Basit öğe kaydını göster

dc.contributor.advisorYurduşen, İsmet
dc.contributor.authorJameel, Marwan
dc.date.accessioned2022-04-01T10:45:07Z
dc.date.issued2021
dc.date.submitted2021-12-01
dc.identifier.citation[1] C Vijai, SM Suriyalakshmi, and D Joyce. The blockchain technology and modernledgers through blockchain accounting.Adalya Journal, 8(12), 2019. [2] https://www.n-ix.com/deep-learning-vs-machine-learning/. [3] https://medium.com/@iamterryclark/swarm-intelli-eb5e46eda0c3. [4] Kutaiba Sabah Nimma, Monaaf DA Al-Falahi, Hung Duc Nguyen, SDG Jayasinghe,Thair S Mahmoud, and Michael Negnevitsky. Grey wolf optimization-based optimumenergy-management and battery-sizing method for grid-connected microgrids.Ener-gies, 11(4):847, 2018. [5] Rob Shields. Cultural topology: The seven bridges of königsburg, 1736.Theory,Culture & Society, 29(4-5):43–57, 2012.[6] https://www.dnsstuff.com/what-is-network-topology. [7] Afra Zomorodian. Topological data analysis.Advances in applied and computationaltopology, 70:1–39, 2012. [8] Ahmet Bugday, Adnan Ozsoy, Serdar Murat Öztaner, and Hayri Sever. Creating con-sensus group using online learning based reputation in blockchain networks.Pervasiveand Mobile Computing, 59:101056, 2019. [9] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system bitcoin: A peer-to-peer electronic cash system.Bitcoin. org. Disponible en https://bitcoin. org/en/bitcoin-paper, 2009. [10] Markus Jakobsson and Ari Juels. Proofs of work and bread pudding protocols. InSecure information networks, pages 258–272. Springer, 1999. [11] Alex Biryukov, Daniel Feher, and Dmitry Khovratovich. Guru: Universal reputationmodule for distributed consensus protocols. Technical report, University of Luxem-bourg, 2017. [12] Adam Back et al. Hashcash-a denial of service counter-measure. 2002.66 [13] John R Douceur. The sybil attack. InInternational workshop on peer-to-peer systems,pages 251–260. Springer, 2002. [14] Md Sadek Ferdous, Mohammad Jabed Morshed Chowdhury, Mohammad A Hoque,and Alan Colman.Blockchain consensus algorithms: A survey.arXiv preprintarXiv:2001.07091, 2020. [15] Damilare Peter Oyinloye, Je Sen Teh, Norziana Jamil, and Moatsum Alawida.Blockchain consensus: An overview of alternative protocols.Symmetry, 13(8):1363,2021. [16] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction ledger.Ethereum project yellow paper, 151(2014):1–32, 2014. [17] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine generals problem.InConcurrency: the Works of Leslie Lamport, pages 203–226. 2019. [18] Fran Casino, Thomas K Dasaklis, and Constantinos Patsakis. A systematic literaturereview of blockchain-based applications: Current status, classification and open issues.Telematics and informatics, 36:55–81, 2019. [19] Christian Berger and Hans P Reiser. Scaling byzantine consensus: A broad analy-sis. InProceedings of the 2nd Workshop on Scalable and Resilient Infrastructures forDistributed Ledgers, pages 13–18, 2018. [20] Marwan Jameel and O ̆guz Yayla. Pso based blockchain committee member selection.In2021 6th International Conference on Computer Science and Engineering (UBMK),pages 725–730. IEEE, 2021. [21] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa Syta,and Bryan Ford. Omniledger: A secure, scale-out, decentralized ledger via sharding.In2018 IEEE Symposium on Security and Privacy (SP), pages 583–598. IEEE, 2018. [22] Hung Dang, Tien Tuan Anh Dinh, Dumitrel Loghin, Ee-Chien Chang, Qian Lin, andBeng Chin Ooi. Towards scaling blockchain systems via sharding. InProceedings ofthe 2019 international conference on management of data, pages 123–140, 2019.67 [23] Ahmet Bugday, Adnan Ozsoy, and Hayri Sever. Securing blockchain shards by us-ing learning based