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Systemic autoinflammatory diseases are caused by mutations in
genes that function in innate immunity. Here, we report an auto-
inflammatory disease caused by loss-of-function mutations in
OTULIN (FAM105B), encoding a deubiquitinase with linear linkage
specificity. We identified two missense and one frameshift mu-
tations in one Pakistani and two Turkish families with four af-
fected patients. Patients presented with neonatal-onset fever,
neutrophilic dermatitis/panniculitis, and failure to thrive, but
without obvious primary immunodeficiency. HEK293 cells trans-
fected with mutated OTULIN had decreased enzyme activity
relative to cells transfected with WT OTULIN, and showed a
substantial defect in the linear deubiquitination of target mole-
cules. Stimulated patients’ fibroblasts and peripheral blood mono-
nuclear cells showed evidence for increased signaling in the
canonical NF-κB pathway and accumulated linear ubiquitin ag-
gregates. Levels of proinflammatory cytokines were significantly
increased in the supernatants of stimulated primary cells and
serum samples. This discovery adds to the emerging spectrum
of human diseases caused by defects in the ubiquitin pathway
and suggests a role for targeted cytokine therapies.

OTULIN | linear deubiquitinase | NF-κB pathway |
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Posttranslational modifications by ubiquitination are impor-
tant for the regulation of many signaling complexes (1).

Linear ubiquitin chains, also known as Met1-linked chains, are
generated by the linear ubiquitin assembly complex (LUBAC)
(2). LUBAC-mediated Met1 ubiquitination is critical for reg-
ulation of immune signaling and cell death (3). Absence of
LUBAC attenuates NF-κB signaling and patients with loss-of-
function mutations in LUBAC present with paradoxical fea-
tures of susceptibility to infection and systemic inflammation,
the latter due to increased responsiveness to IL-1β in mono-
cytes (3–5). OTULIN and CYLD are deubiquitinases (DUBs)
that cleave Met1-linked chains (6). Although OTULIN func-
tions exclusively as a Met1 deubiquitinase (7, 8), CYLD may
also hydrolyze Lys63-linked ubiquitin (9). OTULIN is an evo-
lutionarily highly conserved protein, and in mice complete
deficiency is embryonically lethal (8). Recently, we reported
patients with heterozygous germline mutations in TNFAIP3/
A20 (10), which has DUB activity for K63-linked polyubiquitin
chains. Both OTULIN and A20 are important gatekeepers of
innate immunity (7, 11).

Results
Identification of Loss-of-Function Mutations in OTULIN in Three
Patients. Using a combination of exome sequencing and candi-
date gene screening, we identified three homozygous mutations
in the OTULIN/FAM105B gene in unrelated families of Pakistani
and Turkish descent (Fig. 1, Fig. S1, Table 1, and Tables S1 and
S2). Unaffected parents and siblings were carriers for the re-
spective mutations. None of the mutations was reported in
public databases or detected in 1,630 Turkish healthy controls.
Two missense mutations, p.Leu272Pro and p.Tyr244Cys, are
predicted to be deleterious by multiple algorithms (Table S3)
and affect highly conserved amino acid residues (Fig. S2A).
Similar to A20 disease-causing mutations (10), all three OTULIN
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mutations are located in the ovarian tumor (OTU) domain (Fig.
S2B). The p.Gly174Aspfs*2 mutation introduces a premature stop
codon, and mutant truncated protein was detectable by over-
expression in HEK293 cells (Fig. 2A) but not in the patient’s
fibroblasts (Fig. 2B, patient 3). The missense mutations likely
affect the S1 site of the linear ubiquitin-binding domain (Fig.
S2C). They reduce OTULIN protein stability (Fig. 2B) and may
result in the instability of the LUBAC complex subunits,
SHARPIN and HOIP (Fig. 2B).

