of asthma medication, and (3) either
bronchodilator reversibility or airway hyperresponsiveness (positive
methacholine or exercise challenge test). Asthma severity was catego-
rized into three ordinal categories (mild, moderate, and severe) using
Global Initiative for Asthma guidelines (http://www.ginasthma.org/),
based on the clinical features present and the patient’s current step
of the medication regimen.

Variables Used

The following variables were used:

Asthma symptoms and exacerbations: Presence of asthma-related
symptoms within the past 4 weeks, number of asthma exacerbations
within the past year, and hospitalization for acute asthma (ever).

Interview-derived variables: Age, sex, age of asthma onset, physician-
diagnosed allergic rhinitis, conjunctivitis, urticaria and/or eczema,
family history of asthma, and presence of smokers and pets or ani-
mals in the home.

Objective measurements: Height, weight, body mass index (BMI;
standardized for age and growth and sex) (18), serum eosinophil
number or percentage, and total serum IgE.

Medication usage: Use of short-acting b2-agonists (SABA); inhaled
corticosteroids (ICS), dose expressed as beclometasone-equivalent;
long-acting b2-agonists (LABA); and leukotriene receptor antagonist.

Lung function: % predicted FEV1, FVC, forced expiratory flow
(FEF25–75), and FEV1/FVC ratio.

Bronchodilator reversibility: Greater than or equal to 12% increase
in FEV1 following administration of 200 mg of inhaled albuterol.

Airway hyperresponsiveness: Provocative concentration of metha-
choline causing a 20% decline in FEV1 (PC20) less than or equal to
8 mg/ml (16) or greater than or equal to 10% reduction in FEV1

following exercise challenge (17, 19–21).

Atopic sensitization: Wheal 3 mm greater than negative control to at
least one allergen.

Statistical Methods

Variables were encoded either as raw mixed types or categorized with
equal-frequency binning and projected into binary dummy variables. No
missing values were present, apart from the alternative measures of air-
way hyperresponsiveness. Variables with a relative frequency below 1%

were excluded. We performed EFA both by means of multiple factor
analysis and principal component analysis (22). To facilitate visualization
of weightings on dimensions, variables were grouped together in terms
of (1) lung function (% predicted FEV1, % predicted FVC, FEV1/FVC
ratio, FEF25–75, bronchodilator reversibility, airway hyperresponsive-
ness), (2) markers of severity or exacerbation (symptoms within the past
4 wk, number of attacks within the last year, hospitalization), (3) family
history, (4) comorbidities and atopy (rhinitis, eczema, sensitization, %
eosinophils, total IgE); (5) environmental factors (exposure to tobacco
smoke, pet ownership), (6) asthma medication (ICS, LABA, montelu-
kast, and any combination), and (7) general characteristics (age, sex,
BMI, age of onset of wheeze).

We applied different HC methods (23, 24) to the dataset, varying
distance measures, linkage functions, feature selection (22, 25), and
then identifying an optimal partition of the inferred trees (26). For
control, a set of random trees and clusters was also created. All differ-
ent variations of HC were mutually compared in a so-called “meta”
HC, using the adjusted Rand index (27) and the Penny-Hendy
index (28) as measures of trees and clusters similarity. Classical

TABLE 1. CHARACTERISTICS OF THE STUDY POPULATION (N¼ 383)

Variables Value

Categorical

Sex, male 60.6%

BMI, obese or overweight 25.3%

Allergic rhinitis 43.3%

Allergic conjunctivitis 2.3%

Eczema 3.4%

Atopy 59.6%

Mother’s

Asthma 4.4%

Allergic rhinitis 8.3%

Eczema 1.8%

Urticaria 0.5%

Father’s

Asthma 6.0%

Allergic rhinitis 5.5%

Eczema 1.8%

Urticaria 0.3%

Exposure to tobacco smoke 36.0%

Pet ownership 8.1%

Medications

Budesonide 32.9%

Fluticasone 12.8%

LABA 9.9%

Montelukast 5.7%

Any drug in addition to SABA 46.7%

Asthma symptoms within the last 4 wk 17.0%

>1 hospitalization for acute asthma exacerbation 8.3%

Asthma severity

Mild 72.6%

Moderate 25.6%

Severe 1.8%

Numerical

Age, yr 9 (8–12)