reputation and verifiable random functions. In2019 InternationalSymposium on Networks, Computers and Communications (ISNCC), pages 1–4. IEEE,2019. [24] David Galindo, Jia Liu, Mihai Ordean, and Jin-Mann Wong. Fully distributed verifiablerandom functions and their application to decentralised random beacons.IACR Cryptol.ePrint Arch., 2020:96, 2020. [25] Yossi Gilad, Rotem Hemo, Silvio Micali, Georgios Vlachos, and Nickolai Zeldovich.Algorand: Scaling byzantine agreements for cryptocurrencies. InProceedings of the26th symposium on operating systems principles, pages 51–68, 2017. [26] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random functions. In40thannual symposium on foundations of computer science (cat. No. 99CB37039), pages120–130. IEEE, 1999. [27] ̇Ismet Yurdu ̧sen Marwan Jameel, O ̆guz Yayla. Combinatorial topology to develop amachine learning technique for blockchain sharding.AIP2020, pages=–, year=2020. [28] Ralph C Merkle. Protocols for public key cryptosystems. In1980 IEEE Symposium onSecurity and Privacy, pages 122–122. IEEE, 1980. [29] Ralph C Merkle. Method of providing digital signatures, 1 1982.US Patent US,4309569. [30] Georg Becker. Merkle signature schemes, merkle trees and their cryptanalysis.Ruhr-University Bochum, Tech. Rep, 2008.[31] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, AhmedKosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer, et al. On scal-ing decentralized blockchains. InInternational conference on financial cryptographyand data security, pages 106–125. Springer, 2016. [32] Alin Tomescu, Ittai Abraham, Vitalik Buterin, Justin Drake, Dankrad Feist, and DmitryKhovratovich. Aggregatable subvector commitments for stateless cryptocurrencies. InInternational Conference on Security and Cryptography for Networks, pages 45–64.Springer, 2020.68 [33] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and Pra-teek Saxena. A secure sharding protocol for open blockchains. InProceedings ofthe 2016 ACM SIGSAC Conference on Computer and Communications Security, pages17–30, 2016. [34] Gavin Andresen. Bitcoin improvement proposal 101, 2015. [35] Omer Bobrowski and Matthew Kahle. Topology of random geometric complexes: asurvey.Journal of applied and Computational Topology, 1(3):331–364, 2018. [36] Vitalik Buterin, Jeff Coleman, and Matthew Wampler-Doty.Notes on scalableblockchain protocols (verson 0.3), 2015. [37] Chaitanya Bapat.Blockchain for academic credentials.arXiv preprintarXiv:2006.12665, 2020. [38] Dimiter V Dimitrov. Blockchain applications for healthcare data management.Health-care informatics research, 25(1):51–56, 2019. [39] Ori Jacobovitz. Blockchain for identity management.The Lynne and William FrankelCenter for Computer Science Department of Computer Science. Ben-Gurion Univer-sity, Beer Sheva, 2016. [40] Maurice Clerc.Discrete particle swarm optimization, illustrated by the travelingsalesman problem. InNew optimization techniques in engineering, pages 219–239.Springer, 2004. [41] Leila Ismail and Huned Materwala. A review of blockchain architecture and consensusprotocols: Use cases, challenges, and solutions.Symmetry, 11(10):1198, 2019. [42] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.self-published paper, August, 19(1), 2012. [43] Thomas Kerber, Aggelos Kiayias, Markulf Kohlweiss, and Vassilis Zikas. Ouroboroscrypsinous: Privacy-preserving proof-of-stake. In2019 IEEE Symposium on Securityand Privacy (SP), pages 157–174. IEEE, 2019.