Clinical Manifestations of OTULIN Deficiency. Patient 1, from a large
consanguineous family, was born prematurely and soon after birth
presented with fever and rash (Fig. 1 and Table S4). Two of his first
cousins died from a similar disease in early childhood. Only one
DNA sample was available for genotyping and was found to have
the same homozygous mutation as patient 1. Other findings in-
cluded failure to thrive, joint swelling, lipodystrophy, and diarrhea.
Treatment with an IL-1β inhibitor (anakinra) was not steroid
sparing; however, within 1 mo of starting a TNF inhibitor (inflix-
imab) at the age of 3 y, his fevers and rash subsided. Eight years
after initiation of the treatment, he is normal size for his age and
fully functional (Fig. S3). Patient 2 presented at the age of 4.5 mo
with prolonged fevers and pustular, scarring rashes. Skin biopsy
revealed panniculitis and neutrophilic dermatosis. Initially, she
responded to treatment with steroids, and subsequently
symptoms improved on treatment with anakinra (Table S4). Pa-
tient 3 presented with neonatal-onset fever and prominent cuta-
neous lesions including an erythematous rash with painful skin
nodules (Fig. 1B). Her skin biopsy showed a predominantly septal

panniculitis with vasculitis of small and medium-sized blood ves-
sels. Other manifestations included arthralgia, progressive lip-
odystrophy, and developmental delay. Her disease is partially
controlled with a TNF inhibitor (etanercept), but she is still ste-
roid dependent (Table S4). Patients did not have clear evidence
for primary immunodeficiency and suffered from infections re-
lated to use of immunosuppressive therapies. Patients 1 and 3 had
normal to high levels of T, B, and natural killer cells (Table S5), Ig
levels were normal to high, and IgA was elevated in the two pa-
tients. T- and B-cell proliferative responses were normal (Fig.
S4A). Patients had adequate specific antibody responses to vac-
cines or natural infections when tested.

Mutations Do Not Disrupt OTULIN Interaction with LUBAC. OTULIN
is a 352-residue protein that consists of an N-terminal LUBAC-
binding domain and a C-terminal ovarian tumor (OTU) domain
(Fig. S2B). OTULIN interacts with the PUB domain of HOIP,
and their interaction is required for the recruitment of OTULIN
to the TNF receptor complex (12). The three mutations do not
disrupt the OTULIN interaction with LUBAC, and mutant
proteins maintain the intact N-terminal domain necessary for
LUBAC interaction (Fig. 2A).

Increased NF-κB Signaling in OTULIN-Deficient Cells. OTULIN re-
stricts NF-κB signaling activity (7). We performed NF-κB luciferase
assays to study the function of mutant OTULIN proteins in human
embryonic kidney (HEK) 293 cells. Overexpressed mutant OTULIN
plasmid p.Leu272Pro and p.Gly174Aspfs*2 failed to restrain NF-κB
activity compared with WT OTULIN (Fig. 2C and Fig. S5A).

Patient 1

L272P/L272P

L272P/L272P

Patient 2
Y244C/Y244C

G174Dfs*2/G174Dfs*2
Patient 3

Y244C/WT Y244C/WT 
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L272P/WT L272P/WT
Patient 4

2

Family 1 (Pakistani) Family 2 (Turkish)

Family 3 (Turkish)

NA
G174Dfs*2/WT G174Dfs*2/WT

Patient 1 Patient 3

Patient 3Patient 3

A B

Fig. 1. Mutations in OTULIN cause severe early-onset systemic autoinflammatory disease. (A) Pedigrees and the identified genotypes in three families with
mutations in OTULIN. WT indicates wild-type OTULIN alleles. The individuals selected for exome sequencing are marked with blue asterisks. NA: an affected
cousin of patient 1 had similar disease, but her DNA sample was not available for this study. (B) Clinical manifestations of three patients with otulipenia. Top
two panels show facial features of the patients, including cushingoid appearance (Left) and prominent fat loss (lipodystrophy) (Right). Bottom two panels
show erythematous skin lesions and subcutaneous nodules.