Height, cm 135 (125–147)

Weight, kg 32 (26–44)

Age of onset of asthma, yr 3 (5–8)

Total IgE 144 (54–375)

Eosinophil, % 3.7 (2.1–6.1)

FEV1, % predicted 89 (79–99)

FVC, % predicted 101 (92–110)

FEV1/FVC ratio 85 (80–19)

FEF25-75, % predicted 84 (64–107)

Reversible airway obstruction (n ¼ 243 positive with >12%) 13 (4–16)

Methacholine challenge (n ¼ 95 positive with <8 mg/ml) 1.0 (0.7–2.0)

% Fall in FEV1 after exercising (n ¼ 83 positive with >10%) 15 (12–20)

Definition of abbreviations: BMI ¼ body mass index; FEF ¼ forced expiratory

flow; LABA ¼ long-acting b2-agonists; SABA ¼ short-acting b2-agonists.

Categorical variables are given as percentages, and numerical variables are

given as median (interquartile range).
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multidimensional scaling (29) was then applied to identify relations
among different HC methods and deviations from randomization.

The predictive ability of clusters and of original variables with
respect to asthma severity (dichotomized into mild vs. moderate–
severe) was assessed through information gain ratio (which mea-
sures how much information is gained when a variable is known
to approximate an outcome) (30), multivariable logistic regression,
and Bayesian network analysis (31). Feature selection and network
topology optimization were done by stepwise algorithms for both
the logistic regression and Bayesian network analyses (32). Specif-
ically, we fitted four logistic models with raw variables: Model 1
included all variables apart from those used to define severity (med-
ication usage, symptoms within the past 4 wk, and FEV1); Model 2
included all variables; Model 3 was a stepwise selection of variables,
adding or removing covariates heuristically based on the Akaike
Information Criterion, from Model 1; and Model 4 was a stepwise
selection of variables from Model 2. We then reran the logistic
regressions, but using cluster memberships as variables. Model per-
formance was assessed by repeated cross-validation and area under
the receiver operating characteristic curve (24), which is a composite
indicator of sensitivity and specificity. All analyses were performed

within the R (www.r-project.org/) and Weka (www.cs.waikato.ac.nz/
ml/weka/) software.

The online supplement provides additional details.

RESULTS

Study Population

The characteristics of the study population are shown in Table 1.
The cross-sectional set comprised 383 children with asthma,
median (interquartile range) age 9 (8–12) years, age of asthma
onset of 3 (5–8) years, 60.6% boys, 25.3% classified as obese or
overweight, 43.3% with physician-diagnosed allergic rhinitis,
36.0% exposed to tobacco smoke, all receiving SABA, 46.7%
receiving additional asthma medication, 17.0% experiencing symp-
toms within the past 4 weeks, with total serum IgE of 144 (54–375)
and FEV1% predicted of 89% (79–99). Asthma was classified as
mild, moderate, or severe in 72.6%, 25.6%, and 1.8% of cases,
respectively.

