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ABSTRACT

INVESTIGATION OF THERMAL EFFECTS ON TISSUES
DURING LASER APPLICATIONS

Umut KAYA

Master of Sciences, Department of Mechanical Engineering
Thesis Supervisor: Assist. Prof. Dr. Ozgiir EKiCI

September 2019, 104 Pages

With the development of technology, laser applications have become one of the important
methods for the health sector. A better understanding of laser-tissue interaction can
improve the effectiveness of treatment and diagnosis. Moreover, the usage of laser in the
health sector can be expanded. However, laser application causes tissue to warm up.
Undesirable conditions may be encountered during treatment or diagnosis if this warming
does not fall within certain limits or if it cannot be maintained within the desired area /
volume. With the help of mathematical models, this thermal effect which is experienced
in laser tissue interactions can be calculated in advance. Thus, unwanted situations can be

avoided.

In this study, a mathematical model was developed to understand the thermal effects of
laser on tissues. This model is formed based on porous media theory. It is based on the
fundamental energy equation and is derived as a macroscale model taking into account
the mechanisms at the microscale. During the model derivation phase, tissue and blood

were assumed to be under local thermal nonequilibrium conditions.



The developed model was solved using numerical methods. The solution was performed
using MATLAB program. The obtained results were compared with Pennes and DPL
model which are frequently used in literature. Differences between the results of the
models were observed and the possible reasons of them were discussed. The effect of

porosity and properties of laser irradiance on temperature was also investigated.

Keyword: Living Tissue, Bioheat transfer, laser irradiance, Porous media



OZET

LAZER UYGULAMALARININ DOKULAR UZERINDEKI
TERMAL ETKIiLERININ INCELENMESI

Umut KAYA

Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Damismani: Dr. Ogr. Uyesi Ozgiir EKICI

Eyliil 2019, 104 Sayfa

Teknolojinin gelismesi ile birlikte lazer uygulamalar1 saglik sektorii icin Snemli
yontemlerden birisi olmustur. Lazer ile doku etkilesiminin daha iyi anlagilmasi ile tedavi
ve taninin etkinligi arttirilabilir. Dahasi, saglik sektoriinde lazer kullanimi genisletilebilir.
Ancak, lazer uygulamasi dokunun i1sinmasina neden olur. Bu 1sinmanin belirli limitler
igerisinde kalmamasi durumunda veya istenen alan/hacim i¢inde tutulamamasina bagl
olarak tedavi ya da tan1 sirasinda istenmeyen durumlar ile karsilagilabilir. Matematiksel
modeller sayesinde lazer doku etkilesimlerinde ortaya ¢ikan bu termal etki dnceden

hesaplanabilir. Boylelikle istenmeyen durumlarin oniine gegilebilir.

Bu ¢alismada lazerin doku tizerindeki termal etkisini anlamak amaciyla matematiksel bir
model gelistirilmistir. Bu model gozenekli ortam teorisi esas alinarak olusturulmustur.
Temel enerji denklemine dayanmaktadir ve mikro dlgekte mekanizmalari dikkate alarak
makro Ol¢ekli bir model olarak tiiretilmistir. Model tiiretme asamasinda doku ve kanin

lokal olarak termal dengedis1 kosullar altinda oldugu varsayilmustir.

Olusturulmus olan model numerik yontem kullanilarak ¢oziilmiistir. Coziim islemi

MATLAB programi kullanilarak yapilmistir. Elde edilen sonugclar literatiirde siklikla



kullanilan Pennes ve DPL modeli ile karsilastirilmistir. Modellerin sonuglar1 arasinda
farkliliklar gozlenmis ve bu farkliliklarin nedenleri tartisilmigtir. Ayni zamanda
gozenekliligin ve lazer 1sinmmunin Ozelliklerinin  sicaklik {izerindeki etkisi de

incelenmistir.

Anahtar Kelimeler: Canli doku, biyoisi transferi, lazer 1sinimi, gézenekli ortam



TABLE OF CONTENTS

F N S I 2 ¥ RSP |
OZET et 1
LIST OF FIGURES ..ottt sttt VI
LIST OF TABLES. ...ttt IX
LIST OF ABBREVIATIONS. ..ottt sttt X
NOMENCLATURE ..ottt sttt e ene e XI
(O o A o I SRRSO 1
INTRODUCTION AND LITERATURE REVIEW .....ccooiii e, 1
00 R 101 oo [FTox 1 oo I PRSPPSO 1
1.2 Heat Transfer in LIVING TISSUE ......ccoiviiiiiieieiesiesesee e 2
1.2.1  Classical (Fourier) MOdels..........cccoieiiiieiieiicc e 2
1.2.1.1 The Pennes Bio-heat EQUAtION ...........ccccceeviiiieiieie e 2
1.2.1.2  WUIff Continuum MOdel..........coovviiiiiiiiiiiceee e 3
1.2.1.3 Klinger Continuum MOUEl .........cccoeiiiieiiiiiiic e 3
1.2.1.4 Chen-Holmes (CH) Continuum MOodel ..........cccceviiineniieniiisiceee 3
1.2.1.5 The Weinbaum and Jiji (WJ) Bio-heat Equation Model......................... 5

1.2.2  Non-Fourier Continuum MOdElS .........ccoviiiiiiiiiiereee e 5
1.2.2.1 Thermal wave model of bio-heat equation............ccccceceviienininiiieien, 6
1.2.2.2 Dual phase lag (DPL) Bio-heat EQUALtION............cceverieriiieniiiniceeeene 6
1.2.2.3 Generalized Dual-Phase Lag Bio-heat Equations.............cc.ccccevevveinennen. 7

1.2.3  Fractional Bio-heat EQUatiON...........cccccoivieiieii i 7
1.2.4  Porous Media MOEIS ........cccovoieiiiieiece e 8
1.2.4.1 Two Temperature EQUatioN..........cccccvivieiiiie i 8
1.2.4.2 Three Temperature EQUALION...........ccoereriiininiiieieese e 8

1.2.5  Structural Vascular NetWOrK ..........cccoooviieiiieiiiiicieseee e 9

1.3 Addition of Laser Irradiation as a Heat SOUICe...........cccovvveveriieneeresie e 13
1.4 Aimand Scope Of the THESIS ......ccoiiiiieiie e 13
CHAPTER 2 ..ot ettt sttt r et ne et 14
THEORY AND MODELING ..ottt 14
S I 1< o Y TSP 14
2.1.1  Volume —Averaging TEOIY .......cccccveiiiiiie e 15

2.2 GOVErning EQUALIONS.........ooiiiiiiiiiiieieie e 19



CHAPTER 3. 27

SOLUTION METHODOLOGY ....oviiiiiiieiieiesieieiesie et sse e ssessessssessesens 27
3.1 Numerical SOIULION PrOCEAUIE..........oiiiiiiie e 27
3.1.1  Discretization of Governing EQUAatiONS .............cccoovriiieieienene s 28

3.2 CONVEIGENCE STUAY ....ueiuieiieieieitesie ettt 30
3.2.1  Grid CONVErgence STUAY .......cccooeriririiieieiesiese s 32
3.2.2  Time Step CoNVErgence StUAY .......cccccueiveriiiieeieeie e se e 34

3.3 C0ode Validation ........cceeieiiieiiesie e 35
CHAPTER 4.ttt sttt st ne st 39
RESULTS AND DISCUSSION .....ooiiiiiiiieiiieiieiee ettt ssesnens 39
4.1  Comparison Of MOGEIS ........c.coiiiiiiiie e 39
4.2 EFFECT OF POTOSITY .. .cueiiieiiiiiieie e 41
4.3  Effect of Laser Irradiance and EXPoSUre TIMe........cccoovvirieieienenenenie e 44
(O o A el I PR 46
CONCLUSIONS AND FUTURE WORK ....oooiieiiiiiiieisieseieese e 46
REFERENGCES ... ..ottt sttt sttt nne e 48
APPENDIX A ottt re s 57
Discretization of Model in This StUAY .......cccccviieiiiiiiceee e 57
APPENDIX B ...ttt ettt 63
Discretization of The Pennes MOGEl .........cccoevviiriieiiiieseee e 63
AN o N 15 R 67
Discretization 0f DPL MO .........covoiiiieiece e 67
APPENDIX D oottt ettt et e e e e e e e e e e e e nnraeeeann 73
MATLAB Code for Model in This StUdY .........ccooveiiiiiieee e 73
APPENDIX E...oooiicieieet ettt 83
MATLAB Code for Pennes MOdEl ...........coiiiiiiiiiiiieee e 83
APPENDIX F oottt sttt 92
MATLAB Code for DPL MOGEL ..........coieiieiecie e 92
APPENDIX G ..ottt ettt et e et e et e et e e et e e e nrae e 102
MATLAB Code for TZou’s STUAY ...coveeiiiiiieiieiieesee e 102
CURRICULUM VITAE ..ottt ettt 104

Vi



Figure 1.1
Figure 1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 2.1.
Figure 2.2.
Figure 2.3
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

Figure 3.8.

Figure 3.9.

Figure 3.10.

Figure 4.1.

Figure 4.2.

Figure 4.3.

Figure 4.4.

LIST OF FIGURES

Thermal damage after laser is applied [7] .....ccooeieieieiiiiie, 1
Representation schematic of the volume of tissue [21,22] ......c..cccccovevenen. 4
Example of the fractal structure [69] .........cccooviieiiieiiii e, 9
Classification of mathematical models based on Fourier approach ......... 11

Classification of mathematical models based on Porous Media approach12

Representation of Biological TiSSue [78] ......cccevvvveivereiieiieceee e, 15
Example of Control Volume in Porous Media [79].........ccccoovevviieiieennnnn, 16
Thermal dispersion effect on the other models in literature [66]. ........... 20
Blood Vessel Alignment in TiSSUE[89]......cccvvriiiiieiiienereeeeeee, 28
Physical Model of 1D ANAlYSIS .........cccveveiiiiieiecese e 29
Grid System of 1D ANAIYSIS .......coviiiiiciece e 29

The maximum temperature with respect of the number of grids in 808nm
laser application (strongly SCattering Case). .......ccocvvvververeeneereseeseereeens 33
The maximum temperature with respect of the number of grids in 1940 nm
laser application (highly absorbed €ase)........cccccovevveveiicceccece e 33
The maximum temperature with respect of the time step in 808 nm laser
application (strongly SCattering Case). ........cccvvvvrieererere e 34

The maximum temperature with respect of the time step in 1940 nm laser

application (highly absorbed Case). ........cccccocvevieiieiiiic i, 35
The temperature distribution using Pennes equation. ............ccoccvevevennne. 37
The temperature distribution using DPL equation.............c.ccoccvvvvenenne. 37

The temperature distribution using the mathematical model developed in
ENIS SEUAY. .. 38
Evolution of temperature at the irradiated surface in 808 nm laser
application (strongly SCattering Case). ........ccocvverieerereneneseseseeee e 40
Evolution of temperature at the irradiated surface in 1940 nm laser
application (highly absorbed case). ........cccceviiiiiici e, 41
In 808 nm laser application (strongly scattering case), the effect of porosity
on the temperature at the irradiated surface. ..........ccccoecevvevviienieesnsiiennn, 42
In the 1940 nm laser application (highly absorbed case), the effect of

porosity on the temperature at the irradiated surface.............ccceevernnnne. 43

VIl



Figure 4.5.

Figure 4.6.

In 808 nm laser application (strongly scattering case), the effect of laser
irradiance and exposure time on the temperature at the irradiated surface.

In 1940 nm laser application (highly absorbed case), the effect of laser

irradiance and exposure time on the temperature at the irradiated surface.

VIl



Table 3.1
Table 3.2
Table 4.1

Table 4.2.

LIST OF TABLES

Thermophysical Properties. .......c.covveiveieiierece e 31
Optical properties Of LISSUE. ......c.cccveveiieriee e 32
Porosity and diameter of blood vessel. ..o, 42
The exposure time and intensity of laser irradiance ...........ccccoevevviinnen, 44



CH
WJ
DPL
1D

LIST OF ABBREVIATIONS

Chen-Holmes
Weinbaum and Jiji
Dual phase lag

One dimensional



Pe
Vs

AH

Ny

NOMENCLATURE

Thermal diffusivity

Thermal Conductivity

Effective Thermal conductivity

Density

Constant Pressure heat capacity
Temperature

Time

Exposure Time

Coefficient of thermal expansion

Coupling factor between intravascular and extravascular regime
Viscous Stress Tensor

Velocity

Mean velocity

Local mean velocity

Pressure

External Heat Source

Source Term

Perfusion Term

Metabolic Heat Generation

Geometrical shape factor

Volume

Peclet Number

Volume of fluid

Variable

Intensity of Laser Irradiance

Extend of reaction

Enthalpy of formation the metabolic reaction
Porosity

Unit vector pointing outward from the fluid side to the membrane matrix
side

Number of vein or artery

Xl



Aint
a

Tq
T
R

h
Rd
Rs
Ha
Us
Lt

d
Oa
9
Nu
Subscripts

~—+

< @9 T »

Superscripts

1)
0)
(-1)

Perfusion bleed-off velocity per unit vessel surface area
Interfaces between the fluid and membrane matrix
Specific surface area

Phase lag of the heat flux

Phase lag of the temperature gradient

Radius of vessel

Interfacial heat transfer coefficient

Diffuse Reflectance

Specular Reflectance

Absorption Coefficient

Scattering Coefficient

Attenuation Coefficient

Effective optical penetration depth

Anisotropy factor

Laser irradiance

Nusselt number

Tissue

Solid

Blood
Artery

Vein
Intravascular

Extravascular

Current time step
Previous time step

One before previous time step

Xl



CHAPTER 1
INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction

Owing to the current interdisciplinary scientific studies and research, many new
technologies are emerging in the health sector. These new technologies provide a basis
for improved diagnosis and treatment techniques. One of them is laser applications. Laser
has recently been used extensively in the health sector for diagnostic and therapeutic
purposes [1]. The main reason for that is; laser makes operations possible that cannot be
performed by traditional methods [2]. Additionally, laser provides high precision for
diagnosis and treatment [3]. Also for various applications, the use of laser is more
practical compared to traditional methods [4]. Therefore, it is important to understand the
interaction of laser radiation with tissue cells. Experimental and theoretical studies are
performed to gain better understanding of the effects of laser on tissue with the objective
of making laser applications safer and more efficient.

One of the effects caused by the laser radiation is the heat effect. Due to this effect, desired
temperatures can be reached in the application zone [5]. However, the temperature rise
may be an undesirable effect, depending on the purpose of the application. Because of the
heat transfer mechanism, temperature increase is observed in the tissues around the
primary application area. This increase in temperature can cause irreversible damage to

the cells, as shown Figure 1.1 [6].

. - Laser
Vaporized - 2 PEN AN AN MY
tissue ' VeVeVey, *
Ablation zone ~——<‘ — - \\ ] // , =7 "J.‘l,f"u;,,
Residual -
thermal

damage layer

Figure 1.1 Thermal damage after laser is applied [7]
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For this reason, it has been tried to calculate the temperature increase due to laser radiation
by experimental and theoretical methods. Conducting experiments for each application
are costly and require time. Therefore, the calculation of the temperature increase by
mathematical models has become important. Thanks to these models, the temperature
distribution within the tissue formed after the application can be estimated and the high
temperatures that may occur during the application phase can be prevented.

1.2 Heat Transfer in Living Tissue

1.2.1 Classical (Fourier) Models

Heat conduction in the models presented in this section is explained by using Fourier's
law of heat conduction. Perfusion term is included to consider the effects of blood flow.
This term could behave as a heat source or sink depending on the conditions. These
models consist of transient term, conduction term, perfusion term, metabolic heat source

term and external heat source term as shown below.

oT,
pecpe— = V. (kYT + Qp + Qm + Qs (L)

1.2.1.1 The Pennes Bio-heat Equation

Pennes derived a bio-heat equation based on his experiment results in the late 1940s [8].
This equation is one of the oldest and most practical bio-heat equations. He tried to
explain the heat transfer in living tissue by adding terms such as metabolic heat
production and perfusion heat source to the standard energy equation. The amount of heat
from the blood to the tissue can be calculated by the perfusion term, which refers to blood
passing from the vascular system to tissue. In this equation, it is assumed that temperature
of the blood leaving the tissue is equal to the tissue temperature in order to simplify the
heat transfer calculation. As a result of the addition of the Fourier law of conduction to

the energy equation, the equation called Pennes equation in the literature is derived.

oT,
ptcp,ta_tt =V.(kVT,) + WpPpCp,b (T, = Tp) + Qm + Qs (1.2)

where p; is density of tissue, ¢, is specific heat capacity of tissue at constant pressure,

T; is temperature of tissue, k; is thermal conductivity of tissue, w,is blood perfusion, p,



is density of blood, c,, is specific heat capacity of tissue at constant pressure, T, is
temperature of blood. Because it is one of the fundamental models, many researchers
have used this equation [9-14]. Although solution of this model is simple, there are some
shortcomings. In order to eliminate these shortcomings, studies were conducted and the

obtained results were compared with the Pennes equation.