[44] LM Goodman. Tezos: A self-amending crypto-ledger position paper.Aug, 3:2014,2014.69 [45] Jonah Brown-Cohen, Arvind Narayanan, Alexandros Psomas, and S Matthew Wein-berg. Formal barriers to longest-chain proof-of-stake protocols. InProceedings of the2019 ACM Conference on Economics and Computation, pages 459–473, 2019. [46] Miguel Castro, Barbara Liskov, et al. Practical byzantine fault tolerance. InOSDI,volume 99, pages 173–186, 1999. [47] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The honey badgerof bft protocols. InProceedings of the 2016 ACM SIGSAC Conference on Computerand Communications Security, pages 31–42, 2016. [48] Alysson Neves Bessani and Marcel Santos. Bft-smart-high-performance byzantine-faulttolerant state machine replication, 2011. [49] Vincent Gramoli. From blockchain consensus back to byzantine consensus.FutureGeneration Computer Systems, 107:760–769, 2020. [50] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, LinusGasser, and Bryan Ford. Enhancing bitcoin security and performance with strong con-sistency via collective signing. In25th{usenix}security symposium ({usenix}security16), pages 279–296, 2016. [51] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permission-less model. In31st International Symposium on Distributed Computing (DISC 2017).Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017. [52] Ittai Abraham, Dahlia Malkhi, Kartik Nayak, Ling Ren, and Alexander Spiegelman.Solidus: An incentive-compatible cryptocurrency based on permissionless byzantineconsensus.CoRR, abs/1612.02916, 2016. [53] George Danezis and Sarah Meiklejohn. Centrally banked cryptocurrencies.arXivpreprint arXiv:1505.06895, 2015. [54] Marcel T Rosner and Andrew Kang. Understanding and regulating twenty-first centurypayment systems: The ripple case study.Mich. L. Rev., 114:649, 2015. [55] David Mazieres. The stellar consensus protocol: A federated model for internet-levelconsensus.Stellar Development Foundation, 32, 2015.70 [56] Zaiqing Nie, Yuanzhi Zhang, Ji-Rong Wen, and Wei-Ying Ma. Object-level ranking:bringing order to web objects. InProceedings of the 14th international conference onWorld Wide Web, pages 567–574, 2005. [57] Sepandar D Kamvar, Mario T Schlosser, and Hector Garcia-Molina. The eigentrustalgorithm for reputation management in p2p networks. InProceedings of the 12thinternational conference on World Wide Web, pages 640–651, 2003. [58] Li Xiong and Ling Liu. Peertrust: Supporting reputation-based trust for peer-to-peerelectronic communities.IEEE transactions on Knowledge and Data Engineering,16(7):843–857, 2004. [59] Gang Wang, Zhijie Jerry Shi, Mark Nixon, and Song Han.Sok: Sharding onblockchain. InProceedings of the 1st ACM Conference on Advances in Financial Tech-nologies, pages 41–61, 2019. [60] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris Kogias, Nicolas Gailly, Linus Gasser,Ismail Khoffi, Michael J Fischer, and Bryan Ford. Scalable bias-resistant distributedrandomness. In2017 IEEE Symposium on Security and Privacy (SP), pages 444–460.Ieee, 2017. [61] John Paul Mueller and Luca Massaron.Machine learning for dummies. John Wiley &Sons, 2021. [62] TK Balaji, Chandra Sekhara Rao Annavarapu, and Annushree Bablani. Machinelearning algorithms for social media analysis: A survey.Computer Science Review,40:100395, 2021. [63] Goëry Genty, Lauri Salmela, John M Dudley, Daniel Brunner, Alexey Kokhanovskiy,Sergei Kobtsev, and Sergei K Turitsyn. Machine learning and applications in ultrafastphotonics.Nature Photonics, 15(2):91–101, 2021. [64] Lukas Tuggener, Mohammadreza Amirian, Katharina Rombach, Stefan Lörwald,Anastasia Varlet, Christian Westermann, and Thilo Stadelmann. Automated machinelearning in practice: state of the art and recent results. In2019 6th Swiss Conferenceon Data Science (SDS), pages 31–36. IEEE, 2019. [65] B. Grünbaum and Raj C Bose. combinatoric.Encyclopedia Britannica., 2013.71 [66] Gil Kalai, Isabella Novik, Francisco Santos, and Volkmar