TABLE 2. EIGENVALUES OF THE FIRST 10 COMPONENTS OF THE MULTIPLE FACTOR ANALYSIS AND CONTRIBUTION OF EACH VARIABLE
IN THE DATASET TO EACH OF THESE COMPONENTS

Group Variable

Correlation of Characteristics to Each Dimension

Dimension 1 Dimension 2 Dimension 3 Dimension 4 Dimension 5

Lung function % Predicted FEV1 20.41 20.22 20.10 20.12 0.51

% Predicted FVC 20.39 0.16 0.10 20.02 0.39

FEV1/FVC ratio 20.10 20.48 20.24 20.08 0.11

% Predicted FEF25-75 20.24 20.37 20.18 20.11 0.35

Post-bronchodilator FEV1 20.17 20.18 20.08 0.11 0.16

Reversible airway obstruction 0.37 0.13 0.12 0.30 20.34

Postexercise change in FEV1 0.09 0.01 20.10 20.03 0.32

PD20 methacholine 20.48 20.17 20.08 20.29 0.13

Exacerbation Symptoms within last 4 wk 0.40 20.15 20.03 0.20 0.40

Exacerbations within last year 0.39 20.29 20.06 0.05 0.49

Hospitalization 0.21 20.26 20.04 0.00 0.39

Family history Maternal rhinitis 20.17 20.05 20.22 0.37 0.06

Paternal rhinitis 20.06 20.04 20.56 0.27 20.04

Maternal atopy 0.26 0.39 20.05 20.25 0.02

Paternal atopy 0.16 0.31 20.10 20.46 0.07

Comorbidities Rhinitis 20.12 0.33 20.38 0.33 0.20

Eczema 0.08 20.03 20.16 0.08 20.15

IgE 0.11 0.42 20.16 0.33 0.09

% Eosinophils 0.14 0.40 20.13 0.36 0.18

Atopy 0.06 20.52 0.26 20.30 20.14

Environment Exposure to tobacco smoke 0.00 20.07 0.54 0.52 20.12

Pet ownership 20.23 20.15 0.48 0.15 0.23

Drugs ICS 0.60 0.13 0.23 20.02 0.16

LABA 0.25 0.41 0.12 20.05 0.14

Montelukast 0.27 0.06 0.19 20.03 0.22

Any drug in addition to SABA 0.62 0.13 0.23 20.02 0.19

Growth characteristics Age of onset of asthma 20.45 0.20 0.15 0.11 0.13

Age 20.41 0.58 0.19 20.06 0.25

Sex 0.06 0.29 0.11 0.03 20.08

BMI 20.39 0.29 0.19 20.16 0.28

Component Eigenvalue % of Variance Cumulative % of Variance

1 1.47 8.50 8.50

2 1.37 7.96 16.46

3 1.13 6.55 23.01

4 1.04 6.03 29.04

5 0.97 5.64 34.68

6 0.91 5.25 39.93

7 0.87 5.04 44.97

8 0.81 4.71 49.68

9 0.81 4.67 54.35

10 0.79 4.55 58.90

Definition of abbreviations: BMI ¼ body mass index; FEF ¼ forced expiratory flow; ICS ¼ inhaled corticosteroids; LABA ¼ long-acting b2-agonists; SABA ¼ short-acting

b2-agonists.
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Exploratory Factor Analysis

The optimal solution from the multiple factor analysis presented
five dominant dimensions (eigenvalues > 1) accounting for only
35% of the total variance of the data. Table 2 shows the eigenvalues
of the first 10 dimensions and the correlation of each variable in
the dataset to each of these dimensions. The correlation map of
variables (Figure 1a) graphically illustrates the correlation of
each individual variable with the first principal plane. The sig-
nificant absolute correlations greater than 0.4 with given dimen-
sions were as follows:

Dimension 1: Medication use (any drug apart from SABA,
ICS), lung function (methacholine challenge and FEV1), age,
and age of asthma onset

Dimension 2: Age, markers of atopy (IgE, % eosinophils,
sensitization), use of LABA, and FEV1/FVC ratio

Dimension 3: Rhinitis and environmental exposures (to-
bacco smoke, pets)

Dimension 4: Paternal atopy and tobacco smoke exposure

Dimension 5: FEV1 and asthma exacerbations within the
past year

Figure 1b shows the coordinates of the imposed groups on
the first and second dimensions (16% of variance explained).
The plot illustrates that measures of lung function showed a cor-
relation with both Dimensions 1 and 2, use of medication in
addition to SABA and exacerbations with Dimension 1, and