1.2.1.2 Wulff Continuum Model

Wulff changed the assumptions made in order to overcome the shortcomings associated
with the Pennes equationn [15]. Pennes assumed that the heat transfer between blood and
tissue is proportional to the difference in blood temperatures entering and leaving the
tissue. Wulff, on the other hand, opposes this assumption and claims that this heat transfer
Is proportional to the temperature difference between flowing blood and tissue. As a
result, the directional convective term is defined and this term is used instead of scalar

perfusion term.

o,
Pelpr 7 = V. (kVTe) = ppCppltimp- VTt + PpUim b AHVO + Qs (1.3)

where u;,, , is local mean blood velocity, AH is specific enthalpy of metabolic reaction,
@ is extent of reaction. The model was examined by the researchers and the effect of the

terms added by Wulff on the results was examined [16,17].

1.2.1.3 Klinger Continuum Model
The convective term was added into the Pennes equation by Klinger; so that the lack of

blood flow effect in the Pennes equation was tried to be eliminated [18].

o,
PeCpt5r + ppCppUtp. VT = V. (kVTe) + Qp + Qs (1.4)

Various studies have been done in the literature based on Klinger's research [19,20].

1.2.1.4 Chen-Holmes (CH) Continuum Model
Chen and Holmes [21] adopted the view that the tissue consists of two different regions.
For this reason, it is divided into two areas called the solid-tissue region and the blood

region, as shown in Figure 1.2.



Solid Tissue Fluid Blood

Figure 1.2 Representation schematic of the volume of tissue [21,22]

By using Volume-Average technique, energy equations are created separately for these
two regions. The energy equation for the blood region, unlike the solid-tissue region,
contains a term for the bulk fluid flow. The two equations then are combined using a
porosity factor, which indicates the relationship between the two sub-volumes. Thus, a
continuum model was created for the tissue. Based on the assumption that the porosity
factor is less than one, the effective thermal conductivity coefficient is assumed to be
equal to the thermal conductivity of the tissue. The heat transfer due to blood flow is
divided into three different parts. Firstly, the blood perfusion part is limited that blood
enters into the tissue from only micro vessels. The temperature of the blood entering the
tissue was also assumed to be not equal to the temperature of the tissue. Secondly, the
effect caused by the transport of blood is considered. Thirdly, the change of the thermal
conduction coefficient due to the flow of blood is implied. The final form of the equation
is formed by the addition of the perfusion term by combining these three factors into the

equation formed.

aT, .
ptcp_ta—tt = V. (ke VT:) + Wy ppCpp (T " — Te) — puCppUp. VT + V. (kpVT,) + Qm + Qs (1.5)

The results of this model have been used in various studies and their results have been
examined [22-25].



1.2.1.5 The Weinbaum and Jiji (WJ) Bio-heat Equation Model

Weinbaum, Jiji and Lemons modified thermal conduction as effective thermal conduction
using blood flow velocity and vessel geometry [26,27]. Arteries and veins were
considered parallel to each other in the formation of vessel geometry. Flow directions are
assumed to be opposite to each other and the countercurrent heat transfer effect between
them is included in this way. The energy equation was written separately for the artery
and vein. These equations are combined and then they added to the general energy
equation to find out the interaction between tissue and blood. Consequently, contrary to
the Pennes equation, the term perfusion is dependent on the arterial and vein temperature

difference.

d
pbcp,b (nvnRzub,m) % [Ta - Tv] - pbcp,b (YLVZTL'Rg) (Ta - Tv) =V. (ktVTt) + Qm + Qs (16)

where n, is the number of veins or arteries, R is the radius of vessel, u,, ,, is the mean
velocity of blood, g is the perfusion velocity per unit vessel surface area. Since this model
was difficult to implement, Weinbaum and Jiji simplified it [28]. This equation contained
two unknowns, such as arterial and vein temperature. In order to calculate the tissue
temperature, it was assumed that the average of these two temperatures was equal to the
tissue temperature. In addition to that, heat transfer between artery and vein was expressed
in terms of geometrical shape factor.

nvanka <2gPe dT, d [RPe dT,
e

4k, —_— > =V.(k,VT,) + Qp, + Qs (1.7)

oupm ds dsl o ds

where Pe is the Peclet number, o is the shape factor. Many researchers examined the
simplified equation in the literature and obtained results were compared with results of
other models [29-31].

1.2.2 Non-Fourier Continuum Models

Roemer et al. [32] and Mitra et al. [33] observed that temperature shows wave-like
behavior and oscillations in experiments. These could not be explained by Fourier law of
heat conduction. For this reason, in order to overcome this shortcoming, phase lags were
added to the Fourier equation by researchers. These models show continuum

characteristic.



1.2.2.1 Thermal wave model of bio-heat equation

Fourier law of heat conduction assumes infinite speed of heat wave propagation.
However, the experimental results show that this propagation has a finite speed due to
photon collusion process [34]. This effect can be captured with the use of relaxation time.
Based on this idea, Cattaneo [35] and Vernotte [36] added phase lag for the heat flux in
the Fourier equation. By this concept, the general state of the thermal wave model of bio-

heat equation has been obtained.

0°T, Wy, 0pC oT Wy, ppC
t+<1+ bPbCp,b Tq) t bPbCp,b Qm Qs (1.8)

— — =V.(a;VT,) + (T, —T) + +
at? PtCpt at e tCp,t bt PtCpt  PtCpt

where 7, is the phase lag for heat flux. This model has been the subject of various
researches due to advantages of capturing finite speed heat wave propagation. Using
different boundary conditions, the results were compared with other models, especially

with the one developed by Pennes [33,37-39].

1.2.2.2 Dual phase lag (DPL) Bio-heat Equation

In addition to relaxation behavior, Fourier law ignores the thermalization behavior. This
behavior occurs due to finite speed energy transfer between photons and electrons in
photon electron interaction, in other words a finite time is required to reach thermal
equilibrium condition between photons and electrons. It causes a delay in temperature
gradient [34]. Although the thermal wave model can solve the problem of infinite speed
of heat wave propagation, it ignores the microstructural effect. Therefore, a phase lag for

temperature has been added by Tzou to incorporate this microstructural effect.

0°T, Wy, 0pC oT, 0
Ly <1 + qu> —L =V.(a,VT,) + 11 5% (V. (a,VTy))

at? PeCpt ot
Wy 0pC
+ bPp p,b (Tb _Tt) + Qm + Qs (1.9)
PtCpt PtCpt  PtCpt

where 7 is the phase lag for temperature. Many researchers preferred to use this model
due to its ability to showing microstructural behavior. The results are compared with

models such as Pennes equation and thermal wave model of bio-heat equation [40-44].



1.2.2.3 Generalized Dual-Phase Lag Bio-heat Equations

In the DPL equation, the effect of blood was added as a perfusion heat source and the
blood region was neglected. Zhang argued that the blood region should be taken into
consideration and the blood and tissue regions should be handled separately [45].
Therefore, Zhang formed two different equations, one of which is for blood, and the other
one is for tissue. Then a single equation was obtained by combining these equations.
Using the assumption suggested by Khaled and Vafai [46], blood velocity was eliminated
from the equation. Finally, this equation was transformed into the form of DPL equation.
As a consequent of these, phase lags of DPL equations can be expressed in terms of blood

and tissue parameters.

9%T, 0T, J

Taggz T = V- (e VTe) + 115 (V' (aeffVTt)) + (ocy) .. Ty =Te)
P sy
1-¢ + EPpC a 0
(1-8)Qu+0Qr | £ppcy [(1 9 ggn +%] (1.10)
(pcp)eff G(Pcp)eff
_ e-e)pmepscs _ s-o)ppenks

where 0= T G0y, LT

The results obtained under different conditions were compared with the results of DPL

model and other models in the literature [47-50].

1.2.3 Fractional Bio-heat Equation

Pennes equation has several assumptions that decrease its accuracy. In order to increase
the accuracy of results, fractional differential equation is embedded into Pennes equation
[51,52]. So, the effects of anomalous heat transport phenomena are tried to be captured.
This process can be done by time fractional and/or space fractional equation [53]. General

form of the fractional bio-heat equation for 1D is as following;

9%T, aPT,
PtCpe 9ta = k¢ 9P (Ty) + WbeCp,b(Tb —T¢) +Qm + Qs (1.11)
where a€(0,1] and p € (1,2]



In addition to fractional form of Pennes equation, fractional from of thermal wave model
of bio-heat equation and fractional from of dual phase lag bio-heat equation are studied
in the literature [54-56].

1.2.4 Porous Media Models

In Porous media models, it is assumed that the tissue consists of two regions which are
solid matrix and blood flowing through the spaces between this matrix. Then they were
evaluated separately. It was created based on the microstructure in the formation of
equations and then extended to apply to macro structures. This was done by using volume-
averaging theory [57]. The assumptions of local thermal equilibrium [58] or local thermal

non-equilibrium [59] were used to combine these generated equations.

1.2.4.1 Two Temperature Equation
In this method, the tissue is divided into two different regions. The energy equations are
written separately for the regions expressed as blood and solid [60,61]. A volumetric

relationship was established between each other using the porosity factor.

oT,
EPpCh I:a_tb + uy. VTb] =V. (keff,bVTb) + abhb(Ts - Tb) + SQS (112)

(1= &)psCs 52 = V. (e, sVTy) = aphy(Ty = T) + (1= £)Qm + (1= £)Qs  (1.13)

where ¢ is the porosity of tissue, a,is the specific surface area, h,, is the interfacial heat
transfer coefficient. The results of the studies using this model are compared with the
other models in the literature [62—64].

1.2.4.2 Three Temperature Equation

In these models, the blood region is divided into 2 parts as arterial and venous region in
order to incorporate the countercurrent heat transfer effect. The equations for these three
regions are written separately [65]. When writing these equations, two different porosity
factors are used, one for the artery and the other for the venous regions.

oT
EaPaCpa [5—; +ug VTa] = V. (ke VTa) + Agha(Ts — Tp) + £40s (1.14)



aT,
E0PyCpy [a—t” + u,. VTU] = V. (keffuVTy) + ayhy,(Ts — T,) + ,Q5 (1.15)

T
(1 — & — Sv)pscp,s ot =V. (keff,sVTs) - aaha(Ts - Tb,a) - avhv(Ts - Tv)
+(1—e;—6)Qm+ (1 —¢g4 —&,)0 (1.16)

The effect of countercurrent heat transfer is investigated with this approach and results

are compared with similar models in literature [66,67].

1.2.5 Structural Vascular Network

In structural vascular network models, a vascular network is created to add the effect of
blood for heat transfer phenomena. Two approaches are commonly used to construct the
vascular network. In the first approach, the fractal vascular network is formed by using
laws such as Murray law. Then the temperature distribution is obtained for this region.
Since the fractal structure is an approximate structure to the actual vessel network, the
temperature distribution can be estimated in this way [68]. One of the examples of the

fractal structure is shown in Figure 1.3.

e
-1 Vascular tree
(blood vessels)

Figure 1.3 Example of the fractal structure [69]

In the second approach, a general structure was designed using anatomical information.
General temperature distribution was obtained with this structure [70]. However, due to
the complexity of the vessel structure, these models have been difficult to form and solve.



Although there are different methods of calculating the temperature values in living tissue
cells, these can be categorized in two different groups. In the first type of classification,
the use of Fourier approach or non-Fourier approach in the calculation of the heat
conduction is taken into consideration (Figure 1.1). The second type of classification is
based on the usage of porous media approach in the models (Figure 1.2). According to
these two different characteristics, the classification of the models in the literature is

expressed as follows.
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1.3 Addition of Laser Irradiation as a Heat Source

In general, two methods have been followed to include the radiation effect. One of these
is that the heat generated by the laser is defined as the boundary condition. The other one
Is the addition of this effect into the equation as a volumetric heat source. In the first case,
it is assumed that the tissue has a high absorbency. As a result of this assumption, the
laser beam is considered to be absorbed at a very small depth. This situation leads to
occurrence of a heat flux on the surface. Beer-Lambert law can be used to calculate this
heat flux [71,72].

In the other method, different approaches can be used. One of these approaches, the
equation which directly explains this radiation effect is added to the model as a volumetric
heat source [73]. The other approach assumes that the tissue has strongly scattering
characteristic. In this case, radiation effect can be calculated by using diffusion theory
and added as a volumetric heat source. For calculation of the unknown coefficients in

diffusion theory, Monte Carlo simulation is preferred [74][75].

1.4 Aim and Scope of the Thesis

Several studies have been conducted to understand the heat transfer within the tissue. It
IS important to gain a better understanding of heat transfer in laser tissue interaction to
prevent possible errors and to benefit from it more in laser treatment. Therefore, in this
study, a mathematical model will be derived from the basic energy equation. In the
derivation of this model, it is going to be done by using porous media assumption which
is the subject of many researches. In the derivation phase, it is aimed to obtain results
that are more realistic by minimizing the assumptions made. At the same time, the terms
that will make the calculation difficult will be reduced by using assumptions. In this way,
it is aimed to create an easy to use and general mathematical model. The results of this

model will be compared with the other models in the literature.
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CHAPTER 2
THEORY AND MODELING

2.1 Theory
In order to gain understanding of laser and tissue interaction, basic energy transfer
mechanism should be examined. The energy conservation equation with temperature

formulation is given below [76].

DT—V(kVT)+T Dp+v + 2.1
pCth_ . ﬁDt Uit QS (')
Compression and expansion work and viscous dissipation terms are small enough in most
convective heat transfer processes, so that they can be neglected. If they are neglected,

the general form of equation can be reduced to

T
pc, (E +V. (u T)) = V.(kVT) + Q, (2.2)

The living tissue has a complex structure. Heat transfer mechanism in this structure is
affected by factors such as heat conduction in the tissue, heat convection due to blood
flow and blood perfusion. It is therefore difficult to understand and explain the details by
direct application of this equation where the tissue is considered to be a single
homogeneous structure. The tissue can be considered as porous media when the general
structure of it is considered [77]. This structure can be expressed in two regions:
intravascular region and extravascular region (Figure 2.1). Intravascular region is
composed of voids and blood. The extravascular region consists of biological cells and
other solid parts. Therefore, the tissue structure can be approximated as fluid saturated

porous media.
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Blood vessels

Vascular region Extravascular region

Figure 2.1.  Representation of Biological Tissue [78]

The energy equation can be derived separately for these two regions. These equations are
microscale and take into account the microstructure effects. In order to apply the equation
in general and to use macroscopic properties, these equations must be valid in macroscale.
For this reason, the equations written in microscale must be scaled up to the macroscale.
This process can be made by the applied volume averaging method.

2.1.1 Volume —-Averaging Theory
A control volume that considers fluid saturated porous media is defined for this operation,
as shown in Figure 2.2. This volume needs to be a very large volume from a microscopic

point of view and a very small volume from a macroscopic point of view.
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Figure 2.2.  Example of Control Volume in Porous Media [79]
Volume average of a variable ¢ is defined as [79]
=5 [0 23)

Intrinsic average on the other hand, which is another type average, is defined as [79]

1
(0 =37 | @av 24)
Vy

Porosity and relation of two averages are [79]

(@) = e(p)f (2.52)

V
where ¢ = f/V (2.5b)

A variable can be expressed as intrinsic average and the spatial deviation of it [79]:
o =(p) +§ (2.6)
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Spatial average relationships can be represented as following [79],

(P102) = (@1) (@2) +(P1P,) (2.7)
— 1 dA 2.8

W) =¥+ | on 28)

V.p)=V ! dA 2.9

T =T+ [ on 29)

1 1

(Vo) = ;V(s((p)f )+ VF fA mt(p ndA (2.10)

do, ()

(E> =9t (2.11)

Although separate equations are created for the intravascular region and the extravascular
region, these two regions are in interaction. Microscopically, local thermal equilibrium
conditions provide various limitations. As a result of this interaction, two conditions may
occur. One of them is the formation of local thermal equilibrium condition. Another one
is the formation of local thermal nonequilibrium condition. From the microscopic point
of view, local thermal equilibrium conditions are limited to certain situations [80]. For
instance, the local thermal equilibrium condition does not hold when there is a high heat
generation [81]. Another limitation is that this assumption is not correct when the liquid
having the high Reynold number is present [82]. Therefore, mathematical model is
derived under the assumption of local thermal nonequilibrium to obtain a more general

model that is applicable for wider range of circumstances.

