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 ABSTRACT 

 

INVESTIGATION OF THERMAL EFFECTS ON TISSUES 

DURING LASER APPLICATIONS 

 

Umut KAYA 

 

Master of Sciences, Department of Mechanical Engineering 

Thesis Supervisor: Assist. Prof. Dr. Özgür EKİCİ 

September 2019, 104 Pages 

 

With the development of technology, laser applications have become one of the important 

methods for the health sector. A better understanding of laser-tissue interaction can 

improve the effectiveness of treatment and diagnosis. Moreover, the usage of laser in the 

health sector can be expanded. However, laser application causes tissue to warm up. 

Undesirable conditions may be encountered during treatment or diagnosis if this warming 

does not fall within certain limits or if it cannot be maintained within the desired area / 

volume. With the help of mathematical models, this thermal effect which is experienced 

in laser tissue interactions can be calculated in advance. Thus, unwanted situations can be 

avoided. 

 

In this study, a mathematical model was developed to understand the thermal effects of 

laser on tissues. This model is formed based on porous media theory.  It is based on the 

fundamental energy equation and is derived as a macroscale model taking into account 

the mechanisms at the microscale. During the model derivation phase, tissue and blood 

were assumed to be under local thermal nonequilibrium conditions. 
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The developed model was solved using numerical methods.  The solution was performed 

using MATLAB program. The obtained results were compared with Pennes and DPL 

model which are frequently used in literature. Differences between the results of the 

models were observed and the possible reasons of them were discussed. The effect of 

porosity and properties of laser irradiance on temperature was also investigated. 

 

Keyword: Living Tissue, Bioheat transfer, laser irradiance, Porous media 
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 ÖZET 

 

LAZER UYGULAMALARININ DOKULAR ÜZERİNDEKİ 

TERMAL ETKİLERİNİN İNCELENMESİ 

 

Umut KAYA 

 

Yüksek Lisans, Makina Mühendisliği Bölümü 

Tez Danışmanı: Dr. Öğr. Üyesi Özgür EKİCİ 

Eylül 2019, 104 Sayfa 

 

Teknolojinin gelişmesi ile birlikte lazer uygulamaları sağlık sektörü için önemli 

yöntemlerden birisi olmuştur. Lazer ile doku etkileşiminin daha iyi anlaşılması ile tedavi 

ve tanının etkinliği arttırılabilir. Dahası, sağlık sektöründe lazer kullanımı genişletilebilir. 

Ancak, lazer uygulaması dokunun ısınmasına neden olur. Bu ısınmanın belirli limitler 

içerisinde kalmaması durumunda veya istenen alan/hacim içinde tutulamamasına bağlı 

olarak tedavi ya da tanı sırasında istenmeyen durumlar ile karşılaşılabilir. Matematiksel 

modeller sayesinde lazer doku etkileşimlerinde ortaya çıkan bu termal etki önceden 

hesaplanabilir. Böylelikle istenmeyen durumların önüne geçilebilir. 

 

Bu çalışmada lazerin doku üzerindeki termal etkisini anlamak amacıyla matematiksel bir 

model geliştirilmiştir. Bu model gözenekli ortam teorisi esas alınarak oluşturulmuştur.  

Temel enerji denklemine dayanmaktadır ve mikro ölçekte mekanizmaları dikkate alarak 

makro ölçekli bir model olarak türetilmiştir. Model türetme aşamasında doku ve kanın 

lokal olarak termal dengedışı koşullar altında olduğu varsayılmıştır. 

 

Oluşturulmuş olan model numerik yöntem kullanılarak çözülmüştür. Çözüm işlemi 

MATLAB programı kullanılarak yapılmıştır. Elde edilen sonuçlar literatürde sıklıkla 
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kullanılan Pennes ve DPL modeli ile karşılaştırılmıştır. Modellerin sonuçları arasında 

farklılıklar gözlenmiş ve bu farklılıkların nedenleri tartışılmıştır. Aynı zamanda 

gözenekliliğin ve lazer ışınımının özelliklerinin sıcaklık üzerindeki etkisi de 

incelenmiştir. 

 

Anahtar Kelimeler: Canlı doku, biyoısı transferi, lazer ışınımı, gözenekli ortam 
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 CHAPTER 1 

 INTRODUCTION AND LITERATURE REVIEW 

 

1.1 Introduction 

Owing to the current interdisciplinary scientific studies and research, many new 

technologies are emerging in the health sector. These new technologies provide a basis 

for improved diagnosis and treatment techniques. One of them is laser applications. Laser 

has recently been used extensively in the health sector for diagnostic and therapeutic 

purposes [1]. The main reason for that is; laser makes operations possible that cannot be 

performed by traditional methods [2]. Additionally, laser provides high precision for 

diagnosis and treatment [3]. Also for various applications, the use of laser is more 

practical compared to traditional methods [4]. Therefore, it is important to understand the 

interaction of laser radiation with tissue cells. Experimental and theoretical studies are 

performed to gain better understanding of the effects of laser on tissue with the objective 

of making laser applications safer and more efficient. 

 

One of the effects caused by the laser radiation is the heat effect. Due to this effect, desired 

temperatures can be reached in the application zone [5]. However, the temperature rise 

may be an undesirable effect, depending on the purpose of the application. Because of the 

heat transfer mechanism, temperature increase is observed in the tissues around the 

primary application area. This increase in temperature can cause irreversible damage to 

the cells, as shown Figure 1.1 [6].  

 

 

Figure 1.1  Thermal damage after laser is applied [7] 
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For this reason, it has been tried to calculate the temperature increase due to laser radiation 

by experimental and theoretical methods.  Conducting experiments for each application 

are costly and require time. Therefore, the calculation of the temperature increase by 

mathematical models has become important.  Thanks to these models, the temperature 

distribution within the tissue formed after the application can be estimated and the high 

temperatures that may occur during the application phase can be prevented. 

 

1.2 Heat Transfer in Living Tissue 

 

1.2.1 Classical (Fourier) Models 

Heat conduction in the models presented in this section is explained by using Fourier's 

law of heat conduction. Perfusion term is included to consider the effects of blood flow. 

This term could behave as a heat source or sink depending on the conditions. These 

models consist of transient term, conduction term, perfusion term, metabolic heat source 

term and external heat source term as shown below. 

 

𝜌𝑡𝑐𝑝,𝑡
𝜕𝑇𝑡
𝜕𝑡

= ∇. (𝑘𝑡∇𝑇𝑡) + 𝑄𝑝 + 𝑄𝑚 + 𝑄𝑠                                                                            (1.1) 

 

1.2.1.1 The Pennes Bio-heat Equation 

Pennes derived a bio-heat equation based on his experiment results in the late 1940s [8]. 

This equation is one of the oldest and most practical bio-heat equations. He tried to 

explain the heat transfer in living tissue by adding terms such as metabolic heat 

production and perfusion heat source to the standard energy equation. The amount of heat 

from the blood to the tissue can be calculated by the perfusion term, which refers to blood 

passing from the vascular system to tissue. In this equation, it is assumed that temperature 

of the blood leaving the tissue is equal to the tissue temperature in order to simplify the 

heat transfer calculation. As a result of the addition of the Fourier law of conduction to 

the energy equation, the equation called Pennes equation in the literature is derived.  

 

𝜌𝑡𝑐𝑝,𝑡
𝜕𝑇𝑡
𝜕𝑡

= ∇. (𝑘𝑡∇𝑇𝑡) + 𝑤𝑏𝜌𝑏𝑐𝑝,𝑏(𝑇𝑏 − 𝑇𝑡) + 𝑄𝑚 + 𝑄𝑠                                              (1.2) 

 

where 𝜌𝑡 is density of tissue, 𝑐𝑝,𝑡 is specific heat capacity of tissue at constant pressure, 

𝑇𝑡 is temperature of tissue, 𝑘𝑡 is thermal conductivity of tissue, 𝑤𝑏is blood perfusion, 𝜌𝑏 
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is density of blood, 𝑐𝑝,𝑏 is specific heat capacity of tissue at constant pressure, 𝑇𝑏 is 

temperature of blood. Because it is one of the fundamental models, many researchers 

have used this equation [9–14]. Although solution of this model is simple, there are some 

shortcomings. In order to eliminate these shortcomings, studies were conducted and the 

obtained results were compared with the Pennes equation. 

 

1.2.1.2 Wulff Continuum Model 

Wulff changed the assumptions made in order to overcome the shortcomings associated 

with the Pennes equationn [15]. Pennes assumed that the heat transfer between blood and 

tissue is proportional to the difference in blood temperatures entering and leaving the 

tissue. Wulff, on the other hand, opposes this assumption and claims that this heat transfer 

is proportional to the temperature difference between flowing blood and tissue. As a 

result, the directional convective term is defined and this term is used instead of scalar 

perfusion term. 

 

𝜌𝑡𝑐𝑝,𝑡
𝜕𝑇𝑡
𝜕𝑡

= ∇. (𝑘𝑡∇𝑇𝑡) − 𝜌𝑏𝑐𝑝,𝑏𝑢𝑙𝑚,𝑏 . ∇𝑇𝑡 + 𝜌𝑏𝑢𝑙𝑚,𝑏∆𝐻∇∅ + 𝑄𝑠                                (1.3) 

 

where 𝑢𝑙𝑚,𝑏 is local mean blood velocity, ∆𝐻 is specific enthalpy of metabolic reaction, 

∅ is extent of reaction. The model was examined by the researchers and the effect of the 

terms added by Wulff on the results was examined [16,17]. 

 

1.2.1.3 Klinger Continuum Model 

The convective term was added into the Pennes equation by Klinger; so that the lack of 

blood flow effect in the Pennes equation was tried to be eliminated [18]. 

 

𝜌𝑡𝑐𝑝,𝑡
𝜕𝑇𝑡
𝜕𝑡

+ 𝜌𝑏𝑐𝑝,𝑏𝑢𝑏 . ∇𝑇𝑏 = ∇. (𝑘𝑡∇𝑇𝑡) + 𝑄𝑚 + 𝑄𝑠                                                       (1.4) 

 

Various studies have been done in the literature based on Klinger's research [19,20]. 

 

1.2.1.4 Chen-Holmes (CH) Continuum Model 

Chen and Holmes [21] adopted the view that the tissue consists of two different regions. 

For this reason, it is divided into two areas called the solid-tissue region and the blood 

region, as shown in Figure 1.2.  
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Figure 1.2  Representation schematic of the volume of tissue [21,22] 

 

By using Volume-Average technique, energy equations are created separately for these 

two regions. The energy equation for the blood region, unlike the solid-tissue region, 

contains a term for the bulk fluid flow. The two equations then are combined using a 

porosity factor, which indicates the relationship between the two sub-volumes. Thus, a 

continuum model was created for the tissue. Based on the assumption that the porosity 

factor is less than one, the effective thermal conductivity coefficient is assumed to be 

equal to the thermal conductivity of the tissue. The heat transfer due to blood flow is 

divided into three different parts. Firstly, the blood perfusion part is limited that blood 

enters into the tissue from only micro vessels. The temperature of the blood entering the 

tissue was also assumed to be not equal to the temperature of the tissue. Secondly, the 

effect caused by the transport of blood is considered. Thirdly, the change of the thermal 

conduction coefficient due to the flow of blood is implied. The final form of the equation 

is formed by the addition of the perfusion term by combining these three factors into the 

equation formed.  

 

𝜌𝑡𝑐𝑝,𝑡
𝜕𝑇𝑡
𝜕𝑡

= ∇. (𝑘𝑒𝑓𝑓∇𝑇𝑡) + 𝑤𝑏
∗𝜌𝑏𝑐𝑝,𝑏(𝑇𝑏

∗ − 𝑇𝑡) − 𝜌𝑏𝑐𝑝,𝑏𝑢𝑏 . ∇𝑇𝑡 + ∇. (𝑘𝑝∇𝑇𝑡) + 𝑄𝑚 + 𝑄𝑠              (1.5) 

 

The results of this model have been used in various studies and their results have been 

examined [22–25]. 
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1.2.1.5 The Weinbaum and Jiji (WJ) Bio-heat Equation Model 

Weinbaum, Jiji and Lemons modified thermal conduction as effective thermal conduction 

using blood flow velocity and vessel geometry [26,27]. Arteries and veins were 

considered parallel to each other in the formation of vessel geometry. Flow directions are 

assumed to be opposite to each other and the countercurrent heat transfer effect between 

them is included in this way. The energy equation was written separately for the artery 

and vein. These equations are combined and then they added to the general energy 

equation to find out the interaction between tissue and blood. Consequently, contrary to 

the Pennes equation, the term perfusion is dependent on the arterial and vein temperature 

difference. 

 

𝜌𝑏𝑐𝑝,𝑏(𝑛𝑣𝜋𝑅
2𝑢𝑏,𝑚)

𝑑

𝑑𝑠
[𝑇𝑎 − 𝑇𝑣] − 𝜌𝑏𝑐𝑝,𝑏(𝑛𝑣2𝜋𝑅𝑔)(𝑇𝑎 − 𝑇𝑣) = ∇. (𝑘𝑡∇𝑇𝑡) + 𝑄𝑚 + 𝑄𝑠                     (1.6) 

 

where 𝑛𝑣 is the number of veins or arteries, 𝑅 is the radius of vessel, 𝑢𝑏,𝑚 is the mean 

velocity of blood, 𝑔 is the perfusion velocity per unit vessel surface area. Since this model 

was difficult to implement, Weinbaum and Jiji simplified it [28]. This equation contained 

two unknowns, such as arterial and vein temperature. In order to calculate the tissue 

temperature, it was assumed that the average of these two temperatures was equal to the 

tissue temperature. In addition to that, heat transfer between artery and vein was expressed 

in terms of geometrical shape factor. 

 

𝑛𝑣𝜋
2𝑅𝑘𝑏
4𝑘𝑡

𝑃𝑒 (
2𝑔𝑃𝑒

𝜎𝑢𝑏,𝑚

𝑑𝑇𝑡
𝑑𝑠

−
𝑑

𝑑𝑠
[
𝑅𝑃𝑒

𝜎

𝑑𝑇𝑡
𝑑𝑠
]) = ∇. (𝑘𝑡∇𝑇𝑡) + 𝑄𝑚 + 𝑄𝑠                         (1.7)  

 

where 𝑃𝑒 is the Peclet number, 𝜎 is the shape factor. Many researchers examined the 

simplified equation in the literature and obtained results were compared with results of 

other models [29–31]. 

 

1.2.2 Non-Fourier Continuum Models 

Roemer et al. [32] and  Mitra et al. [33] observed that temperature shows wave-like 

behavior and oscillations in experiments. These could not be explained by Fourier law of 

heat conduction. For this reason, in order to overcome this shortcoming, phase lags were 

added to the Fourier equation by researchers. These models show continuum 

characteristic. 
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1.2.2.1 Thermal wave model of bio-heat equation 

Fourier law of heat conduction assumes infinite speed of heat wave propagation. 

However, the experimental results show that this propagation has a finite speed due to 

photon collusion process [34]. This effect can be captured with the use of relaxation time. 

Based on this idea, Cattaneo [35] and Vernotte [36] added phase lag for the heat flux in 

the Fourier equation. By this concept, the general state of the thermal wave model of bio-

heat equation has been obtained. 

 

𝜕2𝑇𝑡
𝜕𝑡2

+ (1 +
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏
𝜌𝑡𝑐𝑝,𝑡

𝜏𝑞)
𝜕𝑇𝑡
𝜕𝑡

= ∇. (𝛼𝑡∇𝑇𝑡) +
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏
𝜌𝑡𝑐𝑝,𝑡

(𝑇𝑏 − 𝑇𝑡) +
𝑄𝑚
𝜌𝑡𝑐𝑝,𝑡

+
𝑄𝑠
𝜌𝑡𝑐𝑝,𝑡

     (1.8) 

 

where 𝜏𝑞 is the phase lag for heat flux. This model has been the subject of various 

researches due to advantages of capturing finite speed heat wave propagation. Using 

different boundary conditions, the results were compared with other models, especially 

with the one developed by Pennes [33,37–39]. 

 

1.2.2.2 Dual phase lag (DPL) Bio-heat Equation 

In addition to relaxation behavior, Fourier law ignores the thermalization behavior. This 

behavior occurs due to finite speed energy transfer between photons and electrons in 

photon electron interaction, in other words a finite time is required to reach thermal 

equilibrium condition between photons and electrons. It causes a delay in temperature 

gradient [34].  Although the thermal wave model can solve the problem of infinite speed 

of heat wave propagation, it ignores the microstructural effect. Therefore, a phase lag for 

temperature has been added by Tzou to incorporate this microstructural effect.  

 

𝜕2𝑇𝑡
𝜕𝑡2

+ (1 +
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
𝜏𝑞)

𝜕𝑇𝑡
𝜕𝑡

= ∇. (𝛼𝑡∇𝑇𝑡) + 𝜏𝑇
𝜕

𝜕𝑡
(∇. (𝛼𝑡∇𝑇𝑡)) 

+
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
(𝑇𝑏 − 𝑇𝑡) +

𝑄𝑚
𝜌𝑡𝑐𝑝,𝑡

+
𝑄𝑠
𝜌𝑡𝑐𝑝,𝑡

                                                                              (1.9) 

 

where 𝜏𝑇 is the phase lag for temperature. Many researchers preferred to use this model 

due to its ability to showing microstructural behavior. The results are compared with 

models such as Pennes equation and thermal wave model of bio-heat equation [40–44].  
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1.2.2.3 Generalized Dual-Phase Lag Bio-heat Equations 

In the DPL equation, the effect of blood was added as a perfusion heat source and the 

blood region was neglected. Zhang argued that the blood region should be taken into 

consideration and the blood and tissue regions should be handled separately [45]. 

Therefore, Zhang formed two different equations, one of which is for blood, and the other 

one is for tissue.  Then a single equation was obtained by combining these equations. 

Using the assumption suggested by Khaled and Vafai [46], blood velocity was eliminated 

from the equation. Finally, this equation was transformed into the form of DPL equation. 

As a consequent of these, phase lags of DPL equations can be expressed in terms of blood 

and tissue parameters. 

 

𝜏𝑞
𝜕2𝑇𝑡
𝜕𝑡2

+
𝜕𝑇𝑡
𝜕𝑡

= ∇. (𝛼𝑒𝑓𝑓∇𝑇𝑡) + 𝜏𝑇
𝜕

𝜕𝑡
(∇. (𝛼𝑒𝑓𝑓∇𝑇𝑡)) +

𝐺

(𝜌𝑐𝑝)𝑒𝑓𝑓

(𝑇𝑏 − 𝑇𝑡) 

+
(1 − 𝜀)𝑄𝑚 + 𝑄𝑟

(𝜌𝑐𝑝)𝑒𝑓𝑓

+
𝜀𝜌𝑏𝑐𝑏

𝐺(𝜌𝑐𝑝)𝑒𝑓𝑓

[(1 − 𝜀)
𝜕𝑄𝑚
𝜕𝑡

+
𝜕𝑄𝑠
𝜕𝑡
]                                                            (1.10) 

 

where                𝜏𝑞 =
𝜀(1−𝜀)𝜌𝑏𝑐𝑏𝜌𝑠𝑐𝑠

𝐺(𝜌𝑐)𝑒𝑓𝑓
                                𝜏𝑇 =

𝜀(1−𝜀)𝜌𝑏𝑐𝑏𝑘𝑠

𝐺𝑘𝑒𝑓𝑓
                             

 

The results obtained under different conditions were compared with the results of  DPL 

model and other models in the literature [47–50]. 

 

1.2.3 Fractional Bio-heat Equation 

Pennes equation has several assumptions that decrease its accuracy. In order to increase 

the accuracy of results, fractional differential equation is embedded into Pennes equation 

[51,52]. So, the effects of anomalous heat transport phenomena are tried to be captured. 

This process can be done by time fractional and/or space fractional equation [53]. General 

form of the fractional bio-heat equation for 1D is as following; 

 

𝜌𝑡𝑐𝑝,𝑡
𝜕𝛼𝑇𝑡
𝜕𝑡𝛼

= 𝑘𝑡
𝜕𝛽𝑇𝑡
𝜕𝑥𝛽

(𝑇𝑡) + 𝑤𝑏𝜌𝑏𝑐𝑝,𝑏(𝑇𝑏 − 𝑇𝑡) + 𝑄𝑚 + 𝑄𝑠                                      (1.11) 

 

where               𝛼 ∈ (0,1]    and     𝛽 ∈ (1,2] 
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In addition to fractional form of Pennes equation, fractional from of thermal wave model 

of bio-heat equation and fractional from of dual phase lag bio-heat equation are studied 

in the literature [54–56].   

 

1.2.4 Porous Media Models 

In Porous media models, it is assumed that the tissue consists of two regions which are 

solid matrix and blood flowing through the spaces between this matrix. Then they were 

evaluated separately. It was created based on the microstructure in the formation of 

equations and then extended to apply to macro structures. This was done by using volume-

averaging theory [57]. The assumptions of local thermal equilibrium [58] or local thermal 

non-equilibrium [59] were used to combine these generated equations. 

 

1.2.4.1 Two Temperature Equation 

In this method, the tissue is divided into two different regions. The energy equations are 

written separately for the regions expressed as blood and solid [60,61]. A volumetric 

relationship was established between each other using the porosity factor. 