Figure 1. (a) Principal coordinate plot from the multiple factor analysis. (b) Representation of the groups on the first and second dimensions. BMI ¼
body mass index; FEF ¼ forced expiratory flow; ICS ¼ inhaled corticosteroids; LABA ¼ long-acting b2-agonists; SABA ¼ short-acting b2-agonists.
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general characteristics with Dimension 2. The principal compo-
nent analysis gave a similar grouping of variables, but with some
notable differences in the number of components and the coef-
ficient sets (see online supplement). In summary, EFA yielded
a low percentage of the variance explained and relatively weak
components’ characteristics.

Hierarchical Clustering

We performedmultiple inferences of HC trees by varying (1) the
encoding (e.g., binary vs. raw variables), (2) the distance-linkage
function (e.g., Gower vs. Jaccard distance), and (3) the feature
selection and dimensionality reduction space. This resulted in
a total of 85 trees; we then generated an additional set of 42
random trees (i.e., ratio 2:1).

After identifying clusters, similaritymatriceswere calculated across
all the trees and clusters. There was a clear difference between the
trees inferredusing thedata comparedwith random trees.Onaverage,
real trees produced a lower number of clusters comparedwith random
trees (P ¼ 0.005). Real trees were more similar to each other than
random trees (P , 0.0001); HC plots in Figure 2 (left) illustrate
segregation between the real trees inferred from the data and the
random trees, demonstrating that there is a clear signal in the data.

The variations of the HC method (in the linkage-distance
functions) did not affect the cluster inference and yielded similar
trees and clusters (Figure 2). However, using different variable
encodings and transformations led to more pronounced differ-
ences in the clusters, with segregation among real trees.

Prognostic Factors of Severity

After univariate analysis of the raw variables, we ranked them
by the information gain ratio in relation to asthma severity (di-
chotomized into mild vs. moderate–severe) (Figure 3). The
highest gain was that of lung function markers and the use of
asthma medications in addition to SABA, followed by family
history. We next performed multivariable analysis with raw var-
iables (Table 3). Model 1 (in which we excluded FEV1, current
asthma symptoms, and the step of the medication regime, which
were used to categorize asthma severity), identified younger
age, BMI, paternal asthma, and decreasing FVC and FEV1/
FVC ratio as variables consistently with higher log-odds of
moderate–severe asthma. Model 2 (which included all varia-
bles) showed that use of asthma medication in addition to
SABA (ICS, LABA, or montelukast), asthma symptoms within
the last 4 weeks (trend, P ¼ 0.06), and lower FEV1 were signif-
icantly associated with moderate–severe asthma, with BMI, and
lower FVC and FEV1/FVC ratio still yielding significant asso-
ciations. Stepwise Models 3 and 4 selected younger age of
asthma onset, lower FVC, FEV1/FVC ratio, and FEF25–75, as
associates of moderate–severe asthma (besides medications,
symptoms within the past 4 wk, and FEV1, which were used
to define asthma severity). Logistic models using cluster mem-
berships (obtained by HC) as covariates showed consistently worse
goodness-of-fit than Models 1–4, both in terms of Akaike Informa-
tion Criterion and cross-validation estimates using areas under re-
ceiver operating characteristic curves (see the online supplement).

Figure 2. Meta-hierarchical clus-

tering (left) and classical multidi-

mensional scaling (right) of
different clustering methods,

compared with randomized

trees and clusters, using the

adjusted Rand Index (upper)
and Penny-Hendy tree dis-

tance (lower). Colors identify

different variable encodings,

and label replications repre-
sent different linkage and dis-

tances on the same encoding.