Based on the approach explained above, a general mathematical model can be written
describing the heat transfer mechanism within the tissue. The laser interaction can be
incorporated to this model by taking into account the optical properties of the tissue. There
are two main approaches can be followed; one is the assumption that the tissue has a
highly absorbing behavior. The other approach is the assumption that the tissue behaves

as a medium with strongly scattering property.
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For the highly absorbing case, it is assumed that the incident radiation is absorbed in the
tissue at a very small depth and the scattering within the tissue is neglected. The amount

of the fluence rate calculated by using Beer-Lambert's law [83].

9(2) = (1 — Ry)Ye ™% = (1 — R,)I;, e Ha? (2.12)

where 9(z) is the fluence rate in tissue, Ry is specular reflectance, 9;,, is laser irradiance,
U; is attenuation coefficient, u, is absorption coefficient. In the strongly scattering case,
the radiation increases the temperature of the tissue by penetrating into the tissue. The

fluence rate can be calculated by the diffusion theory [73,74].

(29) _ el -29)

9(z) = Uy [Cle §)—Cye\ & ] (2.13)
1

where 6= for p, < Us (2.14)

Bualpg + us']

C:, D;, C,, and D, are unknown coefficients of diffusion theory, § is effective optical
penetration depth, u, is scattering coefficient, u,' is reduced scattering coefficient. Monte
Carlo simulations can be used to determine unknown coefficients of this theory. Gardner
et al. [84] determined these unknown coefficients for laser tissue interaction case by using
Monte Carlo simulation. The determined empirical expressions of unknown coefficients

are as follows.

C, = 3.09 + 5.44R; — 2.12¢("21:5Ra) (2.15)
1 (=20.1Ry)
D;=1- 1_ﬁ e(-20. (2.16)
2 = 4. — 1. d— & e\ 4onid .
C, = 2.09 — 1.47R, — 2.12¢("215Ra) 2.17
D, = 1.63e(4Ra) (2.18)
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Heat generation due to Laser irradiance is added to the equation as a volumetric heat
source for both highly absorbed and strongly scattering cases. The value of the heat source

depends on the absorption coefficient and the fluence rate.

Q@) = a9 (2) (2.19)

2.2 Governing Equations

Living tissue can be described with two separate regions, intravascular and extravascular.
At this point, fluid is assumed incompressible and Newtonian, and all properties are
assumed constant. In addition to these, metabolic heat generation for blood is neglected.
As a result of these assumptions, thermal energy equations for these regions are obtained
by using equation (2.2).

oT;
PiCpi (a_tl + V. (. Ti)) = kV*T; +Q (2.20)
o,
PeCp,e (a—: +V. (ue.Te)) = kV2T, + Q + Qnm (2.21)

These two regions have different characteristics. For this reason, it is necessary to
consider them separately in derivation of valid equations in the microscale. The equations
(2.20) and (2.21) that take microscopic features into account can scale up to the

macroscale using volume average theory.

Taking integral of equation (2.20) for applying volume averaging method to intravascular

region;

1 T, 1 1 1
VLpiCp,iE+VLpicp,iv- (w-Ty) = Vjvkiv T; +vaQi (2.22)

Using relations in the equation (2.3) and (2.5a), equation (2.22) can be expressed as;

aT,
(picp,i E> +{picp, V. (u;- Ty)) = (k;V2T;) +(Q;) (2.23)

19



This derivation can be reached more easily by examining the terms separately in equation
(2.23). Firstly, using the equation (2.11), the first term in the left hand side of equation
(2.23) can be expressed as following;

oT;, o(T;)!
{picpi 57 = epicpi—ps — (2.24)

Secondly, the second term in the left hand side of equation (2.24) can be simplified by
using relations presented in the equations (2.5a), (2.7) and (2.9).

o1
(picp,iV. (u;. Ty)) = picyieV.{u;. T;)' + Vf picpi(u;T;) ndA

Aint
= piCp i€V (u) T + picy €V (T;. T))' + %L picp,;(w;T;) ndA (2.25)
int
When the terms of equation (2.25) are evaluated individually, the second term at the right
hand side is dispersion heat flux. Although it increases thermal conductivity of tissue at
deep layers, effect on temperature is very low. This effect is shown in the Figure 2.3.
Thermal dispersion term can be neglected [66].

Cutansous layar —
Intermediate layer -

T T
Deep tissue layer le—lple
I

[

|

0.8 I
|

|

|

|

0.6 I
|

f
||
I
|
I
|
|
|
|
|
]
I
0.4 :
|

(TY (T 250

(T bren— (T 250

02 I
= Present eq. without dispersion :
== Weinbaum and Jiji |
D a1 3 3 1 g 1 3 3 a3 3 1 5 3 1 JI } .
0 5 10 15 20 /5
Distance [mm]

Skin surface

Figure 2.3 Thermal dispersion effect on the other models in literature [66].
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piCpi€V. (0. Ti) = 0 (2.26)

Fluid transfer in the circulatory system occurs between intravascular and extravascular
region. The amount of fluid leaving and entering the intravascular region is in
equilibrium. At the same time, it can be assumed that the temperature of blood entering
the intravascular region is equation to the temperature of the extravascular region. Hence,
the third term on the right hand side of the equation can be expressed by blood perfusion
[61].

1 )
Vf piCpi (T ndA = pic, ,w((T;)' — (T,)?) (2.27)
A

int

Consequent of these, final version of equation (2.24) will be;

(picpV. (i TY)) = picy V. (u)T) + picpw((Ti) — (T,)¢) (2.28)

Thirdly, using relations in the equations (2.5a) and (2.8), the first term in the right hand
side of equation (2.23) will be;

1
(kivai> = SkiV<VTl'>l + V kl(VTl) ndA

Aint

1

Aint

1
= ek, <V(Ti)l - J
|4 A

int

Second term at the right hand side of equation (2.29) is called tortuosity heat flux. This
term refers to the tendency of the heat flux to circulation. It is small enough to neglect
when convection is much higher to compare with conduction [85]. Third term at the right
hand side of equation (2.29) expresses interfacial heat transfer and it can be evaluated by

Newton’s law of cooling.

kl(VTl) ndA = aihi ((Te)e - (Tl)l) (230)

Aint

Consequent of these manipulations, the final version of equation (2.29) will be;

(k;V2T;) = ek; VAT + a;hy ((Tp)e — (Ti)Y) (2.31)
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For the intravascular region, the macroscale energy equation can be obtained by
substituting equations (2.24), (2.28) and (2.31) into the equation (2.23).

o(Ty)!

€piCpi—g T PiCp i€V (U ATY = keps VXTI + G((Te)e —(Tp)') + €(Q))' (232)
where  k.rr; = gk; (2.33a)
G = picp,ia) + aihi (233b)

The same procedure can be applied to the extravascular region. For this region, porosity

could be expressed in terms of porosity intravascular region.
ge=1—¢ (2.34)

where gte, =1 (2.35)

Taking the integral of equation (2.22) for applying volume averaging method to

extravascular region;

1 T, 1 1 | 1
V-Lpecp,eﬁ-l'v-f‘;pecp,ev- (ue-Te) = Vj;/kev Te +V_];/Qe +VLQm,e (2'36)

Using relations in equations (2.3) and (2.5a), equation (2.36) can be expressed as;

aT,
(PeCp,e W> +{PeCpeV. (Ue. Tp)) = (ko V2T,) +(Qc) + (Qe) (2.37)

The derivation for extravascular region can be obtained more easily by examining the
terms separately in equation (2.37). Firstly, using the relation presented in equation

(2.11), the first term in the left hand side of equation (2.37) can be expressed as following;

oT, (T,)°

E) = (1 - E)pecp,eT (2-38)

(pe Cpe

Secondly, the second term in the left hand side of equation (2.37) can be simplified by
using relations given in equations (2.5a), (2.7) and (2.9).
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1
(pecp,ev- (ue- Te)> = pecp,e(l - S)V- (ue- Te>e + Vf pecp,e(ueTe) ndA

Aint

~ 1
= pecp,e(l — &)V (u)(T,)* + PeCp,e€V. (e Te)® + Vf PeCp,e (ueTe) ndA (2.39)
Aint
First term at the right hand side of equation (2.39) is a convection term. Since the flow is
steady and incompressible, it is assumed that the inlet and outlet flow rates are equal to
each other. For extravascular region, this term can be neglected because intrinsic average
of velocity is zero. Second term at the right hand side of equation (2.39) is dispersion heat

flux. It also can be neglected due to intrinsic average of velocity is zero.

The third term in the right hand side of equation (2.39) has the same characteristic with
the third term in the right hand side of equation (2.25). Therefore, the same assumption
can be made [61]. Using this assumption, third term in the right hand side of equation
(2.39) will be;

1 .
7| petelueTInda = prcyeo (T = (1Y) (2:40)
A

int

Consequent of these, the final version of equation (2.39) will be;

(pecp,ev- (ue- Te)) = picp,iw(<Te)e - <Ti)i) (2-41)

Thirdly, using relations in equations (2.5a) and (2.8), the first term in the right hand side
of equation (2.37) will be;

1
(keV°Te) = (1= )k VVTL)* +5; | ke(VT,)ndA

Aint

1
T, ndA> + v k.(VT,) ndA (2.42)

Aint

1
= ¢k,V (V(Te)e + —f
V),
int
The second term at the right hand side of equation (2.42) is tortuosity heat flux. The
situation for the intravascular region is valid within this region. Therefore it is neglected
[85]. The third term at the right hand side of equation (2.42) expresses interfacial heat

transfer and it can be evaluated by Newton’s law of cooling.
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o[ kT nda = an(ny — (1)%) (2.43)

Aint
After these mathematical manipulations, the final version of equation (2.42) will be;
(keVPT,) = (1= )k VA(T,)® + a;h;((Ty)' = (T.)°) (2.44)

For the extravascular region, the macro-scale energy equation can be obtained by
substituting equations (2.38), (2.41) and (2.44) into equation (2.37).

o(T,)e .
(1 - g)pecp,e % = keff,ev2<Te>e + G(<Ti)l - (Te)e)
+(1 = e)(Qe)® + (1 — ){Qme)” (2.45)
where kepre = (1 —€)k, (2.46a)
G = picp,iw + aihi (246b)

Coupling factor between blood and tissue, G, consists of interfacial heat transfer and
blood perfusion term. Interfacial heat transfer can be calculated by Nusselt number and

vessel properties [61].

al-hl- =—Nu (247)

When it is assumed that blood flow is in fully developed flow regime, Nusselt number
can be approximated as 4.93 based on the Darcy flow model in porous media [86,87].

Using this assumption and equation (2.47) the coupling factor will be;

4£kb
G = pl-cp'l-a) + 493@ (248)

As a result of two separate reviews, energy equation for intravascular and extravascular

region can be written in macroscale perspective as following;

24



For intravascular region,

oT;
EPiCp,i a_tl + EPiCypilU;. VTL = keff’iVZTi + G(Te - Tl) + EQi (249)

For extravascular region,

0
(1 - g)pecp,e a_te = keff,evae + G(Ti - Te) + (1 - g)Qe + (1 - E)Qm,e (250)

To create a general form of equation, it is required to combine two equations. Under
local thermal nonequlibrium condition, these equations can be combined. For this
propose, rearranging equation (2.50);

(1 - g)pecp,e aTe _ keff,e
G at G

(1-2¢) (1-¢)
¢ %"

T, = VT, + T, — Qme (2.51)
Substituting equation (2.51) in equation (2.49);

gpicp,i(l - g)pecp,e azTe _ gpicp,ikeff,e

G o0t? G at G dat
epic, i (1—¢€)o epic,;(1—¢)p,c aT, ep;cyik
_ Pi p,t((; ) %‘rz,e Pi p,L( - )pe p.e ui-v<a_te> _ Pi p,& eff.e ui.V3Te + Spicp,iui-VTe
epic, (1 —¢ epic,;(1—¢ 1—8)poCpokersi aT, k Korri
_ Pi p,t((; )ui-er _ Pi p,LC(; )ui-va,e :( )pg pelteff,i V2 <6_te> _ eff,ez; eff,i V4Te
(1 —&kerri (1 —&kerrs aT,
+keff,iV2Te - Tgmsze - Temszm,e + GTe - (1 - g)pecp,e a_te + keff,eV2Te
—GT, + (1 —€)Q + (1 — €)Qpe + €0; (2.52)
Rearranging equation (2.52);
€piCpi(1 — €)pecy e 07T, aT, keprekersi
—b- G =B atze + (Epicp,i + (1 - g)pecp,e a_te =- EffeG EfflV4Te
ep;c, ik EPiCy ik + (A —&)pecyekerri\ O
+ Pi pz; eff.e ui.V3Te + (keff,e +keff,i)V2Te +< Pi piteff.e (G )pe p.e eff,L)a(vae)
ep;c, (1 —¢)p.cC aT, 1—8)korri 1—8)kerr;
_ Pi p,L( - )pe p.e i-v (a_te) _ 5Picp,iui-VTg _ ( G) eff,i VzQe _ ( C? eff,i Vsz,e
epicyi(1—¢) epicyi(1—¢) epicpi(1—¢€)0Q, €picyi(1—€)0Qme
+7G U;. VQe + 76 ui.VQm_e + G ot + G ot
+(1 - S)Qe + (1 - S)Qm,e + gQi (2-53)
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The final form of the obtained equation has several complicated terms. Some terms in the
equation (2.53) can be simplified by making some assumptions and applying algebraic
relations. First of all, the first term at the right hand side of equation (2.54) is a bi-
harmonic term. This term is very small compared to other terms in the equation (2.53), so
that it can be neglected [88].

It can be assumed that extravascular region is tissue and intravascular region is blood. So
that, the final version of equation based on porous media approach under local thermal

nonequilibrium conditions is found as;

€ppCpp(1 — €)peCpr 0°T, dT,
z C z 5z T (eppcpp + (1 — )pecy ) Fre (kegre + keppp) VATt
EPpCppk EPpCy pk + (1 —¢&)pscy, ik d
n PpCppReffit . VBTt n PpCppKerft ( )pe ptteffb | Y (vat)
G G ot
€ppCpp (1 — €)peCpy T, (1= &kessp
— P - P uy. V (a—tt) — €ppCppUp. VT — %VZQt
(1= &kesrp EppCpp(l — &) EPppCpp(1l — &)
— RV O+ U VQ, + 1. Vi
eppCpp(1 —€) Q¢ €ppCpp (1 —€) Q.
. 1- 1-—
+eQp (2.54)
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CHAPTER 3
SOLUTION METHODOLOGY

Mathematical models explaining the heat transfer on the tissue can be solved by analytical
and numerical methods. Since equation (2.54) has a complex structure, it would be more
appropriate to solve it with numerical methods. There are several approaches in numerical
methods. One of these approaches is the finite volume method. For the finite volume
method, the control volume is divided into very small volumes. The governing equations
are written for each volume and these equations are solved simultaneously. As a result,
the desired values are calculated for all small volumes. Owing to this method,
conservation properties of the equations, which is the energy equation for this study, are
ensured as flux balance is satisfied for all small volumes as well as the complete domain.

It is one of the advantages of the finite volume method over other discretization methods.

In this study, one-dimensional analysis will be made. A simpler and faster solution can
be created with one-dimensional analysis. When the size of the laser beam is greater than
the area where the laser is intended to be applied, a one-dimensional model provides an

adequate solution.
3.1 Numerical Solution Procedure

Before discretization process, the equation (2.54) can be simplified by using some
assumptions. Firstly, in some cases, the volumetric heat source values occurred by laser
irradiance can be accepted to be the same for tissue and blood regions. Secondly, it can
be assumed that the metabolic heat source has a fixed value. Thirdly, it can be accepted
that the vessels in the tissue are arranged parallel to the tissue surface, as shown Figure
3.1. This causes the blood velocity vector to be perpendicular to the temperature gradient
vector and laser irradiance vector. As a result, the second, fourth, fifth and eighth terms
on the right in equation (2.54) becomes zero. Finally, the coefficient of the second-order
derivative of this volumetric heat source has a very small value for the case of strong
scattering case compared to the coefficients of other terms. On the other hand, this
coefficient has a very high value for the highly absorbed case compared to the coefficient
of other terms. It is physically unreasonable that this value is so high for the highly

absorbed case. Therefore the sixth term on the right in equation (2.54) is ignored.
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Figure 3.1.  Blood Vessel Alignment in Tissue[89]

Consequent of these assumptions, equation (2.54) is simplified as follows.