Welker. Geometric, alge-braic, and topological combinatorics.Oberwolfach Reports, 16(3):2395–2472, 2020. [67] Richard Bellman, Roger Fletcher, Ronald A Howard, Fritz John, Narendra Kar-markar, William Karush, Leonid Khachiyan, Bernard Koopman, Harold Kuhn, LászlóLovász, et al. Mathematical optimization source: en. wikipedia. org/wiki/mathemati-cal_optimization. [68] Richard Bellman, Roger Fletcher, Ronald A Howard, Fritz John, Narendra Karmarkar,William Karush, Leonid Khachiyan, Bernard Koopman, Harold Kuhn, László Lovász,et al. From wikiprojectmed. [69] Leonora Bianchi, Marco Dorigo, Luca Maria Gambardella, and Walter J Gutjahr. Asurvey on metaheuristics for stochastic combinatorial optimization.Natural Comput-ing, 8(2):239–287, 2009. [70] Christian Blum and Andrea Roli.Metaheuristics in combinatorial optimization:Overview and conceptual comparison.ACM computing surveys (CSUR), 35(3):268–308, 2003. [71] Chris Rorres and Howard Anton.Elementary linear algebra: applications version.Wiley, 1994. [72] Russell Eberhart and James Kennedy. Particle swarm optimization. InProceedings ofthe IEEE international conference on neural networks, volume 4, pages 1942–1948.Citeseer, 1995. [73] Gerardo Beni and Jing Wang. Swarm intelligence in cellular robotic systems. InRobotsand biological systems: towards a new bionics?, pages 703–712. Springer, 1993. [74] Seyedali Mirjalili, Seyed Mohammad Mirjalili, and Andrew Lewis. Grey wolf opti-mizer.Advances in engineering software, 69:46–61, 2014. [75] Uta Maria Jürgens and Paul MW Hackett. Wolves, crows, and spiders: An eclecticliterature review inspires a model explaining humans’ similar reactions to ecologicallydifferent wildlife.Frontiers in Environmental Science, 9:3, 2021. [76] Joseph Muscat, David Buhagiar, et al. Connective spaces.Mem. Fac. Sci. Eng. ShimaneUniv. Series B: Math. Sci, 39:1–13, 2006.72 [77] Amir Bashan, Ronny P Bartsch, Jan W Kantelhardt, Shlomo Havlin, and Plamen ChIvanov. Network physiology reveals relations between network topology and physio-logical function.Nature communications, 3(1):1–9, 2012. [78] Frédéric Chazal and Bertrand Michel. An introduction to topological data analysis:fundamental and practical aspects for data scientists.arXiv preprint arXiv:1710.04019,2017. [79] Herbert Edelsbrunner. Persistent homology: theory and practice. 2013. [80] Afra Zomorodian. Fast construction of the vietoris-rips complex.Computers & Graph-ics, 34(3):263–271, 2010. [81] Jean-Daniel Boissonnat and Monique Teillaud. Effective computational geometry forcurves and surfaces. 2006. [82] Cecil Jose A Delfinado and Herbert Edelsbrunner. An incremental algorithm for bettinumbers of simplicial complexes on the 3-sphere.Computer Aided Geometric Design,12(7):771–784, 1995. [83] Elad Elrom. Neo blockchain and smart contracts. InThe Blockchain Developer, pages257–298. Springer, 2019. [84] Ian Grigg. Eos-an introduction.White paper. https://whitepaperdatabase. com/eos-whitepaper, 2017. [85] Christian Cachin et al. Architecture of the hyperledger blockchain fabric. InWorkshopon distributed cryptocurrencies and consensus ledgers, volume 310. Chicago, IL, 2016. [86] Yin Yang.Linbft: Linear-communication byzantine fault tolerance for publicblockchains.arXiv preprint arXiv:1807.01829, 2018tr_TR
dc.identifier.urihttp://hdl.handle.net/11655/26086