The figure shows how there is
a clear signal in the data (ran-

dom trees are segregated from

the data clusters), and that var-

iations of the hierarchical cluster-
ing method (same color) yield

similar trees and clusters (i.e.,

branching together in a subtree).

However, different variable sets,
encodings, and transformations

lead to more pronounced differ-

ences in the clusters.
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On deeper analysis using Bayesian network methods we saw
a complex conditional structure of variables, which may indicate
nonlinear relationships not captured by the logistic models. Fig-
ure 4 shows an optimal Bayesian network with these data, with
casual dependencies inferred by stepwise algorithm.

DISCUSSION

Summary of Findings and Novelty of Approach

In a cross-sectional study of childrenwith asthmawe applied several
dimension reduction and data clustering algorithms, associating
components, clusters, and raw variables to asthma severity. We
systematically explored the effects of varying the variable encod-
ings (e.g., comparing continuous with discretized, or raw variables
with those transformed using EFA) and the clustering methods
(within HC we tested 85 different models). Changes in linkage
and distance resulted in minor changes in the clusters, whereas
the changes in the variable encodings and transformations made
larger differences to the cluster assignments. Compared with the
original raw variables, all of the inferred clusters correlated rela-
tively poorly with asthma severity.

Comparison with Previous Works and Interpretation

Several groups have previously applied different methods of
clustering and dimensionality reduction on well-characterized
populations of adults and children with asthma to identify pat-
terns within the data. In adults, Moore and coworkers (6) iden-
tified five asthma clusters using HC (Ward linkage) of the data
from 726 patients with severe asthma. Starting with greater than
600 variables, the data were reduced manually to 34 indicators
covering a broad spectrum of routine assessments of asthma
without missing data. A subsequent decision tree analysis showed
that prebronchodilator and post-bronchodilator FEV1 and age of

onset of asthma were responsible for more than 80% of correct
cluster assignments. Haldar and coworkers (7) used the same
Ward HC plus a k-means partitioning clustering to infer and
compare clusters in two distinct populations (mild–moderate
and refractory asthma), validating the findings in a third pop-
ulation of refractory subjects with asthma. However, the vari-
able choice and encoding were different: principal components
analysis was performed on 16 variables, chosen among those
“considered important in defining the disease phenotype rather
than being a product of the disease process” (7) (for instance,
post-bronchodilator FEV1 was not included). Differences among
the cluster sets (three in the mild–moderate vs. four in the refractory
asthma populations, two in common) for the two populations
were discussed in relation to treatment strategies, driven by the
role of inflammatory markers. Siroux and coworkers (8) applied
latent class analysis on two adult cohorts (n ¼ 641, n ¼ 1,895; 14
markers preprocessed by EFA, including demographics, lung
function, and treatment types), showing a discriminatory value
of treatment types, a certain degree of stability of inferred clus-
ters (four in both populations, two of these common between
the populations), and some resemblance to previous findings.
Fitzpatrick and coworkers (9) applied Ward HC to a population
of 161 children (.500 variables reduced to 12 by expert advice),
and identified four clusters that were highly discriminated by lung
function markers, asthma duration, and the use of medications
(these parameters were responsible for 93% of the correct cluster
assignments). There was some, but not complete resemblance
with previous clustering in adults (6), and the clusters had poor
discriminating value with respect to asthma severity. Just and
coworkers (10) recently identified two novel asthma phenotypes
in children (using 19 variables selected by principal components
analysis from the initial set of 40) in a three-groups clustering
inferred by Ward HC plus a k-means partitioning clustering,
focusing on the role of inflammatory markers.

Figure 3. Univariate analysis.

Information gain ratio (which

measures the % of information

gained to approximate the out-
come when the variable was

known) between single varia-

bles and disease severity (mild
vs. moderate–severe asthma).