€PpCpp(1 — €)peCyy 02T, oT,
z z Zt + (gpbcp,b + (1 - g)ptcp,t) _t = (keff,t + keff,b)vat
G ot ot
EPpCyp pk + (1 —¢8)pscy, 1k 0 £ppCypp(1—6)0
4 PoCppkerre + ( )PeCptKerrp 2 oveT) + PpCpp( )_Q
G ot G ot
(1-€)Qn (3.1)

3.1.1 Discretization of Governing Equations

In one-dimensional analysis, as seen in figure 3.2, the tissue can be defined as a control
volume with L length. Laser irradiance is considered to be applied to the left surface
whereas the right surface is considered thermally isolated.
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Figure 3.2.  Physical Model of 1D Analysis

For discretization process, control volume is divided into n+1 number cell volume. Cells
at both ends have the half size of cell volume. Except for the first and last cell, grid points
are placed at the center of these volumes. For the first and last cell, grid point is located
at their boundary. Neighbors of grid point P are named as E and W which means east and
west neighbor, respectively. Faces of grid point P also are named as e and w which means
east and west face, respectively. First and last cell length are half of Ax whereas other

cell’s length are Ax, as shown figure 3.3.

-
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Figure 3.3.  Grid System of 1D Analysis

In the solution phase of Equation (3.1), appropriate initial and boundary condition are

required. In this study, the initial temperature is considered constant.

When t=0 T; = constant for 0<x<L (3.2)

Laser irradiance effect for highly absorbed and strongly scattering cases is added to the
equation as a volumetric heat source. Therefore; The boundary conditions are defined
independently of the laser irradiance. However, natural convection, surface radiation and

evaporative cooling affect the left surface of the control volume. Heat losses due to
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radiation and evaporative cooling at the surface are ignored. Convection heat transfer can
be found using Newton's Cooling law. As a result, boundary conditions are as follows.

_6T When <t< t x = 33
_keff axt = he(Too - Tt) € 0<t<toa at x=0 ( )

T, When 0 <t < tioem at x=1L (3.4)
_keff a_x =0

where h, is coefficient of convection heat transfer [W/m2K], T, is ambient temperature

[CO°], T is tissue temperature at left surface [C°].

For applying finite volume method, integration of equation (3.1) is made over control
volume of grid P with time step from t to t+At. Then, Crank Nicolson method is applied
to this equation to obtain the discretized form of the equation. Details of this procedure is
given in Appendix A. To find the temperature, the discretized equation must be
simultaneously solved for all cells. The obtained equations can be solved by using Gauss
elimination method. Using this method, the temperature values of each time step in all
cells are calculated.

3.2 Convergence Study

In this study, an numerical method is used for the solution. Therefore, the convergence of
the results must be checked. A two-stage test is applied to control the approach of the
results. In the first stage, the convergence test is made by taking into account the grid
dimensions. The time step to be used at this stage will be selected taking into account
similar studies in the literature. In the second step, the effect of the time step is examined
by using the grid size specified in the previous stage.

This convergence studies will be done through working cases. In this study, results
obtained from the derived model are compared with the results of the experimental study
conducted with pig skin by Museux et al. [90]. In the study of Museux et al., the heat
values on the tissue are calculated mathematically as well as the experimental study. Due
to similarity of the properties of pig skin with properties of human skin, Museux et al. use
properties of human skin. Although human skin shows similar properties with pig skin,
slight differences are observed. In this study, pig skin properties are used to obtain better

results. Therefore, the values used in this study and the values in the study of Museux et
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al. differ. However, in the case of incomplete or inconsistent properties of pig skin in the
literature, the properties of human skin are used.

First, the general characteristics of the skin should be evaluated. The skin has a multi-
layered structure with different properties. For a simpler solution, it can be assumed that
the tissue has a single-layer structure [91-94]. Therefore, a single-layer skin model is
used in this study. In the literature, the values of the skin are given for multi-layer skin or
single-layer skin. In order to apply the properties of multi-layer leather in a single layer
structure, the values must be modified. The method of weighted average based on the
thickness of layers is applied for this modification. The values obtained by this method
are used when the properties of the single-layer structure were missing or to support the
properties of the single-layer structure. The thermophysical properties used in this study
are given in the Table 3.1.

Table 3.1 Thermophysical properties.
Parameters Values Unit References
Tissue Density 1081.6 | kg/m? [95-97]
Tissue Specific Heat 32385 | J/ kg.K [95,96,98]
Thermal Conductivity of Tissue 04108 | W/ m.K [95-100]
Blood Density 1060 | kg/m? [101-105]
Blood Specific Heat 3770 | J/kg.K [101-104]
Thermal Conductivity of Blood 0.5066 | W/ m.K | [100,102,105-107]
Blood Perfusion 0.00112 | m3 [37,101,103,108,109]
/m3.s
Diameter of Blood Vessel 1.14 mm [102,110-112]
Porosity 0.0060 - [102,110,112-114]
Metabolic Heat Generation 368.1 | wW/m? [104,115-119]
Coefficient of Convection Heat 10 W /m?K [90]
Transfer
Ambient Temperature 22.35 c° [90]

Skin tissue shows different optical properties in the laser of different wavelengths. In
study of Museux et al., two different laser irradiation beams are used at 808 nm and 1940
nm wavelengths. The tissue exhibits strong scattering properties at a wavelength of 808
nm, while it exhibits high absorbing properties at a wavelength of 1940 nm
[91,115,120,121]. Therefore, the effect of 808 nm laser is added to the equation using
diffusion theory. On the other hand, the effect of the 1940 nm laser is added using the
Beer-Lambert's law. The optical properties of tissue used in this study are given in the
Table 3.2.
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Table 3.2 Optical properties of tissue.

Parameters | Values | Unit | References
At 808 nm wavelength
Diffusive Reflectance 0.05 - [122,123]
Absorption Coefficient 78 m~1 [124,125]
Reduced Scattering Coefficient 2104 m~! [124,125]
At 1940 nm wavelength
Specular Reflectance 0.0475 - [122,126]
Absorption Coefficient 5643 m™1 [90,121,126]

For the analysis, laser exposures for 10-second with 14 kW/m? irradiance on the skin for
the wavelengths of 808 nm and 1940 nm are chosen. In the one-dimensional analysis, the
skin tissue is accepted as a 5 cm slab. The initial temperature of the skin is 33.2 degrees
in 808 nm wavelength laser application and 32.9 degrees in 1940 nm wavelength laser

application

3.2.1 Grid Convergence Study

The mechanism of each case is different. Therefore, a grid convergence study should be
performed separately for each case. The solutions are performed by dividing the control
volume to a different number of grids. Maximum temperature values occurred in these
solutions are compared with each other to obtain an optimum number of the grid. For this
study, the time step is chosen as 0.01 second [127]. Firstly, the control volume with 100
grid points is examined. Then the number of grids in the control volume is gradually
increased. The amount of increase is chosen as 10. In this way, maximum temperature
values in 808 nm and 1940 nm laser application are given in the Figure 3.4 and 3.5,

respectively.
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Figure 3.4  The maximum temperature with respect of the number of grids in 808nm

laser application (strongly scattering case).
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Figure 3.5  The maximum temperature with respect of the number of grids in 1940 nm

laser application (highly absorbed case).

When the results are examined, the solution using the 120 grid number gives satisfactory
results. If the number of grids is increased further, the decrease in the maximum
temperature value is less than 0.005 degrees. On the other hand, the effect of the grid
numbers has more at in 1940 nm laser application than the 808 nm laser application. In
the 1940 nm laser application, the number of grids is chosen as 1050.
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3.2.2 Time Step Convergence Study

The study performed for the number of grids should also be performed for the time step.
The optimum time step will be chosen using the grid numbers determined in the previous
stage. This study is performed separately for both wavelength laser applications. Tissue
properties, initial conditions and boundary conditions are the same as the previous study.
This study is performed using five different time steps, which are 0.1, 0.05, 0.01, 0.005
and 0.001 seconds.The maximum temperature values in 808 nm and 1940 nm laser

application are given in the Figure 3.6 and 3.7, respectively.
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Figure 3.6 ~ The maximum temperature with respect of the time step in 808 nm laser

application (strongly scattering case).
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application (highly absorbed case).

Selecting a time step of fewer than 0.01 seconds has a very low impact on the maximum
temperature. Therefore, 0.01 seconds will be selected as the time step for both
applications.

3.3 Code Validation
The validity of the solution of the mathematical model obtained in this study should be
checked. Moreover, the validity of the solution of the DPL and Pennes models to be used

for comparison purposes should be checked.

Model in this study is solved using the numerical procedure in section 3.1. At the same
time, this numerical procedure is also applied to Pennes and DPL models. The details
about discretization of Pennes and DPL models are given in Appendix B and C,
respectively. In addition, MATLAB codes for the three models to be used in this study
are given in appendix D, E and F. It is compared with the solution made by Tzou [128]
to check the validity. All parameters and geometrical properties are chosen the same as
in Tzou's study in order to make the comparison accurate. All parameters and geometric
properties are chosen so that the same parameters in Tzou's study are obtained to make
the comparison accurate. In addition, as in Tzou's study, the parameters to be used in its

solution are dimensionless. The MATLAB code for Tzou's study is given in Appendix G.
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In order to compare the results with Tzou’s results, metabolic heat source and blood
perfusion are taken as zero. The values of some parameters to be used differ according to
the mathematical model. In the Pennes equation, thermal diffusivity is considered to be
1. In addition, the solution of the Pennes model is obtained by using zero for values of
phase lags in Tzou's solution. The thermal diffusivity for the DPL equation is also 1. For
this equation, the heat flux and temperature phase lag values are 0.05 and 0.001
respectively. In order to solve the equation obtained in this study, the coefficients of the

equation are changed. The values of these coefficients are selected as follows.

eppCyp (1 —€)psc
< PoCpp (1 — E)piCpi > = 0.05 (3.17)
G(spbcp,b +(1- S)Ptcp,t)

(Kefre + kerrn)

_ (3.18)

(eppcpp + (1 — )pecyy)

<€Pbcp,bkeff,t +(1- g)ptcp,tkeff:b> =0.01 (3.19)
G(eppepp + (1 — €)pecy,)

For study of code validation, the control volume is a slab with a length of 1. Initially, the
temperature and temperature gradient of the plate is zero. The left surface temperature of
the control volume is then increased to 1. The temperature gradient of the right surface is
considered as zero. For the validation study, temperature values are examined along the
length of the slab at time 0.05 second. The comparison of results of Pennes, DPL and the
equation used in this study with Tzou’s results are given in Figure 3.8, Figure 3.9 and

Figure 3.10, respectively.
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When the results of these mathematical models in one-dimensional analysis are

examined, numerical results are consistent with result of Tzou’s solution.
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CHAPTER 4
RESULTS AND DISCUSSION

In this study, the derived model will be compared with experimental results and the two
models commonly used for laser tissue interaction in the literature. One of the selected
models is the Pennes model, the other is the dual phase lag model. The reason for choosing
the Pennes equation is that it is one of the fundamental equations in the literature and is
widely used. The reason for choosing the DPL model is that it can explain microstructural
effects like thermalization behavior better than other models. In order to understand the
laser-tissue interaction, the effects of the laser beams having wavelengths of 808 nm and

1940 nm are examined.

4.1 Comparison of Models

In this study, the derived model is compared with the other models and experimental
results by examining the time-dependent temperature values of the skin surface. In this
comparison, thermophysical and optical properties are used presented in Table 3.1 and
Table 3.2, respectively. For the solution of Pennes and DPL models, there is no need for
values such as thermal conductivity of blood and the diameter of blood vessel. On the
other hand, blood temperature is required for Pennes and DPL models. It is assumed that
blood temperature equals to initial skin temperature. In addition, phase lag values are
required for the DPL model. In this study, the heat flux and temperature phase lag values
are chosen as 16 seconds and 0.05 seconds, respectively. Other properties are used in this
analysis are as follows. For both applications, the magnitude of laser irradiance is 14 kW
and the exposure time is 10 seconds. In the one-dimensional analysis, the tissue is
accepted as a 5 cm slab. The initial temperature of the skin is 33.2 degrees in 808 nm laser

application and 32.9 degrees in 1940 nm laser application

The temperature of cell 1 corresponds to the temperature value of the laser-irradiated
surface. In the 808 nm laser application, the temperature values obtained by Pennes and
DPL approaches as well as the presented model, which is derived in this study, are shown
in Figure 4.1.
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Figure4.1.  Evolution of temperature at the irradiated surface in 808 nm laser

application (strongly scattering case).

The model derived in this study and the Pennes model, show shows similar trends for the
evolution of temperature. Furthermore, the results of these two models are close to the
experimental results. However, a higher increase in temperature occurs in the DPL model
during the exposure period, because there is a high phase lag for the heat flux and a very
low phase lag for the temperature. The high phase delay for the heat flux causes a delay
in transferring heat to deeper regions. In addition to that, a very low phase lag for
temperature allows the temperature to change suddenly. A similar phenomenon is
observed after the end of the exposure time. This time, this causes a higher drop in

temperature. The model in this study has terms which are not exist in Fourier’s law of

conduction ( 82T,/at? and 9(aT,*/dx?)/at ) like the ones in the DPL model. However,
because of the fact that the coefficients of these terms are low, no sudden temperature

changes occur as in the DPL model. For example, in this solution, coefficients of

02T, /at? and 9(aT,”/dx?)/dt are 0.4677 and 1.1414x107, respectively.

In the 1940 nm laser application, the temperature values obtained by Pennes and DPL
models and the presented one, which is derived in this study, are given in Figure 4.2.
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Figure4.2.  Evolution of temperature at the irradiated surface in 1940 nm laser

application (highly absorbed case).

Similar to the 808 nm wavelength laser beam application, the Pennes model and the model
derived in this study give similar results when the laser wavelength is 1940 nm. However,
since the tissue exhibits a higher absorbance under the influence of the 1940 nm laser, the
maximum temperatures are higher than in the previous application. The results obtained
from these two models are consistent with the experimental results. On the other hand,
sudden temperature rise and drop are observed in the DPL model. This rate of increase

and decrease in temperature are higher compared to the one in the previous application.

4.2 Effect of Porosity
There are different parameters affecting the model in this study. One of them is porosity.

The porosity value differs depending on the location of tissue. Therefore, the effect of
different porosity values on the temperature value should be examined. The effect of
porosity will be examined using 3 different values. Besides, vessel radius values are
proportional to porosity. When the porosity is changed, the vessel radius also changes.
The porosity and the vessel radii values used in the presented model are given in table

4.1. The other parameters are the same as the previous calculation.
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Table 4.1 Porosity and diameter of blood vessel.

Parameters Values Unit References
1 Porosity 0.0060 - [102,112]
Diameter of Blood Vessel 1.14 mm [102,112]
2 Porosity 0.019 - [102,112]
Diameter of Blood Vessel 2.28 mm [102,112]
3 Porosity 0.066 - [102,112]
Diameter of Blood Vessel 4.56 mm [102,112]

In 808 nm laser application, the temperature values obtained by using different porosity

values are given in Figure 4.3.
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Figure 4.3.  In 808 nm laser application (strongly scattering case), the effect of porosity

on the temperature at the irradiated surface.

The effect of porosity on the temperature is very low in 808 nm laser application. As the
porosity value increases, the maximum observed temperature decreases. the same
examination is performed in the 1940 nm laser application. In the 1940 nm laser

application, the temperature values obtained by using different porosity values are given

in Figure 4.4.

15

Time (s)

42

25




£=0.006

Temperature (C°)
[¥g]
o

Time (5)

Figure 4.4.  In the 1940 nm laser application (highly absorbed case), the effect of
porosity on the temperature at the irradiated surface.

The lowest temperature increase during the laser irradiance is observed on tissue with
high porosity. On the other hand, the highest temperature decrease is observed on tissue
with low porosity after laser irradiance is ended. The reason is that the coupling factor is
high. Porosity directly affects the coupling factor. When the porosity increases, the
coupling factor is reduced. For example, in this calculation, when the porosity values are
0.0060, 0.019 and 0.066, while the corresponding coupling factors are 50918, 41309 and
36505, respectively. When the value of the coupling factor increases, the speeds of the

heating and cooling processes increase.

Although the coupling factor is high in both applications, the effect of the porosity on the
tissue is significantly lower in the 808 nm laser application. The reason for that, the optical
properties of the tissue vary depending on the wavelength of the laser. Under the influence
of the 1940 nm wavelength laser, the laser irradiance is absorbed near the surface.
Therefore, a temperature difference occurs between this region and the deeper regions.
However, under the influence of the laser with 808 nm wavelength, the absorption rate in
the tissue is lower. In this case, the temperature difference between the region close to the
surface and the deep regions is low. Therefore, the increase in heat transfer in the 1940
nm laser application is greater than the increase in heat transfer in the 808 nm laser

application.
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4.3 Effect of Laser Irradiance and Exposure Time

In laser applications, the magnitude of laser radiation and exposure time vary depending
on the purpose of the application. Therefore, the effects of different laser irradiation and
exposure times should be examined. For this examination, laser irradiance powers and
exposure time are changed provided that the applied energy is kept constant. The values
to be used for this analysis are given in Table 4.2. The other parameters are the same as
in the chapter 4.1.

Table 4.2. The exposure time and intensity of laser irradiance

Parameters Values Unit
1 Exposure Time 2 s
Magnitude of Laser Irradiance 70 kW /m?
2 Exposure Time 10 S
Magnitude of Laser Irradiance 14 kW /m?
3 Exposure Time 40 S
Magnitude of Laser Irradiance 3.5 kW /m?

In 808 nm laser application, the temperature values obtained by using different laser

irradiances and exposure times are given in Figure 4.5.
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Figure 4.5.  In 808 nm laser application (strongly scattering case), the effect of laser

irradiance and exposure time on the temperature at the irradiated surface.

In 808 nm laser application, the effect of change in laser irradiance on temperature is less
than the one obtained for 1940 nm laser application. Because the laser irradiance is

absorbed low rate at the regions, near the surface and transmitted to deeper regions of the
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tissue. Moreover, the increase in laser irradiance causes an increase in the maximum
temperature, although it is not as high as the 1940 nm laser application. After the laser

irradiation has finished, temperature values reach to similar values.

In 1940 nm laser application, the temperature values obtained by using different laser

irradiances and exposure times are given in Figure 4.6.
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Figure 4.6.  In 1940 nm laser application (highly absorbed case), the effect of laser
irradiance and exposure time on the temperature at the irradiated surface.

The effect of laser irradiance on the temperature is high in 1940 nm laser application. The
reason is that the laser irradiance is absorbed in the tissue at a very small depth. The
increase in laser irradiance raises the amount of heat entering into the cell. This leads that
the difference between the amount of heat entering and leaving the cell is increased.
Therefore, the highest temperature rise occurs in the highest laser irradiance. After the
laser irradiation has ended, similar temperatures are obtained in three cases.
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CHAPTER 5
CONCLUSIONS AND FUTURE WORK

In this study, a mathematical model is formed to understand the thermal effect of laser on
tissue. Laser radiation is included in the equation using two different formulas. One of
these is Beer-Lambert's law. The other is diffusion theory. The model is solved
numerically under these two assumptions. In this study, the one-dimensional analysis is
performed. Models are evaluated by examining the evolution of temperature at the
irradiated surface. For comparison, the Pennes and DPL models are solved under the same

conditions. Then, the results of three models compared with experimental results.

Similar results are obtained from the model derived in this study with the Pennes model
in laser applications with wavelengths of 808 nm and 1940 nm. But there is a small
difference. In the Pennes model, the temperature values are slightly higher. On the other
hand, a different temperature evolution is observed with the DPL model. In this study,
while the phase lag for heat flux used for the DPL model is high, the phase lag for
temperature is low. This situation allows for sudden temperature rise or drop. On the other
hand, in the model in this study, sudden temperature rise or drop does not occur due to
the coefficients of this model. The increase in the laser irradiance causes the maximum

temperature at the surface to increase.

The model in this study is examined in different porosity values. Generally, when the
porosity decreases, faster temperature rise and fall are observed. Furthermore, the effect
of laser irradiance and exposure time are also examined. The effect of change in the
magnitude of laser irradiance is greater in the 1940 nm laser application than in the 808

nm laser application.
The study on the model can be expanded in several ways.

e By changing the solution domain, the solution can perform for the

axisymmetric case.

¢ Inthis study, tissue is considered as a uniform structure. The tissue can be
divided into regions with different properties and the solution can be

performed by considering the characteristics of these regions. For

46



example, the effect of the laser on the skin can be examined by considering
the multi-layered skin structure. Moreover, by defining the tumor region
within the tissue, the solution can be performed taking into account the

characteristics of the tumor.

It can be solved with using variable laser irradiance instead of constant

laser irradiance.
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APPENDIX A

Discretization of Model in This Study

To make calculations clearer and simplify, equation (3.1) can be represented by using
some coefficients.

02T oT , 2 0Q
alw+a=azv T+a3a(v T)+a4(a)+a5Q+aﬁQm A-D
where
eppCy, p (1 —&)pscC
. - ( PpCpp (1 — E)prCp ) (A.2)
G(eppcpp + (1 — )pecyy)
k +k
0 = ( effit eff,b) (A.3)
(eppcpp + (1 — E)peCpy)
E0.Cn k +(1-—¢ C,+k
o :< PbrCpbRerft ( )Pt pt eff.b> (A.4)
6 (epncy + (1= )pucyy)
EPpCyrp (1 —¢
o — PuCpp(1—€) (A.5)
G(prcp,b + (1 - E)ptcp,t)
1 (A.6)
ag = .
(epbcp,b + (1 - S)Ptcp,t)
1 —
o (1-¢) (A.7)

- (gpbcp,b + (1 - S)ptcp,t)

Same expression in equation (A.1) can be made for equation (3.5). Hence, equation (3.5)

is represented as follows.

0°T 0T 0%T 0 <62T) <6Q
Ay

“or T T %o T B\ a2 5)+asQ+a6Qm (A.8)
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For applying FVM, integration of equation (A.8) can be made over control volume of
grid P with time step from t to t+At.

e ,t+At a T aT

t+At 92T 9 (9T aQ
J. J. <a2 922 + az 3 <6_> +ay (E) +asQ + a6Qm> dtdx (A.9)

The algebraic equation for temperature is obtained with applying Crank Nicolson
method to equation (A.9).

T(l) _ T(l) T(l) _ T(l)
TP 1) _ ZTP (0) + TP (—1) TP(I) _ TP (0) 1 az‘e % — aZ,W %

ayp Ax + Ax =— Ax

’ At? At 2 Ax

(€8] (€8] (0) (0) (1) (1 (0) (0)
a T, —Tp _TE —-Tp —a T, —T, _TP - Ty

1| 3e AxAt AxAt 3w AxAt AxAt
+ = A

2 | Ax | x

(0) (0) (0) 0)

1 a Tz —Tp —a T, — Ty,
yo) 2 Ax 2w Ax Ax

2 Ax

(0) (0) (-1 (-1 (0) (0) (-1 (-1
a T, —T, _TE —Tp —a T, —T, _TP - T,

1 3.e AxAt AxAt 3w AxAt AxAt

- A
+ > L+ Ax J X

o W_g. (0 D
iy (st [, o) — o)
X _D x
+a51p,ua19inysc(1) [Cle( ;) Cze 5 ] Ax
9. 1 _ 9. 1)
+a, P.ua(l _ Rs) ( in,ab in,ab ) e(_“a")Ax
’ At

+5ppta(1 = RV ap Ve THIAX + a6 p Qe Ax (4.10)

It is assumed that the control volume has uniform properties. Then, equation (A.10) can

be arranged as follows.

apr(l) + aETE(~1) + awTV(Vl) = b (A 11)
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where

1 (azAt 4 a3) A 12

= 77ax T ax (A.12)
1/a,At a3
=52 2)
a,Ax
ap = AT +Ax —ag —ay (A.14)
2a,Ax aAx 1,a;
b:< A)T(O)— 7.0 _Z (B (r.© _ 7 ©
Ar TAX At P Z(Ax)(E P)

1,a3 1/a,At a3

(%) (1,© _ 7 © _(_ ) 7,© _7,©
+2(Ax)(P w )+2 Ax ( )

1/a,At a; o) ©) as (-1) (-1)
—= — ) (1, =T — (=) (T, —T,

2<Ax +Ax>(P W) Z(Ax)(E P)

1

: -1 -1
+3 ( X )(T, Ty, D)

_Dyx _bax)
+agtta(Oimse™ — inse™) [Cle( ) _ Cze ]Ax
Dix _D x

+a5ua19in,sc(1) [Cle( ;) Cze 5 ]AxAt
+a4.ua(1 - Rs)(ﬁin,ab @ _ ﬁin,ab( ))e(_ﬂax)Ax
+aspa(1 = RO ap Ve THAXAL + agQp (AXAL (4.15)

Half cell volume methodology is used for cells in boundary conditions [129]. The
algebraic equation obtained with applying Crank Nicolson method to boundary cells

follows as.

For cell at the left boundary;

) (€Y
Tp " —T, az Ph 1 1
Tp(l) - ZTP(O) + TP(_l) Ax + Tp(l) - TP(O) Ax 1 Iaz'e £ Ax a (T( ) T( ))
2

“p At? 2 AL 2 L A_x
2 )

Ax
2
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B sl ol DY, o St 10 W € ek 130
3e |~ AxAt AxAt Korr At At Ax

2 Ax 2
2 )

©) _ 7(0)
o TE —Tp” | Gapn (O — T(O))\l
2e Ax keff ® P

1 Ax
"z Ax }7
J

2

o [0 -1 TP -] asph [~ 1) | (16~ T,
1 3. AxAt AxAt kerr At At Ax
Ax 2

+-4+
2
2

O o D9, 5c(0) _Dax D22y 7 5
+a,plg (_m,sc o . )[Cle( 5 )— Cze( 5 ) 7x

D D A
+a5,P:ua19in,sc(1) [Cle(_%) - Cze(_%) _x

Iinar > = Iimap™ Ax
+a4,P#a(1 _ Rs) ( in,ab in,ab ) e("‘a") a4

At 2

@ (—pgx) Ax Ax
+a5,P.ua(1 - Rs)ﬁin,ab e @ 7 + Qg p Qm,e 7 (A 16)
where keff = (keff,t' + keff,b) (A 17)

It is assumed that the control volume has uniform properties. Then, equation (A.16) can

be arranged as follows.
apT + agTV + ay TV = b (A.18)

where

1 (azAt 4 a3> 419
=75 A T Ax (A.19)
4y =0 (A.20)

B aq pAx 4 Ax + 1 [(a,hAt 4 1/ azh A 21
PEar T2 T T 2\hy, ) T 2\keys (&.21)
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aAx  Ax 1 [a,hAt o lfash a;Ax _ 1,a;
b= 4+ = = T()_|__ > _ T(l)___ T(O)_T(O)
( At 2 2< kerr )]0 2\kepy At )T Z(Ax)( E P

(@At a3\ 0 ©) _ 1 © as -1) 1) , (a2hAt
+E(Ax )(T Tp) = Z(A)(TE —T )+ () T

taslq (ﬁin,sc(l) - 19in,sc(o)) [C1€<_%) — Cze(_%) ]A7x

AxAt
2

D D
+a5.ua19in,sc(1) [C1e(_%) — Cze( (ZS‘X) ]

Ax
+a4l'la(1 - RS)(ﬁiTl,ab(l) - ﬁin,ab(l))e(_”“x) 7

AxAt AxAt

+ agQme 5

+asta(1 = Ry)Ojn,qp e THa®) (A.21)

For cell at the right boundary;

( i) — TP
Tp® 21,0+ T, Ax T, T, ax 1 io - az.WA—xf Ax
Ax 2

%p A2 2 At 2 2

2

D _ » o) _ (0)
1 Wi AxAt AxAt ¥ Ax 1 |V—=Gw——py | Ax
Ax 273 Ax 2
z ) \ z )
(0 (0) (-1 (-1)
(O—a TP _TW _TP _TW
1 3wl AxAt AxAt Ax
Ax 2

2

\

\
Iinsc P - (-Pax _D2x\ 74
+a4,P.ua< in,sc = msr: )[Cle 5 ) _ Cze( 5 )]795

D D A
+a5'P~”a'9in,sc(1) [Cle( +) Cze( zx)]Tx

Ax

9; o _ 9; €3]
+a4,P.ua(1—Rs)< e AL tn,ab ) (- ltax)7

€)) (—pgx) Ax Ax
‘l'aS,P.uaL(1 - Rs)ﬁin,ab e a 7 + Qg,p Qm,e =y

> (A.22)

It is assumed that the control volume has uniform properties. Then, equation (A.22) can

be arranged as follows.

61



apTV + ap TV + ay, TV = b

where
ClE = 0

1 (azAt 4 a3)
W ="2"ax " Ax

al,pr Ax
T o T2 W

a,Ax Ax) ©) a,Ax 1) 1,a;5 © ©
b ( At + 2 Te 2At Tp +2(Ax)(P w )
1 (azAt as

2 Ax +E

1,a _ _
) (1, - 7, @) + = (A_;) (1,V = 1, D)

1x _sz) Ax

D
+a4‘u.a(l9inlsc(1) — 19in,sc(0)) I:Cle(_T) — Cze( )

b D AxAt
+a5.ua19in,sc(1) [C1e(_%) — Cze(_%) ] X

Ax
+apa(L = R) (Binan™ — Binan e e =

AxAt AxAt

+ Qg Qm,e T

+aspa (1 — RO qpPe~Ha®)
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(A.25)
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APPENDIX B

Discretization of The Pennes Model

The Pennes model for one dimension is as follows.

oT 0%T

PC§=aﬁ+Q+Qm+WbeCb(Tb—T) (B.1)

For applying FVM, integration of equation (B.1) can be made over control volume of grid
P with time step from t to t+At.

e rt+At oT e rt+At aZT
j f (pc —) dtdx = j f a=—+Q+ Qn +wyppcp(Tp — T) | dtdx (B.2)
w e ot w Jt ox

The algebraic equation for heat flux is obtained with applying Crank Nicolson method to

equation (B.2).

(€] (€] (€] (€] (0) (0) (0) (0)
7. _ 7 (0 1 aTE —Tp —a T =Ty 1 CZTE —Tp —a T, —Ty
P " P Ag== e Ax w Ax Ax += e Ax w Ax Ax
At 2 Ax 2 Ax
1WhPblpb _ (D 1{WhPblp,b _ m(0)
+ 2 {—pth’t (Tb TP )Ax} + > {—pth’t (Tb TP )AX}
_Dix _Dax
+ #aﬂin,sc(l) [Cle( 5 ) — Cze( 5 ) ]Ax
PeCp e
+——pta(1 = R)Oinap Ve THaAx + —— Qe Ax (B.3)
PtCp,t Ptlpt

It is assumed that the control volume has uniform properties. Then, equation (B.3) can be

arranged as follows.

apT + ag T + ay TV = b (B.4)
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where

1 raAt
% =3 (5) (B.3)
1 /alt
ow =3 (%) (5-6)
1 (wpppcppAxAt
= Ax —ag — — | —==— B.7
ap X—ag—ay + 2( PeCor (B.7)
1 (wyppCp pAxAt 1 /aAt
b= <Ax ——(—”p” ph >>TP<°> +—( )(T © _ ,©)
2 PtCp,t 2
_1/aAt 0) 0) WpPpCp pAxAL
&) (@@ -1y )+ =T,
Dix D x
+ Ui sc® [Cle( F) _ e ]AxAt
PtCp,t
+ e (1 = RO ap Ve Ha) AxAL + Qum o AXAL (B.8)
PtCp,t PtCpt

Half cell volume methodology is used for cells in boundary conditions [129]. The
algebraic equation obtained with applying Crank Nicolson method to boundary cells

follows as.

For cell at the left boundary;

(1 (1)
Tg” =T, ayh () _ @
W —T,@ax  1|% " ax T =T | Ay
At 2 2 Ax 2
2 )
(0) (0)
((X TE _TP + h(T(O) T(O))\
1| e Ax k. P Ax 1 (WppyCpp T _ 1 Ax
+3 Ax 2 200, Ty
k 7 [
WP, C _Dix _Dax
+1 M(T T(O)) L’u 0 M Cle( 0 )—Cze( 5) A—x
2 Pyt 2 P Cpe & imsc 2
Ax
+ .ua(1 - Rs)ﬁin,ab (1)6(_”ax) Qme (B- 9)
PtCp,e 2 Ptcpt
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It is assumed that the control volume has uniform properties. Then, equation (B.9) can be

arranged as follows.

apTV + ap TSV + ay TY = b (B.10)
Where

1 saAt
as =5 (E) (B.10)
ay =0 (B.11)
o= a3 (M) 45 () ®12)

Ax 1 [wpppc,pAxAt\ 1 ahAt 1 salt
bzc___clﬁuﬂ__ﬂ_5< ))B@+—CZ)U§M—HmU

2 2\ 2picy; ke 2\ Ax
Wp0, Cyp p AXAL hAt 1 _Dix _Dax\ 1 AxAt
b by + 2 9 M [Cle( 5) el )
2p0,Cpyt ke P Cpr @ insc 2
AxAt 1 AxAt
+ 1 — RO o P eHa®) + B.13
ptcp,t ,ua( s) in,ab e 2 ptcp,t m,e 2 ( )

For cell at the right boundary;

1) 1) (0) (0)
T, —T, T, — T,
JO_aW%le 1{0_%%le

T -1, Ax 1 Ax 1
Ax Ax 2

At 2 2 2 +2

2 ) \ 2

1 {WpPppCp,b (1 Ax 1 {WpPpCp,b (0)y Ax
B A O N CVCHURIPRON

20 pPecpe PeCp,t
1 _Dyx _Dyxy 1Ax
+ uaﬁin,sc(l) [Cle( é )— Cze( g ) —
PtCpt
Ax 1 Ax
+ 1—R.)Y; € (—pgx) + i B.14
prcpe el T R mar e 2 pecye ™2 (B.14)

It is assumed that the control volume has uniform properties. Then, equation (B.14) can

be arranged as follows.
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apTI;El) + aETE(~1) + awTV(Vl) = b

where
aE = 0
1 (aAt)
=75 ax
_ Ax N 1 (wpppCppAxAt
P T 2y

AxA
b= (A_x _1 (w) )TP(O) —1(9) (1, — 7, @) 4 efscpniidty,

2 2 2p¢Cp 2p¢Cp t
_Dix _Dox\ 1 AxAt
+ PeCpe ﬂaﬁin,sc(l) [Cle( s ) - Cze( s ) 2
4 1 1— RS W) (~ ) AxAt 4 1 AxAt
PeCpe ta( s)Vinap € ) PeCy me 5
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APPENDIX C
Discretization of DPL Model

DPL model is formed by combining the energy equation and non-Fourier heat conduction

equation, which are given below.

0°T TagWpPpClypp aT 0°T o (9T WpPpCyp p
i 14942700\ "° - PO (T, —T
a2 ( + PeCpt ot~ “ox? +atr dt \ 0x? + PtCpt (T )
T d d
: (—Qm+ —Q)+ m_, Q €1
PtCpt \ Ot ot PtCpt  Ptlpyt

For applying FVM, integration of equation (C.1) can be made over control volume of grid
P with time step from t to t+At.

e rt+¥dt /o g2T TyWpPpCpp\ OT
[ (Tq_2+(1+w)_>dtdx
w e ot PtCp,t ot
e rt+At [ 92T d (0°T\ wpppe 7, (0 0
:ff a—2+arT—< 2>+ bPb Db () 4 4 <&+ —Q) dedx
w i 0x dat \ dx PtCp,t PtCpr \ Ot at
e rt+At
+j J (Q’” + < )dtdx (C.2)
wJt PtCpt  Ptlpit

The algebraic equation for heat flux is obtained with applying Crank Nicolson method to
equation (C.2).

TP(l) _ ZTP(O) + TP(—l)
q AtZ

Ax

. TquPbCp,b> Tp® — T,

PtCp,t At

L O
1)@ Ax ~ Ow Ax
Ax + = Ax

2 Ax

W _p@ 20 _ 50 W _p(D 50 _ 50
TgW —Tp” Tg —Tp ]_a . [TP -T, Tp —TW]
wtT

1 “eTT[ AxAt  AxAt AxAt  AxAt
2

Ax+<1+

AR G
1)@ Ax 0w Ax
Ax

Ax

Ax
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7

_ T}go)

TP(—l) _ T]/E/_l)

1 aeTT [ £

AxAt

(-1) _ p(-1) (©) _ 7(0)
Tz —Tp ]_aer[TP — Ty

AxAt AxAt AxAt

Ax

+=4+
2

1 (wyppc
+§{ bPbCp,b (T, —

PtCpt

Ax

1 (wpppc
Tp(l))Ax} + E{M (T, — TP(O))Ax}

PeCprt

®
Tq 19in,sc _
4Ty, (Y

PtCp,t

in,sc(O)) [Cle(_¥) — Cze(_%) ]Ax

Dix D,x
+ paOimsc® [Cle(‘%) _ cze(‘%) ] Ax
PeCpt
19in ab @ _ ﬁin ab @
+ 1—R . . e(THaX) px
”y Ha(1 = Ry) < AT
+ tg(1 = Rg) i ap PeHa¥ Ax + QmeAx

tCpt

PtCpt

(C.3)

It is assumed that the control volume has uniform properties. Then, equation (C.3) can be

arranged as follows.

apr(l) + aETE(-l) + awTV(Vl) = b
where
_ 1 (aAt 4 arT)
AR AVY
1 (aAt 4 aTT>
=" ax T
T,Ax T WpP, Cp pAX 1 (wpppcy pAxAL
ap =2 Ll bPyCp.b —aE—aW+—< bPbCp,b >
At PCpt 2 PtCp,t
<ZTqAx qubpbcp,be 1 <wbpbcp,beAt) )TP(O) B TqAx 7,0
PtCpt 2 PtCp,t At
l<_) (1,© —7,©) — _(“At> (1,© — 1, )
2\ A
1 ,at _ _ at _ Wy PpCp pAXAL
___T(l)_T(l) T T(l) T(1)+ D, T.
> (20 P (Ax)( W) pecpe
_Dix _Dax
+ptc ta(Oinse™® = 9inse™®) [Cle( ) - e~ )]Ax
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(1) ( Dl_x) sz
+ :uaﬁin,sc [Cle Cze ] AxAt
PtCp e
+ Ha(l = RS)(ﬁin,ab(l) - ﬁin,ab(l))e(_”ax)Ax
PtCp e
+ Ua(l - Rs)ﬁln’ab(l)e(_”ax)AxAt + Qm‘eAXAt (C. 8)
Por PeCpt

Half cell volume methodology is used for cells in boundary conditions [129]. The
algebraic equation obtained with applying Crank Nicolson method to boundary cells
follows as.

For cell at the left boundary;

. Tp™W — 27, + 7,V Ax . (1 N ‘L'qwbpbcp'b) Tp™ -7, Ax
1 At

At? 2 PtCpt 2
o T(l) _ T(l) awh (T(l) B T(l)) fa T(O) T(O) h (T(O) 3 T(o))\
1% Ax Ly U P LAx 1! e TR, U TP LAx
= 2) Ax 27" Ax Z
L 2 ) 2
O 3019 gl - 1) | @@ oy
e'T [ AxAt AxAt ke At
+=3 ¥: —
2
\
1O 10100 g g [0 -1 @S 1)
1| %' |7 AxAt AxAt Kew At At
+54+ ¥: ~
2
\
1 (WpppCpp W\ Ax) | T (wpppCpp ), Ax
i Lot VLN PR S0 Qe R RdcLuih LG S 0] e
2{ PeCos T =Tp )5 +3 PeCos Tp = Tp ™)~
Tq ﬁin,sc(l)_ﬁin,sc(o) Dux _ _Dox A_x
+pth,tua< v Cle( 8 ) Cze( 8 ) >
_Dix _Dax\ 1Ax
e e )
19in ab W _ 19in ab ) Ax
+ 1—R d d (=Hax)
y ta( s)( AL e 5
Ax 1 Ax
1 — RO qp Ve Ha?) = — C.9
+ PeCot lla( s) inab € > + PeCot Qm,e > ( )
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It is assumed that the control volume has uniform properties. Then, equation (C.9) can be

arranged as follows.

apT + agT) + ay TP = b (C.10)
where
1 (aAt 4 aTT> €11
= 7\ax T 1)
ay =0 (C.12)
TgAx  Ax  TaWpppCpplx 1 (wpppcppAxAt
ap = +—+—F—— -t |——————
2At 2 2p¢Cpt 2 2p¢Cpt
4 1 (ahAt) N 1 (arTh) 13
2\ k; 2\ k (€.13)
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S\ At 2 2p¢Cp 2 2pcCp 2\ k,

1ratrh  tqlhx\ 4y 1 alt 0 1 artr _ 1

- _ T +—(—>T“—T<°) _ (Y (p D _p (<D
+2< k. ZAt) P 2\ Ax (T P) Z(Ax)(E P )

Wy, PpCp p AXAL ahAt
4 oo b T g

2piCp s ki
T _Dix _D2xy 1Ax

+ a ,Lla(ﬁin,sc(l) _ﬁin,SC(O)) [Cle( ) )— CZe( 5 ) -

PtCpt 2

_Dix _Dyxy 1AxAt
+ptcp,t #aﬂin,sc(l) [Cle( s )_ Cze( s )] 2
T Ax

+ . #a(l - 6Rs)(19in,ab(1) - ﬁin,ab(l))e(_#ax) 7

PtCpt
4 (1— RS W) (—pg) AxAt 1 AxAt (C.14)

ptcp,t Uq s/Vinab "€ 2 ptcp,t m,e 2 .
For cell at the right boundary;

@ _p@

T — 27, @ 4+ 7,V Ax L4 TaWsPoCp O —Tp,@ax  1)0—ay =5 Ax

Fa Ar? 2"\ e A 22 Ax 2z
2
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1) _ (@) p(0) _ m(0)
0 e [T 10 =Ty 7 _7©
AxAt AxAt Ax 110—a, —Ax | Ax
*2) Ax 2" Ax 2
2 J 2
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0w | T Ty
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+ 1 — RO qp PeHa®) — 4 —= 1
PeCor Ua( s) inab € 2 PeCor Qm,e 2 (C 5)

It is assumed that the control volume has uniform properties. Then, equation (C.15) can
be arranged as follows.

apT + ap T + ay T = b (C.16)
Where
1 (aAt 4 (XTT) 18
w="70ax T ax (€.18)
,Ax  Ax T wpp,Cc,pAX 1 (wpppCp pAxAt
qp = S0% L O TPy GppTX o~ (WePr e BXAt (C.19)
2At 2 2p.cpe 2 2peCpt
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APPENDIX D

MATLAB Code for Model in This Study

clear all;
clc;

close all;

%% %96 %% %% %6 %% %% %% %% %% %% % %% %% %% %% %% %% % %% %% %% %%
%%%%%%%%% %%%%%%% Problem Definition %%%%%%%%%%%%%%%%
%% %% %% %% % %% %% %% %% %% % %6 % %6 % %% %% %% %% %% % %6 % %% %% %%

tic; % Used for measuring run time

tTotal =90; % Total time [s]

tin =10; % Exposure time [s]

dt =0.01; % Constant time step [s]

NXx =120; % Number of cells in x direction

L =0.05; % Length [m]

dx =L/(Nx); % Constant cell size in x direction

IterN =tTotal/dt; % Iteration number

IterNb =tin/dt; % lteration number for heat flux exposure time
ms =3*Nx+1;

% Arrays and matrices %

T =zeros(Nx+1,1); % Temperature components at nodes

Ts =zeros(1,IterN); % Temperature values at Cell (1)

ii =zeros(ms,1); % Row number of aT sparse matrix

ii =zeros(ms,1); % Column number of aT sparse matrix

cc =zeros(ms,1); % Values of aT sparse matrix

aT =zeros(Nx+1,1); % Coefficents of new heat flux values

aTold1l =zeros(Nx+1,1); % Coefficents of previous heat flux values

aTold2 =zeros(Nx+1,1); % Coefficents of one before previous heat flux values
rhsa  =zeros(Nx+1,1); % Right hand side vector of the enery equation

Tn =zeros(Nx+1,1); % New temperature values at nodes
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Told  =zeros(Nx+1,1); % Previouse values at nodes

Told2 =zeros(Nx+1,1); % One before previous temperature values at nodes

% Optical properties %

% For 808 nm laser

Rd =0.05; % Diffuse reflectance
mu_a =78; % Absorption coefficient [m”-1]
mu_sr =2104; % Reduced scattering coefficient [m”-1]

delta =1/sqrt(3*mu_a*(mu_a+mu_sr)); % Effective optical penetration depth [m]

% Coefficents of diffusion theory eqaution

C1=3.09+5.44*Rd-2.12*exp(-21.5*Rd);
D1=1-(1-(1/sqrt(3)))*exp(-20.1*Rd);
C2=2.09-1.47*Rd-2.12*exp(-21.5*Rd);
D2=1.63*exp(3.40*Rd);

% For 1940 nm laser
Rs =0.0475; % Specular reflectance

mu_a_a =5643; % Absorption coefficient [m”-1]

% Boundary Condtions %

gin_A =0; % Laser intensity for 1940 nm laser [W/m”2]
gin_S =14000; % Laser intensity for 808 nm laser [W/m”2]

%% %% %% % % % % %% %% % % % %% %% % % % % % %% % % % % % % %% % % % % %% %% % %
%%%% %% %% % %%%% Initial values and boundary conditions %%%%%%%%%%%
%% %% %% % % % % %% %% % % % % % %% % % % % % % %% % % % % % %% % % % % % % %% % %

h =10; % Heat convection [W/mK]
T Inf =22.35; % Room temperature [C]
gm =368.1; % Constant metabolic heat generation [W/m”3]
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Tn(1:Nx+1,1) =33.2; % Temperature values at nodes

Told(1:Nx+1,1) =33.2; % Previous Temperature values at nodes
Told2(1:Nx+1,1) =33.2; % One before previous temperature values at nodes
gin_s_old =0; % Previous laser irradiance values [W/m”2]
gin_a_old =0; % Previous laser irradiance values [W/m”2]
rho_t =1081.6; % Density of tissue [kg/m~”3]

rho_b =1060; % Density of blood [kg/m”3]

k t =0.4108; % Thermal Conductivity for tissue [W/m*k]
k b =0.5066; % Thermal Conductivity for blood [W/m*k]
c_t =3238.5; % Heat Capacity of tissue [J/kg*K]

c_b =3770; % Heat Capacity of blood [J/kg*K]

w =0.0012; % Blood perfusion rate [m”A3/m~3*s]

eps =0.0060; % Porosity

D =0.00114; % Vessel Diameter [m]

% Coupling factor %
G =rho_b*c_b*w+4.93*((4*eps*k_b)/(D"2));

% Effective heat capacity [J/kg*K]

pc =(eps*rho_b*c_b+(1-eps)*rho_t*c_t);

% Effective thermal conductivity for tissue [W/m*k]

k_t eff =(1-eps)*k_t;

% Effective thermal conductivity for blood [W/m*k]
k_b_eff =eps*(k_b);

% Effective thermal conductivity [W/m*k]
k_eff =k_t_eff+k_b_eff;

% Coefficients of Model %

al =(eps*rho_b*c_b*(1-eps)*rho_t*c_t)/(G*pc);
a2 =(k_t_eff+k_b_eff)/pc;
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a3 =(eps*rho_b*c_b*k_t_eff+(1-eps)*rho_t*c_t*k_b_eff)/(G*pc);
a4 =(eps*rho_b*c_b*(1-eps))/(G*pc);
a5 =1/pc;

a6 =(1-eps)/pc;

%% %% %% %% % %% %% %% %% %% % %% %% %% %% %% % %6 % %% %% %% %% %%
%% %%%%%%%%%%%%% End of problem definition %%%%%%%%%%%%%%
%% %% %% %% % %% %% %% %% % %6 % %% %% %% %% %% % %6 % %% %% %% %% %%

%% %% %% %%6%%6% %% %% %% % %6 % %6 % %% %% %% %% %% % %% %% %% %% %%
%% %% %% %%%%%%%%%%% Solution Process %%%%%%%%%%%%%%%%%
%% %% %% %%6%%6% %% %% %% %% % %% %% %% %% %% %% % %% %% %% %% %%

for Iter=1:lterN;
ww=0;

tol=10;

if (Iter<=IterNb);

qin_s =qin_S; % Source term
gin_a =qin_A; % Source term
else
qin_s =0; % Source term
gin_a =0; % Source term
end
k =0; % Counter for sparse matrix

%% %% %% %% %% %% %% % % % %% % % % % % % % % % % % % % % % % % % % % % % % %
% Energy equation

%% %% %% %% % % %% % % % % % % %% % % % % % %% % % % % % %% % % % % % % %% %

%%% % %%%%% %% %%%% Cell (1) %%%%%% %% %% % % %%%% %%
i=1; % Indices
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cP =i; %Cell number of cell (i,j),i.e cell P

cE =cP+1; %Cell number of East neighbor

aTold2(cP) =((a3*h)/(2*k_eff)-(a1*(dx/2))/dt); % One before previous P coeff.
aTold1(cE) =-0.5%(a3/dx); % Previous E coeff.

aTold1(cP) =(al*dx)/dt+(dx/2)-(a2*h*dt)/(2*k_eff); % Previous P coeff.

aT(cE) =-0.5*%((a2*dt)/dx+a3/dx); % E coeff.

% E coeff. for sparse form

k =k+1;
ii(k)  =cP;
ji(k)  =cE;

cc(k) =aT(cE);

% Distance from the boundary layer %

xb =(i-1)*dx;

% Part of heat source for 808 nm laser %

grsl  =((ad*mu_a*(dx/2))*(C1*exp((-D1*xb)/delta)
-C2*exp((-D2*xb)/delta)))*(qin_s-gin_s_old);

% Part of heat source for 808 nm laser

grs2 =(a5*mu_a*dt*(dx/2)*qin_s)*(C1*exp((-D1*xb)/delta)-C2*exp((-D2*xb)/delta));

% Part of heat source for 1940 nm laser

gral =ad*mu_a_a*(dx/2)*(1-Rs)*exp(-mu_a_a*xb)*(qgin_a-qin_a_old);

% Part of heat source for 1940 nm laser

gra2 =a5*mu_a_a*dt*(dx/2)*qin_a*(1-Rs)*exp(-mu_a_a*xb);

Sr =qgra2+qral+qrs2+qrsl; % Heat Source for laser irradiance
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Sm =a6*qm*(dx/2)*dt; % Heat Source due to metabolic heat generation

S =Sr+Sm; % Heat Source.

% P coeff. for sparse form

k =k+1;
ii(k) =cP;
jilk)  =cP;

cc(k)  =(al*(dx/2))/dt+(dx/2)-aT(cE)+(a2*h*dt)/(2*k_eff)+(a3*h)/(2*k_eff);

% Parts of RHS value

bl =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S;

b2 =aTold1(cE)*(Told(cE)-Told(cP));

b3 =(0.5%((a2*dt)/dx+a3/dx)*(Told(cE)-Told(cP)))+(aTold1(cE)*(Told2(cE)-Told2(cP)));
b4 =((a2*h*dt)/k_eff)*T_Inf;

% RHS value
rhsa(cP) =bl+b2+b3+b4;

%%%%%%%%%%%%%%% Cell (2) to (Nx)%%%%%%%%%%%%%%%%

for i=2:(Nx)

cP =i; %Cell number of cell (i,j),i.e cell P

cE =cP+1; %Cell number of East neighbor

cW =cP-1; %Cell number of West neighbor

aTold2(cP) =-((al*dx)/dt); % One before previous P coeff.
aTold1(cE) =-0.5*(a3/dx); % Previous E coeff.
aTold1(cW) =-0.5*(a3/dx); % Previous W coeff.
aTold1(cP) =(2*al*dx)/dt+dx; % Previous P coeff.
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aT(cE) =-0.5*((a2*dt)/dx+a3/dx); % E coeff.
aT(cw) =-0.5*((a2*dt)/dx+a3/dx); % W coeff.

% E coeff. for sparse form

k =k+1;
ii(k) =cP;
jilk)  =cE;

cc(k) =aT(cE);

% W coeff. for sparse form

k =k+1;
ii(k) =cP;
jilk) — =cW;

cc(k) =aT(cW);

% Distance from the boundary layer %

xb =(i-1)*dx;

% Part of heat source for 808 nm laser

grsl =((a4*mu_a*dx)*(C1*exp((-D1*xb)/delta)
-C2*exp((-D2*xb)/delta)))*(qin_s-gin_s_old);

% Part of heat source for 808 nm laser

grs2 =(a5*mu_a*dt*dx*qin_s)*(C1*exp((-D1*xb)/delta)-C2*exp((-D2*xb)/delta));

% Part of heat source for 1940 nm laser

gral =ad*mu_a_a*dx*(1-Rs)*exp(-mu_a_a*xb)*(qgin_a-qgin_a_old);

% Part of heat source for 1940 nm laser

gra2 =a5*mu_a_a*dt*dx*qgin_a*(1-Rs)*exp(-mu_a_a*xb);

Sr =qgra2+qral+qrs2+qrsl; % Heat Source for laser irradiance.

Sm =ab*gm*dx*dt; % Heat Source due to metabolic heat generation.
S =Sr+Sm; % Heat Source.
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% P coeff. for sparse form

k =k+1;
ii(k) =cP;
ji(k) — =cP;

cc(k) =(al*dx)/dt+dx-aT(cE)-aT(cW);

% Parts of RHS value

b1l =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S;

b2 =(aTold1(cE)*(Told(cE)-Told(cP))+aTold1(cW)*(Told(cW)-Told(cP)));

b3 =(0.5*((a2*dt)/dx+a3/dx)*(Told(cE)-Told(cP)))
+(0.5*((a2*dt)/dx+a3/dx)*(Told(cW)-Told(cP)));

b4 =(aTold1(cE)*(Told2(cE)-Told2(cP)))+(aTold1(cW)*(Told2(cW)-Told2(cP)));

% RHS value
rhsa(cP) =bl+b2+b3+b4;

end

%%%%%%%%%%%%%%% Cell (Nx+1) %%%%%%%%%%% %%%%%%%

i=Nx+1; % Indices

cP =i; %Cell number of cell (i,j),i.e cell P

cW =cP-1; %Cell number of West neighbor

aTold2(cP) =-((al*dx)/(2*dt)); % One before previous P coeff.
aTold1(cw) =-0.5*(a3/dx); % Previous W coeff.
aTold1(cP) =(al*dx)/dt+(dx/2); % Previous P coeff.

aT(cW) =-0.5*((a2*dt)/dx+a3/dx); % W coeff.

% W coeff. for sparse form

k =k+1;
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ii(k) =cP;
jitk)  =cw;
cc(k) =aT(cW);

% Distance from the boundary layer %

xb =(i-1)*dx;

% Part of heat source for 808 nm laser

grsl =((a4*mu_a*(dx/2))*(C1*exp((-D1*xb)/delta)
--C2*exp((-D2*xb)/delta)))*(qgin_s-qin_s_old);

% Part of heat source for 808 nm laser

grs2 =(a5*mu_a*dt*(dx/2)*qin_s)*(C1*exp((-D1*xb)/delta)-C2*exp((-D2*xb)/delta));

% Part of heat source for 1940 nm laser

gral =a4*mu_a_a*(dx/2)*(1-Rs)*exp(-mu_a_a*xb)*(qin_a-qin_a_old);

% Part of heat source for 1940 nm laser

gra2 =a5*mu_a_a*dt*(dx/2)*qin_a*(1-Rs)*exp(-mu_a_a*xb);

Sr =qgra2+qral+qrs2+qrsl; % Heat Source for laser irradiance.

Sm =ab*qm*(dx/2)*dt; % Heat Source due to metabolic heat generation.
S =Sr+Sm; % Heat Source.

% P coeff. for sparse form

k =k+1;
ii(k)  =cP;
ji(k) — =cP;

cc(k) =(al*dx)/(2*dt)+(dx/2)-aT(cW);

% Parts of RHS value

b1l =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S;
b2 =aTold1(cW)*(Told(cW)-Told(cP));

b3 =(0.5*((a2*dt)/dx+a3/dx)*(Told(cW)-Told(cP)));
b4 =(aTold1(cW)*(Told2(cW)-Told2(cP)));
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% RHS value
rhsa(cP) =bl+b2+b3+b4;

% Creating Sparse matrix %

aTnews=sparse(ii,jj,cc,Nx+1,Nx+1);

% New heat flux values after the time step

Tn=aTnew\rhsa;

% Stored values

gin_s_old  =qin_s; % Stored laser irradiance value

gin_a_old  =qin_a; % Stored laser irradiance value

Told2 =Told; % Stored one before previous temperature values
Told =Tn; % Stored previous temperature values
Ts(lter)=Tn(1); % Temperature values at cell (1)

end

toc;
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clear all;

clc;

close all;

APPENDIX E

MATLAB Code for Pennes Model

%% %% %% %% %% %% %% %% % %% %% % % % % % % % % % % % % % % %% % % % % % %

%%%%%%%%% %%%%%%% Problem Definition %%%%%%%%%%%%%%%%

%% %% %% %%6%%6% %% %% %% % %6 % %6 % %% %% %% %% % %6 % %% %% %% %% %%

tic;
tTotal
tin

dt

Nx

L

dx
IterN
IterNb

ms

=90;

=10;
=0.01;
=120;
=0.05;
=L/(Nx);
=tTotal/dt;
=tin/dt;
=3*Nx+1;

% Arrays and matrices %

Tn

Ts

i

i

cc

aT
aTold1l
aTold2
rhsa

Told

=zeros(Nx+1,1);
=zeros(1,IterN);
=zeros(ms,1);
=zeros(ms,1);
=zeros(ms,1);
=zeros(Nx+1,1);
=zeros(Nx+1,1);
=zeros(Nx+1,1);
=zeros(Nx+1,1);

=zeros(Nx+1,1);

% Used for measuring run time
% Total time [s]

% Exposure time [s]

% Constant time step [s]

% Number of cells in x direction
% Length [m]

% Constant cell size in x direction
% Iteration number

% Iteration number for heat flux exposure time

% New temperature values at nodes

% Temperature values at Cell (1)

% Row number of aT sparse matrix

% Column number of aT sparse matrix

% Values of aT sparse matrix

% Coefficients of new heat flux values

% Coefficients of previous heat flux values

% Coefficients of one before previous heat flux values
% Right hand side vector of the energy equation

% Previous values at nodes
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Told2 =zeros(Nx+1,1); % One before previous temperature values at nodes

% Optical properties %

% For 808 nm laser

Rd =0.05; % Diffuse reflectance

mu_a =78; % Absorption coefficient [m~-1]

mu_sr =2104; % Reduced scattering coefficient [m”-1]

delta =1/sqrt(3*mu_a*(mu_a+mu_sr)); % Effective optical penetration depth [m]

% Coefficients of diffusion theory equation

C1=3.09+5.44*Rd-2.12*exp(-21.5*Rd);
D1=1-(1-(1/sqrt(3)))*exp(-20.1*Rd);
€2=2.09-1.47*Rd-2.12*exp(-21.5*Rd);
D2=1.63*exp(3.40*Rd);

% For 1940 nm laser
Rs =0.0475; % Specular reflectance

mu_a_a =5643; % Absorption coefficient [m~-1]

% Boundary Conditions %

gin_A =0; % Laser intensity for 1940 nm laser [W/m”2]
gin_S =14000; % Laser intensity for 808 nm laser [W/m”2]

%% %% %% %% %% %% %% %% % %% %% % % % % % % % % % % % % % % % % % % % % % %
%%%% %%%%%%%%% Initial values and boundary conditions %%%%%%%%%%%
%% %% %% %% %% %% %% % % % %% % % % % % % % % % % % % % % % % % % % % % % % %

h =10; % Heat convection [W/mK]

T Inf =22.35; % Room temperature [C]

gm =368.1; % Constant metabolic heat generation [W/m”3]
Tb =33.2; % Constant blood temperature [K]
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Tn(1:Nx+1,1)
Told(1:Nx+1,1)
Told2(1:Nx+1,1)
gold1(1:Nx+1,1)
gold2(1:Nx+1,1)
gin_s_old

gin_a_old

rho_t
rho b
k_t
k_b
c_t
cb

w

% Thermal Diffusivity %

alpha

=1081.6;
=1060;

=0.4108;
=0.5066;
=3238.5;
=3770;

=0.0012;

% Temperature values at nodes

% Previous Temperature values at nodes

% One before previous temperature values at nodes
% Previous Heat Flux values at nodes

% One before previous heat flux values at nodes

% Previous laser irradiance values [W/mA2]

% Previous laser irradiance values [W/m”2]

% Density of tissue [kg/m”3]

% Density of blood [kg/m#3]

% Thermal Conductivity for tissue [W/m*k]
% Thermal Conductivity for blood [W/m*k]
% Heat Capacity of tissue [J/kg*K]

% Heat Capacity of blood [J/kg*K]

% Blood perfusion rate [m*3/m”3*s]

=k_t/(rho_t*c_t);

%% %% %% %% % % %% %% % % % % %% % % % % % %% % % % % % %% %% % % % % %% %

%% %%%%%%%%%%%%% End of problem definition %%%%%%%%%%%%%%
%% %% %% %%6%%6% %% %% %% % %6 % %% %% %% %% %% % %6 % %% %% %% %% %%

%% %% %% %%6%%6% %% %% %% % %6 % %6 % %% %% %% %% % %6 % %% %% %% %% %%
%% %% %%%%%%%%%%%%% Solution Process %%%%%%%%%%%%%%%%%
%% %% %% %%6%%6% %% %% %% % %6 % %% %% %% %% %% % %6 % %% %% %% %% %%

for Iter=1:lterN;
ww=0;

tol=10;

if (Iter<=IterNb);

qin_s =qin_S;

gin_a =qin_A;

% Source term

% Source term
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else

qin_s =0; % Source term
gin_a =0; % Source term
end
k =0; % Counter for sparse matrix

%% %% %% %% % % % %% % % % % %% % % %% % % % % %% % % % %% % % %% % % % % %
% Energy equation

%% %% %% %%6%%6% %% %% %% % %6 % %6 % %% %% %% %% % %6 % %6 % %% %% %% %%

% Cell (1)

i =1; % Indices

cP =i; %Cell number of cell (i,j),i.e cell P

cE =cP+1; %Cell number of East neighbor

aTold1(cP) =-0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))-0.5*((alpha*h*dt)/k_t)+(dx/2);

% Previous P coeff.

aT(cE) =-0.5*((alpha*dt)/dx); % E coeff.

% E coeff. for sparse form

k =k+1;
ii(k)  =cP;
ji(k) — =cE;

cc(k) =aT(cE);

% Distance from the boundary layer %

xb =(i-1)*dx;

% Part of heat source for 808 nm laser

ars =((mu_a*dt*(dx/2)*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)
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- C2*exp((-D2*xb)/delta));

% Part of heat source for 1940 nm laser

gra =(1-Rs)*((mu_a_a*dt*(dx/2)*qin_a)/(rho_t*c_t))*exp(-mu_a_a*xb);

Sq =qrs+qra; % Heat Source for laser irradiance

Sm =(gm*(dx/2)*dt)/(rho_t*c_t); % Heat Source due to metabolic heat generation
S =Sq+Sm; % Heat Source.

% P coeff. for sparse form

k =k+1;
ii(k) =cP;
ji(k) — =cP;

cc(k) =0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))+0.5*((alpha*h*dt)/k_t)+(dx/2)-aT(cE);

% Parts of RHS value

al =aTold1(cP)*Told(cP)+S;

a2 =0.5*((alpha*dt)/dx)*(Told(cE)-Told(cP));

a3 =((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))*Tb;
al =((alpha*h*dt)/k_t)*T_Inf;

% RHS value

rhsa(cP) =al+a2+a3+a4;

% Cell (2) to (Nx)

for i=2:Nx

cP =i; %Cell number of cell (i,j),i.e cell P

cE =cP+1; %Cell number of East neighbor

cWwW =cP-1; %Cell number of West neighbor

aTold1(cP) =dx-0.5*((w*rho_b*c_b*dx*dt)/(rho_t*c_t)); % Previous P coeff.
aT(cE) =-0.5*((alpha*dt)/dx); % E coeff.
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aT(cW) =-0.5*((alpha*dt)/dx); % W coeff.

% E coeff. for sparse form

k =k+1;
ii(k) =cP;
jilk)  =cE;

cc(k) =aT(cE);

% W coeff. for sparse form

k =k+1;
ii(k) =cP;
jilk)  =cW;

cc(k) =aT(cW);

% Distance from the boundary layer %

xb =(i-1)*dx;

% Part of heat source for 808 nm laser

qrs =((mu_a*dt*dx*qin_s)/(rno_t*c_t exp((- X elta
(( *dt*dx*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)
- C2*exp((-D2*xb)/delta));

% Part of heat source for 1940 nm laser

gra =(1-Rs)*((mu_a_a*dt*dx*qin_a)/(rho_t*c_t))*exp(-mu_a_a*xb);

Sq =qrs+qra; % Heat Source for laser irradiance

Sm =(gm*dx*dt)/(rho_t*c_t); % Heat Source due to metabolic heat generation.
S =Sq+Sm; % Heat Source.

% P coeff. for sparse form

k =k+1;
ii(k) =cP;
ji(k)  =cP;

cc(k) =dx-aT(cE)-aT(cW)+0.5*((w*rho_b*c_b*dx*dt)/(rho_t*c_t));
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% Parts of RHS value

al =aTold1(cP)*Told(cP)+S;
a2 =0.5*((alpha*dt)/dx)*(Told(cE)-Told(cP))+0.5*((alpha*dt)/dx)*(Told(cW)-Told(cP));
a3 =((w*rho_b*c_b*dx*dt)/(rho_t*c_t))*Tb;

% RHS value

rhsa(cP) =al+a2+a3;

end

% Cell (Nx+1)

i =Nx+1;

cP =i; %Cell number of cell (i,j),i.e cell P

cW =cP-1; %Cell number of West neighbor

aTold1(cP) =(dx/2)-0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t)); % Previous P coeff.
aT(cW) =-0.5*((alpha*dt)/dx); % W coeff.

% W coeff. for sparse form

k =k+1;
ii(k) =cP;
jilk)  =cW;

cc(k) =aT(cW);

% Distance from the boundary layer %

xb =(i-1)*dx;
% Part of heat source for 808 nm laser

qrs =((mu_a*dt*(dx/2)*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)
- C2*exp((-D2*xb)/delta));
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% Part of heat source for 1940 nm laser

gra =(1-Rs)*((mu_a_a*dt*(dx/2)*qin_a)/(rho_t*c_t))*exp(-mu_a_a*xb);

Sq =qrs+qra; % Heat Source for laser irradiance

Sm =(gm*(dx/2)*dt)/(rho_t*c_t); % Heat Source due to metabolic heat generation.
S =Sq+Sm; % Heat Source.

% P coeff. for sparse form

k =k+1;
ii(k) =cP;
ji(k) — =cP;

cc(k) =(dx/2)-aT(cW)+0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t));

% Parts of RHS value

al =aTold1(cP)*Told(cP)+S;
a2 =0.5*((alpha*dt)/dx)*(Told(cW)-Told(cP));
ad =((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))*Th;

% RHS value

rhsa(cP) =al+a2+a3+a4;

% Creating Sparse matrix %

aTnews=sparse(ii,jj,cc,Nx+1,Nx+1);

% New heat flux values after the time step

Tn=aTnew\rhsa;

% Stored values

gin_s_old =qin_s; % Stored laser irradiance value

gin_a_old =qin_a; % Stored laser irradiance value

Told2 =Told; % Stored one before previous temperature values
Told =Tn; % Stored previous temperature values
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Ts(1,lter)=Tn(1); % Temperature values at cell (1)

end

toc;
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clear all;

clc;

close all;

APPENDIX F

MATLAB Code for DPL Model

%% %% %% %% % %% %% %% %% %% % %% %% %% %% %% % %6 % %% %% %% %% %%

%%%%%%%%% %%%%%%% Problem Definition %%%%%%%%%%%%%%%%

%% %% %% %%6%%6% %% %% %% %% % %6 % %% %% %% %% %% % %% %% %% %% %%

tic;
tTotal
tin

dt

Nx

L

dx
IterN
IterNb
tav_T
tav_g

ms

=90;

=10;
=0.01;
=120;
=0.05;
=L/(Nx);
=tTotal/dt;
=tin/dt;
=0.05;
=16;
=3*Nx+1;

% Arrays and matrices %

Tn

Ts

i

i

cc

aT
aTold1l

=zeros(Nx+1,1);
=zeros(1,IterN);
=zeros(ms,1);
=zeros(ms,1);
=zeros(ms,1);
=zeros(Nx+1,1);

=zeros(Nx+1,1);

% Used for measuring run time

% Total time [s]

% Exposure time [s]

% Constant time step [s]

% Number of cells in x direction

% Length [m]

% Constant cell size in x direction

% Iteration number

% lteration number for heat flux exposure time

% Phase lag for temperature for different models [s]

% Phase lag for heat flux for different models [s]

% New temperature values at nodes
% Temperature values at Cell (1)

% Row number of aT sparse matrix

% Column number of aT sparse matrix
% Values of aT sparse matrix

% Coefficients of new heat flux values

% Coefficients of previous heat flux values
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aTold2 =zeros(Nx+1,1); % Coefficients of one before previous heat flux values

rhsa  =zeros(Nx+1,1); % Right hand side vector of the energy equation
Told =zeros(Nx+1,1); % Previous values at nodes
Told2 =zeros(Nx+1,1); % One before previous temperature values at nodes

% Optical properties %

% For 808 nm laser

Rd =0.05; % Diffuse reflectance
mu_a =78; % Absorption coefficient [m”-1]
mu_sr =2104; % Reduced scattering coefficient [m”-1]

delta =1/sqrt(3*mu_a*(mu_a+mu_sr)); % Effective optical penetration depth [m]

% Coefficents of diffusion theory eqaution

C1=3.09+5.44*Rd-2.12*exp(-21.5*Rd);
D1=1-(1-(1/sqrt(3)))*exp(-20.1*Rd);
C2=2.09-1.47*Rd-2.12*exp(-21.5*Rd);
D2=1.63*exp(3.40*Rd);

% For 1940 nm laser
Rs =0.0475; % Specular reflectance

mu_a_a =5643; % Absorption coefficient [m”-1]

% Boundary Condtions %

gin_A =0; % Laser intensity for 1940 nm laser [W/m"2]
gin_S =14000; % Laser intensity for 808 nm laser [W/m”2]

%% %% %% %% % % %% % % % % % %% %% % % % % % %% % % % % %% % % % % % % % % %
%%%% %% %% % %%%% Initial values and boundary conditions %%%%%%%%%%%
%% %% %% % % % % %% % % % % % %% %% % % % % % %% % % % % %% % % % % % % % % %

h =10; % Heat convection [W/mK]
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T Inf =22.35; % Room temperature [C]

gm =368.1; % Constant metabolic heat generation [W/m"3]
Tb =33.2; % Constant blood temperature [K]

Tn(1:Nx+1,1) =33.2; % Temperature values at nodes

Told(1:Nx+1,1) =33.2; % Previous Temperature values at nodes
Told2(1:Nx+1,1) =33.2; % One before previous temperature values at nodes
gold1(1:Nx+1,1) =0; % Previous Heat Flux values at nodes
gold2(1:Nx+1,1) =0; % One before previous heat flux values at nodes
gin_s_old =0; % Previous laser irradiance values [W/m”2]
gin_a_old =0; % Previous laser irradiance values [W/m”2]
rho_t =1081.6; % Density of tissue [kg/m”3]

rho_b =1060; % Density of blood [kg/m#3]

k_t =0.4108; % Thermal Conductivity for tissue [W/m*k]

k b =0.5066; % Thermal Conductivity for blood [W/m*k]

ct =3238.5; % Heat Capacity of tissue [J/kg*K]

c b =3770; % Heat Capacity of blood [J/kg*K]

w =0.0012; % Blood perfusion rate [m”3/m~3*s]

% Thermal Diffusivity %
alpha =k_t/(rho_t*c_t);

%% %% %% %%6%%6% %% %% %% % %6 % %6 % %% %% %% %% % %6 % %% %% %% %% %%
%%%%%%%%%%%%%%% End of problem definition %%%%%%%%%%%%%%
%% %% %% %%6%%6% %% %% %% % %6 % %6 % %% %% %% %% % %6 % %% %% %% %% %%

%% %% %% %%6%%6% %% %% %% %% % %% %% %% %% %% % %6 % %% %% %% %% %%
%% %% %% %%%%%%%%%%% Solution Process %%%%%%%%%%%%%%%%%
%% %% %% %% %6 %% %% %% %% %% %% % %% %% %% %% % %6 %% % %% %% %% %%

for Iter=1:lterN;

if (Iter<=IterNb);

qin_s =qin_S; % Source term
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gin_a =qin_A; % Source term

else
qin_s =0; % Source term
gin_a =0; % Source term
end
k =0; % Counter for sparse matrix

%% %% %% %% % % % %% % % % % %% % % %% % % % % %% % % % %% % % % %% % % % %
% Energy equation

%% %% %% %%6%%6% %% %% %% % %6 % %% %% %% %% %% %% % %% %% %% %% %%

% Cell (1)

i =1; % Indices

cP =i; %Cell number of cell (i,j),i.e cell P
cE =cP+1; %Cell number of East neighbor

% One before previous P coeff.

aTold2(cP) =0.5*((alpha*tav_T*h)/k_t)-((tav_qg*(dx/2))/dt);

% Part of previous P coeff.

al =-0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))-0.5*((alpha*h*dt)/k_t);

% Previous P coeff.

aTold1(cP) =al+(tav_q*dx)/dt+(1+(w*rho_b*c_b*tav_gq)/(rho_t*c_t))*(dx/2);

aT(cE) =-0.5*((alpha*dt)/dx+(tav_T*alpha)/dx); % E coeff.

% E coeff. for sparse form

k =k+1;
ii(k) =cP;
ji(k)  =cE;

cc(k) =aT(cE);
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% Distance from the boundary layer %

xb =(i-1)*dx;

% Part of heat source for 808 nm laser
grsl =((mu_a*dt*(dx/2)*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)
- C2*exp((-D2*xb)/delta));

% Part of heat source for 808 nm laser
grs2 =(((tav_g*mu_a*(dx/2))/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)

-C2*exp((-D2*xb)/delta)))*(qin_s-qin_s_old);

% Part of heat source for 1940 nm laser

gral =(1-Rs)*((mu_a_a*dt*(dx/2)*qgin_a)/(rho_t*c_t))*exp(-mu_a_a*xb);

% Part of heat source for 1940 nm laser

gra2 =tav_q*(1-Rs)*((mu_a_a*(dx/2))/(rho_t*c_t))*exp(-mu_a_a*xb)*(qgin_a-qin_a_old);
Sq =qrsl+qrs2+qral+qra2; % Heat Source for laser irradiance

Sm =(gm*(dx/2)*dt)/(rho_t*c_t); % Heat Source due to metabolic heat generation

S =Sq+Sm; % Heat Source.

% P coeff. for sparse form

k =k+1;

ii(k)  =cP;

jilk)  =cP;

al =0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))+0.5*((alpha*h*dt)/k_t)

+0.5*((alpha*tav_T*h)/k_t);
cc(k)  =al+(tav_g*(dx/2))/dt+(1+(w*rho_b*c_b*tav_q)/(rho_t*c_t))*(dx/2)-aT(cE);

% Parts of RHS value
al =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S;
a2 =0.5*((alpha*dt)/dx)*(Told(cE)-Told(cP));
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a3 =(-0.5)*((alpha*tav_T)/dx)*(Told2(cE)-Told2(cP));
ad =((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))*Tb;
a5 =((alpha*h*dt)/k_t)*T_Inf;

% RHS value

rhsa(cP) =al+a2+a3+ad+a5;

% Cell (2) to (Nx)

for i=2:Nx

cP =i; %Cell number of cell (i,j),i.e cell P

cE =cP+1; %Cell number of East neighbor

cW =cP-1; %Cell number of West neighbor

aTold2(cP) =-((tav_g*dx)/dt); % One before previous P coeff.
aTold1(cP) =(2*tav_qg*dx)/dt+(1+(w*rho_b*c_b*tav_q)/(rho_t*c_t))*dx-
0.5*((w*rho_b*c_b*dx*dt)/(rho_t*c_t)); % Previous P coeff.

aT(cE) =-0.5*((alpha*dt)/dx+(tav_T*alpha)/dx); % E coeff.

aT(cwW) =-0.5*((alpha*dt)/dx+(tav_T*alpha)/dx); % W coeff.

% E coeff. for sparse form

k =k+1;
ii(k) =cP;
ji(k) — =cE;

cc(k) =aT(cE);

% W coeff. for sparse form

k =k+1;
ii(k) =cP;
jitk)  =cW;

cc(k) =aT(cW);

97



% Distance from the boundary layer %

xb =(i-1)*dx;

% Part of heat source for 808 nm laser
grsl =((mu_a*dt*dx*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)-C2*exp((-
D2*xb)/delta));

% Part of heat source for 808 nm laser
qrs2 =(((tav_g*mu_a*dx)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)-C2*exp((-

D2*xb)/delta)))*(qin_s-qin_s_old);

% Part of heat source for 1940 nm laser

gral =(1-Rs)*((mu_a_a*dt*dx*qin_a)/(rho_t*c_t))*exp(-mu_a_a*xb);

% Part of heat source for 1940 nm laser

gra2 =tav_q*(1-Rs)*((mu_a_a*dx)/(rho_t*c_t))*exp(-mu_a_a*xb)*(qin_a-qin_a_old);
Sq =qrsl+qrs2+qral+qra2; % Heat Source for laser irradiance

Sm =(gm*dx*dt)/(rho_t*c_t); % Heat Source due to metabolic heat generation.
S =Sq+Sm; % Heat Source.

% P coeff. for sparse form

k =k+1;
ii(k) =cP;
ji(k) — =cP;

al =0.5*((w*rho_b*c_b*dx*dt)/(rho_t*c_t));
cc(k) =al+(tav_g*dx)/dt+(1+(w*rho_b*c_b*tav_q)/(rho_t*c_t))*dx-aT(cE)-aT(cW);

% Parts of RHS value

al =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S;

a2 =0.5*((alpha*dt)/dx)*(Told(cE)-Told(cP))+0.5*((alpha*dt)/dx)*(Told(cW)-Told(cP));
a3 =(-0.5)*((alpha*tav_T)/dx)*(Told2(cE)-Told2(cP))+(-
0.5)*((alpha*tav_T)/dx)*(Told2(cW)-Told2(cP));

ad =((w*rho_b*c_b*dx*dt)/(rho_t*c_t))*Tb;
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% RHS value

rhsa(cP) =al+a2+a3+a4;

end

% Cell (Nx+1)

i =Nx+1;

cP =i;

cW =cP-1;

aTold2(cP)

aTold1(cP)

aT(cwW)

%Cell number of cell (i,j),i.e cell P

%Cell number of West neighbor

=-((tav_g*(dx/2))/dt); % One before previous P coeff.

=(tav_g*dx)/dt+(1+(w*rho_b*c_b*tav_qg)/(rho_t*c_t))*(dx/2)
-0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t)); % Previous P coeff.

=-0.5*((alpha*dt)/dx+(tav_T*alpha)/dx); % W coeff.

% W coeff. for sparse form

k =k+1;
ii(k) =cP;
jilk)  =cW;

cc(k) =aT(cW);

% Distance from the boundary layer %

xb =(i-1)*dx;

% Part of heat source for 808 nm laser
grsl =((mu_a*dt*(dx/2)*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)
-C2*exp((-D2*xb)/delta));
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% Part of heat source for 808 nm laser
grs2 =(((tav_g*mu_a*(dx/2))/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)
-C2*exp((-D2*xb)/delta)))*(qin_s-qgin_s_old);

% Part of heat source for 1940 nm laser

gral =(1-Rs)*((mu_a_a*dt*(dx/2)*qgin_a)/(rho_t*c_t))*exp(-mu_a_a*xb);

% Part of heat source for 1940 nm laser

gra2 =tav_q*(1-Rs)*((mu_a_a*(dx/2))/(rho_t*c_t))*exp(-mu_a_a*xb)*(qgin_a-qin_a_old);
Sq =qrsl+qrs2+qral+qra2; % Heat Source for laser irradiance

Sm =(gm*(dx/2)*dt)/(rho_t*c_t); % Heat Source due to metabolic heat generation.

S =Sq+Sm; % Heat Source.

% P coeff. for sparse form

k =k+1;

ii(k) =cP;

jilk)  =cP;

al =0.5*%((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t));

cc(k) =al+(tav_g*(dx/2))/dt+(1+(w*rho_b*c_b*tav_q)/(rho_t*c_t))*(dx/2)-aT(cW);

% Parts of RHS value

al =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S;

a2 =0.5*((alpha*dt)/dx)*(Told(cW)-Told(cP));

a3 =(-0.5)*((alpha*tav_T)/dx)*(Told2(cW)-Told2(cP));
ad =((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))*Tb;

% RHS value

rhsa(cP) =al+a2+a3+a4;

% Creating Sparse matrix %

aTnew=sparse(ii,jj,cc,Nx+1,Nx+1);

% New heat flux values after the time step
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Tn=aTnew\rhsa;

% Stored values

gin_s_old =qin_s; % Stored laser irradiance value

gin_a_old =qin_a; % Stored laser irradiance value

Told2 =Told; % Stored one before previous temperature values
Told =Tn; % Stored previous temperature values

Ts(1,lter) =Tn(1); % Temperature values at cell (1)

end

toc;
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APPENDIX G

MATLAB Code for Tzou’s Study

clear all;
clc;
close hidden;

tic;
syms k
z t=0.001; % Phase lag for temperature for different models [s]

z g=0.05; % Phase lag for heat flux for different models [s]

T_d=0; % Time derivative of temperature at t=0
Beta=0.05;

A=@(y) (z_9.*T_d)./(1+z_qg.*y);

B=@(y) sart((y.*(1+z_q.*y))./(1+z_t.*y));

T_=@(x.y) (L.1y).*(A(y)+(1-A(y)).*((cosh((1-x).*B(y)))./cosh(B(Y)))):;

T=@(x) (exp(4.7)./Beta).*((T_(x,94))./2+real(symsum(T_(x,94+((Li.*k.*pi)./Beta)).*(-
1)k k, 1, Inf));

x=0:0.001:1;
Tp=double(T(x));

toc;
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