Table 1. OTULIN mutations identified in three consanguineous families

Family Ancestry
Nucleotide
alteration†

cDNA
alteration‡

Amino acid
alteration Domain ExAC

Turkish
population

Software
prediction§ Conservation{

1 Pakistani chr5: 14690368T>C c.815T>C p.Leu272Pro OTU 0/122,972 0/3,260 Damaging Conserved
2 Turkish chr5: 14690284A>G c.731A>G p.Tyr244Cys OTU 0/122,972 0/3,260 Damaging Conserved
3 Turkish chr5: 14687678delC c.517delC p.Gly174Aspfs*2 OTU 0/122,972 0/3,260 / /

†Genome reference: GRCh37 (hg19).
‡cDNA reference: NM_138348.4.
§SIFT, PolyPhen2, LRT, Mutation Taster, and CADD.
{GERP, SiPhy 29 way, and CLUSTALW.
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Mutant p.Tyr244Cys plasmid suppressed the LUBAC-induced
NF-κB activity similar to WT OTULIN. These results indicate that
p. Leu272Pro and p.Gly174Aspfs*2 mutations affect the OTULIN
enzyme activity, whereas the p.Tyr244Cys mutation retains sufficient
residual OTULIN activity in the overexpression experiment, or may
affect the protein function in a different manner. We then studied
the activity of the NF-κB pathway in stimulated patients’ fibroblasts
and peripheral blood mononuclear cells (PBMCs) (Fig. 2 D and E,
and Fig. S5B). Sequential phosphorylation of IKKs and IκBα
are essential steps in activation of the canonical NF-κB pathway (13).
Patient-derived mononuclear leukocytes and fibroblasts sustained
higher levels of phosphorylated IKKα/IKKβ and IκBα, and showed
increased phosphorylation of P38 and JNK MAP kinases compared
with healthy controls. These results demonstrate enhanced signaling
of the NF-κB and MAPK pathways in OTULIN-deficient patients.
Our data also suggest that NF-κB activation was not affected in
patient’s lymphocytes in the context of T-cell receptor and B-cell
receptor stimulation (Fig. S4 B and C).

Defect in the Deubiquitinase Function of Mutant OTULIN Proteins.
OTULIN cleaves Met1-linked linear polyubiquitin chains from

target substrates, such as NEMO (IKKγ), RIPK1, ASC, and
TNFR1 to restrict signaling activation and propagation (7, 14,
15). To investigate the effect of OTULIN mutations on its
deubiquitinase function, we cotransfected WT and mutant
OTULIN plasmids into HEK293 cells along with plasmids
encoding the LUBAC subunits, mono specific-ubiquitin plasmid,
and each of the OTULIN substrates NEMO (Fig. 3A), RIPK1
(Fig. 3B), ASC (Fig. 3C), and TNFR1 (Fig. 3D). Cells trans-
fected with mutant p.Leu272Pro and p.Gly174Aspfs*2 proteins
showed substantial defects in deubiquitination of the target
substrate as indicated by accumulated high–molecular-weight
linear-ubiquitin aggregates (Fig. 3 A–D). The defect in RIPK1
deubiquitination was more noticeable in cells transfected with
WT monoubiquitin plasmid (Fig. 3B) than in cells transfected
with the mutant monoubiquitin plasmid (Ub-KO), which can
only form linear ubiquitin chains (Fig. S5C). RIPK1 and TNFR1
require the assembly of K63 and linear polyubiquitin chains for
proper signaling activity, and they are subject to deubiquitination
by A20 and OTULIN (14). The K63 ubiquitination of RIPK1
was not affected by the presence of mutant OTULIN proteins
(Fig. 3B, second panel). Cells transfected with p.Tyr244Cys
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Fig. 2. Induced NF-κB activity in cells with mutant OTULIN. (A) OTULIN mutants do not disrupt interaction with LUBAC. HEK293 cells were transiently
transfected with plasmids encoding the LUBAC components (SHARPIN, HOIP, and HOIL-1), and WT or mutant OTULIN plasmids. Whole-cell lysates were
collected 36 h later, and subjected to immunoprecipitation with antibodies against SHARPIN. The precipitates were then immunoblotted with OTULIN,
SHARPIN, HOIP, and HOIL-1. (B) OTULIN and LUBAC complex expression in patients’ fibroblasts. Whole-cell lysates from the OTULIN-deficient patients and one
healthy donor were immunoblotted with antibodies for OTULIN, SHARPIN, HOIP, HOIL-1, and Hsp90. (C) NF-κB luciferase assay in transiently transfected
HEK293 cells with endogenous OTULIN down-regulated by shRNA. OTULIN mutants p.L272P and p.G174Dfs*2 do not inhibit LUBAC-induced NF-κB activation
in HEK293 cells transfected with firefly NF-κB reporter plasmid, a Renilla luciferase control vector, and expression plasmids for WT or mutant OTULIN, to-
gether with LUBAC (SHARPIN, HOIL-1, HOIP), Ub-KO (ubiquitin mutant with all lysines mutated to arginines, which only forms linear polyubiquitin chains),
and LUBAC linear ubiquitination substrate NEMO. Results are plotted as firefly normalized to Renilla luciferase activity to account for variance in transfection
efficiency and cell number. One representative result of three independent experiments is shown. Values are reported as the means of technical triplicates ±
SEM. (Lower) Whole-cell lysates from transfected cells were immunoblotted with antibodies for HOIP, HOIL-1, SHARPIN, NEMO, OTULIN, and β-actin.
(D) PBMCs from OTULIN-deficient patients showed increased levels of phosphorylated IκBα and phosphorylated IKKα/IKKβ compared with a healthy control.
Whole-cell lysates from TNF-stimulated PBMCs were immunoblotted for respective target proteins. (E) Stimulated fibroblasts from OTULIN-deficient patients
sustained increased levels of phosphorylated IκBα, increased phosphorylated IKKα/IKKβ, and increased phosphorylated JNK and P38. Fibroblasts from patients
1 and 3 were stimulated with TNF for the time periods indicated. Whole-cell lysates were immunoblotted for respective target proteins. Two healthy indi-
viduals’ fibroblasts served as controls.
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plasmid showed only mild, if any, defect compared with the other
two mutant proteins (Fig. 3 A–D). The in vitro-observed defect
in DUB activity of mutant proteins was rescued by cotransfection
with WT OTULIN (Fig. 3 A–D).