BMI ¼ body mass index; FEF ¼
forced expiratory flow; ICS ¼ in-

haled corticosteroids; LABA ¼
long-acting b2-agonists; SABA ¼
short-acting b2-agonists.
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In these previous studies of patients with asthma and in sim-
ilar studies of atopy (33, 34), HC seemed robust with respect to
different linkage and distances, or by data bootstrapping. To

some extent, it was stable when considering data from different
populations with similar variable sets and variable processing.
However, our work highlights that the same does not hold when

TABLE 3. MULTIVARIABLE ANALYSIS OF THE RAW VARIABLE SET IN RELATION TO ASTHMA SEVERITY (MILD VS. MODERATE–SEVERE)

Variable

Full Covariate Set Models

Model 1 (AIC ¼ 383) Model 2 (AIC ¼ 300)

OR 95% CI P Value OR 95% CI P Value

Age, yr 1.09 0.97–1.23 0.1336 1.01 0.86–1.19 0.8864

Sex, female vs. male 1.17 0.64–2.16 0.6085 1.15 0.52–2.52 0.7358

Age of asthma onset, yr 0.86 0.78–0.95 0.0031 0.9 0.79–1.03 0.1293

BMI, obese vs. normal 2.11 0.66–6.78 0.2101 1.55 0.38–6.28 0.5389

BMI, overweight vs. normal 0.35 0.14–0.85 0.0208 0.25 0.08–0.8 0.0192

Allergic rhinitis 1 0.5–2 0.9987 0.75 0.3–1.85 0.5273

Allergic conjunctivitis 0.59 0.08–4.32 0.6052 0.5 0.05–4.97 0.5557

Eczema 1.63 0.36–7.43 0.5297 2.44 0.39–15.19 0.3405

Maternal allergic rhinitis 0.72 0.23–2.29 0.5838 1 0.26–3.88 0.9964

Maternal eczema 0.93 0.12–7.03 0.9456 1.3 0.11–15.66 0.8378

Paternal allergic rhinitis 0.48 0.11–2.17 0.3403 0.81 0.11–5.78 0.833

Paternal eczema 3.58 0.43–29.76 0.2375 1.65 0.05–52.19 0.7753

Maternal asthma 0.69 0.17–2.74 0.5982 1.12 0.16–7.73 0.9077

Paternal asthma 3.51 1.16–10.64 0.0264 2.92 0.69–12.39 0.147

Exposure to tobacco smoke 1.34 0.72–2.5 0.355 1.09 0.49–2.39 0.8383

Presence of animals or pets in the home 0.79 0.24–2.59 0.7026 0.8 0.17–3.64 0.769

IgE, per log higher 0.84 0.64–1.09 0.191 0.77 0.55–1.09 0.1387

Eosinophil, % 1.02 0.93–1.12 0.7172 1.03 0.91–1.16 0.6615

Atopy 1.44 0.69–3.03 0.3349 1.19 0.46–3.07 0.7165

FEV1, % predicted 0.94 0.9–0.98 0.0035

FVC, % predicted 0.93 0.9–0.96 ,0.0001 0.95 0.92–0.98 0.0021

FEV1/FVC ratio 0.9 0.84–0.96 0.0022 0.92 0.85–1 0.0374

FEF25-75, % predicted 0.99 0.97–1.01 0.2101 0.98 0.96–1.01 0.1558

% Fall in FEV1 after exercise (Q1 vs. Q4) 0.42 0.03–6.27 0.5324 0.09 0–5.52 0.2554

% Fall in FEV1 after exercise (Q2 vs. Q4) 0.35 0.06–2.21 0.2644 0.53 0.05–5.73 0.6037

% Fall in FEV1 after exercise (Q3 vs. Q4) 0.51 0.13–2.04 0.3421 0.57 0.09–3.56 0.5515

Bronchodilator reversibility (Q1 vs. Q4) 1.65 0.43–6.4 0.467 3.36 0.58–19.26 0.1745

Bronchodilator reversibility (Q2 vs. Q4) 2.12 0.91–4.97 0.0831 2.18 0.69–6.88 0.1852