 

𝜀𝜌𝑏𝑐𝑏 [
𝜕𝑇𝑏
𝜕𝑡

+ 𝑢𝑏 . ∇𝑇𝑏] = ∇. (𝑘𝑒𝑓𝑓,𝑏∇𝑇𝑏) + 𝑎𝑏ℎ𝑏(𝑇𝑠 − 𝑇𝑏) + 𝜀𝑄𝑠                             (1.12) 

 

(1 − 𝜀)𝜌𝑠𝑐𝑠
𝜕𝑇𝑠

𝜕𝑡
= ∇. (𝑘𝑒𝑓𝑓,𝑠∇𝑇𝑠) − 𝑎𝑏ℎ𝑏(𝑇𝑏 − 𝑇𝑠) + (1 − 𝜀)𝑄𝑚 + (1 − 𝜀)𝑄𝑠      (1.13)        

 

where 𝜀 is the porosity of tissue, 𝑎𝑏is the specific surface area,  ℎ𝑏 is the interfacial heat 

transfer coefficient. The results of the studies using this model are compared with the 

other models in the literature [62–64]. 

 

1.2.4.2 Three Temperature Equation 

In these models, the blood region is divided into 2 parts as arterial and venous region in 

order to incorporate the countercurrent heat transfer effect. The equations for these three 

regions are written separately [65]. When writing these equations, two different porosity 

factors are used, one for the artery and the other for the venous regions. 

 

𝜀𝑎𝜌𝑎𝑐𝑝,𝑎 [
𝜕𝑇𝑎
𝛿𝑡

+ 𝑢𝑎 . ∇𝑇𝑎] = ∇. (𝑘𝑒𝑓𝑓,𝑎,∇𝑇𝑎) + 𝑎𝑎ℎ𝑎(𝑇𝑠 − 𝑇𝑎) + 𝜀𝑎𝑄𝑠                                    (1.14) 

 



9 

 

𝜀𝑣𝜌𝑣𝑐𝑝,𝑣 [
𝜕𝑇𝑣
𝜕𝑡

+ 𝑢𝑣 . ∇𝑇𝑣] = ∇. (𝑘𝑒𝑓𝑓,𝑣∇𝑇𝑣) + 𝑎𝑣ℎ𝑣(𝑇𝑠 − 𝑇𝑣) + 𝜀𝑣𝑄𝑠                                       (1.15) 

 

(1 − 𝜀𝑎 − 𝜀𝑣)𝜌𝑠𝑐𝑝,𝑠
𝜕𝑇𝑠

𝜕𝑡
= ∇. (𝑘𝑒𝑓𝑓,𝑠∇𝑇𝑠) − 𝑎𝑎ℎ𝑎(𝑇𝑠 − 𝑇𝑏,𝑎) − 𝑎𝑣ℎ𝑣(𝑇𝑠 − 𝑇𝑣)  

+(1 − 𝜀𝑎 − 𝜀𝑣)𝑄𝑚 + (1 − 𝜀𝑎 − 𝜀𝑣)𝑄𝑠                                                                                            (1.16)                            

 

The effect of countercurrent heat transfer is investigated with this approach and results 

are compared with similar models in literature [66,67]. 

 

1.2.5 Structural Vascular Network 

In structural vascular network models, a vascular network is created to add the effect of 

blood for heat transfer phenomena. Two approaches are commonly used to construct the 

vascular network. In the first approach, the fractal vascular network is formed by using 

laws such as Murray law. Then the temperature distribution is obtained for this region. 

Since the fractal structure is an approximate structure to the actual vessel network, the 

temperature distribution can be estimated in this way [68]. One of the examples of the 

fractal structure is shown in Figure 1.3.   

  

 

Figure 1.3  Example of the fractal structure [69] 

 

In the second approach, a general structure was designed using anatomical information. 

General temperature distribution was obtained with this structure [70]. However, due to 

the complexity of the vessel structure, these models have been difficult to form and solve.  
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Although there are different methods of calculating the temperature values in living tissue 

cells, these can be categorized in two different groups. In the first type of classification, 

the use of Fourier approach or non-Fourier approach in the calculation of the heat 

conduction is taken into consideration (Figure 1.1). The second type of classification is 

based on the usage of porous media approach in the models (Figure 1.2). According to 

these two different characteristics, the classification of the models in the literature is 

expressed as follows. 
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Figure 1.4  Classification of mathematical models based on Fourier approach 
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Figure 1.5  Classification of mathematical models based on Porous Media approach 
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1.3 Addition of Laser Irradiation as a Heat Source 

In general, two methods have been followed to include the radiation effect. One of these 

is that the heat generated by the laser is defined as the boundary condition. The other one 

is the addition of this effect into the equation as a volumetric heat source. In the first case, 

it is assumed that the tissue has a high absorbency. As a result of this assumption, the 

laser beam is considered to be absorbed at a very small depth. This situation leads to 

occurrence of a heat flux on the surface. Beer-Lambert law can be used to calculate this 

heat flux [71,72]. 

 

In the other method, different approaches can be used. One of these approaches, the 

equation which directly explains this radiation effect is added to the model as a volumetric 

heat source [73]. The other approach assumes that the tissue has strongly scattering 

characteristic. In this case, radiation effect can be calculated by using diffusion theory 

and added as a volumetric heat source. For calculation of the unknown coefficients in 

diffusion theory, Monte Carlo simulation is preferred [74][75]. 

 

1.4 Aim and Scope of the Thesis 

Several studies have been conducted to understand the heat transfer within the tissue. It 

is important to gain a better understanding of heat transfer in laser tissue interaction to 

prevent possible errors and to benefit from it more in laser treatment. Therefore, in this 

study, a mathematical model will be derived from the basic energy equation. In the 

derivation of this model, it is going to be done by using porous media assumption which 

is the subject of many researches.  In the derivation phase, it is aimed to obtain results 

that are more realistic by minimizing the assumptions made. At the same time, the terms  

that will make the calculation difficult will be reduced by using assumptions. In this way, 

it is aimed to create an easy to use and general mathematical model. The results of this 

model will be compared with the other models in the literature. 
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 CHAPTER 2 

THEORY AND MODELING 

 

2.1 Theory 

In order to gain understanding of laser and tissue interaction, basic energy transfer 

mechanism should be examined. The energy conservation equation with temperature 

formulation is given below [76]. 

 

𝜌𝑐𝑝
𝐷𝑇

𝐷𝑡
= ∇. (𝑘∇𝑇) + 𝑇𝛽

𝐷𝑝

𝐷𝑡
+ ∇𝑣: 𝜏+𝑄𝑠                                                                          (2.1) 

 

Compression and expansion work and viscous dissipation terms are small enough in most 

convective heat transfer processes, so that they can be neglected. If they are neglected, 

the general form of equation can be reduced to 

 

𝜌𝑐𝑝 (
𝜕𝑇

𝜕𝑡
+ ∇. (𝑢. 𝑇)) = ∇. (𝑘∇𝑇) + 𝑄𝑠                                                                               (2.2) 

 

The living tissue has a complex structure. Heat transfer mechanism in this structure is 

affected by factors such as heat conduction in the tissue, heat convection due to blood 

flow and blood perfusion. It is therefore difficult to understand and explain the details by 

direct application of this equation where the tissue is considered to be a single 

homogeneous structure. The tissue can be considered as porous media when the general 

structure of it is considered [77]. This structure can be expressed in two regions: 

intravascular region and extravascular region (Figure 2.1). Intravascular region is 

composed of voids and blood. The extravascular region consists of biological cells and 

other solid parts. Therefore, the tissue structure can be approximated as fluid saturated 

porous media. 
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Figure 2.1. Representation of Biological Tissue [78] 

 

The energy equation can be derived separately for these two regions. These equations are 

microscale and take into account the microstructure effects. In order to apply the equation 

in general and to use macroscopic properties, these equations must be valid in macroscale. 

For this reason, the equations written in microscale must be scaled up to the macroscale. 

This process can be made by the applied volume averaging method. 

 

2.1.1 Volume –Averaging Theory 

A control volume that considers fluid saturated porous media is defined for this operation, 

as shown in Figure 2.2. This volume needs to be a very large volume from a microscopic 

point of view and a very small volume from a macroscopic point of view. 
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Figure 2.2. Example of Control Volume in Porous Media [79] 

 

Volume average of a variable ϕ is defined as [79] 

 

〈𝜑〉 =
1

𝑉
∫𝜑
 

𝑉

𝑑𝑉                                                                                                                  (2.3) 

 

Intrinsic average on the other hand, which is another type average, is defined as [79] 

 

〈𝜑〉𝑓 =
1

𝑉𝑓
∫ 𝜑
 

𝑉𝑓

𝑑𝑉                                                                                                            (2.4) 

 

Porosity and relation of two averages are [79] 

 

〈𝜑〉 = 𝜀〈𝜑〉𝑓                                                                                                                      (2.5a) 

 

𝑤ℎ𝑒𝑟𝑒    𝜀 =
𝑉𝑓
𝑉
⁄                                                                                                            (2.5b) 

 

A variable can be expressed as intrinsic average and the spatial deviation of it [79]: 

 

𝜑 = 〈𝜑〉𝑓 + �̃�                                                                                                                     (2.6) 
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Spatial average relationships can be represented as following [79], 

 

〈𝜑1𝜑2〉
𝑓 = 〈𝜑1〉

𝑓〈𝜑2〉
𝑓 + 〈�̃�1�̃�2〉

𝑓                                                                                       (2.7) 

 

〈∇𝜑〉 = ∇〈𝜑〉 +
1

𝑉
∫ 𝜑
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴                                                                                                 (2.8) 

 

〈∇. 𝜑〉 = ∇. 〈𝜑〉 +
1

𝑉
∫ 𝜑
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴                                                                                             (2.9) 

 

〈∇𝜑〉𝑓 =
1

𝜀
∇(ε〈𝜑〉𝑓) +

1

𝑉𝑓
∫ 𝜑
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴                                                                              (2.10) 

 

〈
𝜕𝜑

𝜕𝑡
〉 =

𝜕〈𝜑〉

𝜕𝑡
                                                                                                                           (2.11) 

 

Although separate equations are created for the intravascular region and the extravascular 

region, these two regions are in interaction. Microscopically, local thermal equilibrium 

conditions provide various limitations. As a result of this interaction, two conditions may 

occur. One of them is the formation of local thermal equilibrium condition. Another one 

is the formation of local thermal nonequilibrium condition. From the microscopic point 

of view, local thermal equilibrium conditions are limited to certain situations [80]. For 

instance, the local thermal equilibrium condition does not hold when there is a high heat 

generation [81]. Another limitation is that this assumption is not correct when the liquid 

having the high Reynold number is present [82]. Therefore, mathematical model is 

derived under the assumption of local thermal nonequilibrium to obtain a more general 

model that is applicable for wider range of circumstances. 

 

Based on the approach explained above, a general mathematical model can be written 

describing the heat transfer mechanism within the tissue. The laser interaction can be 

incorporated to this model by taking into account the optical properties of the tissue. There 

are two main approaches can be followed; one is the assumption that the tissue has a 

highly absorbing behavior. The other approach is the assumption that the tissue behaves 

as a medium with strongly scattering property. 
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For the highly absorbing case, it is assumed that the incident radiation is absorbed in the 

tissue at a very small depth and the scattering within the tissue is neglected. The amount 

of the fluence rate calculated by using Beer-Lambert's law [83]. 

 

𝜗(𝑧) = (1 − 𝑅𝑠)𝜗𝑖𝑛𝑒
−𝜇𝑡𝑧 ≅ (1 − 𝑅𝑠)𝜗𝑖𝑛𝑒

−𝜇𝑎𝑧                                                              (2.12) 

 

where 𝜗(𝑧) is the fluence rate in tissue, 𝑅𝑠 is specular reflectance, 𝜗𝑖𝑛 is laser irradiance,  

𝜇𝑡 is attenuation coefficient, 𝜇𝑎 is absorption coefficient. In the strongly scattering case, 

the radiation increases the temperature of the tissue by penetrating into the tissue. The 

fluence rate can be calculated by the diffusion theory [73,74].  

  

𝜗(𝑧) = 𝜗𝑖𝑛 [𝐶1𝑒
(−
𝐷1𝑧
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑧
𝛿
) ]                                                                                (2.13) 

 

where                      𝛿 =
1

√3𝜇𝑎[𝜇𝑎 + 𝜇𝑠′]
                for   𝜇𝑎 ≪ 𝜇𝑠                                  (2.14) 

 

𝐶1, 𝐷1, 𝐶2, and 𝐷2 are unknown coefficients of diffusion theory, 𝛿 is effective optical 

penetration depth, 𝜇𝑠 is scattering coefficient, 𝜇𝑠′ is reduced scattering coefficient. Monte 

Carlo simulations can be used to determine unknown coefficients of this theory. Gardner 

et al. [84] determined these unknown coefficients for laser tissue interaction case by using 

Monte Carlo simulation. The determined empirical expressions of unknown coefficients 

are as follows. 

 

𝐶1 = 3.09 + 5.44𝑅𝑑 − 2.12𝑒
(−21.5𝑅𝑑)                                                                              (2.15) 

 

𝐷1 = 1 − (1 −
1

√3
) 𝑒(−20.1𝑅𝑑)                                                                                            (2.16) 

 

𝐶2 = 2.09 − 1.47𝑅𝑑 − 2.12𝑒
(−21.5𝑅𝑑)                                                                              (2.17) 

 

𝐷2 = 1.63𝑒(3.4𝑅𝑑)                                                                                                                   (2.18) 
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Heat generation due to Laser irradiance is added to the equation as a volumetric heat 

source for both highly absorbed and strongly scattering cases. The value of the heat source 

depends on the absorption coefficient and the fluence rate. 

 

𝑄(𝑧) = 𝜇𝑎𝜗(𝑧)                                                                                                                       (2.19) 

 

2.2 Governing Equations 

Living tissue can be described with two separate regions, intravascular and extravascular. 

At this point, fluid is assumed incompressible and Newtonian, and all properties are 

assumed constant. In addition to these, metabolic heat generation for blood is neglected. 

As a result of these assumptions, thermal energy equations for these regions are obtained 

by using equation (2.2).  

 

𝜌𝑖𝑐𝑝,𝑖 (
𝜕𝑇𝑖
𝜕𝑡

+ ∇. (𝑢𝑖. 𝑇𝑖)) = 𝑘𝑖∇
2𝑇𝑖 + 𝑄                                                                             (2.20) 

 

𝜌𝑒𝑐𝑝,𝑒 (
𝜕𝑇𝑒
𝜕𝑡

+ ∇. (𝑢𝑒 . 𝑇𝑒)) = 𝑘𝑒∇
2𝑇𝑒 + 𝑄 + 𝑄𝑚                                                             (2.21) 

 

These two regions have different characteristics. For this reason, it is necessary to 

consider them separately in derivation of valid equations in the microscale. The equations 

(2.20) and (2.21) that take microscopic features into account can scale up to the 

macroscale using volume average theory. 

 

Taking integral of equation (2.20) for applying volume averaging method to intravascular 

region; 

 

1

𝑉
∫ 𝜌𝑖𝑐𝑝,𝑖

𝜕𝑇𝑖
𝜕𝑡

 

𝑉

+
1

𝑉
∫𝜌𝑖𝑐𝑝,𝑖∇. (𝑢𝑖. 𝑇𝑖)
 

𝑉

=
1

𝑉
∫𝑘𝑖∇

2𝑇𝑖

 

𝑉

+
1

𝑉
∫𝑄𝑖

 

𝑉

                                    (2.22) 

 

Using relations in the equation (2.3) and (2.5a), equation (2.22) can be expressed as; 

 

〈𝜌𝑖𝑐𝑝,𝑖
𝜕𝑇𝑖
𝜕𝑡
〉 + 〈𝜌𝑖𝑐𝑝,𝑖∇. (𝑢𝑖. 𝑇𝑖)〉 = 〈𝑘𝑖∇

2𝑇𝑖〉 + 〈𝑄𝑖〉                                                         (2.23) 
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This derivation can be reached more easily by examining the terms separately in equation 

(2.23). Firstly, using the equation (2.11), the first term in the left hand side of equation 

(2.23) can be expressed as following; 

 

〈𝜌𝑖𝑐𝑝,𝑖
𝜕𝑇𝑖
𝜕𝑡
〉 = 𝜀𝜌𝑖𝑐𝑝,𝑖

𝜕〈𝑇𝑖〉
𝑖

𝜕𝑡
                                                                                                 (2.24) 

 

Secondly, the second term in the left hand side of equation (2.24) can be simplified by 

using relations presented in the equations (2.5a), (2.7) and (2.9). 

 

〈𝜌𝑖𝑐𝑝,𝑖∇. (𝑢𝑖 . 𝑇𝑖)〉 = 𝜌𝑖𝑐𝑝,𝑖𝜀∇. 〈𝑢𝑖. 𝑇𝑖〉
𝑖 +

1

𝑉
∫ 𝜌𝑖𝑐𝑝,𝑖(𝑢𝑖𝑇𝑖)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴 

= 𝜌𝑖𝑐𝑝,𝑖𝜀∇. 〈𝑢𝑖〉
𝑖〈𝑇𝑖〉

𝑖 + 𝜌𝑖𝑐𝑝,𝑖𝜀∇. 〈�̃�𝑖 . �̃�𝑖〉
𝑖 +

1

𝑉
∫ 𝜌𝑖𝑐𝑝,𝑖(𝑢𝑖𝑇𝑖)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴                         (2. 25) 

 

When the terms of equation (2.25) are evaluated individually, the second term at the right 

hand side is dispersion heat flux. Although it increases thermal conductivity of tissue at 

deep layers, effect on temperature is very low. This effect is shown in the Figure 2.3. 

Thermal dispersion term can be neglected [66].   

 

 

Figure 2.3  Thermal dispersion effect  on the other models in literature [66]. 
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𝜌𝑖𝑐𝑝,𝑖𝜀∇. 〈�̃�𝑖 . �̃�𝑖〉
𝑖 ≅ 0                                                                                                           (2.26)  

    

Fluid transfer in the circulatory system occurs between intravascular and extravascular 

region. The amount of fluid leaving and entering the intravascular region is in 

equilibrium. At the same time, it can be assumed that the temperature of blood entering 

the intravascular region is equation to the temperature of the extravascular region. Hence, 

the third term on the right hand side of the equation can be expressed by blood perfusion 

[61]. 

 

1

𝑉
∫ 𝜌𝑖𝑐𝑝,𝑖(𝑢𝑖𝑇𝑖)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴 = 𝜌𝑖𝑐𝑝,𝑖𝜔(〈𝑇𝑖〉
𝑖 − 〈𝑇𝑒〉

𝑒)                                                           (2.27) 

 

Consequent of these, final version of equation (2.24) will be; 

 

〈𝜌𝑖𝑐𝑝,𝑖∇. (𝑢𝑖. 𝑇𝑖)〉 = 𝜌𝑖𝑐𝑝,𝑖𝜀∇. 〈𝑢𝑖〉
𝑖〈𝑇𝑖〉

𝑖 + 𝜌𝑖𝑐𝑝,𝑖𝜔(〈𝑇𝑖〉
𝑖 − 〈𝑇𝑒〉

𝑒)                                         (2.28) 

 

Thirdly, using relations in the equations (2.5a) and (2.8), the first term in the right hand 

side of equation (2.23) will be; 

 

〈𝑘𝑖∇
2𝑇𝑖〉 = 𝜀𝑘𝑖∇〈∇𝑇𝑖〉

𝑖 +
1

𝑉
∫ 𝑘𝑖(∇𝑇𝑖)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴 

= 𝜀𝑘𝑖∇(∇〈𝑇𝑖〉
𝑖 +

1

𝑉
∫ 𝑇𝑖

 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴) +
1

𝑉
∫ 𝑘𝑖(∇𝑇𝑖)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴                                               (2.29) 

 

Second term at the right hand side of equation (2.29) is called tortuosity heat flux. This 

term refers to the tendency of the heat flux to circulation. It is small enough to neglect 

when convection is much higher to compare with conduction [85]. Third term at the right 

hand side of equation (2.29) expresses interfacial heat transfer and it can be evaluated by 

Newton’s law of cooling. 

 

1

𝑉
∫ 𝑘𝑖(∇𝑇𝑖)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴 = 𝑎𝑖ℎ𝑖(〈𝑇𝑒〉
𝑒 − 〈𝑇𝑖〉

𝑖)                                                                        (2.30) 

 

Consequent of these manipulations, the final version of equation (2.29) will be; 

 

〈𝑘𝑖∇
2𝑇𝑖〉 = 𝜀𝑘𝑖∇

2〈𝑇𝑖〉
𝑖 + 𝑎𝑖ℎ𝑖(〈𝑇𝑒〉

𝑒 − 〈𝑇𝑖〉
𝑖)                                                                   (2.31) 



22 

 

For the intravascular region, the macroscale energy equation can be obtained by 

substituting equations (2.24), (2.28) and (2.31) into the equation (2.23). 

 

𝜀𝜌𝑖𝑐𝑝,𝑖
𝜕〈𝑇𝑖〉

𝑖

𝜕𝑡
+ 𝜌𝑖𝑐𝑝,𝑖𝜀∇. 〈𝑢𝑖〉

𝑖〈𝑇𝑖〉
𝑖 = 𝑘𝑒𝑓𝑓,𝑖∇

2〈𝑇𝑖〉
𝑖 + 𝐺(〈𝑇𝑒〉

𝑒 − 〈𝑇𝑖〉
𝑖) + 𝜀〈𝑄𝑖〉

𝑖    (2.32) 

 

where        𝑘𝑒𝑓𝑓,𝑖 = 𝜀𝑘𝑖                                                                                                        (2.33a) 

 

                   𝐺 = 𝜌𝑖𝑐𝑝,𝑖𝜔 + 𝑎𝑖ℎ𝑖                                                                                            (2.33b) 

 

The same procedure can be applied to the extravascular region. For this region, porosity 

could be expressed in terms of porosity intravascular region.  

 

𝜀𝑒 = 1 − 𝜀                                                                                                                              (2.34) 

 

𝑤ℎ𝑒𝑟𝑒           𝜀𝑖 + 𝜀𝑒 = 1                                                                                                     (2.35) 

 

Taking the integral of equation (2.22) for applying volume averaging method to 

extravascular region; 

 

1

𝑉
∫ 𝜌𝑒𝑐𝑝,𝑒

𝜕𝑇𝑒
𝜕𝑡

 

𝑉

+
1

𝑉
∫𝜌𝑒𝑐𝑝,𝑒∇. (𝑢𝑒 . 𝑇𝑒)
 

𝑉

=
1

𝑉
∫𝑘𝑒∇

2𝑇𝑒

 

𝑉

+
1

𝑉
∫𝑄𝑒

 

𝑉

+
1

𝑉
∫𝑄𝑚,𝑒

 

𝑉

        (2.36) 

 

Using relations in equations (2.3) and (2.5a), equation (2.36) can be expressed as; 

 

〈𝜌𝑒𝑐𝑝,𝑒
𝜕𝑇𝑒
𝜕𝑡
〉 + 〈𝜌𝑒𝑐𝑝,𝑒∇. (𝑢𝑒 . 𝑇𝑒)〉 = 〈𝑘𝑒∇

2𝑇𝑒〉 + 〈𝑄𝑒〉 + 〈𝑄𝑚,𝑒〉                                  (2.37) 

 

The derivation for extravascular region can be obtained more easily by examining the 

terms separately in equation (2.37). Firstly, using the relation presented in equation 

(2.11), the first term in the left hand side of equation (2.37) can be expressed as following; 

 

〈𝜌𝑒𝑐𝑝,𝑒
𝜕𝑇𝑒
𝜕𝑡
〉 = (1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒

𝜕〈𝑇𝑒〉
𝑒

𝜕𝑡
                                                                                 (2.38) 

 

Secondly, the second term in the left hand side of equation (2.37) can be simplified by 

using relations given in equations (2.5a), (2.7) and (2.9). 
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〈𝜌𝑒𝑐𝑝,𝑒∇. (𝑢𝑒 . 𝑇𝑒)〉 = 𝜌𝑒𝑐𝑝,𝑒(1 − 𝜀)∇. 〈𝑢𝑒 . 𝑇𝑒〉
𝑒 +

1

𝑉
∫ 𝜌𝑒𝑐𝑝,𝑒(𝑢𝑒𝑇𝑒)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴 

= 𝜌𝑒𝑐𝑝,𝑒(1 − 𝜀)∇. 〈𝑢𝑒〉
𝑒〈𝑇𝑒〉

𝑒 + 𝜌𝑒𝑐𝑝,𝑒𝜀∇. 〈�̃�𝑒 . �̃�𝑒〉
𝑒 +

1

𝑉
∫ 𝜌𝑒𝑐𝑝,𝑒(𝑢𝑒𝑇𝑒)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴                   (2.39) 

 

First term at the right hand side of equation (2.39) is a convection term. Since the flow is 

steady and incompressible, it is assumed that the inlet and outlet flow rates are equal to 

each other. For extravascular region, this term can be neglected because intrinsic average 

of velocity is zero. Second term at the right hand side of equation (2.39) is dispersion heat 

flux. It also can be neglected due to intrinsic average of velocity is zero. 

 

The third term in the right hand side of equation (2.39) has the same characteristic with 

the third term in the right hand side of equation (2.25). Therefore, the same assumption 

can be made [61]. Using this assumption, third term in the right hand side of equation 

(2.39) will be; 

 

1

𝑉
∫ 𝜌𝑒𝑐𝑝,𝑒(𝑢𝑒𝑇𝑒)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴 = 𝜌𝑖𝑐𝑝,𝑖𝜔(〈𝑇𝑒〉
𝑒 − 〈𝑇𝑖〉

𝑖)                                                         (2.40) 

 

Consequent of these, the final version of equation (2.39) will be; 

 

〈𝜌𝑒𝑐𝑝,𝑒∇. (𝑢𝑒 . 𝑇𝑒)〉 = 𝜌𝑖𝑐𝑝,𝑖𝜔(〈𝑇𝑒〉
𝑒 − 〈𝑇𝑖〉

𝑖)                                                                    (2.41) 

 

Thirdly, using relations in equations (2.5a) and (2.8), the first term in the right hand side 

of equation (2.37) will be; 

 

〈𝑘𝑒∇
2𝑇𝑒〉 = (1 − 𝜀)𝑘𝑒∇〈∇𝑇𝑒〉

𝑒 +
1

𝑉
∫ 𝑘𝑒(∇𝑇𝑒)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴 

= 𝜀𝑘𝑒∇(∇〈𝑇𝑒〉
𝑒 +

1

𝑉
∫ 𝑇𝑒

 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴) +
1

𝑉
∫ 𝑘𝑒(∇𝑇𝑒)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴                                            (2.42) 

 

The second term at the right hand side of equation (2.42) is tortuosity heat flux. The 

situation for the intravascular region is valid within this region. Therefore it is neglected 

[85]. The third term at the right hand side of equation (2.42) expresses interfacial heat 

transfer and it can be evaluated by Newton’s law of cooling. 
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1

𝑉
∫ 𝑘𝑒(∇𝑇𝑒)
 

𝐴𝑖𝑛𝑡

𝑛𝑑𝐴 = 𝑎𝑖ℎ𝑖(〈𝑇𝑖〉
𝑖 − 〈𝑇𝑒〉

𝑒)                                                                       (2.43) 

 

After these mathematical manipulations, the final version of equation (2.42) will be; 

 

〈𝑘𝑒∇
2𝑇𝑒〉 = (1 − 𝜀)𝑘𝑒∇

2〈𝑇𝑒〉
𝑒 + 𝑎𝑖ℎ𝑖(〈𝑇𝑖〉

𝑖 − 〈𝑇𝑒〉
𝑒)                                                    (2.44) 

 

For the extravascular region, the macro-scale energy equation can be obtained by 

substituting equations (2.38), (2.41) and (2.44) into equation (2.37). 

 

(1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒
𝜕〈𝑇𝑒〉

𝑒

𝜕𝑡
= 𝑘𝑒𝑓𝑓,𝑒∇

2〈𝑇𝑒〉
𝑒 + 𝐺(〈𝑇𝑖〉

𝑖 − 〈𝑇𝑒〉
𝑒) 

+(1 − 𝜀)〈𝑄𝑒〉
𝑒 + (1 − 𝜀)〈𝑄𝑚,𝑒〉

𝑒                                                                                       (2.45) 

 

where         𝑘𝑒𝑓𝑓,𝑒 = (1 − 𝜀)𝑘𝑒                                                                                         (2.46a) 

 

                   𝐺 = 𝜌𝑖𝑐𝑝,𝑖𝜔 + 𝑎𝑖ℎ𝑖                                                                                         (2.46b) 

 

Coupling factor between blood and tissue, G, consists of interfacial heat transfer and 

blood perfusion term. Interfacial heat transfer can be calculated by Nusselt number and 

vessel properties [61]. 

 

𝑎𝑖ℎ𝑖 =
4𝜀𝑘𝑏
(2𝑅)2

𝑁𝑢                                                                                                                    (2.47) 

 

When it is assumed that blood flow is in fully developed flow regime, Nusselt number 

can be approximated as 4.93 based on the Darcy flow model in porous media [86,87]. 

Using this assumption and equation (2.47) the coupling factor will be; 

 

𝐺 = 𝜌𝑖𝑐𝑝,𝑖𝜔 + 4.93
4𝜀𝑘𝑏
(2𝐷)2

                                                                                                   (2.48) 

 

As a result of two separate reviews, energy equation for intravascular and extravascular 

region can be written in macroscale perspective as following; 
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For intravascular region, 

 

𝜀𝜌𝑖𝑐𝑝,𝑖
𝜕𝑇𝑖
𝜕𝑡

+ 𝜀𝜌𝑖𝑐𝑝,𝑖𝑢𝑖 . ∇𝑇𝑖 = 𝑘𝑒𝑓𝑓,𝑖∇
2𝑇𝑖 + 𝐺(𝑇𝑒 − 𝑇𝑖) + 𝜀𝑄𝑖                                     (2.49) 

 

For extravascular region, 

 

(1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒
𝜕𝑇𝑒
𝜕𝑡

= 𝑘𝑒𝑓𝑓,𝑒∇
2𝑇𝑒 + 𝐺(𝑇𝑖 − 𝑇𝑒) + (1 − 𝜀)𝑄𝑒 + (1 − 𝜀)𝑄𝑚,𝑒            (2.50) 

 

To create a general form of equation, it is required to combine two equations. Under 

local thermal nonequlibrium condition, these equations can be combined. For this 

propose, rearranging equation (2.50); 

 

𝑇𝑖 =
(1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒

𝐺

𝜕𝑇𝑒
𝜕𝑡

−
𝑘𝑒𝑓𝑓,𝑒

𝐺
∇2𝑇𝑒 + 𝑇𝑒 −

(1 − 𝜀)

𝐺
𝑄𝑒 −

(1 − 𝜀)

𝐺
𝑄𝑚,𝑒                 (2.51) 

 

Substituting equation (2.51) in equation (2.49); 

 

𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒

𝐺

𝜕2𝑇𝑒
𝜕𝑡2

−
𝜀𝜌𝑖𝑐𝑝,𝑖𝑘𝑒𝑓𝑓,𝑒

𝐺

𝜕

𝜕𝑡
(∇2𝑇𝑒) + 𝜀𝜌𝑖𝑐𝑝,𝑖

𝜕𝑇𝑒
𝜕𝑡

−
𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)

𝐺

𝜕𝑄𝑒
𝜕𝑡

 

−
𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)

𝐺

𝜕𝑄𝑚,𝑒
𝜕𝑡

+
𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒

𝐺
𝑢𝑖 . ∇ (

𝜕𝑇𝑒
𝜕𝑡
) −

𝜀𝜌𝑖𝑐𝑝,𝑖𝑘𝑒𝑓𝑓,𝑒

𝐺
𝑢𝑖 . ∇

3𝑇𝑒 + 𝜀𝜌𝑖𝑐𝑝,𝑖𝑢𝑖 . ∇𝑇𝑒 

−
𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)

𝐺
𝑢𝑖. ∇𝑄𝑒 −

𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)

𝐺
𝑢𝑖 . ∇𝑄𝑚,𝑒 =

(1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒𝑘𝑒𝑓𝑓,𝑖

𝐺
∇2 (

𝜕𝑇𝑒
𝜕𝑡
) −

𝑘𝑒𝑓𝑓,𝑒𝑘𝑒𝑓𝑓,𝑖

𝐺
∇4𝑇𝑒  

+𝑘𝑒𝑓𝑓,𝑖∇
2𝑇𝑒 −

(1 − 𝜀)𝑘𝑒𝑓𝑓,𝑖

𝐺
∇2𝑄𝑒 −

(1 − 𝜀)𝑘𝑒𝑓𝑓,𝑖

𝐺
∇2𝑄𝑚,𝑒 + 𝐺𝑇𝑒 − (1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒

𝜕𝑇𝑒
𝜕𝑡

+ 𝑘𝑒𝑓𝑓,𝑒∇
2𝑇𝑒 

−𝐺𝑇𝑒 + (1 − 𝜀)𝑄𝑒 + (1 − 𝜀)𝑄𝑚,𝑒 + 𝜀𝑄𝑖                                                                                                           (2.52) 

 

Rearranging equation (2.52); 

 

𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒

𝐺

𝜕2𝑇𝑒
𝜕𝑡2

+ (𝜀𝜌𝑖𝑐𝑝,𝑖 + (1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒)
𝜕𝑇𝑒
𝜕𝑡

= −
𝑘𝑒𝑓𝑓,𝑒𝑘𝑒𝑓𝑓,𝑖

𝐺
∇4𝑇𝑒 

+
𝜀𝜌𝑖𝑐𝑝,𝑖𝑘𝑒𝑓𝑓,𝑒

𝐺
𝑢𝑖. ∇

3𝑇𝑒 + (𝑘𝑒𝑓𝑓,𝑒 + 𝑘𝑒𝑓𝑓,𝑖)∇
2𝑇𝑒 + (

𝜀𝜌𝑖𝑐𝑝,𝑖𝑘𝑒𝑓𝑓,𝑒 + (1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒𝑘𝑒𝑓𝑓,𝑖

𝐺
)
𝜕

𝜕𝑡
(∇2𝑇𝑒) 

−
𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)𝜌𝑒𝑐𝑝,𝑒

𝐺
𝑢𝑖 . ∇ (

𝜕𝑇𝑒
𝜕𝑡
) − 𝜀𝜌𝑖𝑐𝑝,𝑖𝑢𝑖. ∇𝑇𝑒 −

(1 − 𝜀)𝑘𝑒𝑓𝑓,𝑖

𝐺
∇2𝑄𝑒 −

(1 − 𝜀)𝑘𝑒𝑓𝑓,𝑖

𝐺
∇2𝑄𝑚,𝑒 

+
𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)

𝐺
𝑢𝑖. ∇𝑄𝑒 +

𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)

𝐺
𝑢𝑖 . ∇𝑄𝑚,𝑒 +

𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)

𝐺

𝜕𝑄𝑒
𝜕𝑡

+
𝜀𝜌𝑖𝑐𝑝,𝑖(1 − 𝜀)

𝐺

𝜕𝑄𝑚,𝑒
𝜕𝑡

 

+(1 − 𝜀)𝑄𝑒 + (1 − 𝜀)𝑄𝑚,𝑒 + 𝜀𝑄𝑖                                                                                                                       (2.53) 
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The final form of the obtained equation has several complicated terms. Some terms in the 

equation (2.53) can be simplified by making some assumptions and applying algebraic 

relations. First of all, the first term at the right hand side of equation (2.54) is a bi-

harmonic term. This term is very small compared to other terms in the equation (2.53), so 

that it can be neglected [88]. 

 

It can be assumed that extravascular region is tissue and intravascular region is blood. So 

that, the final version of equation based on porous media approach under local thermal 

nonequilibrium conditions is found as; 

 

𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡

𝐺

𝜕2𝑇𝑡
𝜕𝑡2

+ (𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
𝜕𝑇𝑡
𝜕𝑡

= (𝑘𝑒𝑓𝑓,𝑡 + 𝑘𝑒𝑓𝑓,𝑏)∇
2𝑇𝑡 

+
𝜀𝜌𝑏𝑐𝑝,𝑏𝑘𝑒𝑓𝑓,𝑡

𝐺
𝑢𝑏 . ∇

3𝑇𝑡 + (
𝜀𝜌𝑏𝑐𝑝,𝑏𝑘𝑒𝑓𝑓,𝑡 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡𝑘𝑒𝑓𝑓,𝑏

𝐺
)
𝜕

𝜕𝑡
(∇2𝑇𝑡) 

−
𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡

𝐺
𝑢𝑏 . ∇ (

𝜕𝑇𝑡
𝜕𝑡
) − 𝜀𝜌𝑏𝑐𝑝,𝑏𝑢𝑏. ∇𝑇𝑡 −

(1 − 𝜀)𝑘𝑒𝑓𝑓,𝑏

𝐺
∇2𝑄𝑡 

−
(1 − 𝜀)𝑘𝑒𝑓𝑓,𝑏

𝐺
∇2𝑄𝑚,𝑡 +

𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)

𝐺
𝑢𝑏 . ∇𝑄𝑡 +

𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)

𝐺
𝑢𝑏 . ∇𝑄𝑚,𝑡 

+
𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)

𝐺

𝜕𝑄𝑡
𝜕𝑡

+
𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)

𝐺

𝜕𝑄𝑚,𝑡
𝜕𝑡

+ (1 − 𝜀)𝑄𝑡 + (1 − 𝜀)𝑄𝑚,𝑡 

   +𝜀𝑄𝑏                                                                                                                                 (2.54) 
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 CHAPTER 3 

 SOLUTION METHODOLOGY 

 
Mathematical models explaining the heat transfer on the tissue can be solved by analytical 

and numerical methods. Since equation (2.54) has a complex structure, it would be more 

appropriate to solve it with numerical methods. There are several approaches in numerical 

methods. One of these approaches is the finite volume method. For the finite volume 

method, the control volume is divided into very small volumes. The governing equations 

are written for each volume and these equations are solved simultaneously. As a result, 

the desired values are calculated for all small volumes. Owing to this method, 

conservation properties of the equations, which is the energy equation for this study, are 

ensured as flux balance is satisfied for all small volumes as well as the complete domain. 

It is one of the advantages of the finite volume method over other discretization methods. 

 

In this study, one-dimensional analysis will be made. A simpler and faster solution can 

be created with one-dimensional analysis. When the size of the laser beam is greater than 

the area where the laser is intended to be applied, a one-dimensional model provides an 

adequate solution.  

 

3.1 Numerical Solution Procedure 

 

Before discretization process, the equation (2.54) can be simplified by using some 

assumptions. Firstly, in some cases, the volumetric heat source values occurred by laser 

irradiance can be accepted to be the same for tissue and blood regions. Secondly, it can 

be assumed that the metabolic heat source has a fixed value. Thirdly, it can be accepted 

that the vessels in the tissue are arranged parallel to the tissue surface, as shown Figure 

3.1. This causes the blood velocity vector to be perpendicular to the temperature gradient 

vector and laser irradiance vector. As a result, the second, fourth, fifth and eighth terms 

on the right in equation (2.54) becomes zero. Finally, the coefficient of the second-order 

derivative of this volumetric heat source has a very small value for the case of strong 

scattering case compared to the coefficients of other terms. On the other hand, this 

coefficient has a very high value for the highly absorbed case compared to the coefficient 

of other terms. It is physically unreasonable that this value is so high for the highly 

absorbed case. Therefore the sixth term on the right in equation (2.54) is ignored. 
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Figure 3.1. Blood Vessel Alignment in Tissue[89] 

 

Consequent of these assumptions, equation (2.54) is simplified as follows. 

 

𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡

𝐺

𝜕2𝑇𝑡
𝜕𝑡2

+ (𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
𝜕𝑇𝑡
𝜕𝑡

= (𝑘𝑒𝑓𝑓,𝑡 + 𝑘𝑒𝑓𝑓,𝑏)∇
2𝑇𝑡 

+(
𝜀𝜌𝑏𝑐𝑝,𝑏𝑘𝑒𝑓𝑓,𝑡 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡𝑘𝑒𝑓𝑓,𝑏

𝐺
)
𝜕

𝜕𝑡
(∇2𝑇𝑡) +

𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)

𝐺

𝜕𝑄

𝜕𝑡
+ 𝑄 

(1 − 𝜀)𝑄𝑚                                                                                                                                   (3.1) 

 

3.1.1 Discretization of Governing Equations 

 

In one-dimensional analysis, as seen in figure 3.2, the tissue can be defined as a control 

volume with L length. Laser irradiance is considered to be applied to the left surface 

whereas the right surface is considered thermally isolated. 

 



29 

 

 
Figure 3.2. Physical Model of 1D Analysis 

 

For discretization process, control volume is divided into n+1 number cell volume. Cells 

at both ends have the half size of cell volume. Except for the first and last cell, grid points 

are placed at the center of these volumes. For the first and last cell, grid point is located 

at their boundary. Neighbors of grid point P are named as E and W which means east and 

west neighbor, respectively. Faces of grid point P also are named as e and w which means 

east and west face, respectively. First and last cell length are half of ∆𝑥 whereas other 

cell’s length are ∆𝑥, as shown figure 3.3. 

 

 
Figure 3.3. Grid System of 1D Analysis 

 

In the solution phase of Equation (3.1), appropriate initial and boundary condition are 

required. In this study, the initial temperature is considered constant. 

 

When   𝑡 = 0                 𝑇𝑡 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡                for    0 ≤ 𝑥 ≤ 𝐿                                 (3.2)     

                                                 

Laser irradiance effect for highly absorbed and strongly scattering cases is added to the 

equation as a volumetric heat source. Therefore; The boundary conditions are defined 

independently of the laser irradiance. However, natural convection, surface radiation and 

evaporative cooling affect the left surface of the control volume. Heat losses due to 
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radiation and evaporative cooling at the surface are ignored. Convection heat transfer can 

be found using Newton's Cooling law. As a result, boundary conditions are as follows. 

 

−𝑘𝑒𝑓𝑓
𝜕𝑇𝑡
𝜕𝑥

= ℎ𝑒(𝑇∞ − 𝑇𝑡) 
When    0 ≤ 𝑡 ≤ 𝑡𝑡𝑜𝑡𝑎𝑙 at   𝑥 = 0 

 

(3.3) 

−𝑘𝑒𝑓𝑓
𝜕𝑇𝑡
𝜕𝑥

= 0 
When    0 ≤ 𝑡 ≤ 𝑡𝑡𝑜𝑡𝑎𝑙 at   𝑥 = L 

 

(3.4) 

 

where ℎ𝑒 is coefficient of convection heat transfer [W/m2K], 𝑇∞ is ambient temperature 

[C⁰], 𝑇t is tissue temperature at left surface [C⁰].  

 

For applying finite volume method, integration of equation (3.1) is made over control 

volume of grid P with time step from t to  t+∆t. Then, Crank Nicolson method is applied 

to this equation to obtain the discretized form of the equation. Details of this procedure is 

given in Appendix A. To find the temperature, the discretized equation must be 

simultaneously solved for all cells. The obtained equations can be solved by using Gauss 

elimination method. Using this method, the temperature values of each time step in all 

cells are calculated. 

 

3.2 Convergence Study 

In this study, an numerical method is used for the solution. Therefore, the convergence of 

the results must be checked. A two-stage test is applied to control the approach of the 

results. In the first stage, the convergence test is made by taking into account the grid 

dimensions. The time step to be used at this stage will be selected taking into account 

similar studies in the literature. In the second step, the effect of the time step is examined 

by using the grid size specified in the previous stage.  

 

This convergence studies will be done through working cases. In this study, results 

obtained from the derived model are compared with the results of the experimental study 

conducted with pig skin by Museux et al. [90]. In the study of Museux et al., the heat 

values on the tissue are calculated mathematically as well as the experimental study. Due 

to similarity of the properties of pig skin with properties of human skin, Museux et al. use 

properties of human skin. Although human skin shows similar properties with pig skin, 

slight differences are observed. In this study, pig skin properties are used to obtain better 

results. Therefore, the values used in this study and the values in the study of Museux et 



31 

 

al. differ. However, in the case of incomplete or inconsistent properties of pig skin in the 

literature, the properties of human skin are used. 

 

First, the general characteristics of the skin should be evaluated. The skin has a multi-

layered structure with different properties. For a simpler solution, it can be assumed that 

the tissue has a single-layer structure [91–94]. Therefore, a single-layer skin model is 

used in this study. In the literature, the values of the skin are given for multi-layer skin or 

single-layer skin. In order to apply the properties of multi-layer leather in a single layer 

structure, the values must be modified. The method of weighted average based on the 

thickness of layers is applied for this modification. The values obtained by this method 

are used when the properties of the single-layer structure were missing or to support the 

properties of the single-layer structure. The thermophysical properties used in this study 

are given in the Table 3.1. 

 

Table 3.1 Thermophysical properties. 

Parameters Values Unit References 

Tissue Density 1081.6 𝑘𝑔/𝑚3 [95–97] 

Tissue Specific Heat 3238.5  𝐽/ 𝑘𝑔. 𝐾 [95,96,98] 

Thermal Conductivity of Tissue 0.4108 𝑊/ 𝑚.𝐾 [95–100] 

Blood Density 1060 𝑘𝑔/𝑚3 [101–105] 

Blood Specific Heat 3770  𝐽/ 𝑘𝑔. 𝐾 [101–104] 

Thermal Conductivity of Blood 0.5066 𝑊/ 𝑚.𝐾 [100,102,105–107] 

Blood Perfusion 0.00112 𝑚3

/ 𝑚3. 𝑠 
[37,101,103,108,109] 

Diameter of Blood Vessel 1.14 𝑚𝑚 [102,110–112] 

Porosity 0.0060 - [102,110,112–114] 

Metabolic Heat Generation 368.1  𝑊/ 𝑚3 [104,115–119] 

Coefficient of Convection Heat 

Transfer 

10  𝑊/𝑚2𝐾 [90] 

Ambient Temperature 22.35  𝐶⁰ [90] 

 

Skin tissue shows different optical properties in the laser of different wavelengths. In 

study of Museux et al., two different laser irradiation beams are used at 808 nm and 1940 

nm wavelengths. The tissue exhibits strong scattering properties at a wavelength of 808 

nm, while it exhibits high absorbing properties at a wavelength of 1940 nm 

[91,115,120,121]. Therefore, the effect of 808 nm laser is added to the equation using 

diffusion theory. On the other hand, the effect of the 1940 nm laser is added using the 

Beer-Lambert's law. The optical properties of tissue used in this study are given in the 

Table 3.2. 
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Table 3.2  Optical properties of tissue. 

Parameters Values Unit References 

At 808 nm wavelength 

Diffusive Reflectance 0.05 - [122,123] 

Absorption Coefficient 78  𝑚−1 [124,125] 

Reduced Scattering Coefficient 2104  𝑚−1 [124,125] 

At 1940 nm wavelength 

Specular Reflectance 0.0475 - [122,126] 

Absorption Coefficient 5643 𝑚−1 [90,121,126] 

 

For the analysis, laser exposures for 10-second with 14 kW/m2 irradiance on the skin for 

the wavelengths of 808 nm and 1940 nm are chosen. In the one-dimensional analysis, the 

skin tissue is accepted as a 5 cm slab. The initial temperature of the skin is 33.2 degrees 

in 808 nm wavelength laser application and 32.9 degrees in 1940 nm wavelength laser 

application 

 

3.2.1 Grid Convergence Study 

The mechanism of each case is different. Therefore, a grid convergence study should be 

performed separately for each case. The solutions are performed by dividing the control 

volume to a different number of grids. Maximum temperature values occurred in these 

solutions are compared with each other to obtain an optimum number of the grid. For this 

study, the time step is chosen as 0.01 second [127].  Firstly, the control volume with 100 

grid points is examined. Then the number of grids in the control volume is gradually 

increased. The amount of increase is chosen as 10. In this way, maximum temperature 

values in 808 nm and 1940 nm laser application are given in the Figure 3.4 and 3.5, 

respectively. 
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Figure 3.4  The maximum temperature with respect of the number of grids in 808nm 

laser application (strongly scattering case). 

   

 

Figure 3.5  The maximum temperature with respect of the number of grids in 1940 nm 

laser application (highly absorbed case). 

 

When the results are examined, the solution using the 120 grid number gives satisfactory 

results. If the number of grids is increased further, the decrease in the maximum 

temperature value is less than 0.005 degrees.  On the other hand, the effect of the grid 

numbers has more at in 1940 nm laser application than the 808 nm laser application. In 

the 1940 nm laser application, the number of grids is chosen as 1050. 
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3.2.2 Time Step Convergence Study 

The study performed for the number of grids should also be performed for the time step. 

The optimum time step will be chosen using the grid numbers determined in the previous 

stage. This study is performed separately for both wavelength laser applications. Tissue 

properties, initial conditions and boundary conditions are the same as the previous study. 

This study is performed using five different time steps, which are 0.1, 0.05, 0.01, 0.005 

and 0.001 seconds.The maximum temperature values in 808 nm and 1940 nm laser 

application are given in the Figure 3.6 and 3.7, respectively. 

 

 

Figure 3.6  The maximum temperature with respect of the time step in 808 nm laser 

application (strongly scattering case). 
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Figure 3.7  The maximum temperature with respect of the time step in 1940 nm laser 

application (highly absorbed case). 

 

Selecting a time step of fewer than 0.01 seconds has a very low impact on the maximum 

temperature. Therefore, 0.01 seconds will be selected as the time step for both 

applications. 

 

3.3 Code Validation 

The validity of the solution of the mathematical model obtained in this study should be 

checked. Moreover, the validity of the solution of the DPL and Pennes models to be used 

for comparison purposes should be checked.  

 

Model in this study is solved using the numerical procedure in section 3.1. At the same 

time, this numerical procedure is also applied to Pennes and DPL models. The details 

about discretization of Pennes and DPL models are given in Appendix B and C, 

respectively. In addition, MATLAB codes for the three models to be used in this study 

are given in appendix D, E and F. It is compared with the solution made by Tzou [128] 

to check the validity. All parameters and geometrical properties are chosen the same as 

in Tzou's study in order to make the comparison accurate. All parameters and geometric 

properties are chosen so that the same parameters in Tzou's study are obtained to make 

the comparison accurate. In addition, as in Tzou's study, the parameters to be used in its 

solution are dimensionless. The MATLAB code for Tzou's study is given in Appendix G. 
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In order to compare the results with Tzou’s results, metabolic heat source and blood 

perfusion are taken as zero. The values of some parameters to be used differ according to 

the mathematical model.  In the Pennes equation, thermal diffusivity is considered to be 

1. In addition, the solution of the Pennes model is obtained by using zero for values of 

phase lags in Tzou's solution. The thermal diffusivity for the DPL equation is also 1. For 

this equation, the heat flux and temperature phase lag values are 0.05 and 0.001 

respectively. In order to solve the equation obtained in this study, the coefficients of the 

equation are changed. The values of these coefficients are selected as follows. 

 

(
𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡

𝐺(𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
) = 0.05                                                                           (3.17) 

 

(𝑘𝑒𝑓𝑓,𝑡 + 𝑘𝑒𝑓𝑓,𝑏)

(𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
= 1                                                                                          (3.18) 

 

(
𝜀𝜌𝑏𝑐𝑝,𝑏𝑘𝑒𝑓𝑓,𝑡 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡𝑘𝑒𝑓𝑓,𝑏

𝐺(𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
) = 0.01                                                               (3.19) 

 

For study of code validation, the control volume is a slab with a length of 1. Initially, the 

temperature and temperature gradient of the plate is zero. The left surface temperature of 

the control volume is then increased to 1. The temperature gradient of the right surface is 

considered as zero. For the validation study, temperature values are examined along the 

length of the slab at time 0.05 second. The comparison of results of Pennes, DPL and the 

equation used in this study with Tzou’s results are given in Figure 3.8, Figure 3.9 and 

Figure 3.10, respectively. 
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Figure 3.8. The temperature distribution using Pennes equation. 

 

 

Figure 3.9. The temperature distribution using DPL equation. 
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Figure 3.10.  The temperature distribution using the mathematical model developed in 

this study. 

 

When the results of these mathematical models in one-dimensional analysis are 

examined, numerical results are consistent with result of Tzou’s solution. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

In this study, the derived model will be compared with experimental results and the two 

models commonly used for laser tissue interaction in the literature. One of the selected 

models is the Pennes model, the other is the dual phase lag model. The reason for choosing 

the Pennes equation is that it is one of the fundamental equations in the literature and is 

widely used. The reason for choosing the DPL model is that it can explain microstructural 

effects like thermalization behavior better than other models. In order to understand the 

laser-tissue interaction, the effects of the laser beams having wavelengths of 808 nm and 

1940 nm are examined. 

 

4.1 Comparison of Models 

In this study, the derived model is compared with the other models and experimental 

results by examining the time-dependent temperature values of the skin surface. In this 

comparison, thermophysical and optical properties are used presented in Table 3.1 and 

Table 3.2, respectively. For the solution of Pennes and DPL models, there is no need for 

values such as thermal conductivity of blood and the diameter of blood vessel. On the 

other hand, blood temperature is required for Pennes and DPL models. It is assumed that 

blood temperature equals to initial skin temperature. In addition, phase lag values are 

required for the DPL model. In this study, the heat flux and temperature phase lag values 

are chosen as 16 seconds and 0.05 seconds, respectively. Other properties are used in this 

analysis are as follows. For both applications, the magnitude of laser irradiance is 14 kW 

and the exposure time is 10 seconds. In the one-dimensional analysis, the tissue is 

accepted as a 5 cm slab. The initial temperature of the skin is 33.2 degrees in 808 nm laser 

application and 32.9 degrees in 1940 nm laser application   

 

The temperature of cell 1 corresponds to the temperature value of the laser-irradiated 

surface. In the 808 nm laser application, the temperature values obtained by Pennes and 

DPL approaches as well as the presented model, which is derived in this study, are shown 

in Figure 4.1. 
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Figure 4.1. Evolution of temperature at the irradiated surface in 808 nm laser 

application (strongly scattering case). 

 

The model derived in this study and the Pennes model, show shows similar trends for the 

evolution of temperature. Furthermore, the results of these two models are close to the 

experimental results. However, a higher increase in temperature occurs in the DPL model 

during the exposure period, because there is a high phase lag for the heat flux and a very 

low phase lag for the temperature. The high phase delay for the heat flux causes a delay 

in transferring heat to deeper regions. In addition to that, a very low phase lag for 

temperature allows the temperature to change suddenly. A similar phenomenon is 

observed after the end of the exposure time. This time, this causes a higher drop in 

temperature. The model in this study has terms which are not exist in Fourier’s law of 

conduction ( 𝜕2𝑇𝑡/𝜕𝑡
2 and  𝜕(𝜕𝑇𝑡

2/𝜕𝑥2)/𝜕𝑡 ) like the ones in the DPL model. However, 

because of the fact that the coefficients of these terms are low, no sudden temperature 

changes occur as in the DPL model. For example, in this solution, coefficients of  

𝜕2𝑇𝑡/𝜕𝑡
2 and  𝜕(𝜕𝑇𝑡

2/𝜕𝑥2)/𝜕𝑡 are 0.4677 and 1.1414x10-7, respectively. 

 

In the 1940 nm laser application, the temperature values obtained by Pennes and DPL 

models and the presented one, which is derived in this study, are given in Figure 4.2. 
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Figure 4.2. Evolution of temperature at the irradiated surface in 1940 nm laser 

application (highly absorbed case). 

 

Similar to the 808 nm wavelength laser beam application, the Pennes model and the model 

derived in this study give similar results when the laser wavelength is 1940 nm. However, 

since the tissue exhibits a higher absorbance under the influence of the 1940 nm laser, the 

maximum temperatures are higher than in the previous application. The results obtained 

from these two models are consistent with the experimental results. On the other hand, 

sudden temperature rise and drop are observed in the DPL model. This rate of increase 

and decrease in temperature are higher compared to the one in the previous application. 

 

4.2 Effect of Porosity 

There are different parameters affecting the model in this study. One of them is porosity. 

The porosity value differs depending on the location of tissue. Therefore, the effect of 

different porosity values on the temperature value should be examined. The effect of 

porosity will be examined using 3 different values. Besides, vessel radius values are 

proportional to porosity. When the porosity is changed, the vessel radius also changes. 

The porosity and the vessel radii values used in the presented model are given in table 

4.1. The other parameters are the same as the previous calculation. 
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Table 4. 1 Porosity and diameter of blood vessel. 

 Parameters Values Unit References 

1 Porosity 0.0060 - [102,112] 

Diameter of Blood Vessel 1.14 𝑚𝑚 [102,112] 

2 Porosity 0.019 - [102,112] 

Diameter of Blood Vessel 2.28 𝑚𝑚 [102,112] 

3 Porosity 0.066 - [102,112] 

Diameter of Blood Vessel 4.56 𝑚𝑚 [102,112] 

 

In 808 nm laser application, the temperature values obtained by using different porosity 

values are given in Figure 4.3. 

 

 

Figure 4.3. In 808 nm laser application (strongly scattering case), the effect of porosity 

on the temperature at the irradiated surface. 

 

The effect of porosity on the temperature is very low in 808 nm laser application. As the 

porosity value increases, the maximum observed temperature decreases. the same 

examination is performed in the 1940 nm laser application. In the 1940 nm laser 

application, the temperature values obtained by using different porosity values are given 

in Figure 4.4. 
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Figure 4.4. In the 1940 nm laser application (highly absorbed case), the effect of 

porosity on the temperature at the irradiated surface. 

 

The lowest temperature increase during the laser irradiance is observed on tissue with 

high porosity. On the other hand, the highest temperature decrease is observed on tissue 

with low porosity after laser irradiance is ended. The reason is that the coupling factor is 

high. Porosity directly affects the coupling factor. When the porosity increases, the 

coupling factor is reduced. For example, in this calculation, when the porosity values are 

0.0060, 0.019 and 0.066, while the corresponding coupling factors are 50918, 41309 and 

36505, respectively. When the value of the coupling factor increases, the speeds of the 

heating and cooling processes increase. 

 

Although the coupling factor is high in both applications, the effect of the porosity on the 

tissue is significantly lower in the 808 nm laser application. The reason for that, the optical 

properties of the tissue vary depending on the wavelength of the laser. Under the influence 

of the 1940 nm wavelength laser, the laser irradiance is absorbed near the surface. 

Therefore, a temperature difference occurs between this region and the deeper regions. 

However, under the influence of the laser with 808 nm wavelength, the absorption rate in 

the tissue is lower. In this case, the temperature difference between the region close to the 

surface and the deep regions is low. Therefore, the increase in heat transfer in the 1940 

nm laser application is greater than the increase in heat transfer in the 808 nm laser 

application. 
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4.3 Effect of Laser Irradiance and Exposure Time 

In laser applications, the magnitude of laser radiation and exposure time vary depending 

on the purpose of the application. Therefore, the effects of different laser irradiation and 

exposure times should be examined. For this examination, laser irradiance powers and 

exposure time are changed provided that the applied energy is kept constant. The values 

to be used for this analysis are given in Table 4.2. The other parameters are the same as 

in the chapter 4.1. 

 

Table 4.2. The exposure time and intensity of laser irradiance 

 Parameters Values Unit 

1 Exposure Time 2 𝑠 
Magnitude of Laser Irradiance 70 𝑘𝑊/𝑚2 

2 Exposure Time 10 𝑠 
Magnitude of Laser Irradiance 14 𝑘𝑊/𝑚2 

3 Exposure Time 40 𝑠 
Magnitude of Laser Irradiance 3.5 𝑘𝑊/𝑚2 

 

In 808 nm laser application, the temperature values obtained by using different laser 

irradiances and exposure times are given in Figure 4.5. 

 

 

Figure 4.5. In 808 nm laser application (strongly scattering case), the effect of laser 

irradiance and exposure time on the temperature at the irradiated surface. 

 

In 808 nm laser application, the effect of change in laser irradiance on temperature is less 

than the one obtained for 1940 nm laser application. Because the laser irradiance is 

absorbed low rate at the regions, near the surface and transmitted to deeper regions of the 
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tissue. Moreover, the increase in laser irradiance causes an increase in the maximum 

temperature, although it is not as high as the 1940 nm laser application. After the laser 

irradiation has finished, temperature values reach to similar values. 

 

In 1940 nm laser application, the temperature values obtained by using different laser 

irradiances and exposure times are given in Figure 4.6. 

 

 

Figure 4.6. In 1940 nm laser application (highly absorbed case), the effect of laser 

irradiance and exposure time on the temperature at the irradiated surface. 

 

The effect of laser irradiance on the temperature is high in 1940 nm laser application. The 

reason is that the laser irradiance is absorbed in the tissue at a very small depth. The 

increase in laser irradiance raises the amount of heat entering into the cell. This leads that 

the difference between the amount of heat entering and leaving the cell is increased. 

Therefore, the highest temperature rise occurs in the highest laser irradiance. After the 

laser irradiation has ended, similar temperatures are obtained in three cases. 
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 CHAPTER 5 

 CONCLUSIONS AND FUTURE WORK 

 

In this study, a mathematical model is formed to understand the thermal effect of laser on 

tissue. Laser radiation is included in the equation using two different formulas. One of 

these is Beer-Lambert's law. The other is diffusion theory. The model is solved 

numerically under these two assumptions. In this study, the one-dimensional analysis is 

performed. Models are evaluated by examining the evolution of temperature at the 

irradiated surface. For comparison, the Pennes and DPL models are solved under the same 

conditions. Then, the results of three models compared with experimental results. 

 

Similar results are obtained from the model derived in this study with the Pennes model 

in laser applications with wavelengths of 808 nm and 1940 nm. But there is a small 

difference. In the Pennes model, the temperature values are slightly higher. On the other 

hand, a different temperature evolution is observed with the DPL model. In this study, 

while the phase lag for heat flux used for the DPL model is high, the phase lag for 

temperature is low. This situation allows for sudden temperature rise or drop. On the other 

hand, in the model in this study, sudden temperature rise or drop does not occur due to 

the coefficients of this model. The increase in the laser irradiance causes the maximum 

temperature at the surface to increase. 

 

The model in this study is examined in different porosity values. Generally, when the 

porosity decreases, faster temperature rise and fall are observed. Furthermore, the effect 

of laser irradiance and exposure time are also examined. The effect of change in the 

magnitude of laser irradiance is greater in the 1940 nm laser application than in the 808 

nm laser application. 

 

The study on the model can be expanded in several ways. 

 

 By changing the solution domain, the solution can perform for the 

axisymmetric case. 

 

 In this study, tissue is considered as a uniform structure. The tissue can be 

divided into regions with different properties and the solution can be 

performed by considering the characteristics of these regions. For 
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example, the effect of the laser on the skin can be examined by considering 

the multi-layered skin structure. Moreover, by defining the tumor region 

within the tissue, the solution can be performed taking into account the 

characteristics of the tumor. 

 

 It can be solved with using variable laser irradiance instead of constant 

laser irradiance. 
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 APPENDIX A 

 Discretization of Model in This Study 

 

To make calculations clearer and simplify, equation (3.1) can be represented by using 

some coefficients. 

 

𝑎1
𝜕2𝑇

𝜕𝑡2
+
𝜕𝑇

𝜕𝑡
= 𝑎2∇

2𝑇 + 𝑎3
𝜕

𝜕𝑡
(∇2𝑇) + 𝑎4 (

𝜕𝑄

𝜕𝑡
) + 𝑎5𝑄 + 𝑎6𝑄𝑚                                (A. 1) 

 

where  

 

𝑎1 = (
𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡

𝐺(𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
)                                                                                   (A. 2) 

 

𝑎2 =
(𝑘𝑒𝑓𝑓,𝑡 + 𝑘𝑒𝑓𝑓,𝑏)

(𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
                                                                                           (A. 3) 

 

𝑎3 = (
𝜀𝜌𝑏𝑐𝑝,𝑏𝑘𝑒𝑓𝑓,𝑡 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡𝑘𝑒𝑓𝑓,𝑏

𝐺(𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
)                                                                    (A. 4) 

 

𝑎4 =
𝜀𝜌𝑏𝑐𝑝,𝑏(1 − 𝜀)

𝐺(𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
                                                                                        (A. 5) 

 

𝑎5 =
1

(𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
                                                                                           (A. 6) 

 

𝑎6 =
(1 − 𝜀)

(𝜀𝜌𝑏𝑐𝑝,𝑏 + (1 − 𝜀)𝜌𝑡𝑐𝑝,𝑡)
                                                                                           (A. 7) 

 

Same expression in equation (A.1) can be made for equation (3.5). Hence, equation (3.5) 

is represented as follows. 

 

𝑎1
𝜕2𝑇

𝜕𝑡2
+
𝜕𝑇

𝜕𝑡
= 𝑎2

𝜕2𝑇

𝜕𝑥2
+ 𝑎3

𝜕

𝜕𝑡
(
𝜕2𝑇

𝜕𝑥2
) + 𝑎4 (

𝜕𝑄

𝜕𝑡
) + 𝑎5𝑄 + 𝑎6𝑄𝑚                             (A. 8) 
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For applying FVM, integration of equation (A.8) can be made over control volume of 

grid P with time step from t to t+∆t. 

 

∫ ∫ (𝑎1
𝜕2𝑇

𝜕𝑡2
+
𝜕𝑇

𝜕𝑡
)𝑑𝑡𝑑𝑥

𝑡+∆𝑡

𝑡

𝑒

𝑤

 

= ∫ ∫ (𝑎2
𝜕2𝑇

𝜕𝑥2
+ 𝑎3

𝜕

𝜕𝑡
(
𝜕2𝑇

𝜕𝑥2
) + 𝑎4 (

𝜕𝑄

𝜕𝑡
) + 𝑎5𝑄 + 𝑎6𝑄𝑚)𝑑𝑡𝑑𝑥                     (A. 9)

𝑡+∆𝑡

𝑡

𝑒

𝑤

 

 

The algebraic equation for temperature is obtained with applying Crank Nicolson 

method to equation (A.9). 

 

𝑎1,𝑝
𝑇𝑃

(1) − 2𝑇𝑃
(0) + 𝑇𝑃

(−1)

∆𝑡2
∆𝑥 +

𝑇𝑃
(1) − 𝑇𝑃

(0)

∆𝑡
∆𝑥 =

1

2
{
𝑎2,𝑒

𝑇𝐸
(1) − 𝑇𝑃

(1)

∆𝑥
− 𝑎2,𝑤

𝑇𝑃
(1) − 𝑇𝑊

(1)

∆𝑥
∆𝑥

} ∆𝑥 

+
1

2

{
 
 

 
 𝑎3,𝑒 [

𝑇𝐸
(1)
− 𝑇𝑃

(1)

∆𝑥∆t
−
𝑇𝐸
(0)
− 𝑇𝑃

(0)

∆𝑥∆t
] − 𝑎3,𝑤 [

𝑇𝑃
(1) − 𝑇𝑊

(1)

∆𝑥∆t
−
𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥∆t
]

∆𝑥

}
 
 

 
 

∆𝑥 

+
1

2
{
𝑎2,𝑒

𝑇𝐸
(0) − 𝑇𝑃

(0)

∆𝑥
− 𝑎2,𝑤

𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥
∆𝑥

}∆𝑥 

+
1

2

{
 
 

 
 

+

𝑎3,𝑒 [
𝑇𝐸
(0)
− 𝑇𝑃

(0)

∆𝑥∆t
−
𝑇𝐸
(−1)

− 𝑇𝑃
(−1)

∆𝑥∆t
] − 𝑎3,𝑤 [

𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥∆t
−
𝑇𝑃
(−1) − 𝑇𝑊

(−1)

∆𝑥∆t
]

∆𝑥

}
 
 

 
 

∆𝑥 

+𝑎4,𝑃𝜇𝑎 (
𝜗𝑖𝑛,𝑠𝑐

(1)−𝜗𝑖𝑛,𝑠𝑐
(0)

∆𝑡
) [𝐶1𝑒

(−
𝐷1𝑥

𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥

𝛿
) ] ∆𝑥      

+𝑎5,𝑃𝜇𝑎𝜗𝑖𝑛,𝑠𝑐
(1) [𝐶1𝑒

(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ] ∆𝑥 

+𝑎4,𝑃𝜇𝑎(1 − 𝑅𝑠) (
𝜗𝑖𝑛,𝑎𝑏

(1) − 𝜗𝑖𝑛,𝑎𝑏
(1)

∆𝑡
) 𝑒(−𝜇𝑎𝑥)∆𝑥 

+𝑎5,𝑃𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏
(1)𝑒(−𝜇𝑎𝑥)∆𝑥 + 𝑎6,𝑃𝑄𝑚,𝑒∆𝑥                                                                                      (𝐴. 10) 

 

It is assumed that the control volume has uniform properties. Then, equation (A.10) can 

be arranged as follows. 

 

𝑎𝑃𝑇𝑃
(1)
+ 𝑎𝐸𝑇𝐸

(1)
+ 𝑎𝑊𝑇𝑊

(1)
= 𝑏                                                                                         (A. 11) 
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where 

 

𝑎𝐸 = −
1

2
(
𝑎2∆𝑡

∆𝑥
+
𝑎3
∆𝑥
)                                                                                                        (A. 12) 

 

𝑎𝑊 = −
1

2
(
𝑎2∆𝑡

∆𝑥
+
𝑎3
∆𝑥
)                                                                                                       (A. 13) 

 

𝑎𝑃 =
𝑎1∆𝑥

∆𝑡
+ ∆𝑥 − 𝑎𝐸 − 𝑎𝑊                                                                                              (A. 14) 

 

𝑏 = (
2𝑎1∆𝑥

∆𝑡
+ ∆𝑥)𝑇𝑃

(0) −
𝑎1∆𝑥

∆𝑡
𝑇𝑃

(−1) −
1

2
(
𝑎3
∆𝑥
) (𝑇𝐸

(0) − 𝑇𝑃
(0)) 

+
1

2
(
𝑎3
∆𝑥
) (𝑇𝑃

(0) − 𝑇𝑊
(0)) +

1

2
(
𝑎2∆𝑡

∆𝑥
+
𝑎3
∆𝑥
) (𝑇𝐸

(0) − 𝑇𝑃
(0)) 

−
1

2
(
𝑎2∆𝑡

∆𝑥
+
𝑎3
∆𝑥
) (𝑇𝑃

(0) − 𝑇𝑊
(0)) −

1

2
(
𝑎3
∆𝑥
) (𝑇𝐸

(−1) − 𝑇𝑃
(−1)) 

+
1

2
(
𝑎3
∆𝑥
) (𝑇𝑃

(−1) − 𝑇𝑊
(−1)) 

+𝑎4𝜇𝑎(𝜗𝑖𝑛,𝑠𝑐
(1) − 𝜗𝑖𝑛,𝑠𝑐

(0)) [𝐶1𝑒
(−

𝐷1𝑥

𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥

𝛿
) ] ∆𝑥      

+𝑎5𝜇𝑎𝜗𝑖𝑛,𝑠𝑐
(1) [𝐶1𝑒

(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ] ∆𝑥∆𝑡 

+𝑎4𝜇𝑎(1 − 𝑅𝑠)(𝜗𝑖𝑛,𝑎𝑏
(1) − 𝜗𝑖𝑛,𝑎𝑏

(1))𝑒(−𝜇𝑎𝑥)∆𝑥 

+𝑎5𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏
(1)𝑒(−𝜇𝑎𝑥)∆𝑥∆𝑡 + 𝑎6𝑄𝑚,𝑒∆𝑥∆𝑡                                                  (𝐴. 15) 

 

Half cell volume methodology is used for cells in boundary conditions [129]. The 

algebraic equation obtained with applying Crank Nicolson method to boundary cells 

follows as. 

 
For cell at the left boundary; 

 

𝑎1,𝑝
𝑇𝑃

(1) − 2𝑇𝑃
(0) + 𝑇𝑃

(−1)

∆𝑡2
∆𝑥

2
+
𝑇𝑃

(1) − 𝑇𝑃
(0)

∆𝑡

∆𝑥

2
=
1

2

{
 
 

 
 𝑎2,𝑒

𝑇𝐸
(1) − 𝑇𝑃

(1)

∆𝑥
+
𝑎2,𝑃ℎ
𝑘𝑒𝑓𝑓

(𝑇∞
(1) − 𝑇𝑃

(1))

∆𝑥
2

}
 
 

 
 

 
∆𝑥

2
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+
1

2

{
 
 

 
 𝑎3,𝑒 [

𝑇𝐸
(1)
− 𝑇𝑃

(1)

∆𝑥∆t
−
𝑇𝐸
(0)
− 𝑇𝑃

(0)

∆𝑥∆t
] −

𝑎3,𝑃ℎ
𝑘𝑒𝑓𝑓

[
−(𝑇∞

(1)
− 𝑇𝑃

(1)
)

∆t
+
(𝑇∞

(0)
− 𝑇𝑃

(0)
)

∆t
]

∆𝑥
2

}
 
 

 
 
∆𝑥

2
 

+
1

2

{
 
 

 
 𝑎2,𝑒

𝑇𝐸
(0) − 𝑇𝑃

(0)

∆𝑥
+
𝑎2,𝑃ℎ
𝑘𝑒𝑓𝑓

(𝑇∞
(0) − 𝑇𝑃

(0))

∆𝑥
2

}
 
 

 
 
∆𝑥

2
 

+
1

2

{
 
 

 
 

+

𝑎3,𝑒 [
𝑇𝐸
(0)
− 𝑇𝑃

(0)

∆𝑥∆t
−
𝑇𝐸
(−1)

− 𝑇𝑃
(−1)

∆𝑥∆t
] −

𝑎3,𝑃ℎ
𝑘𝑒𝑓𝑓

[
−(𝑇∞

(0)
− 𝑇𝑃

(0)
)

∆t
+
(𝑇∞

(−1)
− 𝑇𝑃

(−1)
)

∆t
]

∆𝑥
2

}
 
 

 
 
∆𝑥

2
 

+𝑎4,𝑃𝜇𝑎 (
𝜗𝑖𝑛,𝑠𝑐

(1)−𝜗𝑖𝑛,𝑠𝑐
(0)

∆𝑡
) [𝐶1𝑒

(−
𝐷1𝑥

𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥

𝛿
) ]

∆𝑥

2
      

+𝑎5,𝑃𝜇𝑎𝜗𝑖𝑛,𝑠𝑐
(1) [𝐶1𝑒

(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ]
∆𝑥

2
 

+𝑎4,𝑃𝜇𝑎(1 − 𝑅𝑠) (
𝜗𝑖𝑛,𝑎𝑏

(1) − 𝜗𝑖𝑛,𝑎𝑏
(1)

∆𝑡
) 𝑒(−𝜇𝑎𝑥)

∆𝑥

2
 

+𝑎5,𝑃𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏
(1)𝑒(−𝜇𝑎𝑥)

∆𝑥

2
+ 𝑎6,𝑃𝑄𝑚,𝑒

∆𝑥

2
                                                                                    (𝐴. 16) 

 

where                                  𝑘𝑒𝑓𝑓 = (𝑘𝑒𝑓𝑓,𝑡 + 𝑘𝑒𝑓𝑓,𝑏)                                                                                        (𝐴. 17) 

 

It is assumed that the control volume has uniform properties. Then, equation (A.16) can 

be arranged as follows. 

 

𝑎𝑃𝑇𝑃
(1)
+ 𝑎𝐸𝑇𝐸

(1)
+ 𝑎𝑊𝑇𝑊

(1)
= 𝑏                                                                                         (A. 18) 

 

where 

 

𝑎𝐸 = −
1

2
(
𝑎2∆𝑡

∆𝑥
+
𝑎3
∆𝑥
)                                                                                                        (A. 19) 

 

𝑎𝑊 = 0                                                                                                                                     (A. 20) 

 

𝑎𝑃 =
𝑎1,𝑝∆𝑥

2∆𝑡
+
∆𝑥

2
− 𝑎𝐸 +

1

2
(
𝑎2ℎ∆𝑡

𝑘𝑒𝑓𝑓
) +

1

2
(
𝑎3ℎ

𝑘𝑒𝑓𝑓
 )                                                      (A. 21) 
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𝑏 = (
𝑎1∆𝑥

∆𝑡
+
∆𝑥

2
−
1

2
(
𝑎2ℎ∆𝑡

𝑘𝑒𝑓𝑓
))𝑇𝑃

(0) +
1

2
(
𝑎3ℎ

𝑘𝑒𝑓𝑓
−
𝑎1∆𝑥

∆𝑡
)𝑇𝑃

(−1) −
1

2
(
𝑎3
∆𝑥
) (𝑇𝐸

(0) − 𝑇𝑃
(0)) 

+
1

2
(
𝑎2∆𝑡

∆𝑥
+
𝑎3
∆𝑥
) (𝑇𝐸

(0) − 𝑇𝑃
(0))−

1

2
(
𝑎3
∆𝑥
) (𝑇𝐸

(−1) − 𝑇𝑃
(−1)

)+ (
𝑎2ℎ∆𝑡

𝑘𝑒𝑓𝑓
) (𝑇∞) 

+𝑎4𝜇𝑎(𝜗𝑖𝑛,𝑠𝑐
(1) − 𝜗𝑖𝑛,𝑠𝑐

(0)) [𝐶1𝑒
(−

𝐷1𝑥

𝛿
)
− 𝐶2𝑒

(−
𝐷2𝑥

𝛿
)
 ]
∆𝑥

2
      

+𝑎5𝜇𝑎𝜗𝑖𝑛,𝑠𝑐
(1) [𝐶1𝑒

(−
𝐷1𝑥
𝛿
)
− 𝐶2𝑒

(−
𝐷2𝑥
𝛿
)
 ]
∆𝑥∆𝑡

2
 

+𝑎4𝜇𝑎(1 − 𝑅𝑠)(𝜗𝑖𝑛,𝑎𝑏
(1) − 𝜗𝑖𝑛,𝑎𝑏

(1))𝑒(−𝜇𝑎𝑥)
∆𝑥

2
 

+𝑎5𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏
(1)𝑒(−𝜇𝑎𝑥)

∆𝑥∆𝑡

2
+ 𝑎6𝑄𝑚,𝑒

∆𝑥∆𝑡

2
                                                           (A. 21) 

 

For cell at the right boundary; 

 

𝑎1,𝑝
𝑇𝑃

(1) − 2𝑇𝑃
(0) + 𝑇𝑃

(−1)

∆𝑡2
∆𝑥

2
+
𝑇𝑃

(1) − 𝑇𝑃
(0)

∆𝑡

∆𝑥

2
=
1

2
{
 

 0 − 𝑎2,𝑤
𝑇𝑃
(1)
− 𝑇𝑊

(1)

∆𝑥
∆𝑥
2 }

 

 
 
∆𝑥

2
 

+
1

2

{
 
 

 
 0 − 𝑎3,𝑤 [

𝑇𝑃
(1)
− 𝑇𝑊

(1)

∆𝑥∆t
−
𝑇𝑃
(0)
− 𝑇𝑊

(0)

∆𝑥∆t
]

∆𝑥
2

}
 
 

 
 
∆𝑥

2
+
1

2
{
 

 0 − 𝑎2,𝑤
𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥
∆𝑥
2 }

 

 ∆𝑥

2
 

+
1

2

{
 
 

 
 0 − 𝑎3,𝑤 [

𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥∆t −
𝑇𝑃
(−1) − 𝑇𝑊

(−1)

∆𝑥∆t ]

∆𝑥
2

}
 
 

 
 
∆𝑥

2
 

+𝑎4,𝑃𝜇𝑎 (
𝜗𝑖𝑛,𝑠𝑐

(1)−𝜗𝑖𝑛,𝑠𝑐
(0)

∆𝑡
) [𝐶1𝑒

(−
𝐷1𝑥

𝛿
)
− 𝐶2𝑒

(−
𝐷2𝑥

𝛿
)
 ]
∆𝑥

2
      

+𝑎5,𝑃𝜇𝑎𝜗𝑖𝑛,𝑠𝑐
(1) [𝐶1𝑒

(−
𝐷1𝑥
𝛿
)
− 𝐶2𝑒

(−
𝐷2𝑥
𝛿
)
 ]
∆𝑥

2
 

+𝑎4,𝑃𝜇𝑎(1 − 𝑅𝑠) (
𝜗𝑖𝑛,𝑎𝑏

(1) − 𝜗𝑖𝑛,𝑎𝑏
(1)

∆𝑡
)𝑒(−𝜇𝑎𝑥)

∆𝑥

2
 

+𝑎5,𝑃𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏
(1)𝑒(−𝜇𝑎𝑥)

∆𝑥

2
+ 𝑎6,𝑃𝑄𝑚,𝑒

∆𝑥

2
                                                                 (A. 22) 

 

It is assumed that the control volume has uniform properties. Then, equation (A.22) can 

be arranged as follows. 
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𝑎𝑃𝑇𝑃
(1)
+ 𝑎𝐸𝑇𝐸

(1)
+ 𝑎𝑊𝑇𝑊

(1)
= 𝑏                                                                                         (A. 23) 

 

where 

 

𝑎𝐸 = 0                                                                                                                                      (A. 24) 

 

𝑎𝑊 = −
1

2
(
𝑎2∆𝑡

∆𝑥
+
𝑎3
∆𝑥
)                                                                                                       (A. 25) 

 

𝑎𝑃 =
𝑎1,𝑝∆𝑥

2∆𝑡
+
∆𝑥

2
− 𝑎𝑊                                                                                                      (A. 26) 

 

𝑏 = (
𝑎1∆𝑥

∆𝑡
+
∆𝑥

2
)𝑇𝑃

(0) −
𝑎1∆𝑥

2∆𝑡
𝑇𝑃

(−1) +
1

2
(
𝑎3
∆𝑥
) (𝑇𝑃

(0) − 𝑇𝑊
(0)) 

−
1

2
(
𝑎2∆𝑡

∆𝑥
+
𝑎3
∆𝑥
) (𝑇𝑃

(0) − 𝑇𝑊
(0)) +

1

2
(
𝑎3
∆𝑥
) (𝑇𝑃

(−1) − 𝑇𝑊
(−1)) 

+𝑎4𝜇𝑎(𝜗𝑖𝑛,𝑠𝑐
(1) − 𝜗𝑖𝑛,𝑠𝑐

(0)) [𝐶1𝑒
(−

𝐷1𝑥

𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥

𝛿
) ]

∆𝑥

2
      

+𝑎5𝜇𝑎𝜗𝑖𝑛,𝑠𝑐
(1) [𝐶1𝑒

(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ]
∆𝑥∆𝑡

2
 

+𝑎4𝜇𝑎(1 − 𝑅𝑠)(𝜗𝑖𝑛,𝑎𝑏
(1) − 𝜗𝑖𝑛,𝑎𝑏

(1))𝑒(−𝜇𝑎𝑥)
∆𝑥

2
 

+𝑎5𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏
(1)𝑒(−𝜇𝑎𝑥)

∆𝑥∆𝑡

2
+ 𝑎6𝑄𝑚,𝑒

∆𝑥∆𝑡

2
                                                (A. 27) 
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 APPENDIX B 

 Discretization of The Pennes Model 

 

The Pennes model for one dimension is as follows. 

 

𝜌𝑐
𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
+ 𝑄 + 𝑄𝑚 + 𝑤𝑏𝜌𝑏𝑐𝑏(𝑇𝑏 − 𝑇)                                                                 (𝐵. 1) 

 

For applying FVM, integration of equation (B.1) can be made over control volume of grid 

P with time step from t to t+∆t. 

 

∫ ∫ (𝜌𝑐
𝜕𝑇

𝜕𝑡
)𝑑𝑡𝑑𝑥 = ∫ ∫ (𝛼

𝜕2𝑇

𝜕𝑥2
+ 𝑄 + 𝑄𝑚 +𝑤𝑏𝜌𝑏𝑐𝑏(𝑇𝑏 − 𝑇))𝑑𝑡𝑑𝑥             (B. 2)

𝑡+∆𝑡

𝑡

𝑒

𝑤

𝑡+∆𝑡

𝑡

𝑒

𝑤

 

 

The algebraic equation for heat flux is obtained with applying Crank Nicolson method to 

equation (B.2). 

 

𝑇𝑃
(1) − 𝑇𝑃

(0)

∆𝑡
∆𝑥 =

1

2
{
𝛼𝑒
𝑇𝐸
(1) − 𝑇𝑃

(1)

∆𝑥
− 𝛼𝑤

𝑇𝑃
(1) − 𝑇𝑊

(1)

∆𝑥
∆𝑥

}∆𝑥 +
1

2
{
𝛼𝑒
𝑇𝐸
(0) − 𝑇𝑃

(0)

∆𝑥
− 𝛼𝑤

𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥
∆𝑥

}∆𝑥 

+
1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
(𝑇𝑏 − 𝑇𝑃

(1))∆𝑥} +
1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
(𝑇𝑏 − 𝑇𝑃

(0))∆𝑥}   

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1) [𝐶1𝑒
(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ] ∆𝑥 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)∆𝑥 +
1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒∆𝑥                                                (B. 3) 

 

It is assumed that the control volume has uniform properties. Then, equation (B.3) can be 

arranged as follows.  

 

𝑎𝑃𝑇𝑃
(1)
+ 𝑎𝐸𝑇𝐸

(1)
+ 𝑎𝑊𝑇𝑊

(1)
= 𝑏                                                                                            (B. 4) 
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where 

 

𝑎𝐸 = −
1

2
(
𝛼∆𝑡

∆𝑥
)                                                                                                                       (B. 5) 

 

𝑎𝑊 = −
1

2
(
𝛼∆𝑡

∆𝑥
)                                                                                                                      (B. 6) 

 

𝑎𝑃 = ∆𝑥 − 𝑎𝐸 − 𝑎𝑊 +
1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

𝜌𝑡𝑐𝑝,𝑡
)                                                                      (B. 7) 

 

𝑏 = (∆𝑥 −
1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

𝜌𝑡𝑐𝑝,𝑡
) ) 𝑇𝑃

(0) +
1

2
(
𝛼∆𝑡

∆𝑥
) (𝑇𝐸

(0) − 𝑇𝑃
(0)) 

−
1

2
(
𝛼∆𝑡

∆𝑥
) (𝑇𝑃

(0) − 𝑇𝑊
(0)) +

𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

𝜌𝑡𝑐𝑝,𝑡
𝑇𝑏   

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1) [𝐶1𝑒
(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ] ∆𝑥∆𝑡 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)∆𝑥∆𝑡 +
1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒∆𝑥∆𝑡                                       (B. 8) 

 

Half cell volume methodology is used for cells in boundary conditions [129]. The 

algebraic equation obtained with applying Crank Nicolson method to boundary cells 

follows as. 

 
For cell at the left boundary; 

 

𝑇𝑃
(1) − 𝑇𝑃

(0)

∆𝑡

∆𝑥

2
=
1

2

{
 
 

 
 𝛼𝑒

𝑇𝐸
(1) − 𝑇𝑃

(1)

∆𝑥 +
𝛼𝑤ℎ
𝑘𝑡,𝑤

(𝑇∞
(1) − 𝑇𝑃

(1))

∆𝑥
2

}
 
 

 
 
∆𝑥

2
  

+
1

2

{
 
 

 
 𝛼𝑒

𝑇𝐸
(0) − 𝑇𝑃

(0)

∆𝑥 +
𝛼𝑤ℎ
𝑘𝑡,𝑤

(𝑇∞
(0) − 𝑇𝑃

(0))

∆𝑥
2

}
 
 

 
 
∆𝑥

2
+
1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏
𝜌𝑡𝑐𝑝,𝑡

(𝑇𝑏 − 𝑇𝑃
(1))

∆𝑥

2
} 

+
1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏
𝜌𝑡𝑐𝑝,𝑡

(𝑇𝑏 − 𝑇𝑃
(0))

∆𝑥

2
}+

1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1)
[𝐶1𝑒

(−
𝐷1𝑥
𝛿
)
− 𝐶2𝑒

(−
𝐷2𝑥
𝛿
)
 ]
∆𝑥

2
 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)
∆𝑥

2
+

1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒

∆𝑥

2
                                                   (B. 9) 
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It is assumed that the control volume has uniform properties. Then, equation (B.9) can be 

arranged as follows.  

 

𝑎𝑃𝑇𝑃
(1)
+ 𝑎𝐸𝑇𝐸

(1)
+ 𝑎𝑊𝑇𝑊

(1)
= 𝑏                                                                                         (B. 10) 

 

Where 

 

𝑎𝐸 = −
1

2
(
𝛼∆𝑡

∆𝑥
)                                                                                                                     (B. 10) 

 

𝑎𝑊 = 0                                                                                                                                     (B. 11) 

 

𝑎𝑃 =
∆𝑥

2
− 𝑎𝐸 +

1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
) +

1

2
(
𝛼ℎ∆𝑡

𝑘𝑡
)                                                         (B. 12) 

 

𝑏 = (
∆𝑥

2
−
1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
) −

1

2
(
𝛼ℎ∆𝑡

𝑘𝑡
) ) 𝑇𝑃

(0) +
1

2
(
𝛼∆𝑡

∆𝑥
) (𝑇𝐸

(0) − 𝑇𝑃
(0)) 

+
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
𝑇𝑏 +

𝛼ℎ∆𝑡

𝑘𝑡
𝑇∞ +

1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1)
[𝐶1𝑒

(−
𝐷1𝑥
𝛿
)
− 𝐶2𝑒

(−
𝐷2𝑥
𝛿
)
 ]
∆𝑥∆𝑡

2
 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)
∆𝑥∆𝑡

2
+

1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒

∆𝑥∆𝑡

2
                                  (B. 13) 

 

For cell at the right boundary; 

 

𝑇𝑃
(1) − 𝑇𝑃

(0)

∆𝑡

∆𝑥

2
=
1

2
{
 

 0 − 𝛼𝑤
𝑇𝑃
(1) − 𝑇𝑊

(1)

∆𝑥
∆𝑥
2 }

 

 ∆𝑥

2
 +
1

2
{
 

 0 − 𝛼𝑤
𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥
∆𝑥
2 }

 

 ∆𝑥

2
 

+
1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
(𝑇𝑏 − 𝑇𝑃

(1))
∆𝑥

2
} +

1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
(𝑇𝑏 − 𝑇𝑃

(0))
∆𝑥

2
}    

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1) [𝐶1𝑒
(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ]
∆𝑥

2
 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)
∆𝑥

2
+

1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒

∆𝑥

2
                                           (B. 14) 

 

It is assumed that the control volume has uniform properties. Then, equation (B.14) can 

be arranged as follows. 
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𝑎𝑃𝑇𝑃
(1)
+ 𝑎𝐸𝑇𝐸

(1)
+ 𝑎𝑊𝑇𝑊

(1)
= 𝑏                                                                                         (B. 15) 

 

where 

 

𝑎𝐸 = 0                                                                                                                                      (B. 16) 

 

𝑎𝑊 = −
1

2
(
𝛼∆𝑡

∆𝑥
)                                                                                                                    (B. 17) 

 

𝑎𝑃 =
∆𝑥

2
− 𝑎𝑊 +

1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
)                                                                              (B. 18) 

 

𝑏 = (
∆𝑥

2
−
1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
) ) 𝑇𝑃

(0) −
1

2
(
𝛼∆𝑡

∆𝑥
) (𝑇𝑃

(0) − 𝑇𝑊
(0)) +

𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
𝑇𝑏   

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1) [𝐶1𝑒
(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ]
∆𝑥∆𝑡

2
  

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)
∆𝑥∆𝑡

2
 +

1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒

∆𝑥∆𝑡

2
                                 (B. 19) 
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 APPENDIX C 

 Discretization of DPL Model 

 

DPL model is formed by combining the energy equation and non-Fourier heat conduction 

equation, which are given below.  

 

𝜏𝑞
𝜕2𝑇

𝜕𝑡2
+ (1 +

𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
)
𝜕𝑇

𝜕𝑡
= 𝛼

𝜕2𝑇

𝜕𝑥2
+ 𝛼𝜏𝑇

𝜕

𝜕𝑡
(
𝜕2𝑇

𝜕𝑥2
) +

𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
(𝑇𝑏 − 𝑇)    

+
𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
(
𝜕𝑄𝑚
𝜕𝑡

+ 
𝜕𝑄

𝜕𝑡
) +

𝑄𝑚
𝜌𝑡𝑐𝑝,𝑡

+
Q

𝜌𝑡𝑐𝑝,𝑡
                                                                            (C. 1) 

 

For applying FVM, integration of equation (C.1) can be made over control volume of grid 

P with time step from t to t+∆t. 

 

∫ ∫ (𝜏𝑞
𝜕2𝑇

𝜕𝑡2
+ (1 +

𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏
𝜌𝑡𝑐𝑝,𝑡

)
𝜕𝑇

𝜕𝑡
)𝑑𝑡𝑑𝑥

𝑡+∆𝑡

𝑡

𝑒

𝑤

 

= ∫ ∫ (𝛼
𝜕2𝑇

𝜕𝑥2
+ 𝛼𝜏𝑇

𝜕

𝜕𝑡
(
𝜕2𝑇

𝜕𝑥2
) +

𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
(𝑇𝑏 − 𝑇) +

𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
(
𝜕𝑄𝑚
𝜕𝑡

+ 
𝜕𝑄

𝜕𝑡
))𝑑𝑡𝑑𝑥

𝑡+∆𝑡

𝑡

𝑒

𝑤

 

+∫ ∫ (
𝑄𝑚
𝜌𝑡𝑐𝑝,𝑡

+
Q

𝜌𝑡𝑐𝑝,𝑡
)𝑑𝑡𝑑𝑥                                                                                                    (C. 2)

𝑡+∆𝑡

𝑡

𝑒

𝑤

 

 

The algebraic equation for heat flux is obtained with applying Crank Nicolson method to 

equation (C.2). 

 

𝜏𝑞
𝑇𝑃

(1) − 2𝑇𝑃
(0) + 𝑇𝑃

(−1)

∆𝑡2
∆𝑥 + (1 +

𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
)
𝑇𝑃

(1) − 𝑇𝑃
(0)

∆𝑡
∆𝑥  

=
1

2
{
 

 𝛼𝑒
𝑇𝐸
(1) − 𝑇𝑃

(1)

∆𝑥 − 𝛼𝑤
𝑇𝑃
(1) − 𝑇𝑊

(1)

∆𝑥
∆𝑥

}
 

 
∆𝑥 +

1

2
{
 

 𝛼𝑒
𝑇𝐸
(0) − 𝑇𝑃

(0)

∆𝑥 − 𝛼𝑤
𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥
∆𝑥

}
 

 
∆𝑥 

+
1

2

{
 
 

 
 𝛼𝑒𝜏𝑇 [

𝑇𝐸
(1) − 𝑇𝑃

(1)

∆𝑥∆t −
𝑇𝐸
(0) − 𝑇𝑃

(0)

∆𝑥∆t ] − 𝛼𝑤𝜏𝑇 [
𝑇𝑃
(1) − 𝑇𝑊

(1)

∆𝑥∆t −
𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥∆t ]

∆𝑥

}
 
 

 
 

∆𝑥 
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+
1

2

{
 
 

 
 

+

𝛼𝑒𝜏𝑇 [
𝑇𝐸
(0)
− 𝑇𝑃

(0)

∆𝑥∆t
−
𝑇𝐸
(−1)

− 𝑇𝑃
(−1)

∆𝑥∆t
] − 𝛼𝑤𝜏𝑇 [

𝑇𝑃
(0)
− 𝑇𝑊

(0)

∆𝑥∆t
−
𝑇𝑃
(−1)

− 𝑇𝑊
(−1)

∆𝑥∆t
]

∆𝑥

}
 
 

 
 

∆𝑥 

+
1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏
𝜌𝑡𝑐𝑝,𝑡

(𝑇𝑏 − 𝑇𝑃
(1)
)∆𝑥} +

1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏
𝜌𝑡𝑐𝑝,𝑡

(𝑇𝑏 − 𝑇𝑃
(0)
)∆𝑥} 

+
𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎 (

𝜗𝑖𝑛,𝑠𝑐
(1)−𝜗𝑖𝑛,𝑠𝑐

(0)

∆𝑡
) [𝐶1𝑒

(−
𝐷1𝑥

𝛿
)
− 𝐶2𝑒

(−
𝐷2𝑥

𝛿
)
 ] ∆𝑥      

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1) [𝐶1𝑒
(−
𝐷1𝑥
𝛿
)
− 𝐶2𝑒

(−
𝐷2𝑥
𝛿
)
 ] ∆𝑥 

+
𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠) (

𝜗𝑖𝑛,𝑎𝑏
(1) − 𝜗𝑖𝑛,𝑎𝑏

(1)

∆𝑡
)𝑒(−𝜇𝑎𝑥)∆𝑥 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)∆𝑥 +
1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒∆𝑥                                                             (C. 3) 

 

It is assumed that the control volume has uniform properties. Then, equation (C.3) can be 

arranged as follows. 

 

𝑎𝑃𝑇𝑃
(1)
+ 𝑎𝐸𝑇𝐸

(1)
+ 𝑎𝑊𝑇𝑊

(1)
= 𝑏                                                                                            (C. 4) 

 

where 

 

𝑎𝐸 = −
1

2
(
𝛼∆𝑡

∆𝑥
+
𝛼𝜏𝑇

∆𝑥
)                                                                                                           (C. 5) 

 

𝑎𝑊 = −
1

2
(
𝛼∆𝑡

∆𝑥
+
𝛼𝜏𝑇

∆𝑥
)                                                                                                          (C. 6) 

 

𝑎𝑃 =
𝜏𝑞∆𝑥

∆𝑡
+ ∆𝑥 +

𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥

𝜌
𝑡
𝑐𝑝,𝑡

− 𝑎𝐸 − 𝑎𝑊 +
1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

𝜌𝑡𝑐𝑝,𝑡
)                           (C. 7) 

 

𝑏 = (
2𝜏𝑞∆𝑥

∆𝑡
+ ∆𝑥 +

𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥

𝜌𝑡𝑐𝑝,𝑡
−
1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

𝜌𝑡𝑐𝑝,𝑡
) ) 𝑇𝑃

(0) −
𝜏𝑞∆𝑥

∆𝑡
𝑇𝑃

(−1) 

+
1

2
(
𝛼∆𝑡

∆𝑥
) (𝑇𝐸

(0) − 𝑇𝑃
(0)) −

1

2
(
𝛼∆𝑡

∆𝑥
) (𝑇𝑃

(0) − 𝑇𝑊
(0)) 

−
1

2
(
𝛼𝜏𝑇
∆𝑥

) (𝑇𝐸
(−1) − 𝑇𝑃

(−1)) +
1

2
(
𝛼𝜏𝑇
∆𝑥

) (𝑇𝑃
(−1) − 𝑇𝑊

(−1)) +
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

𝜌𝑡𝑐𝑝,𝑡
𝑇𝑏 

+
𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(𝜗𝑖𝑛,𝑠𝑐

(1) − 𝜗𝑖𝑛,𝑠𝑐
(0)) [𝐶1𝑒

(−
𝐷1𝑥

𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥

𝛿
) ] ∆𝑥      
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+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1) [𝐶1𝑒
(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ] ∆𝑥∆𝑡 

+
𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)(𝜗𝑖𝑛,𝑎𝑏

(1) − 𝜗𝑖𝑛,𝑎𝑏
(1))𝑒(−𝜇𝑎𝑥)∆𝑥 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)∆𝑥∆𝑡 +
1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒∆𝑥∆𝑡                                      (C. 8) 

 

Half cell volume methodology is used for cells in boundary conditions [129]. The 

algebraic equation obtained with applying Crank Nicolson method to boundary cells 

follows as. 

 
For cell at the left boundary; 

 

𝜏𝑞
𝑇𝑃

(1) − 2𝑇𝑃
(0) + 𝑇𝑃

(−1)

∆𝑡2
∆𝑥

2
+ (1 +

𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
)
𝑇𝑃

(1) − 𝑇𝑃
(0)

∆𝑡

∆𝑥

2
  

=
1

2

{
 
 

 
 𝛼𝑒

𝑇𝐸
(1)
− 𝑇𝑃

(1)

∆𝑥 +
𝛼𝑤ℎ
𝑘𝑡,𝑤

(𝑇∞
(1)
− 𝑇𝑃

(1)
)

∆𝑥
2

}
 
 

 
 
∆𝑥

2
+
1

2

{
 
 

 
 𝛼𝑒

𝑇𝐸
(0)
− 𝑇𝑃

(0)

∆𝑥 +
𝛼𝑤ℎ
𝑘𝑡,𝑤

(𝑇∞
(0)
− 𝑇𝑃

(0)
)

∆𝑥
2

}
 
 

 
 
∆𝑥

2
 

+
1

2

{
 
 

 
 𝛼𝑒𝜏𝑇 [

𝑇𝐸
(1) − 𝑇𝑃

(1)

∆𝑥∆t
−
𝑇𝐸
(0) − 𝑇𝑃

(0)

∆𝑥∆t
] −

𝛼𝑤𝜏𝑇ℎ
𝑘𝑡,𝑤

[
−(𝑇∞

(1) − 𝑇𝑃
(1))

∆t
+
(𝑇∞

(0) − 𝑇𝑃
(0))

∆t
]

∆𝑥
2

}
 
 

 
 
∆𝑥

2
 

+
1

2

{
 
 

 
 

+

𝛼𝑒𝜏𝑇 [
𝑇𝐸
(0) − 𝑇𝑃

(0)

∆𝑥∆t −
𝑇𝐸
(−1) − 𝑇𝑃

(−1)

∆𝑥∆t ] −
𝛼𝑤𝜏𝑇ℎ
𝑘𝑡,𝑤

[
−(𝑇∞

(0) − 𝑇𝑃
(0))

∆t +
(𝑇∞

(−1) − 𝑇𝑃
(−1))

∆t ]

∆𝑥
2

}
 
 

 
 
∆𝑥

2
 

+
1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏
𝜌𝑡𝑐𝑝,𝑡

(𝑇𝑏 − 𝑇𝑃
(1))

∆𝑥

2
} +

1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏
𝜌𝑡𝑐𝑝,𝑡

(𝑇𝑏 − 𝑇𝑃
(0))

∆𝑥

2
} 

+
𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎 (

𝜗𝑖𝑛,𝑠𝑐
(1)−𝜗𝑖𝑛,𝑠𝑐

(0)

∆𝑡
) [𝐶1𝑒

(−
𝐷1𝑥

𝛿
)
− 𝐶2𝑒

(−
𝐷2𝑥

𝛿
)
 ]
∆𝑥

2
      

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1) [𝐶1𝑒
(−
𝐷1𝑥
𝛿
)
− 𝐶2𝑒

(−
𝐷2𝑥
𝛿
)
 ]
∆𝑥

2
 

+
𝜏𝑞
𝜌𝑡𝑐𝑝,𝑡

𝜇𝑎(1 − 𝑅𝑠) (
𝜗𝑖𝑛,𝑎𝑏

(1) − 𝜗𝑖𝑛,𝑎𝑏
(1)

∆𝑡
)𝑒(−𝜇𝑎𝑥)

∆𝑥

2
 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)
∆𝑥

2
+

1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒

∆𝑥

2
                                                           (C. 9) 
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It is assumed that the control volume has uniform properties. Then, equation (C.9) can be 

arranged as follows. 

 

𝑎𝑃𝑇𝑃
(1)
+ 𝑎𝐸𝑇𝐸

(1)
+ 𝑎𝑊𝑇𝑊

(1)
= 𝑏                                                                                         (C. 10) 

 

where 

 

𝑎𝐸 = −
1

2
(
𝛼∆𝑡

∆𝑥
+
𝛼𝜏𝑇

∆𝑥
)                                                                                                         (C. 11) 

 

𝑎𝑊 = 0                                                                                                                                     (C. 12) 

 

𝑎𝑃 =
𝜏𝑞∆𝑥

2∆𝑡
+
∆𝑥

2
+
𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥

2𝜌𝑡𝑐𝑝,𝑡
− 𝑎𝐸 +

1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
)           

+
1

2
(
𝛼ℎ∆𝑡

𝑘𝑡
) +

1

2
(
𝛼𝜏𝑇ℎ

𝑘𝑡
)                                                                                                      (C. 13) 

 

𝑏 = (
𝜏𝑞∆𝑥

∆𝑡
+
∆𝑥

2
+
𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥

2𝜌𝑡𝑐𝑝,𝑡
−
1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
) −

1

2
(
𝛼ℎ∆𝑡

𝑘𝑡
) ) 𝑇𝑃

(0) 

+
1

2
(
𝛼𝜏𝑇ℎ

𝑘𝑡
−
𝜏𝑞∆𝑥

2∆𝑡
) 𝑇𝑃

(−1) +
1

2
(
𝛼∆𝑡

∆𝑥
) (𝑇𝐸

(0) − 𝑇𝑃
(0)) −

1

2
(
𝛼𝜏𝑇
∆𝑥

) (𝑇𝐸
(−1) − 𝑇𝑃

(−1)) 

+
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
𝑇𝑏 +

𝛼ℎ∆𝑡

𝑘𝑡
𝑇∞ 

+
𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(𝜗𝑖𝑛,𝑠𝑐

(1) − 𝜗𝑖𝑛,𝑠𝑐
(0)) [𝐶1𝑒

(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ]
∆𝑥

2
 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1) [𝐶1𝑒
(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ]
∆𝑥∆𝑡

2
 

+
𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 6𝑅𝑠)(𝜗𝑖𝑛,𝑎𝑏

(1) − 𝜗𝑖𝑛,𝑎𝑏
(1))𝑒(−𝜇𝑎𝑥)

∆𝑥

2
 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)
∆𝑥∆𝑡

2
+

1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒

∆𝑥∆𝑡

2
                                  (C. 14) 

 

For cell at the right boundary; 

 

𝜏𝑞
𝑇𝑃

(1) − 2𝑇𝑃
(0) + 𝑇𝑃

(−1)

∆𝑡2
∆𝑥

2
+ (1 +

𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
)
𝑇𝑃

(1) − 𝑇𝑃
(0)

∆𝑡

∆𝑥

2
=
1

2
{
0 − 𝛼𝑤

𝑇𝑃
(1) − 𝑇𝑊

(1)

∆𝑥
∆𝑥
2

}
∆𝑥

2
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+
1

2

{
 
 

 
 0 − 𝛼𝑤𝜏𝑇 [

𝑇𝑃
(1) − 𝑇𝑊

(1)

∆𝑥∆t
−
𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥∆t
]

∆𝑥
2

}
 
 

 
 
∆𝑥

2
+
1

2
{
0 − 𝛼𝑤

𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥
∆𝑥
2

}
∆𝑥

2
 

+
1

2

{
 
 

 
 

+

0 − 𝛼𝑤𝜏𝑇 [
𝑇𝑃
(0) − 𝑇𝑊

(0)

∆𝑥∆t
−
𝑇𝑃
(−1) − 𝑇𝑊

(−1)

∆𝑥∆t
]

∆𝑥
2

}
 
 

 
 
∆𝑥

2
+
1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
(𝑇𝑏 − 𝑇𝑃

(1))
∆𝑥

2
} 

+
1

2
{
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏

𝜌𝑡𝑐𝑝,𝑡
(𝑇𝑏 − 𝑇𝑃

(0))
∆𝑥

2
} +

𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎 (

𝜗𝑖𝑛,𝑠𝑐
(1) − 𝜗𝑖𝑛,𝑠𝑐

(0)

∆𝑡
) [𝐶1𝑒

(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ]
∆𝑥

2
 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1) [𝐶1𝑒
(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ]
∆𝑥

2
+

𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠) (

𝜗𝑖𝑛,𝑎𝑏
(1) − 𝜗𝑖𝑛,𝑎𝑏

(1)

∆𝑡
) 𝑒(−𝜇𝑎𝑥)

∆𝑥

2
 

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)
∆𝑥

2
+

1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒

∆𝑥

2
                                                                         (C.15) 

 

It is assumed that the control volume has uniform properties. Then, equation (C.15) can 

be arranged as follows. 

 

𝑎𝑃𝑇𝑃
(1)
+ 𝑎𝐸𝑇𝐸

(1)
+ 𝑎𝑊𝑇𝑊

(1)
= 𝑏                                                                                         (C. 16) 

 

Where 

 

𝑎𝐸 = 0                                                                                                                                      (C. 17) 

 

𝑎𝑊 = −
1

2
(
𝛼∆𝑡

∆𝑥
+
𝛼𝜏𝑇

∆𝑥
)                                                                                                        (C. 18) 

 

𝑎𝑃 =
𝜏𝑞∆𝑥

2∆𝑡
+
∆𝑥

2
+
𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥

2𝜌
𝑡
𝑐𝑝,𝑡

− 𝑎𝑊 +
1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
)                                   (C. 19) 

 

𝑏 = (
𝜏𝑞∆𝑥

∆𝑡
+
∆𝑥

2
+
𝜏𝑞𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥

2𝜌𝑡𝑐𝑝,𝑡
−
1

2
(
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
) ) 𝑇𝑃

(0) −
𝜏𝑞∆𝑥

2∆𝑡
𝑇𝑃

(−1) 

−
1

2
(
𝛼∆𝑡

∆𝑥
) (𝑇𝑃

(0) − 𝑇𝑊
(0)) +

1

2
(
𝛼𝜏𝑇
∆𝑥

) (𝑇𝑃
(−1) − 𝑇𝑊

(−1)) +
𝑤𝑏𝜌𝑏𝑐𝑝,𝑏∆𝑥∆𝑡

2𝜌𝑡𝑐𝑝,𝑡
𝑇𝑏 

+
𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(𝜗𝑖𝑛,𝑠𝑐

(1) − 𝜗𝑖𝑛,𝑠𝑐
(0)) [𝐶1𝑒

(−
𝐷1𝑥

𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥

𝛿
) ]

∆𝑥

2
      

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎𝜗𝑖𝑛,𝑠𝑐

(1) [𝐶1𝑒
(−
𝐷1𝑥
𝛿
) − 𝐶2𝑒

(−
𝐷2𝑥
𝛿
) ]
∆𝑥∆𝑡

2
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+
𝜏𝑞

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)(𝜗𝑖𝑛,𝑎𝑏

(1) − 𝜗𝑖𝑛,𝑎𝑏
(1))𝑒(−𝜇𝑎𝑥)

∆𝑥

2
  

+
1

𝜌𝑡𝑐𝑝,𝑡
𝜇𝑎(1 − 𝑅𝑠)𝜗𝑖𝑛,𝑎𝑏

(1)𝑒(−𝜇𝑎𝑥)
∆𝑥∆𝑡

2
 +

1

𝜌𝑡𝑐𝑝,𝑡
𝑄𝑚,𝑒

∆𝑥∆𝑡

2
                                 (C. 20) 
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 APPENDIX D 

 MATLAB Code for Model in This Study 

 

clear all; 

clc; 

close all; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%% %%%%%%%  Problem Definition %%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

tic;                                    % Used for measuring run time 

tTotal  =90;                       % Total time [s] 

tin         =10;                         % Exposure time [s] 

dt          =0.01;                      % Constant time step [s] 

Nx          =120;                       % Number of cells in x direction 

L           =0.05;                      % Length [m] 

dx          =L/(Nx);                    % Constant cell size in x direction 

IterN       =tTotal/dt;                 % Iteration number 

IterNb     =tin/dt;                    % Iteration number for heat flux exposure time 

ms          =3*Nx+1; 

 

% Arrays and matrices % 

 

T      =zeros(Nx+1,1);        % Temperature components at nodes 

Ts     =zeros(1,IterN);       % Temperature values at Cell (1) 

ii     =zeros(ms,1);          % Row number of aT sparse matrix 

jj     =zeros(ms,1);          % Column number of aT sparse matrix 

cc     =zeros(ms,1);          % Values of aT sparse matrix 

aT     =zeros(Nx+1,1);        % Coefficents of new heat flux values 

aTold1  =zeros(Nx+1,1);        % Coefficents of previous heat flux values 

aTold2 =zeros(Nx+1,1);        % Coefficents of one before previous heat flux values 

rhsa   =zeros(Nx+1,1);        % Right hand side vector of the enery equation 

Tn     =zeros(Nx+1,1);        % New temperature values at nodes 
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Told   =zeros(Nx+1,1);        % Previouse values at nodes 

Told2  =zeros(Nx+1,1);        % One before previous temperature values at nodes 

 

% Optical properties % 

 

% For 808 nm laser 

Rd        =0.05;       % Diffuse reflectance 

mu_a         =78;         % Absorption coefficient [m^-1] 

mu_sr        =2104;       % Reduced scattering coefficient [m^-1] 

 

delta   =1/sqrt(3*mu_a*(mu_a+mu_sr)); % Effective optical penetration depth [m] 

 

% Coefficents of diffusion theory eqaution 

 

C1=3.09+5.44*Rd-2.12*exp(-21.5*Rd); 

D1=1-(1-(1/sqrt(3)))*exp(-20.1*Rd); 

C2=2.09-1.47*Rd-2.12*exp(-21.5*Rd); 

D2=1.63*exp(3.40*Rd); 

 

% For 1940 nm laser 

Rs            =0.0475;    % Specular reflectance 

mu_a_a       =5643;       % Absorption coefficient [m^-1] 

 

% Boundary Condtions % 

 

qin_A        =0;              % Laser intensity for 1940 nm laser [W/m^2] 

qin_S    =14000;          % Laser intensity for 808 nm laser [W/m^2] 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%% Initial values and boundary conditions %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

h             =10;                         % Heat convection [W/mK] 

T_Inf        =22.35;                      % Room temperature [C] 

qm     =368.1;                      % Constant metabolic heat generation [W/m^3] 
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Tn(1:Nx+1,1)    =33.2;             % Temperature values at nodes 

Told(1:Nx+1,1)   =33.2;             % Previous Temperature values at nodes 

Told2(1:Nx+1,1)  =33.2;             % One before previous temperature values at nodes 

qin_s_old         =0;                      % Previous laser irradiance values [W/m^2] 

qin_a_old         =0;                      % Previous laser irradiance values [W/m^2] 

rho_t             =1081.6;           % Density of tissue [kg/m^3] 

rho_b             =1060;           % Density of blood [kg/m^3] 

k_t              =0.4108;          % Thermal Conductivity for tissue [W/m*k] 

k_b               =0.5066;          % Thermal Conductivity for blood [W/m*k] 

c_t               =3238.5;           % Heat Capacity of tissue [J/kg*K] 

c_b               =3770;           % Heat Capacity of blood [J/kg*K] 

w                 =0.0012;            % Blood perfusion rate [m^3/m^3*s] 

eps               =0.0060;         % Porosity 

D                 =0.00114;           % Vessel Diameter [m] 

 

% Coupling factor % 

G             =rho_b*c_b*w+4.93*((4*eps*k_b)/(D^2)); 

 

% Effective heat capacity [J/kg*K] 

pc            =(eps*rho_b*c_b+(1-eps)*rho_t*c_t); 

 

% Effective thermal conductivity for tissue [W/m*k] 

k_t_eff   =(1-eps)*k_t; 

 

% Effective thermal conductivity for blood [W/m*k] 

k_b_eff  =eps*(k_b); 

 

% Effective thermal conductivity [W/m*k] 

k_eff        =k_t_eff+k_b_eff; 

 

% Coefficients of Model % 

 

a1  =(eps*rho_b*c_b*(1-eps)*rho_t*c_t)/(G*pc); 

a2  =(k_t_eff+k_b_eff)/pc; 
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a3  =(eps*rho_b*c_b*k_t_eff+(1-eps)*rho_t*c_t*k_b_eff)/(G*pc); 

a4  =(eps*rho_b*c_b*(1-eps))/(G*pc); 

a5 =1/pc; 

a6 =(1-eps)/pc; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%% End of problem definition  %%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%  Solution Process %%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

for Iter=1:IterN; 

ww=0; 

tol=10; 

 

if (Iter<=IterNb); 

      qin_s          =qin_S;        % Source term 

      qin_a          =qin_A;             % Source term 

 

else 

      qin_s          =0;                % Source term 

      qin_a          =0;                % Source term 

 

end 

 

k         =0;                          % Counter for sparse matrix 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Energy equation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%% Cell (1) %%%%%%%%%%%%%%%%%% 

i=1;                % Indices 
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cP =i;            %Cell number of cell (i,j),i.e cell P 

cE =cP+1;         %Cell number of East neighbor 

 

aTold2(cP)     =((a3*h)/(2*k_eff)-(a1*(dx/2))/dt);             % One before previous P coeff. 

 

aTold1(cE)     =-0.5*(a3/dx);                                    % Previous E coeff. 

 

aTold1(cP)     =(a1*dx)/dt+(dx/2)-(a2*h*dt)/(2*k_eff);       % Previous P coeff. 

 

aT(cE)         =-0.5*((a2*dt)/dx+a3/dx);                                % E coeff. 

 

 

% E coeff. for sparse form 

k  =k+1; 

ii(k) =cP; 

jj(k) =cE; 

cc(k) =aT(cE); 

 

% Distance from the boundary layer % 

xb            =(i-1)*dx; 

 

% Part of heat source for 808 nm laser % 

qrs1    =((a4*mu_a*(dx/2))*(C1*exp((-D1*xb)/delta)  

  -C2*exp((-D2*xb)/delta)))*(qin_s-qin_s_old); 

% Part of heat source for 808 nm laser 

qrs2          =(a5*mu_a*dt*(dx/2)*qin_s)*(C1*exp((-D1*xb)/delta)-C2*exp((-D2*xb)/delta)); 

 

% Part of heat source for 1940 nm laser 

qra1           =a4*mu_a_a*(dx/2)*(1-Rs)*exp(-mu_a_a*xb)*(qin_a-qin_a_old); 

 

% Part of heat source for 1940 nm laser 

qra2           =a5*mu_a_a*dt*(dx/2)*qin_a*(1-Rs)*exp(-mu_a_a*xb); 

 

Sr            =qra2+qra1+qrs2+qrs1;     % Heat Source for laser irradiance 
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Sm            =a6*qm*(dx/2)*dt;         % Heat Source due to metabolic heat generation 

 

S             =Sr+Sm;                   % Heat Source. 

 

% P coeff. for sparse form 

k   =k+1; 

ii(k)  =cP; 

jj(k)  =cP; 

cc(k)  =(a1*(dx/2))/dt+(dx/2)-aT(cE)+(a2*h*dt)/(2*k_eff)+(a3*h)/(2*k_eff); 

 

% Parts of RHS value 

 

b1            =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S; 

b2            =aTold1(cE)*(Told(cE)-Told(cP)); 

b3            =(0.5*((a2*dt)/dx+a3/dx)*(Told(cE)-Told(cP)))+(aTold1(cE)*(Told2(cE)-Told2(cP))); 

b4            =((a2*h*dt)/k_eff)*T_Inf; 

 

% RHS value 

rhsa(cP)      =b1+b2+b3+b4; 

 

%%%%%%%%%%%%%%% Cell (2) to (Nx)%%%%%%%%%%%%%%%% 

 

for i=2:(Nx) 

 

cP =i;            %Cell number of cell (i,j),i.e cell P 

cE =cP+1;         %Cell number of East neighbor 

cW =cP-1;         %Cell number of West neighbor 

 

aTold2(cP)     =-((a1*dx)/dt);       % One before previous P coeff. 

 

aTold1(cE)     =-0.5*(a3/dx);        % Previous E coeff. 

aTold1(cW)      =-0.5*(a3/dx);           % Previous W coeff. 

 

aTold1(cP)     =(2*a1*dx)/dt+dx;           % Previous P coeff. 
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aT(cE)         =-0.5*((a2*dt)/dx+a3/dx);   % E coeff. 

aT(cW)         =-0.5*((a2*dt)/dx+a3/dx);   % W coeff. 

 

% E coeff. for sparse form 

k  =k+1; 

ii(k) =cP; 

jj(k) =cE; 

cc(k) =aT(cE); 

 

% W coeff. for sparse form 

k    =k+1; 

ii(k)  =cP; 

jj(k)  =cW; 

cc(k) =aT(cW); 

 

% Distance from the boundary layer % 

xb            =(i-1)*dx; 

 

% Part of heat source for 808 nm laser 

qrs1           =((a4*mu_a*dx)*(C1*exp((-D1*xb)/delta)  

      -C2*exp((-D2*xb)/delta)))*(qin_s-qin_s_old); 

% Part of heat source for 808 nm laser 

qrs2          =(a5*mu_a*dt*dx*qin_s)*(C1*exp((-D1*xb)/delta)-C2*exp((-D2*xb)/delta)); 

 

% Part of heat source for 1940 nm laser 

qra1           =a4*mu_a_a*dx*(1-Rs)*exp(-mu_a_a*xb)*(qin_a-qin_a_old); 

 

% Part of heat source for 1940 nm laser 

qra2           =a5*mu_a_a*dt*dx*qin_a*(1-Rs)*exp(-mu_a_a*xb); 

 

Sr            =qra2+qra1+qrs2+qrs1;     % Heat Source for laser irradiance. 

Sm            =a6*qm*dx*dt;            % Heat Source due to metabolic heat generation. 

 

S             =Sr+Sm;                   % Heat Source. 
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% P coeff. for sparse form 

k   =k+1; 

ii(k)  =cP; 

jj(k)  =cP; 

cc(k)  =(a1*dx)/dt+dx-aT(cE)-aT(cW); 

 

% Parts of RHS value 

b1            =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S; 

b2            =(aTold1(cE)*(Told(cE)-Told(cP))+aTold1(cW)*(Told(cW)-Told(cP))); 

b3            =(0.5*((a2*dt)/dx+a3/dx)*(Told(cE)-Told(cP))) 

    +(0.5*((a2*dt)/dx+a3/dx)*(Told(cW)-Told(cP)));  

b4            =(aTold1(cE)*(Told2(cE)-Told2(cP)))+(aTold1(cW)*(Told2(cW)-Told2(cP))); 

 

% RHS value 

rhsa(cP)      =b1+b2+b3+b4; 

 

end 

 

%%%%%%%%%%%%%%% Cell (Nx+1) %%%%%%%%%%%%%%%%%% 

i=Nx+1;             % Indices 

 

cP =i;            %Cell number of cell (i,j),i.e cell P 

cW =cP-1;         %Cell number of West neighbor 

 

aTold2(cP)     =-((a1*dx)/(2*dt));       % One before previous P coeff. 

 

aTold1(cW)      =-0.5*(a3/dx);           % Previous W coeff. 

 

aTold1(cP)     =(a1*dx)/dt+(dx/2);           % Previous P coeff. 

 

aT(cW)         =-0.5*((a2*dt)/dx+a3/dx);    % W coeff. 

 

 

% W coeff. for sparse form 

k    =k+1; 
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ii(k)  =cP; 

jj(k)  =cW; 

cc(k) =aT(cW); 

 

% Distance from the boundary layer % 

xb            =(i-1)*dx; 

 

% Part of heat source for 808 nm laser 

qrs1           =((a4*mu_a*(dx/2))*(C1*exp((-D1*xb)/delta)  

       --C2*exp((-D2*xb)/delta)))*(qin_s-qin_s_old); 

% Part of heat source for 808 nm laser 

qrs2           =(a5*mu_a*dt*(dx/2)*qin_s)*(C1*exp((-D1*xb)/delta)-C2*exp((-D2*xb)/delta)); 

 

% Part of heat source for 1940 nm laser 

qra1           =a4*mu_a_a*(dx/2)*(1-Rs)*exp(-mu_a_a*xb)*(qin_a-qin_a_old); 

 

% Part of heat source for 1940 nm laser 

qra2           =a5*mu_a_a*dt*(dx/2)*qin_a*(1-Rs)*exp(-mu_a_a*xb); 

 

Sr            =qra2+qra1+qrs2+qrs1;    % Heat Source for laser irradiance. 

Sm            =a6*qm*(dx/2)*dt;       % Heat Source due to metabolic heat generation. 

 

S             =Sr+Sm;                  % Heat Source. 

 

% P coeff. for sparse form 

k   =k+1; 

ii(k)  =cP; 

jj(k)  =cP; 

cc(k)  =(a1*dx)/(2*dt)+(dx/2)-aT(cW); 

 

% Parts of RHS value 

b1            =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S; 

b2            =aTold1(cW)*(Told(cW)-Told(cP)); 

b3            =(0.5*((a2*dt)/dx+a3/dx)*(Told(cW)-Told(cP))); 

b4            =(aTold1(cW)*(Told2(cW)-Told2(cP))); 
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% RHS value 

rhsa(cP)      =b1+b2+b3+b4; 

 

% Creating Sparse matrix % 

 

aTnew=sparse(ii,jj,cc,Nx+1,Nx+1); 

 

% New heat flux values after the time step 

 

Tn=aTnew\rhsa; 

 

% Stored values 

qin_s_old       =qin_s;         % Stored laser irradiance value 

qin_a_old       =qin_a;         % Stored laser irradiance value 

 

Told2         =Told;         % Stored one before previous temperature values 

Told          =Tn;               % Stored previous temperature values 

 

Ts(Iter)=Tn(1);  % Temperature values at cell (1) 

 

end 

 

toc; 
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APPENDIX E 

 MATLAB Code for Pennes Model 

 

clear all; 

clc; 

close all; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%% %%%%%%%  Problem Definition %%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

tic;                                    % Used for measuring run time 

tTotal  =90;                       % Total time [s] 

tin         =10;                         % Exposure time [s] 

dt          =0.01;                      % Constant time step [s] 

Nx          =120;                       % Number of cells in x direction 

L           =0.05;                      % Length [m] 

dx          =L/(Nx);                    % Constant cell size in x direction 

IterN       =tTotal/dt;                 % Iteration number 

IterNb     =tin/dt;                    % Iteration number for heat flux exposure time 

ms          =3*Nx+1; 

 

% Arrays and matrices % 

 

Tn     =zeros(Nx+1,1);        % New temperature values at nodes 

Ts     =zeros(1,IterN);       % Temperature values at Cell (1) 

ii     =zeros(ms,1);          % Row number of aT sparse matrix 

jj     =zeros(ms,1);          % Column number of aT sparse matrix 

cc     =zeros(ms,1);          % Values of aT sparse matrix 

aT     =zeros(Nx+1,1);        % Coefficients of new heat flux values 

aTold1  =zeros(Nx+1,1);        % Coefficients of previous heat flux values 

aTold2 =zeros(Nx+1,1);        % Coefficients of one before previous heat flux values 

rhsa   =zeros(Nx+1,1);        % Right hand side vector of the energy equation 

Told   =zeros(Nx+1,1);        % Previous values at nodes 
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Told2  =zeros(Nx+1,1);        % One before previous temperature values at nodes 

 

% Optical properties % 

 

% For 808 nm laser 

Rd        =0.05;       % Diffuse reflectance 

mu_a         =78;           % Absorption coefficient [m^-1] 

mu_sr        =2104;       % Reduced scattering coefficient [m^-1] 

 

delta   =1/sqrt(3*mu_a*(mu_a+mu_sr));  % Effective optical penetration depth [m] 

 

% Coefficients of diffusion theory equation 

 

C1=3.09+5.44*Rd-2.12*exp(-21.5*Rd); 

D1=1-(1-(1/sqrt(3)))*exp(-20.1*Rd); 

C2=2.09-1.47*Rd-2.12*exp(-21.5*Rd); 

D2=1.63*exp(3.40*Rd); 

 

% For 1940 nm laser 

Rs            =0.0475;     % Specular reflectance 

mu_a_a       =5643;       % Absorption coefficient [m^-1] 

 

% Boundary Conditions % 

 

qin_A        =0;          % Laser intensity for 1940 nm laser [W/m^2] 

qin_S    =14000;      % Laser intensity for 808 nm laser [W/m^2] 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%% Initial values and boundary conditions %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

h             =10;                         % Heat convection [W/mK] 

T_Inf        =22.35;                      % Room temperature [C] 

qm     =368.1;                      % Constant metabolic heat generation [W/m^3] 

Tb     =33.2;                       % Constant blood temperature [K] 
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Tn(1:Nx+1,1)    =33.2;             % Temperature values at nodes 

Told(1:Nx+1,1)   =33.2;             % Previous Temperature values at nodes 

Told2(1:Nx+1,1)  =33.2;             % One before previous temperature values at nodes 

qold1(1:Nx+1,1)  =0;              % Previous Heat Flux values at nodes 

qold2(1:Nx+1,1)  =0;              % One before previous heat flux values at nodes 

qin_s_old         =0;                  % Previous laser irradiance values [W/m^2] 

qin_a_old         =0;                  % Previous laser irradiance values [W/m^2] 

 

rho_t             =1081.6;           % Density of tissue [kg/m^3] 

rho_b             =1060;           % Density of blood [kg/m^3] 

k_t              =0.4108;          % Thermal Conductivity for tissue [W/m*k] 

k_b               =0.5066;          % Thermal Conductivity for blood [W/m*k] 

c_t               =3238.5;           % Heat Capacity of tissue [J/kg*K] 

c_b               =3770;           % Heat Capacity of blood [J/kg*K] 

w                 =0.0012;            % Blood perfusion rate [m^3/m^3*s] 

 

% Thermal Diffusivity % 

alpha             =k_t/(rho_t*c_t); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%% End of problem definition  %%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%  Solution Process %%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

for Iter=1:IterN; 

ww=0; 

tol=10; 

 

if (Iter<=IterNb); 

      qin_s          =qin_S;         % Source term 

      qin_a          =qin_A;         % Source term 
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else 

 

      qin_s          =0;                % Source term 

      qin_a          =0;                % Source term 

 

end 

 

k         =0;                          % Counter for sparse matrix 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Energy equation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Cell (1) 

i =1;   % Indices 

 

cP =i;            %Cell number of cell (i,j),i.e cell P 

cE =cP+1;         %Cell number of East neighbor 

 

aTold1(cP)     =-0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))-0.5*((alpha*h*dt)/k_t)+(dx/2);        

% Previous P coeff. 

 

aT(cE)         =-0.5*((alpha*dt)/dx);   % E coeff. 

 

% E coeff. for sparse form 

k  =k+1; 

ii(k) =cP; 

jj(k) =cE; 

cc(k) =aT(cE); 

 

% Distance from the boundary layer % 

xb            =(i-1)*dx; 

 

% Part of heat source for 808 nm laser 

qrs          =((mu_a*dt*(dx/2)*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)  
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    - C2*exp((-D2*xb)/delta)); 

% Part of heat source for 1940 nm laser 

qra          =(1-Rs)*((mu_a_a*dt*(dx/2)*qin_a)/(rho_t*c_t))*exp(-mu_a_a*xb); 

 

Sq             =qrs+qra;                                % Heat Source for laser irradiance 

Sm             =(qm*(dx/2)*dt)/(rho_t*c_t);     % Heat Source due to metabolic heat generation 

 

S                 =Sq+Sm;                                % Heat Source. 

 

% P coeff. for sparse form 

k   =k+1; 

ii(k)  =cP; 

jj(k)  =cP; 

cc(k)  =0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))+0.5*((alpha*h*dt)/k_t)+(dx/2)-aT(cE); 

 

% Parts of RHS value 

a1            =aTold1(cP)*Told(cP)+S; 

a2            =0.5*((alpha*dt)/dx)*(Told(cE)-Told(cP)); 

a3            =((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))*Tb; 

a4            =((alpha*h*dt)/k_t)*T_Inf; 

 

% RHS value 

rhsa(cP)      = a1+a2+a3+a4; 

 

% Cell (2) to (Nx) 

 

for i=2:Nx 

 

cP =i;            %Cell number of cell (i,j),i.e cell P 

cE =cP+1;         %Cell number of East neighbor 

cW =cP-1;         %Cell number of West neighbor 

 

aTold1(cP)     =dx-0.5*((w*rho_b*c_b*dx*dt)/(rho_t*c_t));         % Previous P coeff. 

 

aT(cE)         =-0.5*((alpha*dt)/dx);     % E coeff. 
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aT(cW)         =-0.5*((alpha*dt)/dx);     % W coeff. 

 

% E coeff. for sparse form 

k  =k+1; 

ii(k) =cP; 

jj(k) =cE; 

cc(k) =aT(cE); 

 

% W coeff. for sparse form 

k    =k+1; 

ii(k)  =cP; 

jj(k)  =cW; 

cc(k) =aT(cW); 

 

% Distance from the boundary layer % 

xb            =(i-1)*dx; 

 

% Part of heat source for 808 nm laser 

qrs          =((mu_a*dt*dx*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta) 

    - C2*exp((-D2*xb)/delta)); 

% Part of heat source for 1940 nm laser 

qra          =(1-Rs)*((mu_a_a*dt*dx*qin_a)/(rho_t*c_t))*exp(-mu_a_a*xb); 

 

Sq             =qrs+qra;                   % Heat Source for laser irradiance 

Sm             =(qm*dx*dt)/(rho_t*c_t);      % Heat Source due to metabolic heat generation. 

 

S              =Sq+Sm;                  % Heat Source. 

 

% P coeff. for sparse form 

k   =k+1; 

ii(k)  =cP; 

jj(k)  =cP; 

cc(k)  =dx-aT(cE)-aT(cW)+0.5*((w*rho_b*c_b*dx*dt)/(rho_t*c_t)); 
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% Parts of RHS value 

a1            =aTold1(cP)*Told(cP)+S; 

a2            =0.5*((alpha*dt)/dx)*(Told(cE)-Told(cP))+0.5*((alpha*dt)/dx)*(Told(cW)-Told(cP)); 

a3            =((w*rho_b*c_b*dx*dt)/(rho_t*c_t))*Tb; 

 

% RHS value 

rhsa(cP)      = a1+a2+a3; 

 

end 

 

% Cell (Nx+1) 

 

i =Nx+1; 

 

cP =i;            %Cell number of cell (i,j),i.e cell P 

cW =cP-1;         %Cell number of West neighbor 

 

aTold1(cP)     =(dx/2)-0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t));     % Previous P coeff. 

 

aT(cW)         =-0.5*((alpha*dt)/dx);     % W coeff. 

 

% W coeff. for sparse form 

k    =k+1; 

ii(k)  =cP; 

jj(k)  =cW; 

cc(k) =aT(cW); 

 

% Distance from the boundary layer % 

xb            =(i-1)*dx; 

 

% Part of heat source for 808 nm laser 

qrs            =((mu_a*dt*(dx/2)*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta) 

                  - C2*exp((-D2*xb)/delta)); 
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% Part of heat source for 1940 nm laser 

qra            =(1-Rs)*((mu_a_a*dt*(dx/2)*qin_a)/(rho_t*c_t))*exp(-mu_a_a*xb); 

 

Sq             =qrs+qra;                               % Heat Source for laser irradiance 

Sm             =(qm*(dx/2)*dt)/(rho_t*c_t);     % Heat Source due to metabolic heat generation. 

 

S              =Sq+Sm;                  % Heat Source. 

 

% P coeff. for sparse form 

k   =k+1; 

ii(k)  =cP; 

jj(k)  =cP; 

cc(k)  =(dx/2)-aT(cW)+0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t)); 

 

% Parts of RHS value 

a1            =aTold1(cP)*Told(cP)+S; 

a2            =0.5*((alpha*dt)/dx)*(Told(cW)-Told(cP)); 

a4            =((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))*Tb; 

 

% RHS value 

rhsa(cP)      = a1+a2+a3+a4; 

 

% Creating Sparse matrix % 

 

aTnew=sparse(ii,jj,cc,Nx+1,Nx+1); 

 

% New heat flux values after the time step 

 

Tn=aTnew\rhsa; 

 

% Stored values 

qin_s_old        =qin_s;          % Stored laser irradiance value 

qin_a_old        =qin_a;          % Stored laser irradiance value 

Told2         =Told;         % Stored one before previous temperature values 

Told          =Tn;            % Stored previous temperature values 
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Ts(1,Iter)=Tn(1);  % Temperature values at cell (1) 

 

end 

 

toc; 
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 APPENDIX F 

 MATLAB Code for DPL Model 

 

clear all; 

clc; 

close all; 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%% %%%%%%%  Problem Definition %%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

tic;                                    % Used for measuring run time 

tTotal  =90;                       % Total time [s] 

tin         =10;                         % Exposure time [s] 

dt          =0.01;                      % Constant time step [s] 

Nx          =120;                       % Number of cells in x direction 

L           =0.05;                      % Length [m] 

dx          =L/(Nx);                    % Constant cell size in x direction 

IterN       =tTotal/dt;                 % Iteration number 

IterNb     =tin/dt;                    % Iteration number for heat flux exposure time 

tav_T      =0.05;                       % Phase lag for temperature for different models [s] 

tav_q      =16;                  % Phase lag for heat flux for different models [s] 

ms          =3*Nx+1; 

 

% Arrays and matrices % 

 

Tn     =zeros(Nx+1,1);        % New temperature values at nodes 

Ts     =zeros(1,IterN);       % Temperature values at Cell (1) 

ii     =zeros(ms,1);          % Row number of aT sparse matrix 

jj     =zeros(ms,1);          % Column number of aT sparse matrix 

cc     =zeros(ms,1);          % Values of aT sparse matrix 

aT     =zeros(Nx+1,1);        % Coefficients of new heat flux values 

aTold1  =zeros(Nx+1,1);        % Coefficients of previous heat flux values 



93 

 

aTold2 =zeros(Nx+1,1);        % Coefficients of one before previous heat flux values 

rhsa   =zeros(Nx+1,1);        % Right hand side vector of the energy equation 

Told   =zeros(Nx+1,1);        % Previous values at nodes 

Told2  =zeros(Nx+1,1);        % One before previous temperature values at nodes 

 

% Optical properties % 

 

% For 808 nm laser 

Rd        =0.05;       % Diffuse reflectance 

mu_a         =78;         % Absorption coefficient [m^-1] 

mu_sr        =2104;       % Reduced scattering coefficient [m^-1] 

 

delta   =1/sqrt(3*mu_a*(mu_a+mu_sr)); % Effective optical penetration depth [m] 

 

% Coefficents of diffusion theory eqaution 

 

C1=3.09+5.44*Rd-2.12*exp(-21.5*Rd); 

D1=1-(1-(1/sqrt(3)))*exp(-20.1*Rd); 

C2=2.09-1.47*Rd-2.12*exp(-21.5*Rd); 

D2=1.63*exp(3.40*Rd); 

 

% For 1940 nm laser 

Rs            =0.0475;     % Specular reflectance 

mu_a_a       =5643;       % Absorption coefficient [m^-1] 

 

% Boundary Condtions % 

 

qin_A        =0;          % Laser intensity for 1940 nm laser [W/m^2] 

qin_S    =14000;      % Laser intensity for 808 nm laser [W/m^2] 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%% Initial values and boundary conditions %%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

h             =10;                         % Heat convection [W/mK] 
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T_Inf        =22.35;                      % Room temperature [C] 

qm     =368.1;                      % Constant metabolic heat generation [W/m^3] 

Tb     =33.2;                       % Constant blood temperature [K] 

 

Tn(1:Nx+1,1)    =33.2;             % Temperature values at nodes 

Told(1:Nx+1,1)   =33.2;             % Previous Temperature values at nodes 

Told2(1:Nx+1,1)  =33.2;             % One before previous temperature values at nodes 

qold1(1:Nx+1,1)  =0;              % Previous Heat Flux values at nodes 

qold2(1:Nx+1,1)  =0;              % One before previous heat flux values at nodes 

qin_s_old         =0;                  % Previous laser irradiance values [W/m^2] 

qin_a_old         =0;                  % Previous laser irradiance values [W/m^2] 

 

rho_t             =1081.6;           % Density of tissue [kg/m^3] 

rho_b             =1060;           % Density of blood [kg/m^3] 

k_t              =0.4108;          % Thermal Conductivity for tissue [W/m*k] 

k_b               =0.5066;          % Thermal Conductivity for blood [W/m*k] 

c_t               =3238.5;           % Heat Capacity of tissue [J/kg*K] 

c_b               =3770;           % Heat Capacity of blood [J/kg*K] 

w                 =0.0012;             % Blood perfusion rate [m^3/m^3*s] 

 

% Thermal Diffusivity % 

alpha            =k_t/(rho_t*c_t); 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%% End of problem definition  %%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%  Solution Process %%%%%%%%%%%%%%%%% 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

for Iter=1:IterN; 

 

if (Iter<=IterNb); 

      qin_s          =qin_S;         % Source term 
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      qin_a          =qin_A;         % Source term 

else 

 

      qin_s          =0;                % Source term 

      qin_a          =0;                % Source term 

end 

 

k         =0;                          % Counter for sparse matrix 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% Energy equation 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

% Cell (1) 

i =1;   % Indices 

 

cP =i;            %Cell number of cell (i,j),i.e cell P 

cE =cP+1;         %Cell number of East neighbor 

 

% One before previous P coeff. 

aTold2(cP)     =0.5*((alpha*tav_T*h)/k_t)-((tav_q*(dx/2))/dt);     

 

% Part of previous P coeff. 

a1              =-0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))-0.5*((alpha*h*dt)/k_t);   

 

 % Previous P coeff. 

aTold1(cP)     =a1+(tav_q*dx)/dt+(1+(w*rho_b*c_b*tav_q)/(rho_t*c_t))*(dx/2);         

 

aT(cE)         =-0.5*((alpha*dt)/dx+(tav_T*alpha)/dx);   % E coeff. 

 

% E coeff. for sparse form 

k  =k+1; 

ii(k) =cP; 

jj(k) =cE; 

cc(k) =aT(cE); 
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% Distance from the boundary layer % 

xb            =(i-1)*dx; 

 

% Part of heat source for 808 nm laser 

qrs1          =((mu_a*dt*(dx/2)*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)  

      - C2*exp((-D2*xb)/delta)); 

 

% Part of heat source for 808 nm laser 

qrs2          =(((tav_q*mu_a*(dx/2))/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)  

                  -C2*exp((-D2*xb)/delta)))*(qin_s-qin_s_old); 

 

% Part of heat source for 1940 nm laser 

qra1          =(1-Rs)*((mu_a_a*dt*(dx/2)*qin_a)/(rho_t*c_t))*exp(-mu_a_a*xb); 

 

% Part of heat source for 1940 nm laser 

qra2          =tav_q*(1-Rs)*((mu_a_a*(dx/2))/(rho_t*c_t))*exp(-mu_a_a*xb)*(qin_a-qin_a_old); 

 

Sq             =qrs1+qrs2+qra1+qra2;            % Heat Source for laser irradiance 

Sm             =(qm*(dx/2)*dt)/(rho_t*c_t);     % Heat Source due to metabolic heat generation 

 

S              =Sq+Sm;                          % Heat Source. 

 

% P coeff. for sparse form 

k   =k+1; 

ii(k)  =cP; 

jj(k)  =cP; 

a1          =0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))+0.5*((alpha*h*dt)/k_t) 

              +0.5*((alpha*tav_T*h)/k_t);  

cc(k)  =a1+(tav_q*(dx/2))/dt+(1+(w*rho_b*c_b*tav_q)/(rho_t*c_t))*(dx/2)-aT(cE); 

 

 

% Parts of RHS value 

a1            =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S; 

a2            =0.5*((alpha*dt)/dx)*(Told(cE)-Told(cP)); 
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a3            =(-0.5)*((alpha*tav_T)/dx)*(Told2(cE)-Told2(cP)); 

a4            =((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))*Tb; 

a5            =((alpha*h*dt)/k_t)*T_Inf; 

 

% RHS value 

rhsa(cP)      = a1+a2+a3+a4+a5; 

 

% Cell (2) to (Nx) 

 

for i=2:Nx 

 

cP =i;            %Cell number of cell (i,j),i.e cell P 

cE =cP+1;         %Cell number of East neighbor 

cW =cP-1;         %Cell number of West neighbor 

 

aTold2(cP)     =-((tav_q*dx)/dt);        % One before previous P coeff. 

 

aTold1(cP)     =(2*tav_q*dx)/dt+(1+(w*rho_b*c_b*tav_q)/(rho_t*c_t))*dx-

0.5*((w*rho_b*c_b*dx*dt)/(rho_t*c_t));             % Previous P coeff. 

 

aT(cE)         =-0.5*((alpha*dt)/dx+(tav_T*alpha)/dx);   % E coeff. 

aT(cW)         =-0.5*((alpha*dt)/dx+(tav_T*alpha)/dx);      % W coeff. 

 

% E coeff. for sparse form 

k  =k+1; 

ii(k) =cP; 

jj(k) =cE; 

cc(k) =aT(cE); 

 

% W coeff. for sparse form 

k    =k+1; 

ii(k)  =cP; 

jj(k)  =cW; 

cc(k) =aT(cW); 
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% Distance from the boundary layer % 

xb            =(i-1)*dx; 

 

% Part of heat source for 808 nm laser 

qrs1          =((mu_a*dt*dx*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)-C2*exp((-

D2*xb)/delta)); 

 

% Part of heat source for 808 nm laser 

qrs2          =(((tav_q*mu_a*dx)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)-C2*exp((-

D2*xb)/delta)))*(qin_s-qin_s_old); 

 

% Part of heat source for 1940 nm laser 

qra1          =(1-Rs)*((mu_a_a*dt*dx*qin_a)/(rho_t*c_t))*exp(-mu_a_a*xb); 

 

% Part of heat source for 1940 nm laser 

qra2          =tav_q*(1-Rs)*((mu_a_a*dx)/(rho_t*c_t))*exp(-mu_a_a*xb)*(qin_a-qin_a_old); 

 

Sq             =qrs1+qrs2+qra1+qra2;            % Heat Source for laser irradiance 

Sm             =(qm*dx*dt)/(rho_t*c_t);  % Heat Source due to metabolic heat generation. 

 

S              =Sq+Sm;                  % Heat Source. 

 

% P coeff. for sparse form 

k   =k+1; 

ii(k)  =cP; 

jj(k)  =cP; 

a1      =0.5*((w*rho_b*c_b*dx*dt)/(rho_t*c_t)); 

cc(k)  =a1+(tav_q*dx)/dt+(1+(w*rho_b*c_b*tav_q)/(rho_t*c_t))*dx-aT(cE)-aT(cW); 

 

% Parts of RHS value 

a1            =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S; 

a2            =0.5*((alpha*dt)/dx)*(Told(cE)-Told(cP))+0.5*((alpha*dt)/dx)*(Told(cW)-Told(cP)); 

a3            =(-0.5)*((alpha*tav_T)/dx)*(Told2(cE)-Told2(cP))+(-

0.5)*((alpha*tav_T)/dx)*(Told2(cW)-Told2(cP)); 

a4            =((w*rho_b*c_b*dx*dt)/(rho_t*c_t))*Tb; 
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% RHS value 

rhsa(cP)      = a1+a2+a3+a4; 

 

end 

 

% Cell (Nx+1) 

 

i =Nx+1; 

 

cP =i;            %Cell number of cell (i,j),i.e cell P 

cW =cP-1;         %Cell number of West neighbor 

 

aTold2(cP)     =-((tav_q*(dx/2))/dt);     % One before previous P coeff. 

 

aTold1(cP)     =(tav_q*dx)/dt+(1+(w*rho_b*c_b*tav_q)/(rho_t*c_t))*(dx/2)  

                             -0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t));                    % Previous P coeff. 

 

aT(cW)         =-0.5*((alpha*dt)/dx+(tav_T*alpha)/dx);       % W coeff. 

 

% W coeff. for sparse form 

k    =k+1; 

ii(k)  =cP; 

jj(k)  =cW; 

cc(k) =aT(cW); 

 

% Distance from the boundary layer % 

xb            =(i-1)*dx; 

 

 

% Part of heat source for 808 nm laser 

qrs1          =((mu_a*dt*(dx/2)*qin_s)/(rho_t*c_t))*(C1*exp((-D1*xb)/delta) 

-C2*exp((-D2*xb)/delta)); 
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% Part of heat source for 808 nm laser 

qrs2          =(((tav_q*mu_a*(dx/2))/(rho_t*c_t))*(C1*exp((-D1*xb)/delta)  

                  -C2*exp((-D2*xb)/delta)))*(qin_s-qin_s_old); 

 

% Part of heat source for 1940 nm laser 

qra1          =(1-Rs)*((mu_a_a*dt*(dx/2)*qin_a)/(rho_t*c_t))*exp(-mu_a_a*xb); 

 

% Part of heat source for 1940 nm laser 

qra2          =tav_q*(1-Rs)*((mu_a_a*(dx/2))/(rho_t*c_t))*exp(-mu_a_a*xb)*(qin_a-qin_a_old); 

 

Sq              =qrs1+qrs2+qra1+qra2;                 % Heat Source for laser irradiance 

Sm             =(qm*(dx/2)*dt)/(rho_t*c_t);     % Heat Source due to metabolic heat generation. 

 

S              =Sq+Sm;                  % Heat Source. 

 

% P coeff. for sparse form 

k   =k+1; 

ii(k)  =cP; 

jj(k)  =cP; 

a1       =0.5*((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t)); 

cc(k)  =a1+(tav_q*(dx/2))/dt+(1+(w*rho_b*c_b*tav_q)/(rho_t*c_t))*(dx/2)-aT(cW); 

 

% Parts of RHS value 

a1            =aTold1(cP)*Told(cP)+aTold2(cP)*Told2(cP)+S; 

a2            =0.5*((alpha*dt)/dx)*(Told(cW)-Told(cP)); 

a3            =(-0.5)*((alpha*tav_T)/dx)*(Told2(cW)-Told2(cP)); 

a4            =((w*rho_b*c_b*dx*dt)/(2*rho_t*c_t))*Tb; 

 

% RHS value 

rhsa(cP)      = a1+a2+a3+a4; 

 

% Creating Sparse matrix % 

aTnew=sparse(ii,jj,cc,Nx+1,Nx+1); 

 

% New heat flux values after the time step 
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Tn=aTnew\rhsa; 

 

% Stored values 

qin_s_old        =qin_s;          % Stored laser irradiance value 

qin_a_old        =qin_a;          % Stored laser irradiance value 

Told2         =Told;         % Stored one before previous temperature values 

Told          =Tn;             % Stored previous temperature values 

 

Ts(1,Iter) =Tn(1);  % Temperature values at cell (1) 

 

end 

 

toc; 
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 APPENDIX G 

 MATLAB Code for Tzou’s Study 

 

clear all; 

clc; 

close hidden; 

 

tic; 

syms  k 

z_t=0.001;      % Phase lag for temperature for different models [s] 

z_q=0.05;       % Phase lag for heat flux for different models [s] 

T_d=0;           % Time derivative of temperature at t=0 

 

Beta=0.05; 

 

A=@(y) (z_q.*T_d)./(1+z_q.*y); 

 

B=@(y) sqrt((y.*(1+z_q.*y))./(1+z_t.*y)); 

 

T_=@(x,y) (1./y).*(A(y)+(1-A(y)).*((cosh((1-x).*B(y)))./cosh(B(y)))); 

 

T=@(x) (exp(4.7)./Beta).*((T_(x,94))./2+real(symsum(T_(x,94+((1i.*k.*pi)./Beta)).*(-

1).^k, k, 1, Inf))); 

 

x=0:0.001:1; 

Tp=double(T(x)); 

 

toc; 
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