Increased Linear Ubiquitination in Patients’ PBMCs and Fibroblasts.
Consistent with the data from overexpressed mutant proteins, TNF-
or IL-1β–stimulatedOTULIN-deficient primary patients’ cells showed
accumulation of linear-ubiquitinated NEMO (Fig. 4 A and C),
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noprecipitation with antibodies against NEMO (A), RIPK1 (B), ASC (C), and linear ubiquitination chain (C and D). High–molecular-weight (HMW) ubiquitin
aggregates (Top) were detected by immunoblotting the precipitates with linear Ub antibody (A–D). Cell lysates were also blotted with antibody against
NEMO, RIPK1, TNFR1, ASC, HOIP, SHARPIN, HOIL-1, OTULIN, and Hsp90 or β-actin.
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Fig. 4. Patient-derived PBMCs and fibroblasts lose their ability to deubiquitinate Met1-linked linear ubiquitin chains. Whole-cell lysates were immunopre-
cipitated with antibodies for NEMO (A and C), linear Ub (B and D), and RIPK1 (C), and the precipitates were blotted with antibodies against linear ubiquitin.
The precipitates were also blotted with antibodies against NEMO, TNFR1, RIPK1, K63-linked ubiquitin, HOIP, HOIL-1, or OTULIN, and the cell lysates were
blotted with antibodies against Hsp90 or β-actin. Red arrows point to the differences for comparison. (A) Patients’ TNF-stimulated fibroblasts showed in-
creased abundance and molecular weight of linear-ubiquitinated NEMO as a result of the impaired OTULIN deubiquitinase activity. K63-ubiquitinated NEMO
is mainly unaffected (second panel). Fibroblasts from patient 1, patient 2, and a healthy control were stimulated with TNF for 30 min. (B) Patients’ IL-1β–
stimulated fibroblasts showed increased abundance of linear ubiquitinated TNFR1 and RIPK1 and accumulation of high-molecular linear-ubiquitin chains.
Fibroblasts from patient 2, patient 3, and a healthy control were stimulated with IL-1β for 20 min. (C and D) Patients’ IL-1β–stimulated PBMCs showed in-
creased linear ubiquitination of NEMO (C, Upper), RIPK1 (C, Lower), and ASC (D, Lower), and accumulation of high-molecular linear-ubiquitin chains
(D, Upper). PBMCs from patients 1 and 3, and a healthy control were stimulated with IL-1β for the indicated time. mUB is a mouse monoclonal antibody that is
not linear Ub specific (C).

10130 | www.pnas.org/cgi/doi/10.1073/pnas.1612594113 Zhou et al.