Bronchodilator reversibility (Q3 vs. Q4) 0.68 0.3–1.54 0.3529 0.99 0.36–2.71 0.9829

PC20 methacholine (Q1 vs. Q4) 2.52 0.19–32.96 0.4803 0.4 0.01–11.9 0.599

PC20 methacholine (Q2 vs. Q4) 1.45 0.05–39.25 0.8264 0.08 0–1428.31 0.6191

PC20 methacholine (Q3 vs. Q4) 1.49 0.11–19.81 0.7638 1.49 0.07–29.86 0.7961

Asthma symptoms within the last 4 wk 2.52 0.94–6.74 0.0655

No. of exacerbations within the last year 1.05 0.95–1.16 0.3488 1 0.87–1.15 0.9753

No. of hospitalizations 0.94 0.46–1.93 0.868 0.95 0.42–2.16 0.9025

ICS . 300 mg* vs. none 3.58 1.37–9.36 0.0093

ICS < 300 mg* vs. none 0.98 0.38–2.58 0.9743

LABA 56.33 11.38–278.94 ,0.0001

Montelukast 7.08 1.59–31.44 0.0101

Stepwise-selected Variable

Stepwise Models

Model 3 (AIC ¼ 357) Model 4 (AIC ¼ 260)

OR 95% CI P Value OR 95% CI P Value

Age of asthma onset, yr 0.89 0.81–0.97 0.0057

FEV1, % predicted 0.95 0.92–0.97 0.0003

FVC, % predicted 0.93 0.91–0.95 ,0.0001 0.96 0.94–0.99 0.0018

FEV1/FVC ratio 0.88 0.85–0.91 ,0.0001

FEF25-75, % predicted 0.97 0.95–0.98 ,0.0001

Asthma symptoms within the last 4 wk 3.01 1.35–6.72 0.0071

ICS .300 mg* vs. none 4.26 1.91–9.5 0.0004

ICS <300 mg* vs. none 1.35 0.6–3.05 0.4694

LABA 34.02 9.51–121.7 ,0.0001

Montelukast 6.6 1.69–25.84 0.0067

Definition of abbreviations: AIC ¼ Akaike Information Criterion; BMI ¼ body mass index; CI ¼ confidence interval; FEF ¼ forced expiratory flow; ICS ¼ inhaled

corticosteroids; LABA ¼ long-acting b2-agonists; OR ¼ odds ratio; Q1 ¼ 1st quartile; Q2 ¼ 2nd quartile; Q3 ¼ 3rd quartile; Q4 ¼ 4th quartile; SABA ¼ short-acting b2-

agonists.

Logistic regression models: Model 1 excluded FEV1, symptoms within the last 4 weeks, and medication step as they were used to define severity; Model 2 included all

variables; Model 3 and 4 were stepwise of 1 and 2.

* Betamethasone-equivalent dosage.
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systematically changing the variable sets and encodings, or
when transforming the data (e.g., reducing dimensions by
EFA), where topologies of trees and cluster sets differ substan-
tially.

The results of our EFA show that there is a diversification of
age, age at asthma onset, parental history of disease, environ-
mental factors, lung function markers, exacerbation markers,
and inflammatory markers. This diversification was high-
lighted in previous studies, both in adults (6–8) and children
(9, 10). However, the stability of the components was weak,
and less robust to changes in the model assumptions (like
rotations) or variable discretization policies. The subsequent
HC analysis also led to instability in inferred trees and clus-
ters when changing the variable sets, encodings, and trans-
formations.

These findings might be a characteristic exclusive of our study
population. An aggregation bias caused by the discretization of
skewed variables may play a role, and the use of mixed data
types. One previous study (6) highlighted the importance of
selecting variables with no missing values, of using normalized
variables, and of selecting variable sets explaining the highest
variance. Therefore, when asthma subgroups are identified through
unsupervised learning, they must be subject to a careful interpre-
tation of the original variable space and its transformations. We did
not perform a discrimination analysis of the original variables with
respect to each clustering, but this might help to select subsets of
variables that lead to more stable clustering, even when varying
their encoding.