dc.description.abstractThe scalability problem in blockchain technology seems to be the essential issue to be solved. It is known that the choice of a compromised algorithm is critical for the practical solution of this important problem. Usually, Byzantine Fault Tolerance (BFT) methods based on the public blockchain networks have been most widely applied to solve scalability. In this thesis, we formulate two possible cases to scale the blockchain. Instead of the frequently used proof-of-work or stake methods to form the consensus committee, allowing BFT-based methods, we propose a new model. This new model calculates the reputation value for the nodes that want to join the leader (trust) committee using particle swarm optimization (PSO). It is a computational method for optimizing a problem by improving a candidate solution against a specified quality metric. It solves the problem by populating the search space, so-called particles and moving these particles around according to a simple mathematical formula over the particle's position and velocity. To discard the misbehaving nodes from the trust leader committee, new nodes with high reputation values are selected. Since this study focuses on creating the consensus committee, a simulation test the proposed model more effectively. The results show that the proposed model successfully selects the nodes with high confidence to the consensus committee instead of the malicious nodes. To select an updated trustworthy committee and then allow all network users to join at any time to protect the blockchain network's security is in general insufficient. However, suspicious nodes must be avoided at all costs. We utilize a straightforward strategy inspired by bio-dynamic systems to deflect the trust committee's focus from the assaulting nodes. Removing poorly-tailored nodes increases the selection of honest nodes or participants. We propose an unsupervised machine learning to solve the current challenge by applying a Grey Wolf Optimization (GWO) technique. In addition, blockchain studies have recently been splitting the blockchain to address the scalability problem focused on sharding. Sharding is a helpful technique for exploring fundamental computational challenges in blockchain technology, such as consensus, Byzantine fault tolerance, and self-stabilization. The sharding method creates a small, segmented blockchain network. Rather than creating a more extensive network, networks with fewer nodes are established. Additionally, successful sharding can be applied to various areas, resulting in significantly speedier processes. Our solution will give a safe and dependable use of blockchain components by analyzing the system and fitting the shard size using the Topological Data Analysis (TDA) with the help of an unsupervised machine learning technique. In order to achieve our goal, the Linear Programming Problem (LPP) is constructed and solved using the Dual-Simplex approach to determine the best shard size. Additionally, we segmented the blockchain network using our system. The test results show that reputation values boosted the parties' reliability. Then the likelihood of any piece collapsing and harming the entire blockchain decreases.tr_TR
dc.language.isoentr_TR
dc.publisherFen Bilimleri Enstitüsütr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectBlockchaintr_TR
dc.subjectScalability
dc.subjectConsensus protocol
dc.subjectSharding
dc.subjectByzantine fault tolerance (BFT)
dc.subjectMachine learning
dc.subjectParticle swarm optimization (PSO)
dc.subjectGrey wolf optimizer (GWO)
dc.subjectTopological data analysis (TDA)
dc.subjectBetti number
dc.subjectSimplicial complex
dc.subjectLinear programming problem (LPP)
dc.subjectDual-simplex optimization method
dc.subject.lcshSiyaset kurumları ve kamu yönetimi (Kuzey Amerika)tr_TR
dc.titleCombınatorıal Solutıons For Consensus Algorıthms And Blockchaın Shardıngtr_en
dc.title.alternativeMutabakat Algoritmaları ve Blokzinciri Parçalanması için Kombinatoryal Çözümlertr_TR
dc.typeinfo:eu-repo/semantics/doctoralThesistr_TR