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

A
pr

il 
26

, 2
02

0 

www.pnas.org/cgi/doi/10.1073/pnas.1612594113


TNFR1 (Fig. 4B), RIPK1 (Fig. 4 B and C), and ASC (Fig. 4D), and
accumulation of high-molecular linear Ub aggregates (Fig. 4 B andD)
compared with healthy controls. In ex vivo experiments with cells from
patient 2, who carries the p.Tyr244Cys mutation, we noted an increase
in the linear ubiquitinated NEMO, TNFR1, RIPK1 (Fig. 4 A and B),
and accumulation of high-molecular linear Ub aggregates (Fig. 4B).
This ex vivo experiment supports the strong genetic data for patho-
genicity of the p.Tyr244Cys mutation identified in patient 2. The

combination of in vitro and ex vivo experiments provides compelling
evidence that loss-of-function mutations in OTULIN result in in-
creased linear ubiquitination of signaling molecules and lead to en-
hanced TNFR1, NF-κB, and ASC-dependent inflammation.

A Strong Inflammatory Signature in OTULIN-Deficient Patients’ Cells.
Stimulated patient whole-blood samples showed an increased
production of IL-1β, IL-6, IL-12, IL-18, and IFN-γ in response to
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Fig. 5. Patient-derived immune cells display a strong inflammatory signature. Cytokine profiles are compared for OTULIN-deficient patients and healthy
controls. Cytokine concentration shown in y axis is in picograms per milliliter. Values are represented as means ± SEM. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001;
****P ≤ 0.0001. (A) Whole-blood samples from patient 1 and his unaffected sibling were stimulated with bacterial LPS (1 μg/mL) for 24 h. A total of 48
cytokines or growth factors listed in SI Materials and Methods were assayed in duplicates. (B) Cytokine levels from the supernatant of stimulated purified
monocytes from patient 1 compared with three healthy controls. Cells were unstimulated, TNF stimulated (20 ng/mL), LPS stimulated (1 μg/mL), or IL-1β
stimulated (10 ng/mL) for 48 h. A total of 48 cytokines or growth factors were assayed; however, only the most significant results are shown. Samples were
assayed in duplicates. (C) Intracellular staining of TNF in monocytes from patient 1 and patient 3 compared with two healthy controls before stimulation and
following LPS stimulation (1 μg/mL). PBMCs from patient 2 were not available due to sample limitation. (D) TNF levels in the supernatants of PBMCs derived
from three patients and one healthy control, at the basal level and after stimulation with IL-1β (10 ng/mL), and LPS (1 μg/mL). Samples were assayed in
triplicates. (E) Serum cytokine levels from 3 patients and 12 healthy controls. Patient 1 (P1) has been treated with the TNF inhibitor, infliximab, and had no
evidence of active disease at the time of sampling. Patient 2 (P2) has been treated with the IL-1 inhibitor, anakinra, and had active disease at the time of
sampling. Patient 3 (P3) has been treated with the TNF inhibitor, etanercept, and still had some symptoms at the time of sampling. Patients’ samples were
assayed in triplicates.
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LPS, and increased levels of multiple cytokines and chemokines in
response to staphylococcal enterotoxin B stimulation (Fig. 5A and
Fig. S6A). Purified patients’ monocytes had significantly higher se-
cretion of IL-1β, IL-6, IL-16, IL-18, and TNF in response to LPS,
TNF, or IL-1β stimulation relative to cells from healthy controls (Fig.
5B). Intracellular staining for TNF and IL-6 from patient 1 and 3 was
higher at basal levels in monocytes (Fig. 5C and Fig. S6B), T cells
(Fig. S6C), and dendritic cells (Fig. S6D) than in controls. Fig. 5D
represents the average of TNF responses assayed on the three pa-
tients individually. Cytokine profiling in serum samples was consis-
tent with disease activity. Patient 2, who had the most active disease
at the time of sampling, had the highest levels of proinflammatory
cytokines. Patients 1 and 3 had less active disease phenotypes at the
time of sampling and substantially lower cytokine levels (Table S4
and Fig. 5E). Transcriptome profiling of patient whole-blood sam-
ples and stimulated fibroblasts showed similar results. Patients 2 and
3 displayed strong inflammatory signatures enriched for NF-κB, Jak-
STAT, and TNF signaling (Fig. S7 A and B). In contrast, patient 1,
whose disease was both clinically and biochemically inactive at the
time of visit, had a transcriptome profile similar to controls. These
data provide evidence that a malfunction in linear deubiquitination
leads to an up-regulation in cytokine production and that the
disease is amenable to targeted anticytokine treatment.

Discussion
We describe a recessively inherited autoinflammatory disease
caused by excessive linear ubiquitination in innate immune sig-
naling pathways, which we denote as “otulipenia.” We show that
OTULIN deficiency leads to increased linear ubiquitination of
target proteins, which is associated with enhanced NF-κB activity,
increased TNFR1 signaling, and NLRP3 inflammasome activity.
The phenotype is very severe and potentially lethal if left untreated.
This is a report of a human disease caused by excessive lin-

ear ubiquitination. Conversely, patients with LUBAC deficiency
have impaired linear ubiquitination of the same target
molecules, which leads to immunodeficiency due to decreased
NF-κB activity in fibroblasts, and a concomitant inflammatory
phenotype due to hyperresponsiveness to IL-1β in monocytes
(4). These latter studies demonstrate cell type-specific functions
of the LUBAC subunits HOIP and HOIL-1. No human disease
has yet been linked to SHARPIN deficiency. In contrast,
OTULIN-deficient patients have a broader constitutive inflam-
matory phenotype in fibroblasts and monocytes and no overt
primary immunodeficiency. Heterozygote carriers of these mu-
tations are asymptomatic, which suggests that OTULIN expres-
sion levels do not appear to be critical for immune homeostasis.
The importance of the linear ubiquitin pathway in the regulation
of innate immune responses has been demonstrated in murine
models. Mice deficient in LUBAC subunits have variable degrees
of inflammation, from a mild phenotype in HOIL-1–deficient mice

(16) to more severe inflammation and dermatitis in SHARPIN
KO (2, 17) to defective vascularization and embryonic lethality
in HOIP KO (18). Consistent with the essential function of
OTULIN in regulation of multiple signaling pathways, OTULIN-
deficient mice (gumby/gumby) are embryonic lethal due to vas-
cular and neuronal defects caused by dysregulation in canonical
Wnt signaling (8).
This is the second report of human germline mutations in a

deubiquitinase protein leading to an inflammatory pheno-
type, the first being mutations in DUB A20 (10). In contrast,
deficiency of another deubiquitinase CYLD, which hydro-
lyzes both Met1 and K63 ubiquitin chains, leads to cylin-
dromatosis (19). Although A20 and OTULIN have roles in
attenuating common signaling pathways, patients with otulipenia
have a more severe inflammatory phenotype than patients with
A20 haploinsufficiency (HA20) likely for two reasons: (i)
OTULIN has a unique and nonredundant function in regulation
of the linear ubiquitin pathway, and (ii) patients with otulipenia
have a more profound protein deficiency than patients with
HA20, who still retain 50% of nonmutant A20 protein. The
discoveries of otulipenia, HA20, and LUBAC deficiencies
demonstrate a complex interplay between LUBAC and deubi-
quitinases in controlling immune signaling complexes.

Materials and Methods
Patients.We studied three patients in this report. All subjects and their family
members were enrolled in an Institutional Review Board-approved protocol
and provided written informed consent. Samples from patient 1 were
available for all experiments, whereas samples from patients 2 and 3 were
limited. More detailed information is reported in SI Materials and Methods.

Genetic and Functional Analysis. We performed whole-exome sequencing in
patients 1 and 2 and their family members, candidate-gene sequencing in
patient 3 and her parents, and mutation-specific genotyping in 1,630 DNA
samples from the Turkish population. To study protein function, we used
short hairpin RNA (shRNA) knockdowns in 293 cells and NF-κB luciferase
assay, and Met1-linked linear polyubiquitin deubiquitination assay in 293
cells. Immunoprecipitation and immunoblotting, flow cytometry, Nano-
string, intracellular cytokine staining, and cytokine profiling were per-
formed on samples from the patients and healthy controls. SI Materials and
Methods describes the methods used for all these procedures.
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