Consistent with previous findings (9, 10), our HC yielded
groups that were relatively poor predictors of asthma severity.
This does not imply necessarily that clustering has a poor diag-
nostic value in general. Indeed, this finding suggests an impor-
tant point that severe asthma as a phenotype of disease may not
be directly associated with unique or uniform pathophysiologic
mechanisms (i.e., that it is not a distinct asthma endotype), but
likely a phenotypic characteristic at a severe end of the spec-
trum of a number of asthma subgroups.

When looking at the original variables, prognostic factors of
moderate–severe asthma, besides the medication usage, current
asthma symptoms, and FEV1, were paternal asthma, BMI, youn-
ger age of asthma onset, and other lung function parameters
(FVC, FEF25–75, FEV1/FVC ratio). There was evidence of con-
ditional dependence among variables from the Bayesian network
analysis (Figure 4); however, given the high computational
complexity of the model selection, the reliability of the

network (in terms of variables and relations) was limited by
the heuristic procedure for variable selection, and could not be
properly quantified.

Methodologic Discussion

In ideal situations, for example with dimension-dense samples of
data from normal distributions, different unsupervised learning
methods may produce the same results. For instance, it has been
demonstrated that the relaxed solution of the k-means clustering
algorithm, specified by the cluster indices, is given by the prin-
cipal components of the data (35). However, even with the same
method, different results can be obtained if the analysis is per-
formed with different starting values, or different optimization
routines (e.g., using singular value rather than eigenvector de-
composition, or using different starting points in k-means). The
empirical robustness of a method can be assessed using multiple
runs and/or bootstrapping; theoretic robustness, however, may
remain debatable. A different case is the conceptual variation
of a technique: for instance, in principal component analysis,
the promax rotation relaxes the orthogonality assumption,
whereas the varimax does not (principal components are
guaranteed to be independent only if the dataset is jointly
normally distributed).

Medicine often throws up high-dimensional, sparse, noisy
data. In such situations, EFA may be applied before HC (36);
however, this has been criticized for not being justified in the
general case (37). Other approaches include model-based clus-
tering (38). Witten and Tibshirani developed the sparcl tech-
nique for selecting features in clustering (25), which we used in
this study. However, these enhanced methods are difficult to
apply in medical research where the typically heterogeneous
data (nonnormality, missing values, and mixture of numeric
and categorical types) makes it more difficult to design distance
metrics (39) or likelihood functions. In addition, different
approaches may have different ways of identifying the optimal
number of clusters by their internal measures (40) or external
indices (41), in which case ensemble approaches (42) might be
needed.

Conclusions

Unsupervised statistical learning can help investigators to iden-
tify complex patterns and structures in data, and to reduce di-
mensionality to something conceivable. This interaction with

Figure 4. Bayesian network model explain-
ing dependencies between severity as diag-

nosed by the physician and the original

variable space. Both network topology

and variables have been selected by a step-
wise search. BMI¼ body mass index; FEF¼
forced expiratory flow; ICS ¼ inhaled corti-

costeroids; LABA¼ long-acting b2-agonists.
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the data may in turn generate or shape novel hypotheses. How-
ever, the patterns used for hypothesis generation must be reli-
able. We have shown that clustering using different variable
sets and encodings in asthma datasets can lead to different clus-
ters. A more thoughtful selection of markers, encoded appropri-
ately, and consistent across different populations is required
before attempting unsupervised statistical learning. Then, care-
ful interpretation of the variable space and its transformations
are essential if true asthma subgroups are to be identified by
interacting with data in this way.

Author disclosures are available with the text of this article at www.atsjournals.org.
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