dc.description.ozetBlokzinciri teknolojisindeki en büyük zorluklardan biri ölçeklenebilirlik sorunudur. Ölçeklenebilirlik probleminin pratik çözümü için kritik öneme sahiptir. Ölçeklenebilirliği artırmak için, blokzinciri uygulamalarına katılan uzmanlar, teknolojinin sınırlamalarını belirtebilir. Byzantine Fault Tolerance (BFT) tabanlı yöntemler en yaygın olarak genel blokzincir ağlarına dayalı olarak uygulanmıştır. Ölçeklendirme için iki olası durum çalışılır.\\ Konsensüs komitesini oluşturmak için sıklıkla kullanılan Proof of (Work, stake,...) yöntemleri yerine, BFT tabanlı yöntemlerin kullanımına izin vererek yeni bir model değerlendirmesi önerilmiştir. Bu model, particle swarm optimizasyonunu (PSO) kullanarak lider komiteye katılmak isteyen düğümler için itibar değerini hesaplar. Bu, belirli bir kalite metriğine göre bir aday çözümü geliştirerek bir sorunu optimize etmeye yönelik bir hesaplama yöntemidir. Arama uzayını parçacık denilen olası çözümlerle doldurarak ve bu parçacıkları parçacığın konumu ve hızı üzerinde basit bir matematiksel formüle göre hareket ettirerek çözer. Güven Lideri Komitesindeki düğümlerin zararlı olma olasılığını azaltmak için, komite için yüksek itibar değerlerine sahip uzlaşma düğümleri seçilir. Bu çalışma fikir birliği komitesi oluşturmaya odaklandığından, önerilen modeli daha etkin bir şekilde test etmek için python'da simülasyon kullanılmıştır. Test sonuçları, önerilen modelin, kötü niyetli düğümün varlığında fikir birliği komitesnin yüksek güven ile düğümleri başarıyla seçtiğini göstermektedir.\\ Güncellenmiş güvenilir bir komite seçip, komiteyi güncelleme ve ardından blokzinciri ağının güvenliğini korumak için tüm ağ kullanıcılarının herhangi bir zamandaki katılımına izin vermek hedeflerini karşılamak genel olarak yetersizdir. Şüpheli düğümlerden ne pahasına olursa olsun kaçınılmalıdır. Liderlik komitesinin odağını saldıran düğümlerden saptırmak için biyo-dinamik sistemlerden ilham alan basit bir strateji kullanıyoruz. Yıkıcı düğümleri tespit etmek için elde edilen yöntemden kötü uyarlanmış düğümleri kaldırmak, dürüst düğümlerin veya katılımcıların seçimini de artırır. Grey Wolf Optimizasyonu (GWO) tekniği uygulayarak mevcut sorunu çözmek için denetimsiz bir makine öğrenimi öneriyoruz.\\Ayrıca, blokzinciri çalışmaları son zamanlarda parçalamaya odaklanan ölçeklenebilirlik sorununu ele almak için blokzincirini bölüyor.\\ Sharding, blokzinciri teknolojisindeki fikir birliği, Bizans hata toleransı ve kendi kendini dengeleme gibi temel hesaplama zorluklarını araştırmak için yararlı bir tekniktir. Parçalama yöntemi, küçük, bölümlere ayrılmış bir blokzinciri ağı oluşturur. Daha kapsamlı bir ağ oluşturmak yerine, daha az düğümlü ağlar kurulur. Ek olarak, başarılı bir parçalama çeşitli alanlara uygulanabilir ve bu da önemli ölçüde daha hızlı işlemlerle sonuçlanır. Ölçeklenebilirlik çözümümüz, denetimsiz bir makine öğrenimi tekniği yardımıyla Topological Data Analysis (TDA) kullanarak sistemi analiz ederek ve parça boyutunu bu süreç için uygun hale getirerek blokzinciri bileşenlerinin güvenli ve güvenilir kullanımına katkıda bulunacaktır. Doğrusal Programlama Problemi (LPP), en iyi parça boyutunu belirlemek için Dual-Simplex yaklaşımı kullanılarak oluşturulur ve çözülür. Ek olarak, sistemimizi kullanarak blokzinciri ağını bölümlere ayırdık. Test bulguları, itibar değerlerinin eklenmesinin parçaların güvenilirliğini artırdığını göstermektedir. Daha sonra herhangi bir parçanın çökme ve tüm blokzincirine zarar verme olasılığı azalır.tr_TR
dc.contributor.departmentMatematiktr_TR
dc.embargo.termsAcik erisimtr_TR
dc.embargo.lift2022-04-01T10:45:07Z
dc.fundingYoktr_TR
dc.subtypeannotationtr_TR


Bu öğenin dosyaları:

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster