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ABSTRACT

STEERING OPTIMIZATION OF AN 8X8 VEHICLE

Cahit Bartu YAZICI

Master of Science Degree, Department of Mechanical Engineering

Supervisor: ASSIST. PROF. DR. -Ing. EMİR KUTLUAY

June 2019, 154 pages

In this work, a method for obtaining optimal steering angles for a multi-axle vehicle is

proposed. The tire maximum steering angles are optimized for low turning radius and low

lateral slip angles. The optimization process is conducted for the low-speed steady-state

maneuver. Another method is proposed to investigate the high-speed handling behavior

of the vehicle with the optimized wheel steering angles in a double lane change (DLC)

maneuver.

The vehicle considered in this work is a prototype 8x8 vehicle with all-wheel steered (AWS)

and all-wheel drive (AWD). The 8x8 vehicle has a minimum curb-to-curb turning radius

requirement, and the minimum turning radius requirement cannot be met using slip-free

turning due to the wheel steering angle limitations. To achieve a turning radius, that is

lower than the requirement, tire lateral slip angles must occur. A multi-body dynamics

model of the all-wheel steered 8x8 vehicle was created in Adams Car. Adams model

was parametrized and automated using a Python code. For the optimization process a

i



genetic algorithm code was written in Python language. The optimization problem is

multi-variable constraint optimization, each of the tire maximum steering angle is an

optimization parameter and there are physical constraints on the wheel steering angles. For

the DLC maneuver, a general open loop steering input function for DLC maneuvers was

derived. The genetic algorithm created for the optimization of the wheel steering angles for

the turning radius optimization section of the work was revised to optimize the parameters

of the general open loop steering input function for the DLC maneuvers.

By using this method the steering angles for the tires that results in minimum turning radius

and tire lateral slip angles which are capable of performing DLC maneuver at high speeds

can be obtained. The methodology developed is especially useful for determining the tire

steer angles of the vehicle early in the vehicle design and to create design specifications

for the steering system.

Keywords; All-Wheel Steering, Multi-Axle vehicle, Handling, Optimization, Multi-Body

Dynamics, Genetic Algorithm.
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ÖZET

8x8 BİR ARACIN DÖNÜŞ OPTİMİZASYONU

Cahit Bartu YAZICI

Master of Science Degree, Department of Mechanical Engineering

Tez danismani: Dr. Öğr. Üyesi-Ing EMİR KUTLUAY

Haziran 2019, 154 sayfa

Bu çalışmada, çok akslı bir aracın optimal teker dönüş açılarını elde etmek için bir metod

önerilmektedir. Teker maksimum dönüş açıları, düşük dönüş yarıçapı ve düşük teker yanal

kayma açıları sağlayacak şekilde optimize edilmiştir. Optimizasyon süreci, düşük hız

ve denge durumunda gerçekleştirilmiştir. Optimize edilmiş teker dönüş açılarına sahip

aracın, yüksek hızlardaki dönüş davranışını incelemek için, aracı çift şerit değiştirme

manevrasından geçirmek için başka bir metod geliştirilmiştir.

Bu çalışmada, tüm tekerlerden tahrik edilen, tüm tekerlerinden yönlendirilebilen prototip

bir 8x8 araç ele alınmaktadır. Ele alınan 8x8 aracın dönüş yarıçap isteri, teker dönüş

açı limitleri nedeniyle, kayma açısı olmadan sağlanamamaktadır. Dönüş yarıçapı isterini

sağlamak için tekerlerde kayma açıları olmak zorundadır. Tüm tekerleri döndürülen

8x8 araç modeli Adams Car programında oluşturulmuştur. Adams Car programında

oluşturulan modelin prametrelerini değiştirmek ve otomatize etmek için bir Python kodu

yazılmıştır. Optimizasyon süreci için Python dilinde bir genetik algoritma geliştirilmiştir.
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Optimizasyon problemi, çok değişkenli ve sınırlandırılmış bir problemdir, her bir teker

yönlendirme açısı optimize edilecek bir parametredir ve teker açılari üzerinde fiziksel

sınırlar vardır. Çift şerit değiştirme manevrası için genelleştirilmiş açık döngü bir fonksiyon

geliştirilmiştir. Dönüş yarıçapı optimizasyonu için geliştirilen genetik algoritma şerit

değiştirme manevrası için geliştirilen fonksiyonun parametrelerini optimize etmek için

kullanılmıştır.

Bu metodu kullanarak, en düşük dönüş yarıçapını ve düşük teker kayma açılarını sağlayan

ve aynı zamanda çift şerit değiştirme menevrası yapabilen teker dönüş açıları bulunabilir.

Geliştirilen metod özellikle tasarım aşamasının başlarında teker açılarını belirlemek ve

dönüş sistemi tasarım kriteri geliştirmek için kullanılabilir,

Anahtar Kelimeler : Tüm Tekerlerden Yönlendirme, Çok Akslı Araç, Dönüş, Optimiza-

syon, Çok Kütleli Dinamik, Genetik Algoritma.
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1 INTRODUCTION

1.1 Problem Definition

Military vehicles with pneumatic tires are expected to operate in urban environments as

well as off-road. Urban environments are often very crowded and hard to operate in with

big and heavy vehicles. To be useful in urban environments, users often demand a specific

minimum turning radius.

Passenger vehicles are often designed to achieve Ackermann steering. As Harrer and

Pfeffer [1] claimed; "Modern road vehicles are almost exclusively steered at the front

wheels with a so-called Ackermann steering.". Ackermann steering is a kinematic condition

that is defined between the inner and outer wheels that allow the tires to turn slip-free,

the figure visualizing the Ackermann steering can be seen in Figure 1.1. This condition

ensures that all the wheels roll freely with no lateral slip angle. High lateral slip angles

will cause the tires to wear faster, and this may not be a big concern in race cars where

the tires are not expected to last longer than the races, so steering geometries that do not

follow a traditional Ackermann steering like parallel steering may be used to achieve better

handling performance. However, in commercial and military vehicles where the vehicle is

expected to operate for a very long time, tire degradation becomes crucial.

Where R is the distance from the turning radius to the vehicle center of gravity, w is the

vehicle width, l is the distance between the front and rear axles, �i is the steering angle of

the inner tire, and the �o is the steering angle of the outer tire.

For a vehicle which has Ackermann steering, the center of rotation for low-speed maneuvers

is the point where all the normal lines from tires directions of motion cross each other. For
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Figure 1.1: Four-wheel vehicle with Ackermann steering.

a multi-axle vehicle, Ackermann steering can only be achieved using multi-axle steering.

To achieve slip-free turning a multi-axle vehicle that has n axles must be steered from at

least n� 1 axles. Figure 1.2 shows a few examples of multi-axle slip free turning.

Figure 1.2: Examples of multi-axle vehicles with slip-free turning.

For a four-wheel vehicle the relationship between the inner and outer wheel steering angle

can be written as;
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tan(�i) =
l

R� w/2
(1.1)

also,

tan(�o) =
l

R� w/2
(1.2)

Since vehicle width (w) is a positive number, the steering angle of the inner tire (�i) is

always higher than the steering angle of the outer tire (�o) for Ackermann steering. For a

vehicle that has Ackermann steering geometry, the maximum steering angle of the inner

tire the restricts the minimum turning radius of the vehicle. In some cases, the minimum

turning radius that can be achieved by Ackermann steering does not meet the requirements

due to steering angle limitations. The turning radius can be lowered using other methods

such as parallel steering, but tire degradation and vehicle handling behavior at high speeds

become a concern for multi-axle vehicles. So to achieve a specific turning radius and

relatively low lateral slip angles, vehicle specific steering methods are used. In Figure 1.3,

a multi-axle vehicle with Ackermann steering and an improvised vehicle specific steering

geometry is given.

Figure 1.3: Multi-axle vehicle with an Ackermann and improvised steering methods.
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In this work, a prototype 8x8 vehicle with AWS is taken into consideration. Because of

the maximum steering angle limit of the inner tires, slip-free turning does not provide an

acceptable turning radius. So unconventional steering methods are needed to achieve a

specified minimum turning radius and relatively low lateral slip angles. Calculating turning

radius and tire lateral slip angles for steering methods other than Ackermann steering is

not a straight forward process. In this work multi-body dynamics model of the vehicle

is used to simulate the low-speed steady-state turning maneuver to calculate the turning

radius and the tire lateral slip angles. The multi-body dynamics model used in this work

can be seen in Figure 1.4. The multi-body dynamics model of the vehicle was created

without a steering system. Instead, each suspension is modeled with a dummy part in the

upper kingpin ball joint. This part allows replacing the ball joint between the wheel end

and the upper control arm with two revolute joints, one for each degree of freedom which

is wheel travel and steering the wheel about the kingpin axes. By turning the revolute joint

about the kingpin axes, the tire can be steered. This modeling technique allows each wheel

to be steered individually without a steering system. Details of the suspension system are

discussed in later chapters.

Figure 1.4: Multi-body dynamics vehicle model in Adams Car

Adams software has Python API Support. This feature allows the user to execute Python

files in Adams software to create and modify design objects in Adams. Using this feature,
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together with the Adams command language, simulations can be executed in Adams. In

this work wheel steering angles are changed using Python code, and Adams command

language is used to run and gather the results of multi-body dynamics vehicle simulations.

These simulations results are then used in Python for the optimization process.

The optimization problem in the first part of this work is a multi-variable and constrained

optimization problem since there are eight wheel steering angles to be optimized, and

maximum wheel steering angles are constrained. The objective of the optimization is to

minimize turning radius and keep the tire lateral slip angles of the tires to a minimum. The

cost function used in the optimization consists of the vehicle turning radius and tire lateral

slip angles. In Table 1.1, the number of possible solutions for the problem is given. In this

table, front four tires are assumed to be steered in the direction of the turn, and the rear

tires are steered in opposite directions (which is often the case for low-speed maneuvers

for AWS vehicles), and the possible options are calculated with a 0.1 degree increment.

Each tire is assumed to be capable of being steered inside the constrained range.

Table 1.1: Number of possible solutions for the turning radius optimization study.

Lower Limit
(deg)

Upper Limit
(deg)

Number of
Possibilities

�i1 -30 0 300
�i2 -30 0 300
�i3 0 30 300
�i4 0 30 300
�o1 -30 0 300
�o2 -30 0 300
�o3 0 30 300
�o4 0 30 300

Total Possible
Options 6.561 ⇤ 1019

Where �in is the inner wheel steering angle of the nth axle, and �on is the outer wheel

steering angle of the nth axle. As seen in Table 1.1, the number of possible solutions

with 0.1-degree increment results in a very high number of possible solutions. With such

a high number of possible solutions, brute force optimization methods would be highly

inefficient. Minimizing only the turning radius even with this many possible solutions
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is not such a hard problem. Steering all of the tires to maximum possible steering angle

should give the lowest turning radius. However, lateral slip angles of the tires are also

considered and selecting maximum possible steering angles for all of the tires would result

in unacceptable tire lateral slip angles and cause rapid tire wear. Introducing tire lateral

slip angles to the cost function complicates the function resulting in local optima to appear

in the eight-dimensional solution space. Local optima cause difficulties for optimization

algorithms, as they can get stuck in one of the local optima. Due to their abilities to search

the search space and not to get stuck at the local optima, genetic algorithms are chosen for

the optimization problem.

Genetic algorithms are powerful optimization tools that are inspired by nature. The genetic

algorithm begins the optimization process by creating an initial population of candidate

solutions. After the initial population of candidate solutions is evaluated, some of them are

selected to move up to the next generation. These selected solutions are paired with each

other to create offsprings for the next generation. Before the next generation is complete

random mutations occur in the candidate solutions. The selection process allows fitter

solutions to move up. Pairing solutions with higher fitness values with each other have a

chance to produce even better offsprings. Moreover, random mutations allow the algorithm

to continuously search the solution space so the algorithm would not get stuck on local

optima.

Vehicles that have AWS usually change the steering ratio of the rear tires as a function of

velocity or yaw rate, because steering the rear tires in the opposite direction of the turn at

high velocities will cause the vehicle to become unstable. To overcome this problem, some

AWS controllers steer the rear tires in the same direction as the front tires with increasing

speed. This strategy reduces the yaw gain of the vehicle and increases stability. However,

in this study, the AWS controller of the vehicle investigated does not steer the rear tires

after a specific speed limit. So the handling behavior of the vehicle with the optimized

steering angles for the high-velocity region must be investigated. For this purpose, a DLC

maneuver is considered. The DLC maneuver chosen for this study is called the Nato Lane

Change [2], and it is a maneuver made explicitly for military vehicles. In this maneuver,

the dimensions of the road are determined by the dimensions of the vehicle, so large

vehicles like 8x8 vehicles do not have a disadvantage. During this maneuver, the vehicle
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has a constant longitudinal velocity. Vehicle path during a DLC maneuver can be seen in

Figure 1.5.

Figure 1.5: Vehicle path during Nato lane change maneuver.

As mentioned, the multi-body dynamics vehicle model has no steering system, and the

tires are steered individually. This method provides flexibility for the steady-state turning

maneuvers, but due to the lack of a steering system, Adams Car vehicle steering controllers

do not work. To steer the vehicle, a mathematical function that represents the steering

input during a DLC maneuver was created. Each of the front tires is steered using this

mathematical function, while the steering angles of the rear tires are kept at zero. The

parameters of the steering input function are optimized to control the steering of the vehicle

through the DLC maneuver. To find the optimal parameters for the steering input function,

a genetic algorithm was used. Using this method, the DLC maneuver can be performed

for a vehicle that does not have a steering system. The steering input acts as an open loop

controller for the vehicle. By using the two methods together, optimal wheel steering

angles for both low-speed and high-speed maneuvers can be obtained.

1.2 Aim And Scope Of The thesis

Aim of this work is to develop a method for finding the optimal wheel steering angles

that result in minimum turning radius and minimum tire lateral slip angles. To calculate

the turning radius and lateral tire slip angles, a multi-body dynamics vehicle model was

used. The multi-body dynamics model of the vehicle was created in Adams Car software.

Turning radius calculations are conducted by simulating a steady state, constant velocity

maneuver at a low longitudinal velocity where the steering input is applied to the wheels.

The vehicle used in the optimization process is an 8x8 vehicle with AWS, so there are
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eight parameters to be optimized, which are the maximum steering angles of the tires. The

optimization process is done with a genetic algorithm written in Python language.

After the maximum steering angles of the tires are optimized for low-speed maneuvers,

another method was created to investigate the high speed handling characteristics of the

vehicle coupled with the optimized wheel steering angles. In this study, Nato lane change

maneuver was chosen as the maneuver in which the high-speed handling behavior of

the vehicle will be investigated. The Nato Lane Change maneuver is a high-speed DLC

maneuver in which the road boundaries are determined according to the vehicle dimensions.

The maximum steering angles that were optimized to give low turning radius and low

lateral slip angles are used to create restrictions representing a steering system in this

maneuver. The steering angle for the front inner tire was obtained by the general open loop

DLC input function. The general open loop DLC steering input function is a trigonometric

function that yields the steering input necessary for a DLC maneuver. The general DLC

steering input function was derived for this specific problem and will be discussed in

the Nato Lane Change Simulations chapter. The other three wheel steering angles of the

front two axles were obtained by assuming perfect Ackermann steering with no steering

error. The rear two axles are not steered during the DLC maneuver. The parameters of the

trigonometric function used for creating steering input for the inner front tire is optimized

using a genetic algorithm. The genetic algorithm code that is used to optimize the turning

radius of the vehicle is revised to optimize the parameters of steering inputs.

By using these two methods together, in the early stages of vehicle design optimal steering

angle that causes low turning radius and low lateral slip, which is also capable of completing

Nato Lane Change maneuver can be found. In the early stages of vehicle development,

DLC maneuvers can be conducted to investigate the high-speed handling behavior of

the vehicle with different steering angle configurations, before the design of the steering

system. After the optimal wheel steering angles are found, these maximum wheel steering

angles can be used as design criteria for the steering system mechanism design.
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1.3 Thesis Outline

This chapter presents the structure, aim and scope of the thesis. The chapter is concluded

with the thesis outline.

The second chapter is the literature survey. In this section, previous research done on the

related subjects to this work are given. The chapter includes research on vehicle dynamics,

multi-axle vehicle dynamics, optimization, and genetic algorithms.

The third chapter states the theoretical background of the thesis. In this section, the theories

of the concepts used in the thesis are discussed. The section starts with simple bicycle

models and multi-axle bicycle model. Then moves on to the multi-body dynamics vehicle

modeling in Adams Car. Adams Python API and its capabilities are discussed in this

section as well. The chapter is concluded with genetic algorithm theory.

In the fourth chapter, turning radius optimization is presented. The Python code and

Adams command language code that are used to run the optimization process are presented.

The genetic algorithm used for the turning radius optimization is reviewed in this section

as well. The cost function used for the optimization process is given, and the section is

concluded with the presentation of simulation results.

The fifth chapter includes the Nato Lane Change chapter. The steering input function

derived for DLC maneuvers is presented in this section. The genetic algorithm used for

the optimization of the steering input is discussed. The cost function created for the DLC

maneuver is given, and the section is concluded with the results of the DLC maneuver.

The last chapter includes discussion and conclusion. In this section results of the turning

radius optimization and the DLC maneuver is presented. Possible future work is also

discussed.
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2 LITERATURE SURVEY

2.1 Introduction

This chapter presents pioneering work in the fields of vehicle dynamics, multi-axle vehicle

dynamics, optimization, and genetic algorithms. By doing so, the thesis aims to construct

a proper background to analyze and observe its case study in the intersecting viewpoint of

these fields. This chapter is divided into four sections to display the significance of these

works for this thesis better. The sections discussed in this chapter are;

• Vehicle dynamics section

• Multi-axle vehicle dynamics section

• Optimization section

• Genetic algorithm section

The first section focuses on the field of vehicle dynamics. In this section, some of the

significant research on vehicle dynamics, which is essential for this thesis is presented. This

section mainly focuses on the handling aspect of vehicles with four wheels. The second

section is the multi-axle vehicle dynamics section. In this section, research that investigates

the multi-axle vehicle handling behavior is given. After the multi-axle vehicle dynamics

section, the optimization section is presented. A brief introduction to optimization is given

before significant research on vehicle dynamics optimization. After this section, literature

about the genetic algorithms is given. The research about genetic algorithm usage about

the on the vehicle dynamics field is presented in the genetic algorithm section.
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2.2 Vehicle Dynamics

Vehicle dynamics is a vast subject with many subsections. However, the main three

parts can be distinguished as ride, performance, and handling. All three parts of vehicle

dynamics are vast subjects with many research potential. There are many books and

articles written on vehicle dynamics; in this chapter, some of the literature is given. Very

intuitive books covering all parts of vehicle dynamics were written by Gillespie [3] and

Jazar [4]. In 2002, Wong [5] published a vehicle dynamics book with an emphasis on

terra-mechanics. Pacejka [6] published a vehicle dynamics book with a focus on the tires.

Harrer and Pfeffer [1] published a book on vehicle steering.

In 2017, Marzbani et. al. [7] investigated the effects of the variable longitudinal velocity

of the vehicle on the transient and steady-state turning. To be able to compare the transient

and steady-state handling characteristics of a vehicle, two maneuvers were simulated using

the same vehicle model. In the first maneuver, the vehicle is moving with a constant

longitudinal velocity and the steering input is given to the system as a step steer angle

change. The second maneuver is a lane change maneuver. In this work mathematical

formulation for finding the dynamic center of rotation is given.

In their article, Menhour et al. [8] proposed three different vehicle steering control

strategies. Two vehicle models were used, the first model is a vehicle handling model with

two degrees of freedom, which are the lateral and yaw movements, the second model is

a non-linear four-wheel vehicle model with four degrees of freedom, this model is used

to test the control methods proposed. The first control method proposed is an indirect

method with multiple PID controller controlling two-degree-of-freedom. The second

control method proposed is a direct method with robust switching two-PID controllers

with LMI–LQR. Also, the last control method proposed is sliding-mode control (SMC).

Robustness of the three proposed controllers was validated by experiment.

All-wheel steering is a commonly used method to enhance the handling capabilities of

vehicles. Although front wheel steering (FWS) has been used almost exclusively in vehicles

with two axles all-wheel steering has been worked on for a long time, and there is much

research done on the subject. Furukawa et al. [9] have summarized all-wheel steering from
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vehicle dynamics and control perspective. In this comprehensive work effects of all-wheel

steering is investigated. The article starts with a historical background and moves on to

vehicle dynamics aspects of all-wheel steering. Mathematical equations that are used to

examine all-wheel steering, as well as the block diagrams, are given. Control strategies

and main research areas are discussed as well. Authors also give examples of the steering

strategies used by different car manufacturers.

Sano et al. [10] proposed a control strategy for all-wheel steering systems. In this work,

rear tires are steered as a function of the steering angle of the front tires. The rear tires

are steered in the same direction as the front tires when the steering input is small; this

allows the vehicle to have better handling characteristics at high velocities. At low-velocity

maneuvers like parking where the steering angle input is high, the rear tires are steered

in the opposite direction of the front tires, and this strategy allows the vehicle to be more

maneuverable at low-velocity maneuvers. The vehicle stability when using this all-wheel

steering strategy was investigated both mathematical formulations and proving ground

tests. Comparison between the existing steering systems and the proposed system is also

given. The article then goes into detail about how to find the proposed functions depending

on the vehicle characteristics. The main findings of this research can be summarized as;

• Steer angle function systems can achieve the same effect as the vehicle speed function

based systems.

• Three crucial aspects of the steer angle function systems are steering angle ratio at

small steering angle range, maximum steering angle at the opposite direction at high

steering angle range and changes in the difference between the steering angles of the

front and rear tires.

• Steer angle function systems can be realized by mechanical linkages and a mecha-

nism that inverts the input as necessary.

• Experiment results show all-wheel steered vehicle using this strategy may be better

than front wheel steered the vehicle in several aspects.

Takiguchi et al. [11] proposed a control system to control the steering ratio in an all-wheel
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steering system optimally. The main objectives of the proposed system are to have high

maneuverability at low speeds, help the steering effort at moderate speeds and to reach high

stability at high-speed maneuvers. To observe the effect of the proposed control strategy

on the system, the frequency response of the vehicle is investigated. To be able to observe

the performance of the system, the proposed controller was implemented in 1989 Mazda

625 and vehicle tests were conducted. High steering angle low-speed tests like parking

and u-turning were conducted as well as high-speed slalom tests. From the results of these

test, the author concluded that handling characteristics can be improved by matching the

yaw rate and lateral acceleration phase lag, to able to utilize all-wheel steering properly

the steering ratio between the front and the rear must be varied concerning vehicle speed.

The tests conducted using the prototype vehicle showed improved handling and stability at

high speeds and improved parking performance at low-speed maneuvers.

Fukada [12] proposed a slip angle estimation method to be used in vehicle stability control

systems. There are two main methods for slip estimation. The first method is direct

integration, this method does is not affected by the tire parameters and road friction, but it

is open to sensing errors. The second method is estimating the slip angle using a vehicle

model; this method is beneficial for the linear region but lacks the accuracy for non-linear

regions. The method proposed in this work is a combination of the two methods with a

yaw-velocity feedback algorithm. Experiment results show that the proposed method can

estimate the slip angle in DLC maneuver accurately and in J-turn maneuver it predicts a

smaller value.

Peng and Yang [13] provided a comparison of five different DLC maneuvers. ISO 3888-1

and ISO 3888-2 standards, as well as the Nato Lane Change maneuver [2], were among

the compared DLC maneuvers. In this work, the maximum forward speed of the vehicle

during a DLC maneuver is investigated. The vehicle must not cross the DLC maneuver

road limits and tires must not lose contact with the road. It was concluded that vehicle

length has more impact on DLC performance than vehicle width.

Kutluay and Winner [14] investigated the assessment of vehicle simulations with experi-

mental data, mainly DLC maneuvers. Proposed methods can be used to achieve higher

model confidence and simulation efficiency. The steering input for the DLC maneuver
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consists of two parts, the first part is responsible for vehicle to leave its original lane and

arrive on the second lane and the second part of the input is responsible for leaving the

second line and arriving on the original line again. If the vehicle velocity is held constant

during the maneuver, the two parts of the steering input mirror each other very similarly.

This information about the DLC steering input is used while creating the general open loop

steering input function.

As mentioned before in this chapter, tires are one of the most challenging parts of the

vehicle to model. Due to the elasticity of the many components and the air pressure inside

the tire, a basic mathematical equation could not describe the behavior of the tire. Finite

element models of the tires are studied, but due to the computational resource needed to run

these models, they are not well suited to be used in vehicle dynamics simulations. Pacejka

and Bakker [15] proposed a mathematical model to calculate the forces and the moments

acting on the tire. The magic formula tire model calculates the lateral and longitudinal

forces and overturning moments using the same trigonometric function with different

coefficients in each case. These coefficients represent tire characteristics, and they can be

found by conducting tests on the tires. Since its introduction in 1989, the magic formula

tire model has been the industry standard for vehicle dynamics simulations. In this work,

an improved version of the magic formula tire model that has been developed by MSC

Software called PAC2002 is used.

Tremlett and Limebeer [16] proposed a methodology to optimize vehicle parameters to

reduce tire wear. In this research about thermodynamical and wear tire models were created

to investigate tire wear for Formula 1 vehicles. Although Formula 1 is an extreme case,

tire wear mechanisms are still the same. There are several factors that effects tire wear like

adhesion between the tire and the road surface and the road. However, in this thesis, the

main criteria for tire wear is taken as the lateral slip as other parameters affecting tire wear

are not in this works scope.
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2.3 Multi-Axle Vehicle Dynamics

To be able to carry large payloads, high movement capabilities in off-road and stability

while firing, multi-axle vehicles are commonly used in the defense industry. Due to the

multiple axles, these vehicles tend to be much larger than commercial and passenger

vehicles. To be able to use these vehicles on existing roads, their handling capabilities

becomes crucial. Handling behavior of multi-axle vehicles must be investigated early in the

design process. To be able to investigate the handling behavior of multi-axle vehicles, there

has been much research done. Williams [17] proposed a generalized model to investigate

the handling behavior of multi-axle vehicles. Primary vehicle handling concepts are

reviewed using a two-axle bicycle model with minor changes to the convention that is

mainly used in similar research. After the two-axle bicycle model, a three-axle bicycle

model was created to investigate the effect of multiple axles. After these models, a

generalized bicycle model was created that can be applied to vehicles with an arbitrary

number of steerable and non-steerable axles. Finally, mathematical equations that are used

to investigate vehicle understeer and wheelbase was derived.

Winkler [18] investigated the handling of the behavior of complex vehicles. For a vehicle

modeled with a simple vehicle model, the tire slip angles only depend on the lateral

acceleration, but for complex vehicles like heavy vehicles with multiple axles, the tire slip

angles also depend on another motion variable like velocity, path curvature or any other

combination as well. A new concept for complex vehicles called equivalent wheelbase is

presented. Equivalent wheelbase can be used to investigate the understeer and oversteer

quality of all vehicles. The effects that make the vehicle model complex can be given as;

• Aerodynamics effects,

• Load transfer effects,

• Wet surfaces,

• Multiple non-steerable axles and dual tires,

• AWS.
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The equivalent wheelbase for a simple model of a four-wheel vehicle is equal to the

actual wheelbase. However, for a multi-axle vehicle with multiple non-steerable axles, the

equivalent wheelbase is longer than the real wheelbase. Another conclusion of the paper

was, the understeer influence of the rear axle is greater than the front axle.

Winkler and Gillespie [19] investigated directional response characteristics of multi-axle

vehicles. Although the physical rules that apply to the passenger cars apply to the heavy

trucks, the rules-of-thumb gathered by the automobile industry does not apply to the heavy

trucks in many cases. To evaluate the steady-state turning performance of the heavy trucks

that have multiple non-steering axles and dual tires, generalized equations were developed.

From the equation derived, it was concluded that both dual tires and tandem axles affect

the vehicle handling similarly. The understeer gradient that can be calculated for passenger

cars yields an error when applied to the vehicles with tandem axles or double tires, and the

errors are caused by the method that the Ackerman angle is calculated. In the Ackerman

angle calculation for heavy vehicles, equivalent wheelbase must be used. The research

showed that both tandem axles and double tires reduce the yaw rate and increase the critical

or characteristics velocity.

Qu and Zu [20] proposed a method to optimize the design parameters of the steering system

for a commercial three-axle vehicle. To enhance the handling of a three-axle vehicle rear

tires can be steered as well as the front tires. The front and rear tire of the three-axle vehicle

is steered with a controller which is trying to follow the path of the reference model. So

the uncertain vehicle models and non-linear vehicle model can have the same steering

characteristics as the nominal model on different roads. Some modifications were made to

the preview follower driver model to improve compatibility with the 4WS. These driver

models were used to optimize the steering system parameters. Uncertain vehicle model

was taken as bases, and the model-following controller was constructed. Simulations and

simulation results tested the proposed design method shows that the method is reasonable.

Bayar and Unlusoy [22] investigated the steering strategies used for multi-axle vehicles. In

this work, steering strategies created for 4WS are applied to multi-axle vehicles. Multi-axle

vehicle models were simulated using the steering strategies, and results were compared to

observe which steering strategy is the best. The steering strategies used for 4WS in two-
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axle vehicles extended to be able to apply to multi-axle vehicles. For three and four-axle

vehicles, low vehicle side slip angle, with a high yaw rate and lateral acceleration can be

achieved by steering the intermediate axles, coupled with the application of yaw feedback.

By steering the intermediate axles reasonably, the lateral acceleration reached by the FWS

configuration can be reached without degrading the zero vehicle side slip angle.

Watanabe et al. [23] proposed a method to model multi-axle vehicles. This model takes

steering angles and wheel velocity as inputs and turning radius and tire slip angles as

outputs. The results of the mathematical model were compared with the test conducted

with the full-scale multi-axle vehicle. Different turning and driving strategies of an 8x8

vehicle were investigated. From the investigation results, it was conducted that; steering of

the rear wheels had a considerable effect on the turning behavior of the vehicle, but the

effect of the location of the steering center did not affect the turning behavior significantly.

Another conclusion was made from the investigation of different driving strategies, which

were; rear wheel steering had a significant effect on the required power and the power loss

of the vehicle was minimum with the rear four-wheel drive.

2.4 Optimization

Optimization is the process of finding the best solution to the problem at hand. Optimization

can be found in every part of our lives. In their book "Numerical Optimization", Nocedal

and Wrigh [24] explains the optimization as;

"People optimize. Investors seek to create portfolios that avoid excessive

risk while achieving a high rate of return. Manufacturers aim for maximum

efficiency in the design and operation of their production processes. Engineers

adjust parameters to optimize the performance of their designs.

Nature optimizes. Physical systems tend to a state of minimum energy. The

molecules in an isolated chemical system react with each other until the total

potential energy of their electrons is minimized. Rays of light follow paths

that minimize their travel time."
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Nocedal and Wrigh [24] goes into detail about the different numerical optimization meth-

ods. In this book, methods used to solve constraint and unconstraint optimization problems

as well as advanced methods like non-linear programming and sequential quadratic pro-

gramming are discussed. Chapra [25] wrote a book on numerical methods in general, and

there is a constructive section on optimization methods in this book.

Optimization is used in the automotive industry extensively to make the vehicles faster,

lighter and more durable. Oh et. al. [26] investigated minimization of turning radius

for a multi-axle crane. Steering wheel angle was optimized to achieve minimum turning

radius using model predictive control (MPC). During the optimization process, multi-axle

bicycle model and error dynamics models were used. Controller with an optimal objective

function was designed to minimize the error for minimum turning radius. Simulations were

conducted with various vehicle speeds. Simulation results showed that the vehicle did not

affect the optimal steering angle as the vehicle speed increased turning radius increased.

Felzein and Cronin [27] studied optimizing the steering error for a MacPherson strut

suspension. Non-linear kinematic MacPherson strut suspension model with rack and

pinion steering system was developed. The model was used to simulate steady-state

turning maneuvers. The parameters of steering systems and the suspension were optimized

using this model and steady-state turning maneuver, which represents the turning radius

and body roll angles typical of highway driving. From the simulation results represented,

it can be seen that steering performance of a vehicle can be improved significantly by

steering system and suspension optimization.

Angelis et al. [28] investigated the maximization of lane change entry speed. DLC

maneuver according to the ISO3888 part-2 was simulated using a two-track vehicle model

with non-linear tire and suspension behavior and Dynamic Stability and Traction Control

(DSTC) system. Using a direct transcription method, the optimal control problem is

converted into an optimization problem. The simulation results and the optimization

process were validated with real vehicle tests.

Arvind [29] investigated optimizing the turning radius of a vehicle by four-wheel steering

(4WS). To achieve 4WS, the vehicle investigated has mechanical linkages between the

front and rear axles and rack and pinion steering systems at both front and rear axles. The
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mechanical systems were studied by conducting kinematic analysis for both the vehicle

that employs the proposed symmetric four-wheel steering (4WS) system and for a vehicle

that does not have 4WS. The results showed that the proposed 4WS system decreased the

turning radius of the vehicle considerably.

Aydın and Unlusoy [30] investigated suspension parameter optimization to improve impact

harshness (IH) for road vehicles. To be used for the optimization multi-body dynamics

model of a small commercial vehicle was created in Adams. For the optimization process,

the methodology was using the design of the experiment together with response surface.

Screening experiments were conducted to identify the parameters that significantly affect

the IH. From the simulation results, it can be seen that selected suspension parameters

for optimization process are capable of improving the IH performance of the vehicle.

The results of the optimization process also show that considerable improvement in IH

performance of the vehicle is possible.

2.5 Genetic Algorithms

John Holland [31] first proposed genetic algorithms in1975. Since their introduction genetic

algorithms gained popularity due to their power of solving multi-objective optimization

problems which other optimization methods usually get stuck at the local minima and their

implementation in machine learning. Randy and Sue Haupt [32] published a beneficial

book on genetic algorithms. In this book, basic genetic algorithm principles are given as

well as continuous genetic algorithms and advanced applications of genetic algorithms.

Kramer [33] also published a book in which the general principles of genetic algorithms

are discussed. In this book, genetic algorithm applications and use cases are given as well

as genetic algorithm theory. All of these books provide excellent insight into the genetic

algorithms. In the remaining part of this section, research on the genetic algorithm used in

vehicle dynamics area is given.

Hui [34] proposed a new configuration of the hydraulic hybrid vehicle (HHV) which is

optimized by an adaptive simulated annealing genetic algorithm (ASAGA) to achieve

better fuel economy and driving performance. In the proposed configuration the internal
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combustion engine drives the hydraulic pumps which provide high-pressure oil flow for

the hydraulic pump/motors. Using this method the engine is decoupled from the vehicle

operation and can be operated in the high-efficiency region. Two pumps/motors are

connected to the front and rear axles through the differentials. These pump/motors act like

motors and drive the tires in normal operations and act as pumps and capture energy in

braking slowing the vehicle. The vehicle using this configuration has 4WD. To optimize

the parameters of the HHV, genetic algorithms were used. When using genetic algorithms

cost of the solutions improves rapidly at the beginning of the optimization process, but

further along the optimization process, further improvements become challenging to obtain.

To overcome the shortcomings of the genetic algorithms, a mixed method called ASAGA

was used. This algorithm uses adaptive genetic operations to improve the improvement

of the cost of solutions. Various optimization processes were conducted using different

weighting factors in the objective function to achieve different objectives. The results of

the optimization process showed that the crucial components of HHV could be optimized

for different objectives.

Schuller et al. [36] investigated genetic algorithms to be used for multi-criteria, multi-

scenario optimization of vehicle handling behavior. Due to the developments in computer

technology optimizing vehicles in the design phase using simulation is possible. A two-

track model of a BMW vehicle is created and integrated with an optimization algorithm

to optimize dynamic performance. The dynamic performance of the vehicle is tested in

three different maneuvers. The first maneuver is a steady-state turning maneuver which

is used to evaluate the vehicles cornering abilities. The second maneuver is a J-turn

maneuver which is used for investigating transient vehicle behavior. Finally, the third

maneuver is riding in a rough road, which is used for investigating the comfort and

line-holding performance of the vehicle. Design spaces for all of the design parameters

were defined to reduce the search space and to implement physical limits. The genetic

algorithm used in this study is a binary genetic algorithm, meaning all of the parameters

are transformed into bites. The genetic algorithm used in this study turned out to be very

efficient for multi-objective optimization with multiple scenarios. From the results of the

optimization process, significant improvements in vehicle handling behavior were achieved

when compared to the reference vehicle.
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Huang and Ren [35] proposed a method for automated vehicle control. In this method,

several controllers are tasked with guidance and a fuzzy neural network (NFN) is used

to build the controllers. A hybrid two-phased learning algorithm was used to determine

the weightings of the NFN. The study aims to improve the performance of vehicle control

and at the same time, improve the learning convergence. The proposed guidance system

takes control of the vehicle after the driver gets on to the highway and inputs the optimal

vehicle speed. There are three main objectives of the proposed guidance system. The first

objective of the guidance system is to follow the vehicle that is in front of the vehicle in the

same lane at a safe distance. The second task of the proposed guidance system is to track

an optimal vehicle as much as possible without violating any safety criterion. The third

task of the proposed vehicle guidance system is to execute particular tasks such as lane

changing. Computational simulations showed the effectiveness of the proposed controllers.

The results of the study showed that NFN construction could be determined by a mix of

genetic and gradient parameter algorithms.

Datoussaïd et al. [38] proposed an optimal control method for multi-body systems which

contains closed loops. The multi-body systems that are being considered are also submitted

to kinematic or dynamic time-dependent criteria. The desired kinematic or dynamic

performance determines the design parameters that are being optimized. In this work,

a stochastic swarm method based on genetic algorithms was chosen as the optimization

method. Using this optimization method, a general method for optimizing the dynamic

behavior of multi-body systems was proposed. For the kinematic optimization case, a

double wishbone suspension was investigated. In this kinematic optimization, the aim is to

keep the steering angle change due to vertical motion of the suspension to the minimum.

For this optimization problem, six design parameters were chosen, which represents the

lengths of the arms. For the dynamic optimization example, suspension of an urban railway

vehicle was taken into consideration. In this dynamic optimization study, the suspension

parameters were optimized to minimize the lateral acceleration when crossing tight curves

to improve comfort. The study combines the computer-aided dynamic analysis and genetic

algorithm optimization method. This method allows the optimization process that does not

require the value or the assumption of derivatives.
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2.6 Conclusion

In this section, research conducted on vehicle dynamics, multi-axle vehicle dynamics,

optimization, and genetic algorithms are given. The subject of this work involves these

fields, and these research will be used as a reference. This study aims to find the optimal

tire maximum wheel steering angles that result in minimum turning radius and minimum

tire lateral slip angles. Research conducted on the vehicle handling behavior, specially

multi-axle vehicle handling behavior was investigated. The steering angle optimization is a

multi-variable constrained optimization problem. After investigating different optimization

methods and their implementations in vehicle dynamics area, genetic algorithms were

selected as the method for optimization. Genetic algorithm is a vast subject with many use

cases. The primary use cases investigated in this work is the use of genetic algorithms in

vehicle dynamics area.
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3 THEORETICAL BACKGROUND

3.1 Introduction

This chapter presents the theoretical background of the thesis. The section begins with the

vehicle dynamics background of the work and moves on to the software used and to the

genetic algorithm used for the optimization process.

The first section introduces the bicycle model, which is used to investigate the handling

behavior of vehicles. One of the most popular models used to investigate the handling

behavior of the vehicles is the bicycle model. The popularity of this model comes from

its simplicity. The number of parameters needed to use the bicycle model is low, so it is

an ideal model to be used in the early stages of vehicles design while most of the vehicle

parameters are still unknown. The basic principles of the bicycle model can be used to

create one tracked multi-axle model. After the equations of the one-track vehicle models

are given, capabilities and the limitations of these models are discussed.

In this work, the multi-body dynamics vehicle model is created in the Adams Car software.

The basic modeling and simulation principles of Adams Car is presented. The subsystems

used in this work and their roles are explained as well. As mentioned before, tires are

one of the hardest parts of the vehicle to model. The tire models that are used in the

literature are presented in this section. The use of Adams command language and Python

programming language in Adams will be a subject as well.

Finally, in this section, the basic principles of genetic algorithms are given. In both turning

radius optimization and Nato Lane Change maneuvers, genetic algorithms were used to

find the optimal solution. In both cases, the genetic algorithm that is suited to the problem
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was created. In this section, mathematical formulations that are used for both genetic

algorithm are given. Moreover, different genetic operations and different methods used in

these genetic operations are discussed as well.

3.2 Bicycle Model

One track models with varying degrees of complexities are widely used for investigating

vehicle handling behavior. These models are beneficial for getting answers with minimum

information about the real system. Due to linearity and ease of computation, they are suited

for controller and observer design as well. Figure 3.1 shows a two-axle vehicle model.

Although there are many positive aspects to these one-track models, they have some

drawbacks as well. While creating these models, many assumptions are made. The most

obvious assumption is there is only one equivalent tire in each axle instead of two, this

assumption allows this models to be used without suspension systems, but as a result, these

models ignore load transfer that occurs during cornering. Due to not being able to compute

load transfer bicycle model does not give accurate results for high lateral accelerations.

Small angle approximations and modeling tire behavior with a single parameter are other

significant simplifications of this model.

Figure 3.1: Bicycle model.

Equations for the bicycle model can be written as;
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m(u+ v✓̇) = Fyr + Fyf (3.1)

I ✓̈ = lrFyr + lfFyf (3.2)

Where Fyr is the lateral force of the rear axle and Fyf is the lateral force of the front axle,

and li is the distance from CoG to the corresponding axle, I is the momentum of inertia, u

is the longitudinal velocity of the vehicle, v is lateral velocity of the vehicle, and m is the

mass of the vehicle. Lateral forces can be written as;

Fyi = ci↵i (3.3)

Where Fyi is cornering force of the corresponding axle, ci is the cornering, and ↵ is the

lateral slip of the corresponding axle. Thus, the lateral slip angle can be written as;

↵i =
v � li✓̇

u
� �i (3.4)

Where �i is the steering angle of the corresponding axle.

The cornering stiffness (ci) calculation is straightforward but not an easy process. The

cornering stiffness (ci) is the tangent of the slope of the low lateral slip angles in the lateral

force vs. lateral slip plot, where the behavior can be considered linear. Figure 3.2 shows the

difference between the actual tire lateral behavior and linear cornering stiffness assumption

comparison.

As seen from Figure 3.2, cornering stiffness approach is valid for low slip angles, but in the

high slip angle region, the behavior becomes non-linear, and cornering stiffness approach

does not give accurate answers.

Lateral force vs. laterals slips angle of the tire can be obtained by testing the tire or using

simulations of a validated tire model. Lateral force vs. lateral slip behavior of the tire is not
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Figure 3.2: Lateral force vs lateral slip.

a static behavior and is affected by a lot of parameters like tire pressure, normal load on

the tire, and temperature. So cornering stiffness changes depending on many parameters.

The surface of lateral force vs. lateral slip angle obtained by simulating a tire model under

different conditions is given in Figure 3.3.

So to summarize this model, the bicycle model is handy for investigating the vehicle

behavior early in the design process because it does not require many parameters. The

model also gives acceptable results for the linear range. However, for high lateral slip

angles, the model overestimates the tire lateral force and diverges from the actual tire

behavior. In the high lateral acceleration, region bicycle model does not give acceptable

results either because it does not take the load transfer into account. Due to load transfer,

the outer tire in each axle will have higher normal forces that the inner tires and usually the

outer wheel steering angles are lower than the inner wheel steering angles to the overall

lateral forces would be lower than bicycle model predicts. The bicycle model can be further

improved by introducing non-linear behaviors for the systems and getting rid of small

angle approximation, but the complexity of the model and computational power demand

to run the model will increase. Improving the bicycle model would also mean that the

parameters needed for the model would increase.
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Figure 3.3: Lateral force vs lateral slip.

3.3 Multi-Axle Bicycle Model

Conventional bicycle model can be modified to have more than two axles. Also, the

steering of auxiliary axles can be introduced to this model to achieve a multi-axle vehicle

model with AWS. In this section, the multi-axle vehicle-bicycle model formulations for an

8x8 vehicle with AWS is given. Figure 3.4 shows the multi-axle vehicle model with AWS.

The multi-axle bicycle model equations for a vehicle with four axles can be written as;

m(u+ v✓̇) = Fy1 + Fy2 + Fy3 + Fy4 (3.5)

I ✓̈ = l1Fy1 + l2Fy2 + l3Fy3 + l4Fy4 (3.6)

In the equations given above tire lateral force (Fy) is calculated by multiplying tire lateral

slip angle with the cornering stiffness.
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Figure 3.4: Four-axle bicycle model.

Fyi = ci↵i (3.7)

Also, ↵i is the tire lateral slip angle, which can be written for all of the axles as;

↵i =
v � li✓̇

u
� �i (3.8)

The equations for the multi-axle bicycle model are almost identical to the two-axle bicycle

model with only added terms for the additional axles. Cornering force and lateral slip

angle equations are the same for all of the tires so the additional axle can be introduced by

just adding the necessary terms to the equation. The slip angle calculation equation is the

same for all of the tires. The difference between the axle located in front of the CoG and

the tires located after the CoG comes from the distance term (li). The distance term (li) is

positive if the axle is located before the CoG and negative if the axle is located after the

CoG. The steering angle input (�i) notation is the same for all of the axles as well, so the

vehicle can be steered by any combination of steering angles. For the non-steering axles,

the steering input can be taken as zero.

The same assumptions made while creating the bicycle model were also made while

creating the multi-axle bicycle model. Thus the multi-axle bicycle model has the same
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drawbacks as the bicycle model.

For the simulations, the multi-axle bicycle model was created in Matlab/Simulink environ-

ment. The Simulink model figure is given in Appendix A. This model was used to simulate

the Nato Lane Change maneuver. The path of the vehicle is given in Figure 3.5.
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Figure 3.5: Vehicle path during DLC maneuver.

The steering input given to the model was created using trigonometric functions, and the

equation was explicitly created for DLC maneuvers. The steering input function created

for the DLC maneuver will be discussed in greater detail in the upcoming chapters. Figure

3.6 shows the steering input used in the simulation.

The bicycle model was created using linear cornering stiffness assumption. This assumption

gives acceptable results for low lateral slip angles where the behavior can be considered

linear, but for high slip angle region, this assumption overestimates the lateral force of the

tire. During the DLC maneuver, the lateral slip angle of the front tire can be seen in Figure

3.7.

As seen in Figure 3.7, the tire lateral slip angle exceeds 3 degrees and as seen from Figure
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Figure 3.6: Steering angle input during the DLC maneuver.
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Figure 3.7: Lateral slip angle during the DLC maneuver.
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3.2, cornering stiffness assumption starts to overestimate. The lack of load transfer is

another drawback of the bicycle model. For maneuver in which the lateral accelerations

are low, this is not a big problem, but for maneuvers with high lateral acceleration, the

lack of load transfer affects the results significantly. The lateral acceleration of the vehicle

during the maneuver is given in Figure 3.8.
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Figure 3.8: Lateral acceleration during the DLC maneuver.

From the simulation results, it can be seen that both lateral slip angle and lateral acceleration

is high and can not be accurately modeled using a linear multi-axle bicycle model. Due

to the drawbacks of the bicycle model, in this work, a multi-body dynamics model of the

vehicle was used.

3.4 Multi-body Dynamics Vehicle Model In Adams Car

Due to the shortcomings of the bicycle model, which were discussed previously in this

chapter, multi-body dynamics model of the 8x8 vehicle was created in Adams Car software.

Adams is a multi-body dynamics simulation software created by MSC software. Adams Car

is a specialized environment of Adams software which allows the creation of virtual vehicle
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prototypes. Using Adams Car vehicle tests can be performed in a virtual environment.

In Adams Car, the simulated model is called an assembly; this assembly can be the full

vehicle or part of the vehicle like suspension assemblies. The multi-axle vehicle model

used in this study can be seen in Figure 3.9.

Figure 3.9: Multi-body dynamics vehicle model in Adams Car

Assemblies consist of subsystems. In this work, an 8x8 full vehicle assembly that consists

of four suspension systems, four pairs of tires for each axle, a powertrain, brake system,

and the body subsystems is used. There is no steering system in this model; instead, each

tire is steered individually by the actuators in the suspension subsystems. This process

allows the wheel steering angles to be modified quickly without the need for a steering

mechanism.

Each subsystem is created using a template. Templates are building blocks of the sub-

systems. Templates hold essential information like the purpose of the subsystem, the

number of parts and connection of the subsystem as well as the communicators which

allow different subsystems to communicate with each other. The dimensions and basic

behaviors like spring and damper characteristics can be modified directly from the Adams

Car standard interface. However, to change significant aspects of the subsystem like adding

a part or a joint, the template of the subsystems must be changed from the Adams Car
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template builder.

3.4.1 Body

Body subsystem acts as a base for other subsystems to attach to. This subsystem dominates

the mass and the inertia of the vehicle as it is the heaviest subsystem. The markers which

are used to calculate the turning radius and the ground clearance of the vehicle are located

in this subsystem. Figure 3.10 shows the body subsystem used in this study.

Figure 3.10: Body subsystem.

Turning radius of the center of gravity of the vehicle is calculated from the CoG marker’s

displacement. Also, curb to curb turning radius is calculated from the displacement of the

marker located at the front right corner. There are four corner markers in each corner of

the vehicle. These markers are used to determine the vehicle path and vehicle limits in the

DLC maneuver.

3.4.2 Suspension

Suspension subsystem is the part of the model which connects the tires to the body,

steering system, powertrain, and the braking system. This subsystem also provides wheel

travel degree of freedom to the vehicle model. There are many suspension types used in
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the automotive industry. The structure of Adams with templates and subsystems allow

quickly changing and testing different subsystems in vehicle assemblies. The suspension

subsystem used in this model is double wishbone suspension. In Figure 3.11, a standard

double wishbone suspension modeled in Adams Car can be seen.

Figure 3.11: Double wishbone suspension subsystem in Adams Car.

The double wishbone suspension consists of two control arms, wheel end, driveshaft, and

a tie rod. The tie rods are used to connect the wheel end to the steering system. In this

model, tie rods are excluded from the model, and the suspension systems of each axle

are modified so the steering input can be directly given to the kingpin axle. A dummy

part is introduced between the upper control arm and the wheel end. The spherical joint

that is used to connect the upper control arm to wheel end is replaced by two revolute

joints between the upper control arm and the dummy part and wheel end and the dummy

part. The revolute joint between the upper control arm and the dummy part allows the

suspension to be moved upwards and downwards. The revolute joint between the dummy

part and the wheel end allows the wheel end to be steered freely. Wheel steering is achieved

by an actuator driving the revolute joint between the wheel end and the dummy part. The

modified double wishbone suspension system can be seen in Figure 3.12.
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Figure 3.12: Modified double wishbone suspension system.

3.4.3 Powertrain System

The powertrain subsystem is connected to the body and the suspension subsystems. The

drive torque that is used to propel the vehicle forward is created in this subsystem and

delivered to the differentials that split the drive torque and delivers them to the drive shafts

located in the suspension subsystem. The drive torque is then delivered to the tires by the

drive shafts. Adams powertrain model used in this work can be seen in Figure 3.14.

Figure 3.13: Powertrain subsystem.
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3.4.4 Brake System

Braking subsystem is modeled as a torque acting on each tire. The model takes in the

brake demand input and outputs the brake torque by multiplying the brake demand with

maximum brake torque.

TBrake = BD ⇤ TBrakeMax (3.9)

Where the TBrake is the brake torque output of the braking subsystem, BD is the percentage

of the brake force demanded this can be interpreted as the percentage brake pedal is pushed

and TBrakeMax is the maximum brake torque that can be created by the braking subsystem.

The velocity controllers in Adams Car controls the throttle demand and brake demand. In

this work for both of the maneuvers, the vehicle velocity is constant.

3.4.5 Tire

Tires are one of the most challenging elements of the model. The behavior of rubber,

the air pressure inside the tire, and the non-linear nature of the tire makes modeling the

tire realistically, very difficult. There are many methods for modeling tires. Realistic

finite element models usually give good results, but they require a lot of computational

resources and therefore took a long time to simulate. In vehicle dynamics simulations, less

computationally demanding tire models are needed. In Adams number of tire models can

be used. Figure 3.14 shows the different tire models and their use cases.

As seen from Figure 3.14, PAC 2002 and PAC 2002 with belt dynamics are best to use for

every handling simulation. PAC 2002 tire model is a magic formula tire model created

by MSC Software based on research done by Pacejka [15]. Since its conception, the

Magic Formula has been adopted as the industry standard tire model for vehicle handling

simulations. The original magic formula is expressed as;

y(x) = Dsin(Carctan(Bx� E(Bx� arctan(Bx)))). (3.10)
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Figure 3.14: Adams help tire use cases.[40]

This equation can be used to calculate longitudinal and lateral forces as well as self-aligning

moments. The D, C, and B parameters represent the tire properties and change from the

tire to tire.

In Adams, tire models are imported from tire property files. After the tire models are

imported into Adams environment, the road profile that is going to use in the simulation is

selected. The workflow of using tires in Adams can be seen in Figure 3.15.

There are four tire road contact models available for in Adams. Except for FTire tire model

which models a complete contact patch. The tire road contact models in Adams are;

• One point contact

• Equivalent Volume contact

• Cross Section contact

• 3D Enveloping contact
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Figure 3.15: Adams tire workflow.[40]

When using the one point contact model, the tire forces are applied at one point that is

below the wheel center. This model is useful for flat road simulations. At the roads that

are not flat, the one point contact model does not yield good results due to the location of

the contact point. The tire model does not react to the changes in the road profile until the

contact point is reached to the change in the road profile. Equivalent volume contact model

computes the volume of intersection between the road and the tire. Cross section contact

model can only be used for PAC-MC tire model. This model shifts the contact point of the

tire-road contact according to the cross-section shape of the tire. 3D enveloping contact

model uses ellipse that surrounds the contact patch of a tire road intersection and calculates

the movement of these ellipses. This contact model is highly effective in uneven roads.
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In this work, the vehicle turning radius and the handling behavior is investigated by

simulations conducted on a flat surface. PAC 2002 tire model is used as it is the suggested

tire model for handling simulations. Because of the flat road, one point contact model was

used.

3.5 Using Python In Adams

Python is an object-oriented, open source and high-level scripting language, created by

Guido van Rossum in 1991. The main advantage of the Python programming language is

its readability. The popularity of Python language has been increasing in the past years due

to its use in machine learning and data science. The libraries such as Numpy and Pandas

improved the languages popularity and data handling capabilities.

Recent versions of Adams supports Python language interface as an alternative to Adams

View command language. This feature allows users to interact with Adams software using

Python code. Adams creates a virtual Python environment and run integrated python

version in this environment. This integrated Python environment comes with some of the

most popular Python libraries like NumPy. Using Python in Adams, modeling objects can

be created and modified. This feature gives the user a lot of freedom in model creation and

automating processes in Adams. There are a few different ways of using Python language

in Adams. Different ways of using Python language in Adams can be given as;

• Importing Python scripts in Adams

• A set of Python, commands in Adams command window

• Run Python scripts in the batch mode

By importing Python files in Adams, complicated tasks can be achieved. In this work, the

optimization processes were done by importing Python files into Adams. Also, Python

commands can be executed directly from the Adams command window. Running Python

lines in Adams command window is a very convenient way of modifying the model. By
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running the Python command line by line can be time-consuming and prone to error for

complicated tasks.

3.6 Genetic Algorithm

Genetic algorithm is an optimization technique that was inspired by nature. In genetic

algorithms, a population of potential solutions is selected, paired, and mutated to find an

optimal solution. Randomness plays a big part in genetic algorithms. The first population

of solutions is usually created randomly. Some of the selection process used in genetic

algorithms chooses individuals randomly, and random mutations occur while creating the

next generation. Due to these operations, genetic algorithms search the working space

constantly, and because of this property, genetic algorithms usually do not get stuck in

local minima as often as other optimizations algorithms. Genetic algorithms are powerful

optimization algorithms for multi-variable constraint problems. Genetic algorithms are

usually are used with binary numbers; these genetic algorithms are called binary genetic

algorithms. However, genetic algorithms can be used with any data type in theory. In this

section, the genetic algorithm examples given use integers as genes. A flow chart that

describes the working principle of the genetic algorithms is given in Figure 3.16.

Optimization process using genetic algorithm starts with creating the initial population.

The fitness values for each individual in the initial population must be calculated. After the

fitness values are calculated, the selection process is applied to the first generation. In the

selection process, the individuals that are going to be in the next generation and will be used

for the mating process are selected. The individuals that are not selected get eliminated.

After the individuals are selected for the next generation, the pairing process is applied to

the selected individuals. The pairing process groups the selected individuals for the mating

process. The mating process creates offsprings from the selected and paired individuals,

which are called parents. After the mating process, the number of individuals that are

selected, and the offsprings is equal to the number of individuals in the first generation. At

this point, random mutations are introduced to the population. Random mutations occur

for both the parents and the offspring to increase the searching area. After the random

mutations occur the fitness values of the individuals are calculated. Selecting, pairing,
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Figure 3.16: Genetic algorithm flow chart.

mating, and mutation operations are conducted repeatedly until the termination criterion is

met, and the next generation is created. In the remaining part of this section, the properties

of the genetic algorithm are discussed. In the selection process, the individuals that are

going to be in the next generation and will be used for the mating process are selected.

The individuals that are not selected get eliminated. After the individuals are selected for

the next generation, the pairing process is applied to the selected individuals. The pairing

process groups the selected individuals for the mating process. The mating process creates

offsprings from the selected and paired individuals, which are called parents. After the

mating process, the number of individuals that are selected, and the offsprings is equal

to the number of individuals in the first generation. At this point, random mutations are

introduced to the population. Random mutations occur for about the parents and the

offspring to increase the searching area. After the random mutations occur the fitness

values of the individuals are calculated. The process of creating the next generation using

selecting, pairing, mating, and mutating repeats until the termination criterion is met. In

the remaining part of this section, the properties of the genetic algorithm are discussed.
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3.6.1 Initial population

A population consists of a predetermined number of candidate solutions called individ-

uals. The number of individuals in the generations is determined before the start of the

optimization process. The genes in the individuals are randomly generated. For binary

genetic algorithms, each gene is randomly given the value 0 or 1. Moreover, for continuous

genetic algorithms, the values of genes are randomly generated in the given interval. The

interval that is selected for the genes provides constraints for the genes. Figure 3.17

shows a generation that consists of eight individuals that have four genes each and their

corresponding fitness values.

Figure 3.17: Example of a generation.

3.6.2 Fitness

The fitness value of an individual determines how good of a solution that individual is.

Fitness value can be thought of as the cost function in an optimization problem. In each

generation fitness values for each, each is calculated. Just like any optimization problem

effectiveness of the genetic algorithm depends on the fitness function selected. For the

optimization problems that have more than one optimization parameter, bias is given to

each parameter. Generally, the sum of these biases is chosen to be 1. The higher the bias

of the parameter more important that parameter is to the optimization algorithm. Usually,

when creating a multi-parameter fitness function for a genetic algorithm, the optimization
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parameters are normalized, so the fitness function is not affected by the magnitude of the

parameters. There are a few normalization functions that can be used for the task. Some of

these function can be given as;

• Rescaling

• Mean normalization

• Standardization

• Scaling to unit length

The rescaling method, also known as the min-max normalization is a method that scales

the input between the range of 0 and 1. The rescaling function can be written as;

ms =
mo �min(mo)

max(mo)�min(mo)
(3.11)

Where mo is the original value of the input and ms is the scaled value of the input.

Mean normalization method is similar to the rescaling method; instead of subtracting the

minimum value of the input, the mean value of the input is subtracted from the input data.

ms =
mo �mean(mo)

max(mo)�min(mo)
(3.12)

Standardization method uses standard deviation to normalize the input value.

ms =
mo �mean(mo)

�
(3.13)
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Where � is the standard deviation, scaling to unit length is a method used to find the sign

of the input value. This method is useful in some cases, but it does not take the magnitude

of the input value, so it is not very suitable for many optimization problems.

ms =
mo

|mo|
(3.14)

3.6.3 Selection

The selection operation in the genetic algorithm represents the natural selection in nature.

The selection genetic operation picks some of the individuals in a generation to be moved

to the next generation and to be parents of the remaining individuals in the next generation.

There are some different selection algorithms. In some of the selection algorithms, the

fitness of the individuals is used. In the remaining part of this section, different selection

algorithms are discussed.

3.6.3.1 Basic Selection

In this selection strategy, half of the population with the highest fitness values are selected.

This algorithm represents the survival of the fittest and very easy to implement into code.

However, this algorithm lacks the randomness, and so it may be challenging to search the

whole solution space and find the global minimum. Basic selection operation performed

on the example generation given in Figure 3.17 can be seen in Figure 3.18.

3.6.3.2 Random Selection

The random selection strategy randomly selects individuals that are going to be moved

up to the next generation and will be the parents of the remaining individuals in the next

generation. Random selection operation visualization can be seen in Figure 3.19.

This selection strategy is beneficial for searching for the search space. The possibility of
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Figure 3.18: Basic selection example.

Figure 3.19: Random selection example.
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Figure 3.20: Roulette wheel selection example.

getting stuck in a local minimum is reduced when using this strategy. However, due to

the randomness of this strategy, some of the individuals with functional fitness will be

eliminated, and some of the individuals with low fitness will move on to the next generation.

Due to this property of random selection strategy converging to an optimized solution can

take many iterations.

3.6.3.3 Roulette Wheel Selection

The final selection strategy discussed is the roulette wheel selection. In this method, each

individual in a population has a chance to be selected. The chance of an individual to be

selected is based on the fitness value of the individual. Fitter individuals have a higher

chance to be selected. A commonly used method for implementing this selecting strategy

is calculating the cumulative sum of the individuals in the population and generating a

random number and select the individual which has the cumulative sum nearest to the

random number generated. Using this method, fitter individuals have a higher chance, and

unfit individuals are closer to each other, so they have less chance to be selected. Roulette

wheel selection algorithm example can be seen in Figure 3.20.

Using roulette wheel selection, every individual has a chance to be selected to move up
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to the next generation and for pairing. There is no point in choosing an unfit individual

to move up to the next generation, but the individuals selected to go through mutations

before moving up to the next generation, this gives individuals a chance to be more fit

in the next generation. Also, pairing fit individuals with unfit individuals may result in a

very fit offspring. So using roulette wheel selection, genetic algorithm acts more randomly,

and because of this has a higher chance to find the global optimum and not to get stuck

in a local optimum. Both selecting strategies were implemented in Python to observe the

effectiveness of each strategy.

3.6.4 Pairing

Pairing genetic operation is the process in which the selected individuals are grouped for

the mating process — deciding which individual will be paired with which individual

effects the offsprings. There are a few pairing strategies that can be used in the genetic

algorithm optimization process. In genetic algorithms, offsprings can have more than

two parents, but often two parents are used to create offsprings. Examples given at the

remaining part of this section are for two-parent pairing.

3.6.4.1 Fittest Individual Pairing

In the fittest individual pairing strategy, the fittest individuals that are selected are paired

with each other. The individuals are grouped starting from the fittest individual and groups

the unfit individuals together. In Figure 3.21, the fittest individual pairing example can be

seen.

In the example given in the figure above the individuals of the previous generation are

selected using the basic selection strategy and are grouped two by two. This method

is handy for grouping together the fittest individuals to obtain even better offsprings.

However, the strategy also groups together the unfit individuals, and this may result in unfit

offsprings.

51



Figure 3.21: Fittest individual pairing example.

3.6.4.2 Random Pairing

In a random pairing strategy, the selected individuals are randomly grouped. This method

increases the randomness of the optimization process, which ultimately increases the

search space. Due to the randomness of the process, unfit individuals may be grouped and

produce unfit offsprings. Figure 3.22 shows a random pairing example.

3.6.4.3 Weighted Random Pairing

Weighted random pairing strategy uses summative sums of the normalized fitnesses of

the selected individuals. In this strategy, the random number generation is used to select

individuals for grouping together. The method works like the roulette wheel selecting a

strategy. Weighted random pairing example is given in Figure 3.23.
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Figure 3.22: Random pairing example.

3.6.5 Mating

The mating process is the genetic operation where the parent individuals produce offsprings.

Usually, in the mating process, two-parent individuals produce two offsprings. This process

of two parents creating two offsprings makes the controlling of the population size of the

next generation easier. After the initial population is randomly created, the mating process

is one of the primary sources of searching the search space for the genetic algorithm. The

mating process creates half of the individuals in the next, so the impact of the mating

process in the effectiveness of the genetic algorithm is very high. There are a few mating

methods that can be used for genetic algorithms. The choice of the mating process is crucial

for the effectiveness of the genetic algorithm. The mating method choice is dependent on

the problem.
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Figure 3.23: Weighted random pairing example.

3.6.5.1 Single Point Mating

In the sign point mating process, the two parent individuals are divided from the designated

dividing point, and the parts are combined with the other part of the other parent. Dividing

point of the algorithm can be predetermined before the optimization process if a particular

point in the individual will make more sense to divide the individuals at. The dividing

point can be decided randomly or selecting a random point in a predetermined point set.

Figure 3.24 shows a single point mating example.
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Figure 3.24: Single point mating example.

3.6.5.2 Two Points Mating

Two points mating strategy is similar to the single point mating strategy, but instead of

dividing the parent individuals, the parent individuals are divided at two points. Dividing

parent individuals in two places creates three parts from each parent. These parts are

combined so each offspring would have two parts from one parent and one part from the

other parent. Two points mating example is given in Figure 3.25.

3.6.5.3 Single Station Mating

Single station mating method is a specialized version of the two points mating method.

Instead of dividing the parent individuals at random paints, in this method, one dividing

point is selected, and the other dividing point is calculated by summing the gene number

of the first dividing point and the predetermined station length. This method can give good

results in some cases, but its effectiveness is very dependent on the problem. In Figure

3.26, single station mating example can be seen.
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Figure 3.25: Two points mating example.

Figure 3.26: Single station mating example.
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3.6.6 Mutation

Mutation operation changes some aspects of the individuals so that already known individ-

uals do not move up to the next generation. Mutation operation is one of the most critical

operations of the genetic algorithm to traverse the searching space and not to get stuck in

local minima. Different mutation strategies can be used as genetic algorithms.

3.6.6.1 Reset Mutation

In the reset mutation method, the selected gene of the individual is replaced by randomly

generating a number according to the constraints that apply to that gene. This method

increases the ability of the genetic algorithm to search the search space but can lead to

longer convergence times. The genes that are going to be mutated are selected randomly.

The number of genes that are going to mutated is called the mutation rate. The mutation

rate can be selected randomly, which will further increase the searching ability of the

genetic algorithm, or a specific number can be chosen as the mutation rate. The mutation

rate dramatically impacts the effectiveness of the genetic algorithm. Figure 3.27 shows

reset mutation example.

Figure 3.27: Reset mutation example.
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3.6.6.2 Gauss Distribution Mutation

In the Gauss distribution mutation method, the selected individual for mutation is replaced

by a random number that has been randomly generated according to Gauss distribution.

Using this method random number generation can be made more predictable. This method

is particularly useful for fit individuals as it will most likely change the genes by a small

margin; this may cause the individuals to be fitter. However, for unfit individuals changing

the genes by a small margin may restrict their fitness. A gauss distribution example can be

seen in Figure 3.28.

Figure 3.28: Gauss distribution example.

3.6.7 Next Generation

Now that all of the genetic operations are presented, the creation of the next generation

can take place. After the first generation, all of the generations are created using the

same method. After the fitness values of the individuals in a generation are calculated,

the selection process begins. A concept called elitism can be introduced to the genetic

algorithm in this part. Elitism is the process of automatically selecting the fittest individual

in a generation to be in the next generation and to produce offsprings. The elite does not go

through random mutations before moving to the next generation. The intent of this concept
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is saving the best solution. Selected individuals and the elite are paired for the mating

process. The mating process creates the offsprings that will be in the next generation.

Offsprings and selected individuals go through random mutations before moving up to the

next generation. After the mutations, the fitness values of the elite, selected individuals

and the offsprings are calculated, and the next generation is completed. This process is

repeated until the termination criteria are met.

3.6.8 Termination of the Genetic Algorithm

The optimization process using a genetic algorithm begins with creating the first generation

and continuous by creating the next generations after that. The algorithm must stop when

the desired results are obtained to complete the optimization process. Many termination

criteria can be used with genetic algorithms. The termination criterion that is discussed

in this chapter can be used together in the genetic algorithm, and the algorithm will stop

whichever termination criteria are met first.

• Limiting number of generations

• Limiting maximum fitness

• Limiting average fitness

• Limiting maximum fitness repetition

One of the most popular termination criteria is stopping the algorithm when a certain

number of generations are created. This method is straightforward to implement is very

useful to ensure that the genetic algorithm will stop at a particular time. Usually, the

optimization algorithms are used with a while loop, which means if the termination criteria

are not met the genetic algorithm will go on working. Stopping the genetic algorithm at a

certain number of generations works as a safety measure that guarantees the while loop

will not go on forever.

Another termination criteria are setting a maximum fitness limit. The maximum fitness

of each generation is calculated in this method, and the algorithm is stopped when the
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maximum fitness limit is reached. This is one of the most useful termination criteria there

is. In many optimization problems, there is a specific goal. This criterion ensures that the

genetic algorithm is finished after reaching the goal of the optimization process. In the

figure below, it can be seen that there are four minima. Two of the local minima and the

global minima are below the maximum fitness limit, meaning if the optimization algorithm

can reach one of these points, the termination criteria will be triggered. One of the local

minima is higher than the maximum fitness limit and reaching this point will not trigger

the termination criteria. Optimization algorithms can get stuck in local minima like that.

An example function is given in Figure 3.29; in this function, it can be seen that some of

the local minima satisfy the termination criteria.

Figure 3.29: 2D fitness value visualization.

Limiting the average fitness value of the generation is a very useful termination criterion in

some cases. In this method, the average fitness value of each generation is calculated, and

the genetic algorithm is terminated if the average fitness value of a generation reaches a

certain level. This method is; the goal of the genetic algorithm is to find a set of suitable

solutions.

The last termination criteria discussed is limiting the repetition of maximum fitness value.
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If the genetic algorithm has elitism, the individual with the maximum fitness value goes

on to the next generation without random mutations occurring, if the genetic algorithm

cannot find a better solution the best individual will be the best solution again. In this case,

the maximum fitness value will be the same. Limiting the number of the same maximum

fitness number can help terminate genetic algorithms that are stuck in a local minimum.

The method also helps as a safety measure that stops the algorithm if there is no progress.

3.7 Conclusion

Due to the limitations of the multi-axle bicycle model, a multi-axle multi-body dynamics

model of the vehicle was used in this thesis. The modeling process of the vehicle model

used in the optimization study is very similar to the modeling process reviewed in this

chapter. There are, however, some differences to make the model more suited to the task at

hand. The vehicle model and the changes to the convention will be discussed in detail in

the upcoming chapter. The genetic algorithm that is used for the optimization process is

written in the Python language. The theory of the genetic algorithm code written in Python

language is based on the theory presented in this chapter.
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4 TURNING RADIUS OPTIMIZATION

4.1 Introduction

In this chapter, optimal wheel steering angles that cause the minimum turning radius and at

the same time cause the minimum tire lateral slip angles are obtained. For the optimization

study, multi-body dynamics model of the investigated 8x8 vehicle was created in Adams

Car. An Adams command file was designed to run the simulations and gather the results

that are going to be used by the optimization algorithm. A continuous genetic algorithm

was used to conducts the optimization process. The genetic algorithm was implemented

into the Python code. The Python code runs the simulations and gathers the results by

calling upon the Adams command file created and performs the optimization process using

the genetic algorithm code. The workflow of the optimization process can be seen in

Figure 4.1.

Figure 4.1: Turning radius optimization flow chart.
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The chapter begins with the methodology part; in this section, the working principle of

the optimization process is given. Multi-body dynamics model used in the simulations

is presented after this section. The Adams command file that runs the simulations and

outputs the results is presented after the model. The Python code that connects the different

parts of the process is given in this section. Moreover, the chapter is concluded with the

discussion of the optimization results.

4.2 Maneuver

The maneuver used in the turning radius optimization process is a low-speed steady-state

turning maneuver. The figures shown in this section are the images and simulation results

of the vehicle with the original configuration. The vehicle path during the maneuver can

be seen in Figure 4.2. During the maneuver, the longitudinal velocity of the vehicle is

controlled by the velocity controller of Adams Car. The aim of the controller during the

maneuver is to keep the longitudinal speed of the vehicle constant. The steering inputs for

all of the wheels are inputted separately as step inputs. The turning radius calculation is

done after the vehicle reaches steady-state. The examples given in the rest of this section

are from the simulations that were conducted using the originally proposed steering angles

for the prototype vehicle. The optimized vehicle wheel steering angles will be compared

with the these originally proposed steering angle configuration.

The longitudinal velocity of the vehicle during the maneuver is given in the below figure.

The velocity controller was trying to keep the longitudinal vehicle velocity close to the

desired velocity, which is 10 km/h in this maneuver. The vehicle velocity fluctuates

between 10km/h at the beginning of the simulation, but after some time passes, the vehicle

velocity reaches steady-state at 10 km/h. The vehicle velocity change with respect to

time can be seen in Figure 4.3. In the vehicle turning radius calculation, the part of the

simulation where the vehicle velocity is not constant is not taken into consideration.

The steering inputs of the wheels are given as step inputs. The step function in Adams

command language uses hyperbolic tangent function to smooth the sharp edges of the step

function. All of the steering angle inputs starts and reaches to the maximum values at the
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Figure 4.2: Topdown look at the vehicle during the low-speed steady-state turning maneu-
ver.

Figure 4.3: Vehicle velocity change during the maneuver.
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same time. Wheel steering angle change with respect to time can be seen in Figure 4.4.

Figure 4.4: Steering inputs given to the tires during the maneuver.

4.3 Adams Command File

The Adams command file is the file that runs Adams Car simulations, gathers the required

results, and outputs them. Adams command file is a file that contains Adams command that

is written in Adams command language. After functions of the motions that turn the tires

are changed using Python code, Adams command file is called by the Python code to run

the simulations and output the results. The Adams command file starts the simulation by

calling upon the Adams event file. Adams event file contains all of the information about

the simulation that is going to be run. The event file determines the duration and the step

size of the simulation as well as the desired vehicle behavior. The desired vehicle behavior,

in this case, means the longitudinal velocity of the vehicle should be kept constant as well

as the gear ratio. There is no steering or braking demand. The steering of the wheels

is achieved by the motions in the suspension system these motions has time-dependent

functions and are not affected by the simulation parameters as long as the simulation time

is sufficient. Wheel steering angle change with respect to time is given in Figure 4.5.
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Figure 4.5: Adams command file work flow.

After the simulation is finished, the Adams command file outputs the desired results as text

files. In this case, the longitudinal and lateral position of the marker, which is located at

the outside of the front left tire is outputted. Also, tire lateral slip angles of all the tires

are outputted as well. After the desired results are outputted the Adams command file

deletes the simulations results from Adams Car. After the simulations results are deleted,

Adams Car is ready to run another simulation. The Adams command file that runs the

turning radius optimization simulations, as well as the Adams event file which contains the

simulation details, are given in Appendix B.

4.4 Python Code

The Python code is the part of the method which connects all of the elements of the study.

After the multi-body dynamics vehicle model is opened in Adams Car, the turning radius

optimization Python file is imported to Adams Car. The Python code then conducts the

optimization process by running Adams Car simulations and investigating the results of

these simulations. Figure 4.6 shows the workflow of the Python code.

The Python code starts by creating the initial population. The fitness values of the indi-

viduals in the first population are found next. The first generation is then written to the

output text file. After the first generation is completed, generations that come after are

completed by using the next generation function. This function takes in the old generation
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Figure 4.6: Work flow of the Python code.

and outputs the next generation. After each generation, the fitness values of the individuals

in that function are given to the termination criterion function. If the termination criterion

is met with the fitness values of the individuals in that generation, the optimization process

is completed. The generation, maximum, and average fitness values are written to the

output text file. If the termination criterion is not met the optimization process repeats until

the termination criterion is met. The Python code that performs the optimization process is

presented in Appendix C.

4.4.1 Genetic Algorithm

In this work, a continuous genetic algorithm was used. The reason for using continuous

genetic algorithm instead of using a binary genetic algorithm is, there are eight genes in

each individual, and floating numbers represent these genes, the binary representation of a

floating number is very long, and it would make the individuals very hard to interpret. An

example of a binary representation of an integer and the floating number is given in Table
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4.1.

Table 4.1: Binary vs floating number representation.

Number Binary
Integer 29 11101

Floating Number 29.9 11101.1110011001100110011

In this study, each tire has a set of maximum steering angles created with 0.1-degree

increments between two constraints. A 0.1-degree increase in a tire maximum steering

angle in one of the tires causes about 1 mm decrease in the vehicle turning radius. Effect

of any lower increment in tire maximum steering angle would be ignorable and it would be

challenging to design a steering mechanism with such sensitivity. Any higher increment in

maximum wheel steering angle could cause the optimization algorithm to miss the global

minima.

In this work, each candidate solution is called an individual. Each individual is made up

of eight genes. These genes represent steering angles of the tires. In genetic algorithm

optimization, individuals have a chance to be selected for moving up to the next generation

and pairing to create offsprings for the next generation. Fitness values for each individual

must be calculated using a fitness function. Individuals with higher fitness values are better

solutions to the problem at hand.

The functions that perform the genetic algorithm optimization process were written in

Python language. The genetic operations were discussed in the Theoretical Background

chapter. The genetic algorithm code was created using the principles reviewed in the

Theoretical Background chapter. Creating the initial population is a problem specific

operation and will be presented in this chapter. The selection genetic operation is a general

operation, and the principles were reviewed in the Theoretical Background chapter. The

selection function in Python was written in a way that it would take in the fitness values

and the individuals from the previous generation independent of the input size. Two

different selection strategies were implemented to the selection function, which are roulette

wheel selection and basic selection. The selection function takes two inputs the previous

generation without the elite and the selection type. The pairing process is also a general

operation. There are three different pairing strategies implemented to the pairing function,
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which are the fittest pairing, random pairing, and weighted random pairing. The pairing

function takes three inputs the fitness and the individuals of the selected individuals, fitness,

and the individual of the elite and the pairing strategy. The mating function was written

according to the theory discussed in the Theoretical Background chapter. Both single point

and single station codes were implemented into the Python code. The mating function

takes two inputs parents and the mating type. Finally, the mutation function was created

with gauss and reset mutation strategies. The mutation function takes three inputs, which

are individuals to be mutated, mutation rate, and mutation method. The fitness function

that is used to calculate the fitness values of the individuals is also problem specific and

will be presented in the upcoming sections.

4.4.2 Initial Population

The initial population consists of a predetermined number of individuals, the number of

individuals for each optimization process is given in Table 4.4. Each individual consists

of eight genes which represent the wheel steering angles. The function that creates

the individuals, creates each gene by generating a random number between the given

constraints. The upper and lower limit used in each axle are given in Table 4.2.

Table 4.2: Gene limits.

Upper Limit
(deg)

Lower Limit
(deg)

L1 -20 -30
L2 -5 -15
L3 15 5
L4 30 20
R1 -18 -28
R2 -3 -13
R3 13 3
R4 28 18

These limits represent the constraints of the system. As was discussed in the introduction

chapter, the search space is vast, and it can take a lot of time for optimization algorithms to

search all the search space. Some additional constraints were introduced to the system to
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limit the search to a section of the search space that is more suited to the desired properties.

Limits of the right side of the vehicle as well as the second and third axles are lower than

the left front limits. These limitations helps the genetic algorithm to keep the lateral slip

angles low. The limits given in Table 4.2 does not guarantee the right wheel steering angles

to be lower than the left wheel in the same axle, so to obtain lower wheel steering angles in

right side of the axle compared to the left side, the random number generation process for

the right side of the axle takes place in a while loop after the steering angle of the left side

wheel is determined. The while loop continuously generates number until a lower number

than the left wheel steering angle is reached.

4.4.3 Fitness Function

The fitness values of the individuals are calculated using the fitness function. This function

inputs the steering angles to Adams Car and calls the Adams command file to run the

simulations. After the Adams command file runs the simulations, the simulations results

which are going to be used for fitness calculations are outputted as text files. The Python

code reads the text files that contain the simulation results and converts them into Python

objects. The fitness calculation is conducted using these parameters. The workflow of the

fitness function is given in Figure 4.7.

The slip angles of the tires are directly outputted from Adams Car. The fitness function

reads the result text files that contain the tire lateral slip angles and creates a Python object.

These Python objects only include the part of the simulations results where the vehicle

reaches steady-state. The duration of the simulations for this problem is chosen as 50

seconds. The steering inputs of the tires reach their maximum values after 10 seconds.

The results that are going to be used for the fitness calculation starts 25 seconds into the

simulation and gathers the results until the end of the simulation time. This process gives

the vehicle 15 seconds to reach steady-state. From the simulation results provided in this

section, it can be seen that is enough time for the vehicle to reach steady-state, and there

is some safety margin as well. After the Python object that contains the vehicle lateral

slip angles is created, the absolute value of the maximum of the tire lateral slip angles is

calculated. Due to the nature of the maneuver even if the vehicle does not reach steady
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Figure 4.7: Fitness function flow chart.

state 15 seconds after the steering inputs reach their maximum values, the minimum lateral

slip angle will still occur after the vehicle reaches steady-state.

The turning radius calculation is a little bit trickier than the slip angles. Adams Car

does not directly output the curb-to-curb turning radius of the vehicle. The Python code

must calculate the curb-to-curb turning radius of the vehicle. For this task, lateral and

longitudinal positions of the marker located at the outside of the right wheel are outputted

from the Adams Car as text files by the Adams command file. These text files are then red

by the Python code, and Python objects are created from the simulation results like the

lateral slip angles. The Python objects are created from the part of the simulation results

in which the vehicle is performing a steady state turn. During this maneuver, the marker

located at the outside of the front right tire completes a perfect circle. The radius of this

circle is the vehicles curb-to-curb turning radius. To calculate the curb-to-curb turning

radius of the vehicle, three points are selected from the Python objects which contain the

lateral and longitudinal displacement of the marker located at the outside of the front right

wheel. Only one circle connect three-point and radius of this circle can be calculated using
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the positions of these three points.

r =

r
B2 + C2 � 4AD

4A2
(4.1)

Where A, B, C, and D can be calculated as;

A = x1(y2 � y3)� y1(x2 � x3) + x2y3 � x3y2 (4.2)

B = (x2
1 + y21)(y3 � y2) + (x2

2 + y22)(y1 � y3) + (x2
3 + y23)(y2 � y1) (4.3)

C = (x2
1 + y21)(x3 � x2) + (x2

2 + y22)(x1 � x3) + (x2
3 + y23)(x2 � x1) (4.4)

D = (x2
1 + y21)(x3y2 � x2y3) + (x2

2 + y22)(x1y3 � x3y1) + (x2
3 + y23)(x2y1 � x1y2) (4.5)

Where xi and yi parameters are the x and y coordinates of the corresponding points, when

using the equations given above no matter which three points are chosen on the circle the

result will be the same. In this work, the points are chosen with a constant interval between

them. The curb-to-curb turning radius of the vehicle is calculated by the Python code using

the equations given above.

After Python objects are created from the turning radius of the vehicle, and the tire lateral

slip angles, the fitness of the individual can be calculated. In this work, a few different

fitness functions are considered for the optimization process. The first fitness function

considered is giving very high bias for the turning radius and giving tire lateral slip angles

very low bias. In this cost function a limit slip angle is chosen and if the lateral slip angle

is lower than the limit slip angle value is taken, with a very low bias in this case effect

of the lateral slip angle is minimum on the fitness function. However, if the lateral tire

slip angle is higher than the limit, a huge number is taken instead. Using this method, tire
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lateral slip angles can be kept below a specified limit. The fitness function in this method

can be found by taking one over the described function, so the higher fitness value means a

fitter individual.

F =
1

0.92r + 0.01
P8

i=1 ai
, (4.6)

Where,

ai =

8
><

>:

ai = ai ai < 3

ai = 1000000 ai > 3
(4.7)

This fitness function favors the individuals that have lower tire slip angles than the limit.

However, the search space is vast, and finding a set of genes that will result in lower

than limit tire lateral slip angles randomly is highly unlikely. Using this fitness function,

controlling the genetic algorithm is not possible. Slip angle limits in the cost function act

as additional constraints, and the only objective is to minimize the turning radius.

To be able to control the fitness function to obtain the desired results, another fitness

function was created. In this fitness function, the vehicle turning radius and the maximum

of the tire lateral slip angles were normalized, and each was given a bias. The value of

the bias allows the fitness function to be manipulated to provide the desired results. To

normalize the vehicle turning radius and the maximum tire lateral slip angle rescaling

method was used. For the normalization of the vehicle turning radius the equation can be

written as;

ṙn =
7000� r

1000
. (4.8)

Where rn is the normalized vehicle turning radius, and r is the turning radius of the vehicle.

The unit of the turning radius in this equation is millimeters. The turning radius of the

vehicle is expected to be between 7000 and 8000 millimeters, the normalized turning

radius value changes between 0 and -1 in this region. If the vehicle turning radius is lower

74



than 7000 millimeters, the normalized vehicle turning radius value becomes positive. The

positive normalized value allows the genetic algorithm to achieve the desired fitness value

with higher tire lateral slip angles. The normalized tire lateral slip angles can be calculated

using the equation;

↵maxn =
3� ↵max

2
(4.9)

Where ↵maxn is the normalized tire lateral slip angle and ↵max is the maximum tire lateral

slip angle. The maximum tire lateral slip angle is expected to be between 3 and 5 degrees.

The value of the normalized maximum tire lateral slip angle (↵maxn) changes between

0 and -1 while maximum tire lateral slip angle changes between 3 and 5 degrees. If

the maximum tire lateral slip angle is lower than 3 degrees, the value of the normalized

maximum tire lateral slip angle (↵maxn) becomes positive.

The fitness function can be created using the normalized vehicle turning radius rn and

normalized maximum tire lateral slip angle (↵maxn). The fitness function can be written as;

J = b1rn + b2↵maxn (4.10)

Where b1 is the bias of the normalized vehicle turning radius (rn) and b2 is the bias of the

normalized maximum tire lateral slip angle (↵maxn). The sum of the values of these biases

is one. The values of these biases determine how significant the corresponding parameters

are to the genetic algorithm, and this means minimizing the parameters with higher bias

has more reward than decreasing the parameter with low bias, by the same amount. In the

Optimization Results section of this chapter, the results of different optimization processes

that are conducted with different biases will be given.

4.4.4 Termination Criterion

The optimization process runs in a while loop; this means if the process is not terminated, it

will go on forever. Usually, there are a few termination criteria used together for algorithm
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termination. Some of these methods were discussed in the theoretical background chapter.

In this study, four termination criteria are used together. If any of these criteria are met, the

optimization process is terminated. The termination criterion can be listed as;

• Maximum generation number

• Maximum fitness value repetition

• Maximum average fitness value

• Maximum fitness value.

In this work, the genetic algorithm is terminated if the number of generations reaches

104. Maximum fitness value repetition termination criteria is activated if the maximum

fitness value does not improve for 50 generations. If the average fitness value reaches

�0.1, before the specified maximum fitness number is reached, the genetic algorithm is

terminated. The maximum fitness number termination criteria is activated if the maximum

fitness value reaches 0.

4.5 Current Configuration Results

The original maximum wheel steering angles of the considered 8x8 vehicle was found by a

trial and error process. As mentioned before, the search space of the optimization problem

is vast, and finding a suitable solution using the brute force method is highly unlikely.

The method used for the trial and error method is outside of the scope of this thesis. The

original maximum wheel steering angles of the 8x8 vehicle are known. These maximum

set of maximum wheel steering angles will be referred to as the original configuration.

Using the original configuration, vehicle simulations were conducted for comparison. The

maximum wheel steering angles are given in Table 4.3.
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Table 4.3: Maximum wheel steering angles of the original configuration.

Inner Tire
Angle(deg)

Outer Tire
Angle(deg)

1st axle -27 -23
2nd axle -13.7 -8.39
3rd axle 13.7 8.39
4th axle 27 23

Vehicle velocity during the steady-state cornering maneuver is kept constant at 10 km/h.

The vehicle velocity change with respect to time can be seen in Figure 4.3. The path

of the vehicle during the steady-state cornering maneuver was given in Figure 4.2. The

wheel steering angles inputted can be seen in Figure 4.4. Tire lateral slip angles during the

maneuver can be seen in Figure 4.5.

Figure 4.8: Tire lateral slip angles during the maneuver.

As seen from Figure 4.5, maximum tire lateral slip angle appears at the front left tire, and

the steady-state value of the maximum slip angle is 4.6 degrees. During the steady-state

portion of the maneuver, the lateral acceleration of the vehicle is 0.202 g’s. The curb-

to-curb turning radius of the vehicle is 7.43 meters. At the steady-state portion of the

maneuver, the vehicle roll angle is 3.66 degrees.
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Table 4.4: Properties of the optimization processes.

Individuals
in a

Generation

Selection
Type

Pairing
Type

Mating
Type

Mutation
Type

Fitness
Biases

Run 1 20 Fittest
Half Random Reset Single

Point 0.5 - 0.5

Run 2 40 Fittest
Half Random Reset Single

Point 0.5 - 0.5

Run 3 20 Fittest
Half Random Reset Single

Point 0.6 - 0.4

Run 4 20 Fittest
Half Random Reset Single

Point 0.7 - 0.3

Run 5 20 Roulette
Wheel

Weighted
Random Gauss Single

Station 0.5 - 0.5

Run 6 20 Roulette
Wheel

Weighted
Random Gauss Single

Station 0.7 - 0.3

4.6 Optimization Results

In this study, a few different optimization processes were conducted to observe the effects

of the fitness function, genetic operations, and generation size. There is a total of six

optimization processes presented in this section. The optimization processes are referred

to as runs in this section. In Table 4.4, properties of the optimization processes are given.

In Table 4.4, individuals in a generation represent the number of simulations needed to

create a generation. Selection type, pairing type, mating type, and mutation type are

parameters of the genetic algorithm. Moreover, fitness biases are the coefficients of the

turning radius and the slip angle terms in the fitness function, respectively. As seen in

Table 4.4, run 1 and run 2 are identical except for the number of individuals in a generation,

these two runs will be compared to investigate the effects of the number of individuals in

a generation. Run 5 and run 6 have different genetic algorithm configurations than other

runs. There are three sets of fitness function biases in the optimization processes. In Figure

4.9, the maximum fitness value change with respect to the generation number for all of

the runs. The maximum fitness value is the fitness value of the best individual in each

generation.

It can be seen from Figure 4.9 that, all of the runs except the run 4 have reached the
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Figure 4.9: Maximum fitness change with respect to generation for all of the runs

maximum fitness limit, which in this case is 0. The run 4 did not reach the maximum

fitness limit, and the genetic algorithm was terminated because it reached the maximum

generation number, which is 100. The regions where the maximum fitness value is constant

for a few generations are the regions where the optimization algorithm could not found

a better solution, and the best solution from the previous generation becomes the best

solution in the current generation due to elitism. The average fitness value change with

respect to generation for all of the optimization processes can be seen in Figure 4.10.

The value of the average fitness may go up or down from generation to generation. Increase

in the average fitness value indicates that a genetic algorithm is closing on an optimal

solution, but rapidly increasing average fitness value may lead to getting stuck on a local

optimum. Decreasing average fitness value indicates the genetic algorithm finds worst

results overall, but to find the global minimum, the genetic algorithm must search the

search space and some times that means the average fitness value will decrease. Usually,

during a genetic algorithm optimization process, the average fitness value would increase

rapidly in the first generations, and then the increase slows and finding better solutions

may become harder in the later generations. To investigate the effectiveness of the genetic

algorithm investigating the trend of the average fitnesses instead of the average fitness
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Figure 4.10: Average fitness change with respect to generation for all of the optimizations
processes.

values themselves results in a better understanding of the genetic algorithm. From Figure

4.10, it can be seen that run 1, run 2, run3, and run 4 have similar behavior, and the trend

of the average fitness values is increasing. Run 5 and run 6 have similar behavior and

decreasing trends. The difference between the trends is a result of the genetic algorithm

settings. From Table 4.4, it can be seen that the genetic algorithm settings for run 5 and

run 6 are different from the other runs.

To investigate the effect of the number of individuals in a generation on the effectiveness

of the genetic algorithm, run 1 and run 2 is compared. As seen in Table 4.4, the only

difference between run 1 and run 2 is the number of individuals in a generation. In Figure

4.11, the maximum fitness values and average fitness values of run 1 and run 2 are given as

well as the regression lines of the average fitness values. The regression line describes the

trend of average fitness values.

As seen from Figure 4.11, both run 1 and run 2 have reached the maximum fitness

limit. The optimization process with a higher number of individuals in each generation

(Run2) satisfied the termination criterion faster. The number of simulations done in both

optimization processes can be calculated as;
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Figure 4.11: Comparison of Run 1 and Run 2.

nrun1 = 20 + (20� 1) ⇤ 19 = 381 (4.11)

and

nrun2 = 40 + (40� 1) ⇤ 14 = 586. (4.12)

So the number of generations created to reach to the termination criteria in run 2 is lower

than run 1, but due to the size of the populations, the number of simulations done for run 1

is less than run 2.

To observe the effect of different genetic optimization settings, run 1 and run 5 were

compared. Run 1 and run 5 has the same number of individuals in a generation, and

the biases of the fitness function are the same; however, the genetic algorithm settings

are different. Maximum and average fitness value change with respect to the generation

number as well as the regression lines of the average fitnesses can be seen in Figure 4.12.

The average fitness value of run 5 has a downward trend, but the algorithm finds an optimal
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Figure 4.12: Comparison of Run 1 and Run 5.

solution quicker than run 1. Genetic algorithm settings of run 5 allow the algorithm to

search the search space more efficiently, while run 1 got stuck on a local optimum before

finding the optimal solution while run 5 continuous to search the search space and find the

optimal solution. Due to elitism introduced to the genetic algorithm, a downward trend of

the average fitness does not affect the maximum fitness value. The same phenomenon can

be observed when run 4 and run 6 are considered. The comparison between run 4 and run

6 can be seen in Figure 4.13.

Run 4 and run 6 has the same fitness function biases, so the objective of the two optimization

problem is the same. However, the two runs have different genetic algorithm settings like

run 1 and run 5. Figure 4.13 supports the conclusion that the genetic algorithm with run 5

and run 6’s settings search the search space more efficiently and finds the optimal solution

faster than other genetic algorithm settings.

The biases in the fitness function of the genetic algorithm determine the objective of the

optimization process. To observe the effect of the biases in the fitness function run 1, run

3, and run 4 can be compared. The maximum and average fitness value changes for these

runs can be seen in Figure 4.14.
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Figure 4.13: Comparison of Run4 and Run6.

The biases in the fitness function allow manipulating the genetic algorithm to obtain desired

results. The results of the optimization runs are given in Table 4.5.

Table 4.5: Optimization results.

Tuning
Radius
(mm)

Maximum
Tire Lateral
Slip Angle

(deg)

Lateral
Acceleration

(g)

Vehicle
Roll

Angle
(deg)

Original
Configuration 7432.84 4.6 0.202 3.658

Run 1 7621.46 1.38 0.194 3.491
Run 2 7477.91 1.87 0.203 3.777
Run 3 7398.53 1.75 0.207 3.862
Run 4 7108.9 2.51 0.216 3.96
Run 5 7236.82 2.5 0.207 3.721
Run 6 6940.16 3.26 0.227 4.259

Table 4.5 shows that the runs with higher turning radii bias have the lower turning radiuses

like run 4 and run 6. While the runs that have the same biases, have higher turning radiuses

compared to the other optimization results but have lower tire lateral slip angles like Run1.

The optimized maximum wheel steering angles can be seen in Table 4.6.
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Figure 4.14: Comparison of Run1, Run3 and Run4.

Table 4.6: Maximum wheel steering angles.

1st axle
(deg)

2nd axle
(deg)

3rd axle
(deg)

4th axle
(deg)

Left Right Left Right Left Right Left Right
Run 1 -27.6 -20.9 -9.4 -7 11.9 7.9 28.8 22.2
Run 2 -29.8 -29.2 -10.6 -8.9 12.3 7.8 29.2 20.5
Run 3 -29.9 -23 -11.9 -9.2 11.9 6.8 29.5 21.2
Run 4 -30.0 -24.7 -13 -10.2 10.7 7.1 29.9 24.7
Run 5 -30 -23.3 -10.3 -8.1 12.2 11.8 30 21.4
Run 6 -30 -26.6 -15.5 -11.7 11,2 6.3 30 25.9

To visualize the results, the path of vehicle CoG during the best results of the optimization

processes can be seen in Figure 4.15.

Maximum tire lateral slip angle change with respect to time for all of the runs can be seen

in Figure 4.16.
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Figure 4.15: Vehicle paths during the steady-state cornering maneuver.

Figure 4.16: Maximum slip angles of all the runs.85



From Figure 4.16, it can be seen that all of the maximum slip angles of the optimization

processes are considerably lower than the maximum slip angle of the original configuration.

The optimization process results will be discussed in greater detail in the discussion and

conclusion chapter.

4.7 Conclusion

In this chapter, the method used for the turning radius optimization study has been given,

as well as the study results. The structure and use case of the python code used for

the optimization process was discussed. Use of Adams command file used to run the

simulation was also discussed.

For the turning radius optimization study, six different optimization processes were con-

ducted. These optimization processes are referred to as runs. The properties of the fittest

individuals in the last generations of these runs were given in Table 4.5. Except for run 4,

the individuals given in Table 4.5 are the individuals that reached the maximum fitness

value of zero and caused the genetic algorithms to terminate. For run 4, the genetic

algorithm got stuck on local minima and was terminated because the genetic algorithm

reached the maximum allowed generation number. The effect of the number of individuals

was investigated by comparing run 1 and run 2, 20 individuals in each generation were

more efficient than 40 individuals in each generation in terms of the number of generations

created before the genetic algorithm was terminated. The effects of genetic algorithm

settings were also investigated, run 5 and run 6 have the same genetic algorithm settings

and the average fitness values of these runs have a decreasing trend, however due to the

searching capabilities and elitism introduced to the genetic algorithm both runs find the

optimal solution quicker than other runs that have the same fitness biases. Runs 1, 2, 3

and 4 have the same genetic algorithm settings, and it was observed that for all of these

runs the trend of the average fitness values is increasing, meaning the genetic algorithm is

improving even if the maximum fitness does not change. Runs with this genetic algorithm

settings quickly converge around an optimum. For runs 1, 2 and 3 this was not a problem as

the local minima they initially converged was sufficient enough to trigger the termination

criteria, however run 4 got stuck in a local optima and was not able to find a solution that
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was good enough to trigger a termination criteria before the genetic algorithm reached the

maximum generation limit. Lastly, the effect of fitness function biases was investigated.

As expected, the runs with higher turning radius bias produced results with lower turning

radiuses and runs with higher slip angle bias produced results with lower tire lateral slip

angles.

All of the results obtained from the optimization processes yield lower tire lateral slip

angles than the original configuration. The only run 1 and run 3 have higher turning

radiuses than the original configuration, but these runs yield much lower tire lateral slip

angles than the original configuration. These results show that the proposed method

consistently finds optimal results for the given properties. As shown in table 4.5, the results

obtained depend on the inputted fitness function biases. Using this method, maximum

wheel steering angles that cause desired vehicle behavior can be obtained. In this chapter,

the optimal maximum wheel steering angles for different objectives were obtained. In

the next chapter, the high speed handling characteristics of these wheel steering angle

configurations will be investigated.
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5 NATO LANE CHANGE SIMULATIONS

5.1 Introduction

This chapter discusses the methodology, and the results of the Nato Lane Change simu-

lations conducted using the wheel steering angle configurations obtained in the turning

radius optimization section. The DLC study aims to investigate the stability and high

speed handling characteristics of the vehicle with the maximum wheel steering angle

configurations. A general function that represents the steering input for any DLC maneuver

was derived. The function is a trigonometric function with parameters that determines the

behavior of the input signal. Parameters of this function must be optimized for the specific

maneuver, vehicle, and longitudinal vehicle velocity. In this study, the same multi-body

dynamics model of the vehicle that was used for the turning radius optimization was used

in this part as well. The maximum steering angle sets that were obtained by turning radius

optimization study were used to create steering angle constraints between the wheels.

Each axle is assumed to achieve perfect Ackermann steering with no steering error. The

DLC maneuver considered is a specific maneuver called Nato Lane Change maneuver.

The optimization process is very similar to the optimization process of the turning radius

optimization discussed in the last chapter. The genetic algorithm used in the turning radius

optimization process was revised for the lane change maneuver.

The chapter begins with discussing the derivation of the general steering input for the DLC

maneuver. The vehicle model used for this study is the same as the vehicle model used

in the turning radius optimization study. In the Turning Radius Optimization chapter, the

full vehicle model and its subsystems were discussed. The DLC maneuver used in this

study is called Nato Lane Change maneuver. Details of this maneuver are discussed in
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the corresponding section. Adams command file used in this study is very similar to the

Adams command file used in the turning radius optimization study. In this chapter, the

inputs and outputs of the Adams command file will be discussed without going into detail.

The Python code used for the DLC study is more complicated than the Python code used

for the turning radius optimization study, but the basic principles are similar.

5.2 General Open Loop Steering Input For Lane Change Maneuvers

In this work lane change maneuver for a multi-axle vehicle is conducted using an open

loop control. The steering inputs of the tires are calculated in advance of the simulation

and given to Adams software simulation to conduct the lane change maneuver. The general

steering input for the lane change maneuver can be found using the formula:

�(t) = (a1 ⇤ cos(⇡ ⇤ tanh(t� b1))� c1 ⇤ cos(⇡ ⇤ tanh(t� d1))

+ (a1� c1))� (a2 ⇤ cos(⇡ ⇤ tanh(t� b2))

� c2 ⇤ cos(⇡ ⇤ tanh(t� d2)) + (a2� c2)) (5.1)

Where a1, b1, c1, d1, a2, b2, c2 and d2 are the parameters which changes the shape of the

input signal, t is time. A general shape of the input signal is shown in Figure 5.1.

This equation can be separated into two parts for a better explanation. The first part of the

equation is;

�1(t) = (a1 ⇤ cos(⇡ ⇤ tanh(t� b1))� c1 ⇤ cos(⇡ ⇤ tanh(t� d1)) + (a1� c1)) (5.2)

For the first part of this equation, a1 parameter corresponds to the amplitude of the first

peak, b1 parameter determines when the first peak will appear, c1 corresponds to the

magnitude of the first drop, d1 determines when the peak of the drop will occur. The first

part of this equation is responsible for the single lane change. This function can be used

alone to simulate single-lane change maneuvers.
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Figure 5.1: Steering angle input for the lane change maneuver

The second part of the equation is;

�2(t) = �(a2 ⇤ cos(⇡ ⇤ tanh(t� b2))� c2 ⇤ cos(⇡ ⇤ tanh(t� d2)) + (a2� c2)) (5.3)

The second part of the equation is the same as the first part in terms of its construction, and

the main difference is the negative sign in the second part of the equation. The negative

sign ensures the second part of the equation to behave opposite of the first equation. This

behavior allows the vehicle to change the lane in the opposite direction of the first part

of the equation and return to its original lane completing the DLC maneuver. For the

second part of the equation, a2 parameter corresponds to the amplitude of the first peak, b2

parameter determines when the first peak will appear, c2 corresponds to the magnitude of

the first drop, d2 determines when the peak of the drop will occur.

By changing the timing and the amplitudes of the peaks and drops in this equation, an

infinite number of DLC maneuvers can be obtained, as long as the vehicle dynamics allows

the maneuver. The same conclusion can be made for single lane change maneuvers as well

using the first part of the equation. This equation can be used for every wheeled vehicle

independent of the number of axles and the number of steerable axles.
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5.3 Nato Lane Change Maneuver

In this study, Nato Lane Change maneuver [2] was simulated to investigate the high-speed

handling and dynamic stability of the vehicle. The vehicle goes through a narrow path

that has two lane change events, the dimensions of the road changes according to the

dimensions of the vehicle. The longitudinal vehicle velocity is kept constant during the

maneuver. In this work, the vehicle speed is kept steady at 80 km/h. The test track is

described as; flat road with a slope of less than 2 percent, good grip with friction coefficient

higher than 0.7 and uniform paved road. For the real world test, devices with supporting

wheels on each side of the vehicle are required to be mounted to the vehicle. During this

maneuver, the vehicle velocity must be kept as steady as possible. The road, the vehicle

must follow during NATO Lane Change maneuver is given in Figure 5.2.

Figure 5.2: Nato lane change maneuver specifications. [2]

The Python code determines the dimensions of the road. After the Python code is imported,

the Python code measures the dimensions of the vehicle and calculates the dimensions of

the road.
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5.4 Adams Command File

The Adams command file used in this study is very similar to the Adams command file

used in the turning radius optimization study. The Adams command file used in this study

also runs the simulations and outputs the desired results. In this study, the outputs that

are used in the fitness calculation are the positions of the markers that are located at the

four corners of the vehicle. The Adams command file creates four text files for each of the

corners. These text files contain the x and y locations of the markers.

Adams command file calls an Adams event file created for this study. In this event file, the

duration of the simulation, the time step of the simulation, the longitudinal velocity of the

vehicle and controller objectives are given. The controller in this study is trying to keep

vehicle longitudinal velocity as steady as possible. There are no other objectives, the gear

ratio is constant, and there is no steering.

5.5 Python Code

The optimization process starts with importing the Python file into Adams. The Python

code starts by evaluating the vehicle dimensions. The vehicle dimensions are used to

create the DLC path the vehicle will follow; also, the functions used to calculate the wheel

steering angles uses the vehicle dimensions as well. The maximum steering angles of the

tire are inputted to the Python code. The maximum wheel steering angles are also used in

wheel steering angle calculation functions.

In this study, each tire is steered individually. It is assumed that the tires are steered

according to Ackermann steering in each axle, without steering error, this means the two

lines drown normal to the tires in each axle will cross each other somewhere in a straight

line. In the figure above the normal lines from the front tires of the vehicle crosses each

other at the straight line at the third axle. An example of the Ackermann steering for one

axle is given in Figure 5.3.
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Figure 5.3: Ackermann steering example for one axle.

Vehicles have steering errors due to the mechanism used in the steering system. When

designing a mechanism for the steering systems, the goal is to minimize the steering error

and correctly follow Ackermann steering. The intended use case for this method is early

in the design process, where the maximum steering angles of the tries are known, but the

steering system is not designed yet. Using this method maximum wheel steering angle

configurations can be examined without having to develop a steering system mechanism

for all of the configurations. The Python code that was used in the DLC study is given in

Appendix C.

5.5.1 Genetic Algorithm

The genetic algorithm used for the DLC maneuver is created by modifying the genetic

algorithm used for the turning radius optimization study. The aim of the genetic algorithm

used for the DLC study is to find the set of parameters of the general DLC steering input

function, which will cause the vehicle to satisfies the Nato Lane Change maneuver. There

are eight parameters in the general DLC steering input function, but the parameter that

decides the start of the maneuver does not change. So there are seven parameters to be

optimized.
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Creating the individuals and the mutation genetic operations are where the genetic al-

gorithm used in this study differs from the genetic algorithm used in the turning radius

optimization section. Bout of these parts are problem specific, and constraints of the

problem must be applied individually. Other parts of the genetic algorithm were created to

be used with any problem and can be directly applied to this problem.

5.5.2 Fitness Function

The steering input function for the front left tire created by the general steering input

function is inputted to the fitness function. Other wheel steering angles are calculated by

the fitness function and then inputted to the vehicle model in Adams. Simulation is then

run by calling upon the Adams command file. Adams command file outputs the x and y

coordinates of the markers located at the corners of the vehicle as text files. The Python

code reads the text files containing the coordinates and created Python objects containing

those coordinates. The workflow of the fitness function is given in Figure 5.4.

Figure 5.4: Fitness function flow chart for the DLC maneuver.
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The steering angle of the front left tire is calculated using the general DLC steering

input function, which was discussed earlier in this chapter. For an axle that satisfies the

Ackermann steering, outer wheel steering angle for a given inner wheel steering angle can

be calculated as;

�o = arctan(
1

w
l +

1
tan(�i)

) (5.4)

Where �o is the outer wheel steering angle, �i is the steering angle of the inner tire, w is

the vehicle width, and li is the vertical distance between the axle and the line which the

normal lines from the tires cross, where i is the axle number. For a regular four-wheeled

vehicle with Ackermann steering, l is the distance between the front and the rear axles.

For an axle which the maximum inner and outer wheel steering angles are known li can be

calculated as;

li =
w

1
tan(�omax)

� 1
tan(�imax)

. (5.5)

Where �omax is the maximum angle of the outer tire and �imax is the maximum angle of

the inner tire. Using the functions given in above steering angle inputs for the front four

tires are calculated. After the Python code calculates the wheel steering angles, they are

inputted to the Adams model. Simulation can be conducted after this process. To perform

the simulation Python code calls the Adams command file and reads the output text files.

Python code creates Python objects from the simulation results.

The cost function can then be calculated using the Python objects containing the coordinates

of the corner markers. The function takes one corner at a time and looks at the y coordinates

according to the x coordinates if the y coordinate value is not in the specified range for

that x coordinate than the function increases the cost. After the cost of all the corners are

calculated the functions adds the cost and outputs the negative of the cost. This way if

the cost is zero, that means the vehicle completed the maneuver without crossing the road

limits. The lower the cost of an individual, the worst the solution is.
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5.5.3 Termination Criteria

The objective of this study differs from the turning radius optimization study, in the turning

radius optimization study the aim is to find an optimal solution, but in this study, the

objective is to find a solution that satisfies the criteria of the maneuver. Three of the four

termination criterion used in the turning radius study can be used for this study. Which are;

• Maximum generation number

• Maximum fitness value repetition

• Maximum fitness value.

Maximum average fitness value as termination criteria cannot be used in this situation as

we are not interested in the conversion of the genetic algorithm, we are only interested in

finding a specific solution. The maximum fitness termination criteria ensure that when the

desired solution is reached the genetic algorithm stops. Limiting the maximum number of

generations and maximum fitness repetition are safeguards against the while loop.

5.6 DLC Study Results

In this section, results of the DLC studies are given. There are three DLC studies conducted.

The first DLC study conducted is for the vehicle with the original maximum wheel steering

angle configuration. For the second DLC study, run 1 configuration was used. The run 1

configuration provides the lowest tire lateral slips and highest turning radius. In the last

DLC study conducted, the vehicle with run 6 configurations were used. The vehicle with

run 6 configuration achieved the lowest turning radius and second highest tire lateral slip

angles. In the vehicle design phase, either the turning radius is going to be prioritized, or

the tire lateral slip angles are going to be prioritized for minimal tire wear. Run 1 and run

6 provides these priorities, and one of them is likely to be chosen.

The genetic algorithm configurations used for the three different DLC studies are the same

and can be seen in Table 4.1.
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Table 5.1: DLC genetic algorithm configurations.

Original
Configuration

Run 1
Configuration

Run 2
Configuration

Population
Size 20 20 20

Selection
Type Fittest Half Fittest Half Fittest Half

Pairing
Type Random Random Random

Crossover
Type Single Point Single Point Single Point

Mutation
Type Reset Reset Reset

For the original configuration, the optimization process can be summarized with the

maximum and average fitnesses with regression line given in Figure 5.5.

Figure 5.5: Maximum and average fitness of the original configuration optimization
process.

As discussed earlier, if the fitness value reaches zero, that means the vehicle is moving

through the road without crossing the borders. From Figure 5.5, it can be seen that the
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fitness value reached zero at the last generation, and that triggered the termination criteria.

The vehicle path during the DLC maneuver can be seen in Figure 5.6.

Figure 5.6: Path of the vehicle with the original steering angle configuration.

The DLC study with the run 1 maximum steering angle configuration is discussed next.

The maximum and average fitnesses of the genetic algorithm, as well as the regression line

of the average fitness values, is given in Figure 5.7.

Figure 5.7: Maximum and average fitness of the run 1 configuration
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Figure 5.8: Path of the vehicle with the run 1 steering angle configuration.

From Figure 5.7, it can be seen that the genetic algorithm was terminated because the

maximum fitness value reached zero. With the best solution found in the last generation of

the genetic algorithm, the vehicle completed the DLC maneuver without crossing the road

boundaries with the run 1 steering angle configuration. The path of the vehicle during this

maneuver can be seen in Figure 5.8.

The maximum and average fitness values of the genetic algorithm used for the vehicle with

run 6 configuration can be seen in Figure 5.9.

The path of the vehicle CoG, as well as the paths of the four corners of the vehicle with the

run 6 steering angle configuration, can be seen in Figure 5.10.

Although the vehicle has completed the maneuver with all three of the steering angle con-

figurations, the inputs and the vehicle behavior differ from configuration to configuration.

The torque the driver must apply to the steering wheel can not be calculated without the

steering system and hydraulic actuator models. However, how much does the driver has

to turn the steering wheel to complete the maneuver successfully can be calculated with

some assumptions. To compare the steering inputs necessary to complete the maneuver,

the front left wheel steering input can be compared. However, all of the maximum steering

angles are different from each other for the different steering angle configurations. So

to compare the steering input the steering angle of the front left tire is divided by the
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Figure 5.9: Maximum and average fitness of the run 6 configuration

Figure 5.10: Path of the vehicle with the run 6 steering angle configuration.
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maximum steering angle of the corresponding configuration. Using this method and the

assumption that the wheel steering angle and steering wheel angle changes linearly, the

percentage of the maximum steering wheel angle the driver must input to the system can

be obtained. The driver input for the vehicle with different configurations can be seen in

Figure 5.11.

Figure 5.11: Steering wheel turn percentage for the vehicle with different configurations.

As discussed previously in this chapter, the velocity of the vehicle during the DLC maneu-

ver must be kept as steady as possible. The vehicle longitudinal velocity of the vehicles

with three different steering angle configurations during the DLC maneuver can be seen in

Figure 5.12.

The Nato Lane Change maneuver specifies that error of less than one percent in the

vehicle longitudinal velocity. As seen from Figure 5.12, vehicle velocity with all of the

configurations are in the allowable range. The longitudinal velocity controller inputs

throttle and brake to the systems to keep the velocity study. The controller does not

input and brake demand in this study. Investigating the throttle input to the system can

give insight into the system behavior. In Figure 5.13, throttle demands for the different
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Figure 5.12: Velocities of the vehicle with different steering angle configurations during
the DLC maneuver.

configurations can be seen.

As seen from Figure 5.13, the vehicle with run 1 configuration had the lowest throttle

demand during the DLC maneuver. Although the different configurations of the same

vehicle are simulated in the same road with very similar longitudinal velocities, the vehicle

behavior during the maneuver is very different. Because there are two steerable axles in

the vehicle, the handling behavior is more complicated than that of a vehicle with only

one steerable axle. In this case, the relationship between the first and second axle steering

angles affects the vehicle’s tendency of yaw gain and lateral acceleration gain. The lateral

accelerations for the vehicle with different steering angle configurations can be seen in

Figure 5.13.

The yaw rates of the vehicle with different steering angle configurations can be seen in

Figure 5.14.

Vehicle roll angle during the maneuver for all of the configurations can be seen in Figure

5.15.

The Nato Lane Change maneuver conducted at 80 km/h for an 8x8 vehicle is a very
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Figure 5.13: Throttle demands for all of the configurations.

Figure 5.14: Lateral acceleration change with respect to time.
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Figure 5.15: Yaw rates of the vehicle with different steering angle configurations during
the DLC maneuver.

Figure 5.16: Roll angles of the vehicle with different steering angle configurations during
the DLC maneuver.
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Figure 5.17: Normal rear left tire forces with different steering angle configurations during
the DLC maneuver.

demanding maneuver and the vehicle is pushed to its limits. The roll angles observed in the

original configuration and run 6 configurations are very high and coupled with the yaw rate

of the vehicle the rear left tire of the vehicle loses contact with the road. The normal load

on the rear left tire of the vehicle can be seen in Figure 5.17 for all of the configurations.

As seen from Figure 5.17, rear left tire of the run 6 and original configuration loses contact

with the road around 5 seconds. The vehicle with the run 1 configuration does not lose

contact with the road, but the normal force on the tire is lower than the unsprung mass,

meaning the tire is standing on the rebound stops and is about to lose contact. The moment

the tire normal forces reaches a minimum for all the configurations is the point where the

vehicle roll angle, yaw rate, and the lateral acceleration is at its maximum. In Figure 5.18,

slip angle change with respect to time of the left tires of the fourth axle of the vehicle with

different steering angle configurations can be seen. The left tire of the fourth axle is given

because that is the axle with the highest slip angles.

A summary of the DLC study results can be seen in table 5.2.
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Figure 5.18: Slip angles rear left tire forces with different steering angle configurations
during the DLC maneuver.

Table 5.2: DLC study results summary.

Original
Configuration

Run 1
Configuration

Run 6
Configuration

Max Steering
Percentage

(%)
19.9 20.7 18.2

Min Longitudinal
Velocity (km/h) 78.8 79.14 78.5

Max Throttle
Demand (%) 14.3 13.8 14.8

Max Lateral
Acceleration

(g)
0.379 0.370 0.385

Max Yaw Rate
(deg/sec) 14.3 14.1 15.8

Max Roll Angle
(deg) 10.0 9.39 10.3

Min Tire Normal
Force (N) 0 3978 0

Max Tire Slip
Angle (deg) 5.76 4.97 6.9
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5.7 Conclusion

In this chapter, the proposed method for simulating a DLC maneuver for a vehicle without

a steering system was presented. A generalized open loop function was derived to create

steering input for a double lane change maneuver. The input can be manipulated by

changing the parameters of the generalized function. A method similar to the method used

in turning radius optimization study was used to optimize the parameters of the general

DLC input function.

Three different DLC maneuvers were conducted. The first DLC maneuver conducted was

for the original configuration. The second optimization process was conducted for the

vehicle with run 1 configuration, which was the configuration with the highest turning

radius and lowest lateral slip angles. Also, the final optimization study was conducted for

the vehicle with run 6 configuration, which is the configuration with the lowest turning

radius and highest tire lateral slip angles out of all the runs. The vehicle completed

the maneuver with all three configurations. From Figure 5.12, it can be seen that the

longitudinal velocity of the vehicle with run 1 configuration had the least deviation from

the target velocity. Also, as seen from Figure 5.13, the vehicle with the run 1 configuration

had the lowest throttle demand. From these results, it can be said that the vehicle with run

1 configuration encountered the least resistance. As seen from Figure 5.14 and Figure 5.15,

the vehicle with run 1 configuration yields the lowest results in terms of lateral acceleration

and yaw rate. One of the reasons the yaw rate and lateral acceleration of the vehicle with

run 1 configuration are lower than other configurations is the tire lift off occurring in the

original and run 6 configurations, which can be seen in Figure 5.17. Yaw rate of the vehicle

coupled with the roll angle seen in Figure 5.16, results in tire lift off for the original and

run 6 configurations. From Figure 5.11, it can be seen in the first part of the maneuver the

run 1 configuration input demand is higher than other configuration but in the second part

of the maneuver where the tire loft off occurs the steering demand of the original and run 6

configurations are higher than the run 1 configuration.

Using the proposed method, DLC maneuvers for the same vehicle with three different

wheel steering angle configurations were successfully conducted. These results show that

the proposed method can be used to conduct high-speed DLC maneuvers for vehicles
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without a steering system. The method is particularly useful for the early design phase of

the vehicle. Usually, the maximum wheel steering angles of the vehicle is restricted by the

body or the suspension system of the vehicle. With this information, before designing the

steering system of the vehicle, the high-speed capabilities of the vehicle can be investigated

using this method.
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6 DISCUSSION AND CONCLUSIONS

6.1 Turing Radius Optimization Discussion

The first method discussed in this study is the turning radius optimization study. In this

study, the maximum steering angles of the prototype 8x8 AWS vehicle were optimized

to obtain a small turning radius and low tire lateral slip angles. To be able to calculate

the vehicle turning radius and to measure the tire lateral slip angles, multi-body dynamics

model of the 8x8 vehicle was created in Adams Car. The multi-body dynamics model

of the vehicle was used to conduct low-speed steady-state turning simulations, and the

simulation results were used in the optimization process. For the optimization process, a

genetic algorithm was written in Python. Using the 8x8 multi-body vehicle model and the

Python code optimization processes were conducted.

In this study, several different optimization processes with different genetic algorithm

settings, various number of individuals in a generation, and different biases in the fit-

ness function were conducted. Results of optimization processes were used to conduct

comparisons. A summary of the optimization processes is given in Table 6.1.

As seen in Table 6.1, by changing the biases in the fitness function, the results that are

obtained from the optimization process can be tailored as desired. The turning radius of

the vehicle can be lowered by increasing the value of the bias that is multiplied by the

normalized turning radius in the fitness function, and the same method can be used to

reduce the tire lateral slip angles.

Due to the number of parameters and the number of different values each parameter can

take, the search space of the optimization algorithm is enormous. Before this study, the
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Table 6.1: Turning radius optimization results.

Tuning
Radius
(mm)

Maximum
Tire Lateral
Slip Angle

(deg)

Number
of Generations

Created

Fitness
Function
Biases

Termination
Reason

Original
Configuration 7432.84 4.6 N/A N/A N/A

Run 1 7621.46 1.38 19 0.5 - 0.5
Maximum

Fitness
Reached

Run 2 7477.91 1.87 14 0.5 - 0.5
Maximum

Fitness
Reached

Run 3 7398.53 1.75 25 0.6 - 0.4
Maximum

Fitness
Reached

Run 4 7108.9 2.51 100 0.7 - 0.3
Maximum

Iteration Number
Reached

Run 5 7236.82 2.5 12 0.5 - 0.5
Maximum

Fitness
Reached

Run 6 6940.16 3.26 34 0.7 - 0.3
Maximum

Fitness
Reached

optimal tire maximum steering angles were found by trial and error, but for such an ample

search space finding the best possible solution by hand is very unlikely.

By comparing the original configuration and Run 2, it can be seen that a similar turning

radius to the original configuration and much lower tire lateral slip angles can be found

by genetic algorithm optimization. In this case, a turning radius that is very similar to the

original configuration was reached with 70% lower maximum tire lateral slip angle was

reached. Also, in Run 6 much smaller vehicle turning radius than original configuration

was achieved with 30% lower tire lateral slip angle.

From the optimization process results, it can be seen that the genetic algorithm consistently

found acceptable results regardless of the genetic algorithm configuration or the population

size. Optimization process results showed that the optimized tire maximum steering angles

cause lower tire lateral slip angels and according to the fitness function biases lower turning
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radiuses than the original configuration are possible.

6.2 Nato Lane Change Results Discussion

The low-speed handling capabilities and the turning radius of the vehicle were optimized

in the turning radius optimization study. The maximum wheel steering angles obtained

in this study guarantees the low turning radius and low tire lateral slip angles, but the

high-speed handling characteristics of the vehicle which is using the optimized maximum

wheel steering angles are still unknown. Usually, the low-speed and high-speed steering

strategies differ in an AWS vehicle. In this study, the control strategy used in the prototype

vehicle is used for the optimized wheel steering angle configurations. In this strategy, the

vehicle is steered in all of the wheels for low vehicle longitudinal velocities, and when the

longitudinal vehicle velocity is higher than a specific limit, the rear four wheels are kept

at zero steering angle and the vehicle is steered only by the front four tires. In the NATO

Lane Change maneuver, the longitudinal vehicle velocity was kept constant at 80 km/h,

which is considered high speed considering 8x8 military vehicles usually have top speeds

around 100 km/h. Due to the high-speed nature of the maneuver, the rear four tires are not

steered during the maneuver.

Three steering angle configurations were compared in this study. The first configuration

tested is the original configuration, this is the configuration which the optimized wheel

steering angle configurations will be compared against. The second configuration is the

run 1 configuration, and this configuration provided the lowest tire lateral slip angles and

the highest turning radius. The final configuration is the run 6, this configuration provided

the smallest turning radius, but the tire lateral slip angles were higher than any of the other

optimization results. However, the tire lateral slip angles were still lower than the original

configuration.

All of the steering angle configurations successfully completed the DLC maneuver. How-

ever, there were some apparent differences between the configurations. From the study

results, it was observed that both the original configuration and the run 6 configuration

diverged from the intended 80 km/h longitudinal velocity that the run 1 configuration.
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Figure 6.1: Paths of all the configurations during the DLC maneuver.

From the throttle inputs, it was observed that the run 6 required the most throttle while

diverging from the intended velocity more than the other two configurations. The original

configuration was better in terms of deviating from the expected velocity and the throttle

input needed, but the run 1 configuration was better than both configurations in both areas.

It can be said that the vehicle with run 1 configuration encountered the least resistance in

the longitudinal direction.

Another big difference between the configurations is the left tire in the fourth axle losing

contact with the road in the original and run 6 configurations. High roll angles of the

vehicles for the original and the run 6 configuration coupled with high yaw rates caused

the left tire in the fourth axle to lose contact with the road. This issue did not occur in the

run 1 configuration. There are no specifications about tire lift off in the Nato Lane Change

maneuver. However, some of the DLC studies specify that the tire lift off is not acceptable

[13].

As discussed before, the steering wheel input percentage was calculated by dividing the

front left wheel steering input with the corresponding maximum steering angle. The initial

steering demand for run 1 is higher than the other configurations. However, after the initial

lane change steering demand for run 1 is lower than the other two configurations. From

these results, it can be concluded that the steering effort for run 1 is slightly higher than

the other configurations, but due to high roll angles and tire lift off the steering effort for

114



the run 6 and original configurations are higher in the second part of the maneuver.

As seen from the DLC study results, this method can be used to conduct DLC maneuver

with a vehicle model that does not have a steering system. This process consistently finds

the steering inputs needed to perform the DLC maneuver for different wheel steering angle

configuration.

6.3 Conclusion

In this work, a method for optimizing the set of tire maximum steering angles for multi-axle

vehicles with AWS was proposed. The optimization process is done using Adams Car for

simulations and a Python code for the genetic algorithm optimization. Results of the study

show that the proposed method finds steering angle sets that caused lower tire lateral slip

angle independent of the genetic algorithm settings and the biases of the fitness function.

Depending on the biases of the fitness function lower turning radiuses that the original

configuration with lower tire lateral slip angles was obtained. Considering the number of

possible options for the problem, finding an optimal solution with trial and error method

which is used currently, is highly unlikely. Design specifications of the wheel steering

angles can be found reliably with the proposed method.

Another method was developed to evaluate the high-speed handling behavior of the vehicle

fitted with the optimized set of tire maximum wheel steering angles. A function was derived

to produce the generalized open loop steering input for DLC maneuvers. The parameters

of the generalized open loop steering angle for the DLC maneuvers are optimized for

each maximum steering angle set simulated so that the vehicle could complete the DLC

maneuver without crossing the road limits. The simulation results showed that the proposed

method has successfully optimized the parameters of the generalized open loop steering

input for DLC maneuvers equation, for all of the maximum steering angle sets tested. The

method can be used for investigating the high-speed vehicle handling behavior for vehicles

that have no steering system.

The two proposed methods can be used together to obtain an optimized set of maximum

wheel steering angles that caused the vehicle to have a small turning radius as well as
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low tire lateral slip angles and the high-speed handling capabilities of the vehicle can be

investigated before the steering system is designed for the optimized set of maximum

steering angles. The two methods can be used separately as well. The DLC maneuver

method can be used to investigate the high-speed vehicle handling early in the design

process. The effects of wheelbase distance between the axles and different AWS strategies

can be investigated using this method.

6.4 Future Work

As shown in the sections above, each of the proposed methods works as intended. However,

some improvements can be made to enhance the usefulness of the methods together and

on their own. One of these improvements is to automatize the turning radius optimization

study to perform multiple optimization processes. Using this method, the user would only

need to run the optimization process once and different optimization processes would run

with different fitness function biases and output the results. Using these results user would

choose the best one knowing the tradeoff.

Similar changes can be made to the DLC study so that all of the possible steering configu-

rations can be tested automatically. The DLC study can be used to investigate the effects of

other parameters as well. For example, at the beginning of the design phase, the effects of

the axle locations on the high-speed handling behavior of the vehicle can be investigated

using this method.

Another improvement can be made to the generalized DLC steering input function. If the

parameters in the function can be approximated with vehicle properties like the understeer

coefficient of the vehicle, the optimization process would be simplified or maybe made

become obsolete altogether. The generalized DLC input can be used for a single lane

change, as explained in the previous chapter. This function can be implemented into

autonomous driving, and simple lane change or emergency maneuvers can be performed

using this function. This method would include the effects of vehicle dynamics in a simple,

easy to compute function.
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APPENDIX B

macro modify macro = .ACAR. macros . mac_ana_sub &

u s e r =" a c a r a n a l y s i s s u bmi t " &

commands=" a c a r a n a l y s i s f u l l _ v e h i c l e s d i s u bmi t &" , &

" assembly = . V e h i c l e &" , &

" v a r i a n t = d e f a u l t &" , &

" o u t p u t _ p r e f i x = \ " P a r s 3 \ " &" , &

" a n a l y s i s _ m o d e = i n t e r a c t i v e &" , &

" r o a d _ d a t a _ f i l e = \ " mdids : / / a c a r _ s h a r e d / r o a d s . t b l / 2 d _ f l a t . r d f \ "

&" , &

"

d c f _ f i l e = \ " f i l e : / / F : / T h e s i s / s t e e r . xml \ " &" , &

" l o g _ f i l e = yes &" , &

" comment = \ " \ " "

v a r i a b l e d e l e t e v a r i a b l e = .ACAR. dboxes . d b o x _ a n a _ f u l _ s d i _ s u b . p r e f i x ,

.ACAR. dboxes . d b o x _ a n a _ f u l _ s d i _ s u b . " tmp⇤ "

a c a r a n a l y s i s s ubm i t

n u m e r i c _ r e s u l t s w r i t e &

r e s u l t _ s e t _ c o m p o n e n t _ n a m e =

. V e h i c l e . S i m u l a t i o n . Body . Curb_To_Curb .

Curb_to_Curb_x ,

. V e h i c l e . S i m u l a t i o n . Body . Curb_To_Curb .

Curb_to_Curb_y &

s o r t _ b y = by_t ime &

o r d e r = a s c e n d i n g &

w r i t e _ t o _ t e r m i n a l = o f f &

f i l e _ n a m e = " d i s p . t x t " &

&

n u m e r i c _ r e s u l t s w r i t e &

r e s u l t _ s e t _ c o m p o n e n t _ n a m e =

. V e h i c l e . S i m u l a t i o n .

t i l _ w h e e l _ t i r e _ k i n e m a t i c s . l a t e r a l _ s l i p _ f r o n t ,

. V e h i c l e . S i m u l a t i o n .

t i l _ w h e e l _ t i r e _ k i n e m a t i c s . l a t e r a l _ s l i p _ f r o n t 2 ,

. V e h i c l e . S i m u l a t i o n .

t i r _ w h e e l _ t i r e _ k i n e m a t i c s . l a t e r a l _ s l i p _ f r o n t ,
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. V e h i c l e . S i m u l a t i o n .

t i r _ w h e e l _ t i r e _ k i n e m a t i c s . l a t e r a l _ s l i p _ f r o n t 2 &

s o r t _ b y = by_t ime &

o r d e r = a s c e n d i n g &

w r i t e _ t o _ t e r m i n a l = o f f &

f i l e _ n a m e = " s l i p _ f r o n t . t x t " &

&

n u m e r i c _ r e s u l t s w r i t e &

r e s u l t _ s e t _ c o m p o n e n t _ n a m e =

. V e h i c l e . S i m u l a t i o n .

t i l _ w h e e l _ t i r e _ k i n e m a t i c s . l a t e r a l _ s l i p _ r e a r ,

. V e h i c l e . S i m u l a t i o n .

t i l _ w h e e l _ t i r e _ k i n e m a t i c s . l a t e r a l _ s l i p _ r e a r 2 ,

. V e h i c l e . S i m u l a t i o n .

t i r _ w h e e l _ t i r e _ k i n e m a t i c s . l a t e r a l _ s l i p _ r e a r ,

. V e h i c l e . S i m u l a t i o n .

t i r _ w h e e l _ t i r e _ k i n e m a t i c s . l a t e r a l _ s l i p _ r e a r 2 &

s o r t _ b y = by_t ime &

o r d e r = a s c e n d i n g &

w r i t e _ t o _ t e r m i n a l = o f f &

f i l e _ n a m e = " s l i p _ r e a r . t x t " &

&

a n a l y s i s d e l e t e&

a n a l y s i s _ n a m e = S i m u l a t i o n
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APPENDIX C

# Turn ing Radius O p t i m i z a t i o n F i l e

#

import Adams

from os import pa th , mkdir , c h d i r

from math import a t an , s q r t , exp , t a n

from random import random as rnd

import numpy as np

from random import r a n d i n t , gauss , r a n d r a n g e

# Outpu t t e x t f i l e name

R e s u l t _ f i l e = ’ T u r n i n g _ R a d i u s _ O p t i m i z a t i o n _ S t u d y . t x t ’

# S e l e c t i o n

# s e l e c t i o n _ t y p e = ’ F i t t e s t Ha l f ’

s e l e c t i o n _ t y p e = ’ R o u l e t t e Wheel ’

# P a i r i n g

# p a i r i n g _ t y p e = ’ Random ’

p a i r i n g _ t y p e = ’ F i t t e s t ’

# C r o s s o v e r

# c r o s s o v e r _ t y p e = ’ S i n g l e P o i n t ’

c r o s s o v e r _ t y p e = ’ S i n g l e S t a t i o n ’

# M u t a t i o n

m u t a t i o n _ t y p e = ’ R e s e t ’

# O m u t a t i o n _ t y p e = ’ Gauss ’

#

# F i t n e s s B i a s e s

t u r n _ r a d i i _ b i a s = 0 . 5

s l i p _ b i a s = 1 � t u r n _ r a d i i _ b i a s

# D u r a t i o n o f t h e s t e e r i n g manuver ( s e c o n d s )

Ts = 10

#Command f i l e s

command_f i le = ’F : \ \ T h e s i s \ \ s t e e r . cmd ’
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# Path t o t h e main d i r e c t o r y

M a i n F o l d e r P a t h = p a t h . a b s p a t h ( r ’F : \ T h e s i s \ O p t i m i z a t i o n ’ )

def i n d i v i d u a l ( number_of_genes = 8 ) :

# f i r s t a x l e

i n d i v i d u a l = [ round ( rnd ()⇤�10 �20 ,1)]

i n d i v i d u a l . append ( round ( rnd ()⇤�10 �18 ,1))

whi le i n d i v i d u a l [ 1 ] < i n d i v i d u a l [ 0 ] :

i n d i v i d u a l [ 1 ] = round ( rnd ()⇤�10�18 ,1)

# second a x l e

i n d i v i d u a l . append ( round ( rnd ()⇤�10 �15 ,1))

i n d i v i d u a l . append ( round ( rnd ()⇤�10 �13 ,1))

whi le i n d i v i d u a l [ 3 ] < i n d i v i d u a l [ 2 ] :

i n d i v i d u a l [ 3 ] = round ( rnd ()⇤�10�13 ,1)

# t h i r d a x l e

i n d i v i d u a l . append ( round ( rnd ( )⇤1 0 + 1 5 , 1 ) )

i n d i v i d u a l . append ( round ( rnd ( )⇤1 0 + 1 3 , 1 ) )

whi le i n d i v i d u a l [ 5 ] > i n d i v i d u a l [ 4 ] :

i n d i v i d u a l [ 5 ] = round ( rnd ( )⇤1 0 + 1 3 , 1 )

# f o u r t h a x l e

i n d i v i d u a l . append ( round ( rnd ( )⇤1 0 + 2 0 , 1 ) )

i n d i v i d u a l . append ( round ( rnd ( )⇤1 0 + 1 8 , 1 ) )

whi le i n d i v i d u a l [ 7 ] > i n d i v i d u a l [ 6 ] :

i n d i v i d u a l [ 7 ] = round ( rnd ( )⇤1 0 + 1 8 , 1 )

re turn [ i n d i v i d u a l [ 0 ] , i n d i v i d u a l [ 2 ] , i n d i v i d u a l [ 4 ] ,

i n d i v i d u a l [ 6 ] , i n d i v i d u a l [ 1 ] , i n d i v i d u a l [ 3 ] ,

i n d i v i d u a l [ 5 ] , i n d i v i d u a l [ 7 ] ]

def p o p u l a t i o n ( n u m b e r _ o f _ i n d i v i d u a l s ) :

re turn ( [ i n d i v i d u a l ( ) f o r x in range ( n u m b e r _ o f _ i n d i v i d u a l s ) ] )

def max_of ( x ) :

re turn max ( abs ( max ( x ) ) , abs ( min ( x ) ) )

def f i t _ t e s t ( x ) :

# Changing t h e m o t i o n s

L1_motion . f u n c t i o n = ’STEP ( t ime , 0 , 0 , 1 0 , ’+ s t r ( x [ 0 ]⇤0 . 0 1 7 4 5 ) + ’ ) ’

L2_motion . f u n c t i o n = ’STEP ( t ime , 0 , 0 , 1 0 , ’+ s t r ( x [ 1 ]⇤0 . 0 1 7 4 5 ) + ’ ) ’

L3_motion . f u n c t i o n = ’STEP ( t ime , 0 , 0 , 1 0 , ’+ s t r ( x [ 2 ]⇤0 . 0 1 7 4 5 ) + ’ ) ’

L4_motion . f u n c t i o n = ’STEP ( t ime , 0 , 0 , 1 0 , ’+ s t r ( x [ 3 ]⇤0 . 0 1 7 4 5 ) + ’ ) ’

R1_motion . f u n c t i o n = ’STEP ( t ime , 0 , 0 , 1 0 , ’+ s t r ( x [ 4 ]⇤0 . 0 1 7 4 5 ) + ’ ) ’

R2_motion . f u n c t i o n = ’STEP ( t ime , 0 , 0 , 1 0 , ’+ s t r ( x [ 5 ]⇤0 . 0 1 7 4 5 ) + ’ ) ’
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R3_motion . f u n c t i o n = ’STEP ( t ime , 0 , 0 , 1 0 , ’+ s t r ( x [ 6 ]⇤0 . 0 1 7 4 5 ) + ’ ) ’

R4_motion . f u n c t i o n = ’STEP ( t ime , 0 , 0 , 1 0 , ’+ s t r ( x [ 7 ]⇤0 . 0 1 7 4 5 ) + ’ ) ’

#Run t h e s i m u l a t i o n

Adams . r ead_command_f i l e ( command_f i le )

# Reading s i m u l a t i o n r e s u l t s

r e s u l t s _ d i s p = open ( ’ d i s p . t x t ’ , ’ r ’ ) . r e a d l i n e s ( )

r e s u l t s _ s l i p _ f r o n t = open ( ’ s l i p _ f r o n t . t x t ’ , ’ r ’ ) . r e a d l i n e s ( )

r e s u l t s _ s l i p _ r e a r = open ( ’ s l i p _ r e a r . t x t ’ , ’ r ’ ) . r e a d l i n e s ( )

# R e s u l t p a r a m e t e r s

pa th _x = [ ]

pa th _y = [ ]

sa1 = [ ]

sa2 = [ ]

sa3 = [ ]

sa4 = [ ]

sa5 = [ ]

sa6 = [ ]

sa7 = [ ]

sa8 = [ ]

# C r e a t i n g l i s t s o f t h e r e s u l t s

f o r x in range ( 2 0 9 , 5 0 7 ) :

pa th _ x . append ( f l o a t ( r e s u l t s _ d i s p [ x ] . s p l i t ( ) [ 0 ] ) )

pa th _ y . append ( f l o a t ( r e s u l t s _ d i s p [ x ] . s p l i t ( ) [ 1 ] ) )

sa1 . append ( f l o a t ( r e s u l t s _ s l i p _ f r o n t [ x ] . s p l i t ( ) [ 0 ] ) )

sa2 . append ( f l o a t ( r e s u l t s _ s l i p _ f r o n t [ x ] . s p l i t ( ) [ 1 ] ) )

sa3 . append ( f l o a t ( r e s u l t s _ s l i p _ f r o n t [ x ] . s p l i t ( ) [ 2 ] ) )

sa4 . append ( f l o a t ( r e s u l t s _ s l i p _ f r o n t [ x ] . s p l i t ( ) [ 3 ] ) )

sa5 . append ( f l o a t ( r e s u l t s _ s l i p _ r e a r [ x ] . s p l i t ( ) [ 0 ] ) )

sa6 . append ( f l o a t ( r e s u l t s _ s l i p _ r e a r [ x ] . s p l i t ( ) [ 1 ] ) )

sa7 . append ( f l o a t ( r e s u l t s _ s l i p _ r e a r [ x ] . s p l i t ( ) [ 2 ] ) )

sa8 . append ( f l o a t ( r e s u l t s _ s l i p _ r e a r [ x ] . s p l i t ( ) [ 3 ] ) )

p1 = { ’ x ’ : pa t h _x [ 5 0 ] , ’ y ’ : pa t h _y [ 5 0 ] }

p2 = { ’ x ’ : pa t h _x [ 1 0 0 ] , ’ y ’ : p a th _y [ 1 0 0 ] }

p3 = { ’ x ’ : pa t h _x [ 1 5 0 ] , ’ y ’ : p a th _y [ 1 5 0 ] }

A = p1 [ ’ x ’ ] ⇤ ( p2 [ ’ y ’]�p3 [ ’ y ’ ])�p1 [ ’ y ’ ] ⇤ ( p2 [ ’ x ’]�p3 [ ’ x ’ ] )

+p2 [ ’ x ’ ]⇤ p3 [ ’ y ’]�p3 [ ’ x ’ ]⇤ p2 [ ’ y ’ ]

B = ( p1 [ ’ x ’ ]⇤⇤2+ p1 [ ’ y ’ ]⇤⇤2 )⇤ ( p3 [ ’ y ’]�p2 [ ’ y ’ ] )

+( p2 [ ’ x ’ ]⇤⇤2+ p2 [ ’ y ’ ]⇤⇤2 )⇤ ( p1 [ ’ y ’]�p3 [ ’ y ’ ] )

+( p3 [ ’ x ’ ]⇤⇤2+ p3 [ ’ y ’ ]⇤⇤2 )⇤ ( p2 [ ’ y ’]�p1 [ ’ y ’ ] )

C = ( p1 [ ’ x ’ ]⇤⇤2+ p1 [ ’ y ’ ]⇤⇤2 )⇤ ( p3 [ ’ x ’]�p2 [ ’ x ’ ] )

+( p2 [ ’ x ’ ]⇤⇤2+ p2 [ ’ y ’ ]⇤⇤2 )⇤ ( p1 [ ’ x ’]�p3 [ ’ x ’ ] )

+( p3 [ ’ x ’ ]⇤⇤2+ p3 [ ’ y ’ ]⇤⇤2 )⇤ ( p2 [ ’ x ’]�p1 [ ’ x ’ ] )

D = ( p1 [ ’ x ’ ]⇤⇤2+ p1 [ ’ y ’ ]⇤⇤2 )⇤ ( p3 [ ’ x ’ ]⇤ p2 [ ’ y ’ ]

�p2 [ ’ x ’ ]⇤ p3 [ ’ y ’ ] ) + ( p2 [ ’ x ’ ]⇤⇤2+ p2 [ ’ y ’ ]⇤⇤2 )⇤
( p1 [ ’ x ’ ]⇤ p3 [ ’ y ’]�p3 [ ’ x ’ ]⇤ p1 [ ’ y ’ ] ) + ( p3 [ ’ x ’ ]

⇤⇤2+ p3 [ ’ y ’ ]⇤⇤2 )⇤ ( p2 [ ’ x ’ ]⇤ p1 [ ’ y ’]�p1 [ ’ x ’ ]⇤ p2 [ ’ y ’ ] )

# C a l c u l a t i n g t h e t u r n i n g r a d i u s
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r = s q r t ( f l o a t (B⇤⇤2+C⇤⇤2�4⇤A⇤D) / ( 4 ⇤A⇤⇤2 ) )

# S l i p a n g l e s

sa = [ sa1 , sa2 , sa3 , sa4 , sa5 , sa6 , sa7 , sa8 ]

# Cos t f u n c t i o n o u t p u t

sa_max = (max ( [ max_of ( sa [ x ] ) f o r x in range ( 8 ) ] ) )

re turn
{ ’ F i t n e s s ’ : [ t u r n _ r a d i i _ b i a s ⇤((7000� r ) / 1 0 0 0 ) + s l i p _ b i a s ⇤((3� sa_max ) / 2

) ] ,

’ Turn R a d i i (mm) ’ : [ r ] , ’ T i r e L a t e r a l S l i p s ( deg ) ’ :

[ max_of ( sa1 ) , max_of ( sa2 ) , max_of ( sa3 ) , max_of ( sa4 )

, max_of ( sa5 ) , max_of ( sa6 ) , max_of ( sa7 ) , max_of ( sa8 ) ] }

def f i r s t _ g e n e r a t i o n ( pop ) :

f i t n e s s = [ f i t _ t e s t ( pop [ x ] ) f o r x in range ( l e n ( pop ) ) ]

s o r t e d _ f i t n e s s = s o r t e d ( [ [ pop [ x ] , f i t n e s s [ x ] [ ’ F i t n e s s ’ ] ,

f i t n e s s [ x ] [ ’ Turn R a d i i (mm) ’ ] , f i t n e s s [ x ]

[ ’ T i r e L a t e r a l S l i p s ( deg ) ’ ] ]

f o r x in range ( l e n ( pop ) ) ] , key=lambda x : x [ 1 ] )

p o p u l a t i o n = [ s o r t e d _ f i t n e s s [ x ] [ 0 ] f o r x in
range ( l e n ( s o r t e d _ f i t n e s s ) ) ]

r a d i u s = [ s o r t e d _ f i t n e s s [ x ] [ 2 ] [ 0 ] f o r x in
range ( l e n ( s o r t e d _ f i t n e s s ) ) ]

s l i p s = [ s o r t e d _ f i t n e s s [ x ][ �1] f o r x in
range ( l e n ( s o r t e d _ f i t n e s s ) ) ]

f i t n e s s = [ s o r t e d _ f i t n e s s [ x ] [ 1 ] [ 0 ] f o r x in
range ( l e n ( s o r t e d _ f i t n e s s ) ) ]

re turn { ’ I n d i v i d u a l s ’ : p o p u l a t i o n

, ’ F i t n e s s ’ : s o r t e d ( f i t n e s s )

, ’ Turn R a d i i (mm) ’ : r a d i u s

, ’ T i r e L a t e r a l S l i p s ( deg ) ’ : s l i p s }

def r o u l e t t e ( cum_sum , chance ) :

v e r i a b l e = l i s t ( cum_sum . copy ( ) )

v e r i a b l e . append ( chance )

v e r i a b l e = s o r t e d ( v e r i a b l e )

re turn v e r i a b l e . i n d e x ( chance )

def s e l e c t i o n ( g e n e r a t i o n , method= ’ R o u l e t t e Wheel ’ ) :

g e n e r a t i o n [ ’ Normal ized F i t n e s s ’ ] = s o r t e d (

[ g e n e r a t i o n [ ’ F i t n e s s ’ ] [ x ] / sum ( g e n e r a t i o n [ ’ F i t n e s s ’ ] )

f o r x in range ( l e n ( g e n e r a t i o n [ ’ F i t n e s s ’ ] ) ) ]

, r e v e r s e = True )

g e n e r a t i o n [ ’ Cumula t ive Sum ’ ] = np . a r r a y (

g e n e r a t i o n [ ’ Normal ized F i t n e s s ’ ] ) . cumsum ( )
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i f method == ’ R o u l e t t e Wheel ’ :

s e l e c t e d = [ ]

f o r x in range ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) :

s e l e c t e d . append ( r o u l e t t e (

g e n e r a t i o n [ ’ Cumula t ive Sum ’ ] , rnd ( ) ) )

whi le l e n ( s e t ( s e l e c t e d ) ) != l e n ( s e l e c t e d ) :

s e l e c t e d [ x ] = ( r o u l e t t e (

g e n e r a t i o n [ ’ Cumula t ive Sum ’ ] , rnd ( ) ) )

s e l e c t e d = { ’ I n d i v i d u a l s ’ :

[ g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] [ i n t ( s e l e c t e d [ x ] ) ]

f o r x in range ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) ]

, ’ F i t n e s s ’ : [ g e n e r a t i o n [ ’ F i t n e s s ’ ] [ i n t ( s e l e c t e d [ x ] ) ]

f o r x in range ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) ]

, ’ Turn R a d i i (mm) ’ : [ g e n e r a t i o n [ ’ Turn R a d i i (mm) ’ ]

[ i n t ( s e l e c t e d [ x ] ) ]

f o r x in range ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) ]

, ’ T i r e L a t e r a l S l i p s ( deg ) ’ :

[ g e n e r a t i o n [ ’ T i r e L a t e r a l S l i p s ( deg ) ’ ]

[ i n t ( s e l e c t e d [ x ] ) ] f o r x in range ( l e n (

g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) ] }

e l i f method == ’ F i t t e s t Ha l f ’ :

s e l e c t e d _ i n d i v i d u a l s = [ g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ][�x�1]

f o r x in range ( i n t ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) ) ]

s e l e c t e d _ f i t n e s s e s = [ g e n e r a t i o n [ ’ F i t n e s s ’ ][�x�1]

f o r x in range ( i n t ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) ) ]

s e l e c t e d _ r a d i u s = [ g e n e r a t i o n [ ’ Turn R a d i i (mm) ’ ][�x�1]

f o r x in
range ( i n t ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) ) ]

s e l e c t e d _ s l i p s =

[ g e n e r a t i o n [ ’ T i r e L a t e r a l S l i p s ( deg ) ’ ][�x�1]

f o r x in range ( i n t ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) ) ]

s e l e c t e d = { ’ I n d i v i d u a l s ’ : s e l e c t e d _ i n d i v i d u a l s

, ’ F i t n e s s ’ : s e l e c t e d _ f i t n e s s e s

, ’ Turn R a d i i (mm) ’ : s e l e c t e d _ r a d i u s

, ’ T i r e L a t e r a l S l i p s ( deg ) ’ : s e l e c t e d _ s l i p s }

re turn s e l e c t e d

def p a i r i n g ( e l i t , s e l e c t e d , method = ’Random ’ ) :

i n d i v i d u a l s = [ e l i t [ ’ I n d i v i d u a l s ’ ] ] + s e l e c t e d [ ’ I n d i v i d u a l s ’ ]

f i t n e s s = [ e l i t [ ’ F i t n e s s ’ ] ] + s e l e c t e d [ ’ F i t n e s s ’ ]

i f method == ’ F i t t e s t ’ :

p a r e n t s = [ [ i n d i v i d u a l s [ x ] , i n d i v i d u a l s [ x + 1 ] ]

f o r x in range ( l e n ( i n d i v i d u a l s ) / / 2 ) ]

i f method == ’Random ’ :

p a r e n t s = [ ]

f o r x in range ( l e n ( i n d i v i d u a l s ) / / 2 ) :

131



p a r e n t s . append ( [ i n d i v i d u a l s [ r a n d i n t ( 0 ,

( l e n ( i n d i v i d u a l s ) �1 ) ) ] , i n d i v i d u a l s [ r a n d i n t

( 0 , ( l e n ( i n d i v i d u a l s ) � 1 ) ) ] ] )

whi le p a r e n t s [ x ] [ 0 ] == p a r e n t s [ x ] [ 1 ] :

p a r e n t s [ x ] [ 1 ] = i n d i v i d u a l s [ r a n d i n t ( 0 ,

( l e n ( i n d i v i d u a l s ) �1) ) ]

i f method == ’ Weighted Random ’ :

n o r m a l i z e d _ f i t n e s s = s o r t e d ( [ [ f i t n e s s [ x ] / sum ( f i t n e s s )

f o r x in range ( l e n ( i n d i v i d u a l s ) / / 2 ) ] ] , r e v e r s e = True )

cummul i t ive_sum = np . a r r a y ( n o r m a l i z e d _ f i t n e s s ) . cumsum ( )

p a r e n t s = [ ]

f o r x in range ( l e n ( i n d i v i d u a l s ) / / 2 ) :

p a r e n t s . append ( [ i n d i v i d u a l s [ r o u l e t t e (

cummuli t ive_sum , rnd ( ) ) ] ,

i n d i v i d u a l s [ r o u l e t t e ( cummuli t ive_sum , rnd ( ) ) ] ] )

whi le p a r e n t s [ x ] [ 0 ] == p a r e n t s [ x ] [ 1 ] :

p a r e n t s [ x ] [ 1 ] = i n d i v i d u a l s [ r o u l e t t e

( cummuli t ive_sum , rnd ( ) ) ]

re turn p a r e n t s

def c r o s s o v e r ( p a r e n t s , method= ’ S i n g l e P o i n t ’ ) :

i f method == ’ S i n g l e P o i n t ’ :

p i v o t _ p o i n t = r a n d i n t ( 1 , 3)⇤2

o f f s p r i n g s = [ p a r e n t s [ 0 ] [ 0 : p i v o t _ p o i n t ]+ p a r e n t s [ 1 ]

[ p i v o t _ p o i n t : ] ]

o f f s p r i n g s . append ( p a r e n t s [ 1 ] [ 0 : p i v o t _ p o i n t ]+ p a r e n t s [ 0 ]

[ p i v o t _ p o i n t : ] )

i f method == ’ S i n g l e S t a t i o n ’ :

s e c t i o n = r a n d i n t ( 0 , 3 )

o f f s p r i n g s = [ p a r e n t s [ 0 ] . copy ( ) ]

o f f s p r i n g s [ 0 ] [ s e c t i o n ] = p a r e n t s [ 1 ] [ s e c t i o n ]

o f f s p r i n g s [ 0 ] [ s e c t i o n +4] = p a r e n t s [ 1 ] [ s e c t i o n +4]

o f f s p r i n g s . append ( p a r e n t s [ 1 ] )

o f f s p r i n g s [ 1 ] [ s e c t i o n ] = p a r e n t s [ 0 ] [ s e c t i o n ]

o f f s p r i n g s [ 1 ] [ s e c t i o n +4] = p a r e n t s [ 0 ] [ s e c t i o n +4]

re turn o f f s p r i n g s

def m u t a t i o n ( i n d i v i d u a l , m u a t a t i o n _ r a t e =1 , method= ’ R e s e t ’ ) :

gene = [ r a n d i n t ( 0 , 7 ) ]

f o r x in range ( m u a t a t i o n _ r a t e �1):

gene . append ( r a n d i n t ( 0 , 7 ) )

whi le l e n ( s e t ( gene ) ) < l e n ( gene ) :

gene [ x ] = r a n d i n t ( 0 , 7 )

m u t a t e d _ i n d i v i d u a l = i n d i v i d u a l . copy ( )

i f method == ’ Gauss ’ :
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f o r n in range ( l e n ( gene ) ) :

i f gene [ n ] < 4 :

m u t a t e d _ i n d i v i d u a l [ gene [ n ] ] = round ( g a u s s

( m u t a t e d _ i n d i v i d u a l [ gene [ n ] ] , abs (

m u t a t e d _ i n d i v i d u a l [ gene [ n ] ] �
m u t a t e d _ i n d i v i d u a l [ gene [ n ] + 4 ] ) ) , 1 )

e l s e :

m u t a t e d _ i n d i v i d u a l [ gene [ n ] ] = round
( g a u s s ( m u t a t e d _ i n d i v i d u a l [ gene [ n ] ] , abs (

m u t a t e d _ i n d i v i d u a l [ gene [ n ] ] �
m u t a t e d _ i n d i v i d u a l [ gene [ n ] �4 ] ) ) , 1 )

f o r x in range ( m u a t a t i o n _ r a t e ) :

i f m u t a t e d _ i n d i v i d u a l [ gene [ x ] ] > 2 7 :

m u t a t e d _ i n d i v i d u a l [ gene [ x ] ] = 27

i f m u t a t e d _ i n d i v i d u a l [ gene [ x ] ] < �27:

m u t a t e d _ i n d i v i d u a l [ gene [ x ] ] = �27

i f method == ’ R e s e t ’ :

f o r x in range ( l e n ( gene ) ) :

# F i r s t a x l e

i f gene [ x ] == 0 :

m u t a t e d _ i n d i v i d u a l [ gene [ x ] ] = round ( rnd ()⇤�10�17 ,1)

e l i f gene [ x ] == 4 :

m u t a t e d _ i n d i v i d u a l [ 4 ] = round ( rnd ()⇤�10�16 ,1)

whi le m u t a t e d _ i n d i v i d u a l [ 4 ] <

m u t a t e d _ i n d i v i d u a l [ 0 ] :

m u t a t e d _ i n d i v i d u a l [ 4 ] = round ( rnd ()⇤�10�16 ,1)

# Second a x l e

e l i f gene [ x ] == 1 :

m u t a t e d _ i n d i v i d u a l [ gene [ x ] ] = round ( rnd ()⇤�10�14 ,1)

e l i f gene [ x ] == 5 :

m u t a t e d _ i n d i v i d u a l [ 5 ] = round ( rnd ()⇤�10�12 ,1)

whi le m u t a t e d _ i n d i v i d u a l [ 5 ] <

m u t a t e d _ i n d i v i d u a l [ 1 ] :

m u t a t e d _ i n d i v i d u a l [ 5 ] = round ( rnd ()⇤�10�12 ,1)

# T h i r d a x l e

e l i f gene [ x ] == 2 :

m u t a t e d _ i n d i v i d u a l [ gene [ x ] ] = round ( rnd ( )⇤1 0 + 1 4 , 1 )

e l i f gene [ x ] == 6 :

m u t a t e d _ i n d i v i d u a l [ 6 ] = round ( rnd ( )⇤1 0 + 1 2 , 1 )

whi le m u t a t e d _ i n d i v i d u a l [ 6 ] >

m u t a t e d _ i n d i v i d u a l [ 2 ] :

m u t a t e d _ i n d i v i d u a l [ 6 ] = round ( rnd ( )⇤1 0 + 1 2 , 1 )

# Four th a x l e

e l i f gene [ x ] == 3 :

m u t a t e d _ i n d i v i d u a l [ gene [ x ] ] = round ( rnd ( )⇤1 0 + 1 7 , 1 )

e l i f gene [ x ] == 7 :

m u t a t e d _ i n d i v i d u a l [ 7 ] = round ( rnd ( )⇤1 0 + 1 6 , 1 )
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whi le m u t a t e d _ i n d i v i d u a l [ 7 ] >

m u t a t e d _ i n d i v i d u a l [ 3 ] :

m u t a t e d _ i n d i v i d u a l [ 7 ] = round ( rnd ( )⇤1 0 + 1 6 , 1 )

re turn m u t a t e d _ i n d i v i d u a l

def n e x t _ g e n e r a t i o n ( gen ) :

e l i t = {}

n e x t _ g e n = {}

e l i t [ ’ I n d i v i d u a l s ’ ] = gen [ ’ I n d i v i d u a l s ’ ] . pop (�1)

e l i t [ ’ F i t n e s s ’ ] = gen [ ’ F i t n e s s ’ ] . pop (�1)

e l i t [ ’ Turn R a d i i (mm) ’ ] = gen [ ’ Turn R a d i i (mm) ’ ] . pop (�1)

e l i t [ ’ T i r e L a t e r a l S l i p s ( deg ) ’ ] = gen [ ’ T i r e L a t e r a l S l i p s

( deg ) ’ ] . pop (�1)

s e l e c t e d = s e l e c t i o n ( gen , method = s e l e c t i o n _ t y p e )

p a r e n t s = p a i r i n g ( e l i t , s e l e c t e d , method = p a i r i n g _ t y p e )

o f f s p r i n g s = [ [ [ c r o s s o v e r ( p a r e n t s [ x ] , method = c r o s s o v e r _ t y p e )

f o r x in range ( l e n ( p a r e n t s ) ) ]

[ y ] [ z ] f o r z in range ( 2 ) ] f o r y in
range ( l e n ( p a r e n t s ) ) ]

o f f s p r i n g s 1 = [ o f f s p r i n g s [ x ] [ 0 ] f o r x in range ( l e n ( p a r e n t s ) ) ]

o f f s p r i n g s 2 = [ o f f s p r i n g s [ x ] [ 1 ] f o r x in range ( l e n ( p a r e n t s ) ) ]

unmuta ted = s e l e c t e d [ ’ I n d i v i d u a l s ’ ]+ o f f s p r i n g s 1 + o f f s p r i n g s 2

muta t ed = [ m u t a t i o n ( unmuta ted [ x ] , method = m u t a t i o n _ t y p e ) f o r x

in range ( l e n ( gen [ ’ I n d i v i d u a l s ’ ] ) ) ]

u n s o r t e d _ i n d i v i d u a l s = muta t ed + [ e l i t [ ’ I n d i v i d u a l s ’ ] ]

u n s o r t e d _ n e x t _ g e n = [ f i t _ t e s t ( mu ta t ed [ x ] ) f o r x in
range ( l e n ( mu ta t ed ) ) ]

u n s o r t e d _ f i t n e s s = [ u n s o r t e d _ n e x t _ g e n [ x ] [ ’ F i t n e s s ’ ]

f o r x in range ( l e n ( gen [ ’ I n d i v i d u a l s ’ ] ) ) ] + [ [ e l i t [ ’ F i t n e s s ’ ] ] ]

u n s o r t e d _ t u r n _ r a d i i = [ u n s o r t e d _ n e x t _ g e n [ x ] [ ’ Turn R a d i i (mm) ’ ]

f o r x in range ( l e n ( gen [ ’ I n d i v i d u a l s ’ ] ) ) ] +

[ [ e l i t [ ’ Turn R a d i i (mm) ’ ] ] ]

u n s o r t e d _ s l i p = [ u n s o r t e d _ n e x t _ g e n [ x ] [ ’ T i r e L a t e r a l S l i p s

( deg ) ’ ] f o r x in range (

l e n ( gen [ ’ I n d i v i d u a l s ’ ] ) ) ] + [ e l i t [ ’ T i r e L a t e r a l S l i p s

( deg ) ’ ] ]

s o r t e d _ n e x t _ g e n = s o r t e d ( [ [ u n s o r t e d _ i n d i v i d u a l s [ x ] ,

u n s o r t e d _ f i t n e s s [ x ] , u n s o r t e d _ t u r n _ r a d i i [ x ] ,

u n s o r t e d _ s l i p [ x ] ] f o r x in
range ( l e n ( u n s o r t e d _ i n d i v i d u a l s ) ) ] , key=lambda x : x [ 1 ] )

n e x t _ g e n [ ’ I n d i v i d u a l s ’ ] = [ s o r t e d _ n e x t _ g e n [ x ] [ 0 ]

f o r x in
range ( l e n ( s o r t e d _ n e x t _ g e n ) ) ]

n e x t _ g e n [ ’ F i t n e s s ’ ] = [ s o r t e d _ n e x t _ g e n [ x ] [ 1 ] [ 0 ]

f o r x in range ( l e n ( s o r t e d _ n e x t _ g e n ) ) ]

n e x t _ g e n [ ’ Turn R a d i i (mm) ’ ] = [ s o r t e d _ n e x t _ g e n [ x ] [ 2 ] [ 0 ]

134



f o r x in
range ( l e n ( s o r t e d _ n e x t _ g e n ) ) ]

n e x t _ g e n [ ’ T i r e L a t e r a l S l i p s ( deg ) ’ ] = [ s o r t e d _ n e x t _ g e n [ x ] [ 3 ]

f o r x in
range ( l e n ( s o r t e d _ n e x t _ g e n ) ) ]

gen [ ’ I n d i v i d u a l s ’ ] . append ( e l i t [ ’ I n d i v i d u a l s ’ ] )

gen [ ’ F i t n e s s ’ ] . append ( e l i t [ ’ F i t n e s s ’ ] )

gen [ ’ Turn R a d i i (mm) ’ ] . append ( e l i t [ ’ Turn R a d i i (mm) ’ ] )

gen [ ’ T i r e L a t e r a l S l i p s ( deg ) ’ ] . append ( e l i t [ ’ T i r e L a t e r a l S l i p s

( deg ) ’ ] )

re turn n e x t _ g e n

# Mot ions

L1_motion =

Adams . s t o o ( ’ . PARS3_LOWERARM_FULLVEHICLE_V4 .

FNSS_PARS3_front_suspension_v1 . MOTION_2 ’ )

L2_motion =

Adams . s t o o ( ’ . PARS3_LOWERARM_FULLVEHICLE_V4 .

FNSS_PARS3_front2_suspension_v1 . MOTION_2 ’ )

L3_motion =

Adams . s t o o ( ’ . PARS3_LOWERARM_FULLVEHICLE_V4 .

FNSS_PARS3_rear_suspension_v1 . MOTION_2 ’ )

L4_motion =

Adams . s t o o ( ’ . PARS3_LOWERARM_FULLVEHICLE_V4 .

FNSS_PARS3_rear2_suspension_v1 . MOTION_2 ’ )

R1_motion =

Adams . s t o o ( ’ . PARS3_LOWERARM_FULLVEHICLE_V4 .

FNSS_PARS3_front_suspension_v1 . MOTION_1 ’ )

R2_motion =

Adams . s t o o ( ’ . PARS3_LOWERARM_FULLVEHICLE_V4 .

FNSS_PARS3_front2_suspension_v1 . MOTION_1 ’ )

R3_motion =

Adams . s t o o ( ’ . PARS3_LOWERARM_FULLVEHICLE_V4 .

FNSS_PARS3_rear_suspension_v1 . MOTION_1 ’ )

R4_motion =

Adams . s t o o ( ’ . PARS3_LOWERARM_FULLVEHICLE_V4 .

FNSS_PARS3_rear2_suspension_v1 . MOTION_1 ’ )

# S e t i n g t h e work ing d i r e c t o r y

c h d i r ( M a i n F o l d e r P a t h + ’ \ \ T u r n i n g _ R a d i u s _ R e s u l t s ’ )

pop = p o p u l a t i o n ( 3 2 )

gen = [ f i r s t _ g e n e r a t i o n ( pop ) ]

f i t n e s s _ a v g = np . a r r a y ( [ sum (

gen [ 0 ] [ ’ F i t n e s s ’ ] ) / l e n ( gen [ 0 ] [ ’ F i t n e s s ’ ] ) ] )

f i t n e s s _ m a x = np . a r r a y ( [ max ( gen [ 0 ] [ ’ F i t n e s s ’ ] ) ] )
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r e s = open ( R e s u l t _ f i l e , ’ a ’ )

r e s . w r i t e ( ’ \ n ’+ s t r ( gen )+ ’ \ n ’ )

r e s . c l o s e ( )

def f i t n e s s _ s i m i l a r i t y _ c h e c h ( m a x _ f i t n e s s , n u m b e r _ o f _ s i m i l a r i t y ) :

r e s u l t = F a l s e

s i m i l a r i t y = 0

f o r n in range ( l e n ( m a x _ f i t n e s s ) �1) :

i f m a x _ f i t n e s s [ n ] == m a x _ f i t n e s s [ n + 1 ] :

s i m i l a r i t y += 1

e l s e :

s i m i l a r i t y = 0

i f s i m i l a r i t y == n u m b e r _ o f _ s i m i l a r i t y �1:

r e s u l t = True

re turn r e s u l t

f o r x in range ( 3 ) :

gen . append ( n e x t _ g e n e r a t i o n ( gen [ x ] ) )

f i t n e s s _ a v g = np . append ( f i t n e s s _ a v g , sum
gen [ x ] [ ’ F i t n e s s ’ ] ) / l e n ( gen [ x ] [ ’ F i t n e s s ’ ] ) )

f i t n e s s _ m a x = np . append ( f i t n e s s _ m a x ,

max ( gen [ x ] [ ’ F i t n e s s ’ ] ) )

r e s = open ( R e s u l t _ f i l e , ’ a ’ )

r e s . w r i t e ( ’ \ n ’+ s t r ( gen [ x +1] )+ ’ \ n ’ )

r e s . c l o s e ( )

f i n i s h = F a l s e

whi le f i n i s h == F a l s e :

i f max ( f i t n e s s _ m a x ) > 0 :

break
i f max ( f i t n e s s _ a v g ) > �0.1:

break
i f f i t n e s s _ s i m i l a r i t y _ c h e c h ( f i t n e s s _ m a x , 5 0 ) == True :

break
i f l e n ( gen ) > 10 4 :

break
gen . append ( n e x t _ g e n e r a t i o n ( gen [ �1] ) )

f i t n e s s _ a v g = np . append ( f i t n e s s _ a v g ,

sum ( gen [ �1][ ’ F i t n e s s ’ ] ) / l e n ( gen [ �1][ ’ F i t n e s s ’ ] ) )

f i t n e s s _ m a x = np . append ( f i t n e s s _ m a x ,

max ( gen [ �1][ ’ F i t n e s s ’ ] ) )

r e s = open ( R e s u l t _ f i l e , ’ a ’ )

r e s . w r i t e ( ’ \ n ’+ s t r ( gen [�1])+ ’ \ n ’ )

r e s . c l o s e ( )
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r e s = open ( R e s u l t _ f i l e , ’ a ’ )

r e s . w r i t e ( ’Maximum F i t n e s s = ’+ s t r ( f i t n e s s _ m a x )+

’ , Avarage F i t n e s s ’+ s t r ( f i t n e s s _ a v g ) )

r e s . c l o s e ( )

137





APPENDIX D

macro modify macro = .ACAR. macros . mac_ana_sub &

u s e r =" a c a r a n a l y s i s s u bmi t " &

commands=" a c a r a n a l y s i s f u l l _ v e h i c l e s d i s u bmi t &" , &

" assembly = . V e h i c l e &" , &

" v a r i a n t = d e f a u l t &" , &

" o u t p u t _ p r e f i x = \ " V e h i c l e \ " &" , &

" a n a l y s i s _ m o d e = i n t e r a c t i v e &" , &

" r o a d _ d a t a _ f i l e = \ " mdids : / / a c a r _ s h a r e d / r o a d s . t b l / 2 d _ f l a t . r d f \ "

&" , &

"

d c f _ f i l e = \ " f i l e : / / F : / T h e s i s / Lane_Change . xml \ " &" , &

" l o g _ f i l e = yes &" , &

" comment = \ " \ " "

v a r i a b l e d e l e t e v a r i a b l e = .ACAR. dboxes . d b o x _ a n a _ f u l _ s d i _ s u b . p r e f i x ,

.ACAR. dboxes . d b o x _ a n a _ f u l _ s d i _ s u b . " tmp⇤ "

a c a r a n a l y s i s s ubm i t

n u m e r i c _ r e s u l t s w r i t e &

r e s u l t _ s e t _ c o m p o n e n t _ n a m e =

. V e h i c l e . DLC_Simulat ion . F r o n t _ L e f t _ C o r n e r .

TIME ,

. V e h i c l e . DLC_Simulat ion . F r o n t _ L e f t _ C o r n e r .

F r o n t _ L e f t _ x ,

. V e h i c l e . DLC_Simulat ion . F r o n t _ L e f t _ C o r n e r .

F r o n t _ L e f t _ y &

s o r t _ b y = by_t ime &

o r d e r = a s c e n d i n g &

w r i t e _ t o _ t e r m i n a l = o f f &

f i l e _ n a m e = " F r o n t _ L e f t _ C o r n e r . t x t " &

&

n u m e r i c _ r e s u l t s w r i t e &

r e s u l t _ s e t _ c o m p o n e n t _ n a m e =

. V e h i c l e . DLC_Simulat ion . F r o n t _ R i g h t _ C o r n e r

. TIME ,

. V e h i c l e . DLC_Simulat ion . F r o n t _ R i g h t _ C o r n e r

. F r o n t _ R i g h t _ x ,
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. V e h i c l e . DLC_Simulat ion . F r o n t _ R i g h t _ C o r n e r

. F r o n t _ R i g h t _ y &

s o r t _ b y = by_t ime &

o r d e r = a s c e n d i n g &

w r i t e _ t o _ t e r m i n a l = o f f &

f i l e _ n a m e = " F r o n t _ R i g h t _ C o r n e r . t x t " &

&

n u m e r i c _ r e s u l t s w r i t e &

r e s u l t _ s e t _ c o m p o n e n t _ n a m e =

. V e h i c l e . DLC_Simulat ion . R e a r _ L e f t _ C o r n e r .

TIME ,

. V e h i c l e . DLC_Simulat ion . R e a r _ L e f t _ C o r n e r .

Rea r_Lef t_x ,

. V e h i c l e . DLC_Simulat ion . R e a r _ L e f t _ C o r n e r .

R e a r _ L e f t _ y &

s o r t _ b y = by_t ime &

o r d e r = a s c e n d i n g &

w r i t e _ t o _ t e r m i n a l = o f f &

f i l e _ n a m e = " R e a r _ L e f t _ C o r n e r . t x t " &

&

n u m e r i c _ r e s u l t s w r i t e &

r e s u l t _ s e t _ c o m p o n e n t _ n a m e =

. V e h i c l e . DLC_Simulat ion . R e a r _ R i g h t _ C o r n e r .

TIME ,

. V e h i c l e . DLC_Simulat ion . R e a r _ R i g h t _ C o r n e r .

Rear_Righ t_x ,

. V e h i c l e . DLC_Simulat ion . R e a r _ R i g h t _ C o r n e r .

Rea r_Righ t_y &

s o r t _ b y = by_t ime &

o r d e r = a s c e n d i n g &

w r i t e _ t o _ t e r m i n a l = o f f &

f i l e _ n a m e = " R e a r _ R i g h t _ C o r n e r . t x t " &

&

a n a l y s i s d e l e t e&

a n a l y s i s _ n a m e = DLC_Simulat ion
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APPENDIX E

# Double Lane Change Python F i l e

import Adams

from os import pa th , mkdir , c h d i r

from math import a t an , s q r t , exp , t a n

import numpy as np

from numpy import s i n , t anh , pi , cos , a r c t a n

from numpy . random import r a n d i n t

from random import random as rnd

from random import gauss , r a n d r a n g e

# Outpu t t e x t f i l e name

R e s u l t _ f i l e = ’ DLC_Result . t x t ’

# S e l e c t i o n

# s e l e c t i o n _ t y p e = ’ F i t t e s t Ha l f ’

s e l e c t i o n _ t y p e = ’ R o u l e t t e Wheel ’

# P a i r i n g

# p a i r i n g _ t y p e = ’ Random ’

p a i r i n g _ t y p e = ’ F i t t e s t ’

# C r o s s o v e r

# c r o s s o v e r _ t y p e = ’ S i n g l e P o i n t ’

c r o s s o v e r _ t y p e = ’ S i n g l e S t a t i o n ’

# M u t a t i o n

m u t a t i o n _ t y p e = ’ R e s e t ’

# O m u t a t i o n _ t y p e = ’ Gauss ’

# Maximum s t e e r i n g a n g l e s

# L e f t Front , r i g h t f r o n t , l e f t f r o n t 2 , r i g h t f r o n t 2

de l t a_1_max = 29

de l t a_2_max = 2 6 . 5

de l t a_3_max = 16

de l t a_4_max = 1 3 . 6

# F i r s t and second a x l e s t e e r i n g r a t i o
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S e c o n d _ t o _ f i r s t = de l t a_3_max / de l t a_1_max

# Main F o l de r

M a i n F o l d e r P a t h = p a t h . a b s p a t h ( r ’F : \ T h e s i s ’ )

# D u r a t i o n o f t h e s t e e r i n g manuver ( s e c o n d s )

Ts = 20

# Command f i l e s

command_f i le = ’F : \ \ T h e s i s \ \ Lane_change . cmd ’

S t e e r _ i n p u t _ 2 = ’F : \ \ T h e s i s \ \ S t e e r _ i n p u t _ 2 . cmd ’

S t e e r _ i n p u t _ 3 = ’F : \ \ T h e s i s \ \ S t e e r _ i n p u t _ 3 . cmd ’

S t e e r _ i n p u t _ 1 = ’F : \ \ T h e s i s \ \ S t e e r _ i n p u t _ 1 . cmd ’

S t e e r _ i n p u t _ 4 = ’F : \ \ T h e s i s \ \ S t e e r _ i n p u t _ 4 . cmd ’

S t e e r _ i n p u t _ 5 = ’F : \ \ T h e s i s \ \ S t e e r _ i n p u t _ 5 . cmd ’

S t e e r _ i n p u t _ 6 = ’F : \ \ T h e s i s \ \ S t e e r _ i n p u t _ 6 . cmd ’

S t e e r _ i n p u t _ 7 = ’F : \ \ T h e s i s \ \ S t e e r _ i n p u t _ 7 . cmd ’

S t e e r _ i n p u t _ 8 = ’F : \ \ T h e s i s \ \ S t e e r _ i n p u t _ 8 . cmd ’

I n p u t _ l i s t = [ S t e e r _ i n p u t _ 1 , S t e e r _ i n p u t _ 2 ,

S t e e r _ i n p u t _ 3 , S t e e r _ i n p u t _ 4 , S t e e r _ i n p u t _ 5 ,

S t e e r _ i n p u t _ 6 , S t e e r _ i n p u t _ 7 , S t e e r _ i n p u t _ 8 ]

# F i l e s

f i l e = ’F : \ \ T h e s i s \ \ ’

# I n p u t f i l e l o c a t i o n

I n p u t _ f i l e s = f i l e + ’ S t e e r _ I n p u t s \ \ ’

# S t e e r i n g m o t i o n s i n Adams

L1_motion = Adams . s t o o (

’ . DLC_Vehicle . V e h i c l e _ f r o n t _ s u s p e n s i o n . MOTION_2 ’ )

L2_motion = Adams . s t o o (

’ . DLC_Vehicle . V e h i c l e _ f r o n t 2 _ s u s p e n s i o n . MOTION_2 ’ )

L3_motion = Adams . s t o o (

’ . DLC_Vehicle . V e h i c l e _ r e a r _ s u s p e n s i o n . MOTION_2 ’ )

L4_motion = Adams . s t o o (

’ . DLC_Vehicle . V e h i c l e _ r e a r 2 _ s u s p e n s i o n . MOTION_2 ’ )

R1_motion = Adams . s t o o (

’ . DLC_Vehicle . V e h i c l e _ f r o n t _ s u s p e n s i o n . MOTION_1 ’ )

R2_motion = Adams . s t o o (

’ . DLC_Vehicle . V e h i c l e _ f r o n t 2 _ s u s p e n s i o n . MOTION_1 ’ )

R3_motion = Adams . s t o o (

’ . DLC_Vehicle . V e h i c l e _ r e a r _ s u s p e n s i o n . MOTION_1 ’ )

R4_motion = Adams . s t o o (

’ . DLC_Vehicle . V e h i c l e _ r e a r 2 _ s u s p e n s i o n . MOTION_1 ’ )

# L o c a t i o n s
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f r o n t _ a x l e _ l o c = Adams . s t o o

( ’ . DLC_Vehicle . Body . ground . o r i g o ’ ) . l o c a t i o n

f r o n t 2 _ a x l e _ l o c = Adams . s t o o (

’ ’ ’ . DLC_Vehicle . V e h i c l e _ f r o n t 2 _ s u s p e n s i o n .

ground . h p s _ g r o u n d _ c l e a r a n c e ’ ’ ’ ) . l o c a t i o n

r e a r _ a x l e _ l o c = Adams . s t o o (

’ ’ ’ . DLC_Vehicle . V e h i c l e _ r e a r _ s u s p e n s i o n

. ground . h p s _ g r o u n d _ c l e a r a n c e ’ ’ ’ ) . l o c a t i o n

r e a r 2 _ t i r e _ l o c = Adams . s t o o (

’ ’ ’ . DLC_Vehicle . V e h i c l e _ r e a r 2 _ s u s p e n s i o n

. ground . h p r _ w h e e l _ c e n t e r ’ ’ ’ ) . l o c a t i o n

r e a r 2 _ a x l e _ l o c = Adams . s t o o (

’ ’ ’ . DLC_Vehicle . V e h i c l e _ r e a r 2 _ s u s p e n s i o n

. ground . h p s _ g r o u n d _ c l e a r a n c e ’ ’ ’ ) . l o c a t i o n

# Leng th and w i d t h o f t h e v e h i c l e

veh_ len_x = f r o n t _ a x l e _ l o c [0]� r e a r 2 _ a x l e _ l o c [ 0 ]

veh_ len_y = r e a r 2 _ t i r e _ l o c [ 1 ]⇤2

# C r o s s i n g p o i n t c a l c u l a t i o n

# C r o s s i n g p o i n t d i s t a n c e f o r t h e f i r s t a x l e

l 1 = veh_ len_y / ( 1 / t a n ( de l t a_2_max )�1/ t a n ( de l t a_1_max ) )

# C r o s s i n g p o i n t d i s t a n c e f o r t h e f i r s t a x l e

l 2 = veh_ len_y / ( 1 / t a n ( de l t a_3_max )�1/ t a n ( de l t a_4_max ) )

# C r e a t i n g t h e s p l i n e s

# Time o f t h e c u r v e �same f o r a l l o f t h e s p l i n e f i l e s

t = np . l i n s p a c e ( 0 , 20 , num=500 , e n d p o i n t =True )

# Rear s t e e r i n g i n p u t (0 i n t h i s case )

S t e e r i n g _ a n g l e _ i n p u t _ r e a r = np . z e r o s ( 5 0 0 )

# C r e a t i n g t h e s t e e r i n g i n p u r s p l i n e t e x t f i l e s

c h d i r ( M a i n F o l d e r P a t h + ’ \ \ S t e e r _ I n p u t s ’ )

f o r x in range ( 1 , 9 ) :

i n p u t _ t e x t = I n p u t _ f i l e s + ’ S t e e r _ i n p u t _ ’+ s t r ( x )+ ’ . t x t ’

w i th open ( i n p u t _ t e x t , ’w’ ) a s s _ t e x t :

f o r y in range ( l e n ( t ) ) :

s _ t e x t . w r i t e ( s t r ( t [ y ] ) + ’ ’+ s t r ( t [ y ] ) + ’ \ n ’ )

Adams . r ead_command_f i l e ( I n p u t _ l i s t [ x�1])
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# M o d i f y i n g t h e Mot ions

S t e e r _ S p l i n e _ 1 = Adams . s t o o ( ’ . DLC_Vehicle . SPLINE_1 ’ )

S t e e r _ S p l i n e _ 2 = Adams . s t o o ( ’ . DLC_Vehicle . SPLINE_2 ’ )

S t e e r _ S p l i n e _ 3 = Adams . s t o o ( ’ . DLC_Vehicle . SPLINE_3 ’ )

S t e e r _ S p l i n e _ 4 = Adams . s t o o ( ’ . DLC_Vehicle . SPLINE_4 ’ )

S t e e r _ S p l i n e _ 5 = Adams . s t o o ( ’ . DLC_Vehicle . SPLINE_5 ’ )

S t e e r _ S p l i n e _ 6 = Adams . s t o o ( ’ . DLC_Vehicle . SPLINE_6 ’ )

S t e e r _ S p l i n e _ 7 = Adams . s t o o ( ’ . DLC_Vehicle . SPLINE_7 ’ )

S t e e r _ S p l i n e _ 8 = Adams . s t o o ( ’ . DLC_Vehicle . SPLINE_8 ’ )

# I n p u t i n g z e r o s t e e r i n g a n g l e t o t h e r e a r t i r e s

S t e e r _ S p l i n e _ 3 . y = S t e e r i n g _ a n g l e _ i n p u t _ r e a r

S t e e r _ S p l i n e _ 4 . y = S t e e r i n g _ a n g l e _ i n p u t _ r e a r

S t e e r _ S p l i n e _ 7 . y = S t e e r i n g _ a n g l e _ i n p u t _ r e a r

S t e e r _ S p l i n e _ 8 . y = S t e e r i n g _ a n g l e _ i n p u t _ r e a r

# Using t h e s p l i n e s i n t h e S t e e r i n g Mot ions i n r a d i a n s

L1_motion . f u n c t i o n = ’CUBSPL( t ime , 0 , . DLC_Vehicle . SPLINE_1 )⇤ PI /180 ’

L2_motion . f u n c t i o n = ’CUBSPL( t ime , 0 , . DLC_Vehicle . SPLINE_2 )⇤ PI /180 ’

L3_motion . f u n c t i o n = ’CUBSPL( t ime , 0 , . DLC_Vehicle . SPLINE_3 )⇤ PI /180 ’

L4_motion . f u n c t i o n = ’CUBSPL( t ime , 0 , . DLC_Vehicle . SPLINE_4 )⇤ PI /180 ’

R1_motion . f u n c t i o n = ’CUBSPL( t ime , 0 , . DLC_Vehicle . SPLINE_5 )⇤ PI /180 ’

R2_motion . f u n c t i o n = ’CUBSPL( t ime , 0 , . DLC_Vehicle . SPLINE_6 )⇤ PI /180 ’

R3_motion . f u n c t i o n = ’CUBSPL( t ime , 0 , . DLC_Vehicle . SPLINE_7 )⇤ PI /180 ’

R4_motion . f u n c t i o n = ’CUBSPL( t ime , 0 , . DLC_Vehicle . SPLINE_8 )⇤ PI /180 ’

def S e c o n d _ a x l e _ s t e e r i n g ( F i r s t _ a x l e _ s t e e r i n g ) :

s e c o n d _ a x l e _ s t e e r i n g = [ ]

f o r x in range ( l e n ( F i r s t _ a x l e _ s t e e r i n g ) ) :

i f F i r s t _ a x l e _ s t e e r i n g [ x ] == 0 :

s e c o n d _ a x l e _ s t e e r i n g . append ( 0 )

e l s e :

s e c o n d _ a x l e _ s t e e r i n g . append (

a r c t a n ( 1 / ( veh_ len_y / l 1 +

( 1 / t a n ( F i r s t _ a x l e _ s t e e r i n g [ x ]⇤
p i / 1 8 0 ) ) ) ) ⇤ 1 8 0 / p i )

re turn s e c o n d _ a x l e _ s t e e r i n g

def F o u r t h _ a x l e _ s t e e r i n g ( T h i r d _ a x l e _ s t e e r i n g ) :

f o u r t h _ a x l e _ s t e e r i n g = [ ]

f o r x in range ( l e n ( T h i r d _ a x l e _ s t e e r i n g ) ) :

i f T h i r d _ a x l e _ s t e e r i n g [ x ] == 0 :
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f o u r t h _ a x l e _ s t e e r i n g . append ( 0 )

e l s e :

f o u r t h _ a x l e _ s t e e r i n g . append (

a r c t a n ( 1 / ( veh_ len_y / l 1 +

( 1 / t a n ( T h i r d _ a x l e _ s t e e r i n g [ x ]⇤
p i / 1 8 0 ) ) ) ) ⇤ 1 8 0 / p i )

re turn f o u r t h _ a x l e _ s t e e r i n g

def i n d i v i d u a l ( ) :

a1 = round ( rnd ( ) ⇤ 1 . 2 + 3 , 2 )

b1 = 3 . 2 5

c1 = round ( a1 +( rnd ( ) ) , 2 )

d1 = round ( b1 +( rnd ( ) ⇤ 0 . 8 + 0 . 1 5 ) , 2 )

a2 = round ( rnd ( ) ⇤ 1 . 2 + 3 , 2 )

b2 = round ( d1 +( rnd ( ) ⇤ 0 . 5 + 1 . 2 5 ) , 2 )

c2 = round ( a2 +( rnd ( ) ) , 2 )

d2 = round ( b2 +( rnd ( ) ⇤ 0 . 6 + 0 . 4 ) , 2 )

re turn [ a1 , b1 , c1 , d1 , a2 , b2 , c2 , d2 ]

def p o p u l a t i o n ( n u m b e r _ o f _ i n d i v i d u a l s ) :

re turn [ i n d i v i d u a l ( ) f o r x in range ( n u m b e r _ o f _ i n d i v i d u a l s ) ]

def c o s t _ c a l c u l a t i o n ( x , y , i n i t i a l =42000 ) :

c o s t = 0

W1 = 1 . 1⇤ veh_ len_y +250

W2 = 1 . 2⇤ veh_ len_y +250

f o r n in range ( l e n ( x ) ) :

# F i r s t Region

i f x [ n ] < 15000+ i n i t i a l :

i f y [ n ] > W1/ 2 :

c o s t += y [ n]�W1/ 2

i f y [ n ] < �W1/ 2 :

c o s t += abs ( y [ n ]+W1/ 2 )

# Second Region

e l i f x [ n ] >= 15000+ i n i t i a l

and x [ n ] < 15000+24000+ veh_ len_x + i n i t i a l :

i f y [ n ] > �W1/2+3500+W2:

c o s t += y [ n]�(�W1/2+3500+W2)

i f y [ n ] < �W1/ 2 :

c o s t += abs ( y [ n ]+W1/ 2 )

# T h i r d Region

e l i f x [ n ] >= 15000+24000+ veh_ len_x + i n i t i a l

and x [ n ] < 15000+24000+ veh_ len_x +25000+ i n i t i a l :

i f y [ n ] > �W1/2+3500+W2:
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c o s t += y [ n]�(�W1/2+3500+W2)

i f y [ n ] < �W1/ 2 + 3 5 0 0 :

c o s t += abs ( y [ n]�(�W1/ 2 + 3 5 0 0 ) )

# Four t Region

e l i f x [ n ] >= 15000+24000+ veh_ len_x +25000+ i n i t i a l

and x [ n ] < 15000+24000+ veh_ len_x +

25000+24000+ veh_ len_x + i n i t i a l :

i f y [ n ] > �W1/2+3500+W2:

c o s t += y [ n]�(�W1/2+3500+W2)

i f y [ n ] < �W1/ 2 :

c o s t += abs ( y [ n ]+W1/ 2 )

# F i f t h r e g i o n

e l i f x [ n ] >= 15000+24000+ veh_ len_x +

25000+24000+ veh_ len_x + i n i t i a l

and x [ n ] < 15000+24000+ veh_ len_x +

25000+24000+ veh_ len_x +15000+ i n i t i a l :

i f y [ n ] > W1/ 2 :

c o s t += y [ n]�W1/ 2

i f y [ n ] < �W1/ 2 :

c o s t += abs ( y [ n ]+W1/ 2 )

re turn c o s t

def f i t _ t e s t ( I n d i v i d u a l ) :

S t e e r i n g _ a n g l e _ i n p u t = ( I n d i v i d u a l [ 0 ]⇤ cos ( p i ⇤ t a n h (

t�I n d i v i d u a l [1 ] ) ) � I n d i v i d u a l [ 2 ]⇤
cos ( p i ⇤ t a n h ( t�I n d i v i d u a l [ 3 ] ) ) +

( I n d i v i d u a l [0]� I n d i v i d u a l [2 ] ) ) �
( I n d i v i d u a l [ 4 ]⇤ cos ( p i ⇤ t a n h ( t�I n d i v i d u a l [5 ] ) ) �

I n d i v i d u a l [ 6 ]⇤ cos ( p i ⇤ t a n h (

t�I n d i v i d u a l [ 7 ] ) ) +

( I n d i v i d u a l [4]� I n d i v i d u a l [ 6 ] ) )

S t e e r _ S p l i n e _ 5 . y = S t e e r i n g _ a n g l e _ i n p u t

S t e e r _ S p l i n e _ 1 . y = S e c o n d _ a x l e _ s t e e r i n g ( S t e e r i n g _ a n g l e _ i n p u t )

S t e e r _ S p l i n e _ 6 . y = S t e e r i n g _ a n g l e _ i n p u t ⇤ S e c o n d _ t o _ f i r s t

S t e e r _ S p l i n e _ 2 . y = F o u r t h _ a x l e _ s t e e r i n g (

S t e e r i n g _ a n g l e _ i n p u t ⇤ S e c o n d _ t o _ f i r s t )

Adams . r ead_command_f i l e ( command_f i le )

# Reading s i m u l a t i o n r e s u l t s

F r o n t _ L e f t = open ( ’ F r o n t _ L e f t _ C o r n e r . t x t ’ , ’ r ’ ) . r e a d l i n e s ( )

F r o n t _ R i g h t = open ( ’ F r o n t _ R i g h t _ C o r n e r . t x t ’ , ’ r ’ ) . r e a d l i n e s ( )

R e a r _ L e f t = open ( ’ R e a r _ L e f t _ C o r n e r . t x t ’ , ’ r ’ ) . r e a d l i n e s ( )

R e a r _ R i g h t = open ( ’ R e a r _ R i g h t _ C o r n e r . t x t ’ , ’ r ’ ) . r e a d l i n e s ( )

146



# R e s u l t p a r a m e t e r s

F r o n t _ L e f t _ x = [ ]

F r o n t _ L e f t _ y = [ ]

F r o n t _ R i g h t _ x = [ ]

F r o n t _ R i g h t _ y = [ ]

R e a r _ L e f t _ x = [ ]

R e a r _ L e f t _ y = [ ]

Rea r_Righ t_x = [ ]

Rea r_Righ t_y = [ ]

# C r e a t i n g l i s t s o f t h e r e s u l t s

f o r x in range ( 9 , l e n ( F r o n t _ L e f t ) ) :

F r o n t _ L e f t _ x . append(� f l o a t ( F r o n t _ L e f t [ x ] . s p l i t ( ) [ 1 ] ) )

F r o n t _ L e f t _ y . append ( f l o a t ( F r o n t _ L e f t [ x ] . s p l i t ( ) [ 2 ] ) )

F r o n t _ R i g h t _ x . append(� f l o a t ( F r o n t _ R i g h t [ x ] . s p l i t ( ) [ 1 ] ) )

F r o n t _ R i g h t _ y . append ( f l o a t ( F r o n t _ R i g h t [ x ] . s p l i t ( ) [ 2 ] ) )

R e a r _ L e f t _ x . append(� f l o a t ( R e a r _ L e f t [ x ] . s p l i t ( ) [ 1 ] ) )

R e a r _ L e f t _ y . append ( f l o a t ( R e a r _ L e f t [ x ] . s p l i t ( ) [ 2 ] ) )

Rea r_Righ t_x . append(� f l o a t ( R e a r _ R i g h t [ x ] . s p l i t ( ) [ 1 ] ) )

Rea r_Righ t_y . append ( f l o a t ( R e a r _ R i g h t [ x ] . s p l i t ( ) [ 2 ] ) )

i f l e n ( F r o n t _ L e f t _ x ) < 140 :

c o s t = 1000000000

e l s e :

c o s t = c o s t _ c a l c u l a t i o n ( F r o n t _ L e f t _ x , F r o n t _ L e f t _ y ) +

c o s t _ c a l c u l a t i o n ( F r o n t _ R i g h t _ x , F r o n t _ R i g h t _ y ) + \

c o s t _ c a l c u l a t i o n (

Rear_Lef t_x , R e a r _ L e f t _ y ) +

c o s t _ c a l c u l a t i o n ( Rear_Righ t_x , Rea r_Righ t_y )

re turn �c o s t

def f i r s t _ g e n e r a t i o n ( pop ) :

f i t n e s s = [ f i t _ t e s t ( pop [ x ] ) f o r x in range ( l e n ( pop ) ) ]

s o r t e d _ f i t n e s s = s o r t e d ( [ [ pop [ x ] , f i t n e s s [ x ] ]

f o r x in range ( l e n ( pop ) ) ] , key=lambda x : x [ 1 ] )

p o p u l a t i o n = [ s o r t e d _ f i t n e s s [ x ] [ 0 ]

f o r x in range ( l e n ( s o r t e d _ f i t n e s s ) ) ]

f i t n e s s = [ s o r t e d _ f i t n e s s [ x ] [ 1 ]

f o r x in range ( l e n ( s o r t e d _ f i t n e s s ) ) ]

re turn { ’ I n d i v i d u a l s ’ : p o p u l a t i o n , ’ F i t n e s s ’ : s o r t e d ( f i t n e s s ) }

def r o u l e t t e ( cum_sum , chance ) :

v e r i a b l e = l i s t ( cum_sum . copy ( ) )

v e r i a b l e . append ( chance )
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v e r i a b l e = s o r t e d ( v e r i a b l e )

re turn v e r i a b l e . i n d e x ( chance )

def s e l e c t i o n ( g e n e r a t i o n , method= ’ F i t t e s t Ha l f ’ ) :

g e n e r a t i o n [ ’ Normal ized F i t n e s s ’ ] = s o r t e d (

[ g e n e r a t i o n [ ’ F i t n e s s ’ ] [ x ] / sum ( g e n e r a t i o n [ ’ F i t n e s s ’ ] )

f o r x in range ( l e n ( g e n e r a t i o n [ ’ F i t n e s s ’ ] ) ) ] ,

r e v e r s e = True )

g e n e r a t i o n [ ’ Cumula t ive Sum ’ ] = np . a r r a y (

g e n e r a t i o n [ ’ Normal ized F i t n e s s ’ ] ) . cumsum ( )

i f method == ’ R o u l e t t e Wheel ’ :

s e l e c t e d = [ ]

f o r x in range ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) :

s e l e c t e d . append ( r o u l e t t e ( g e n e r a t i o n [

’ Cumula t ive Sum ’ ] , rnd ( ) ) )

whi le l e n ( s e t ( s e l e c t e d ) ) != l e n ( s e l e c t e d ) :

s e l e c t e d [ x ] = ( r o u l e t t e ( g e n e r a t i o n [

’ Cumula t ive Sum ’ ] , rnd ( ) ) )

s e l e c t e d = { ’ I n d i v i d u a l s ’ : [ g e n e r a t i o n [

’ I n d i v i d u a l s ’ ] [ i n t ( s e l e c t e d [ x ] ) ]

f o r x in range ( l e n ( g e n e r a t i o n [

’ I n d i v i d u a l s ’ ] ) / / 2 ) ] ,

’ F i t n e s s ’ : [ g e n e r a t i o n [

’ F i t n e s s ’ ] [ i n t ( s e l e c t e d [ x ] ) ]

f o r x in range ( l e n ( g e n e r a t i o n [

’ I n d i v i d u a l s ’ ] ) / / 2 ) ]

}

e l i f method == ’ F i t t e s t Ha l f ’ :

s e l e c t e d _ i n d i v i d u a l s = [ g e n e r a t i o n [

’ I n d i v i d u a l s ’ ][�x�1]

f o r x in range ( i n t ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) ) ]

s e l e c t e d _ f i t n e s s e s = [ g e n e r a t i o n [ ’ F i t n e s s ’ ][�x�1]

f o r x in range ( i n t ( l e n ( g e n e r a t i o n [ ’ I n d i v i d u a l s ’ ] ) / / 2 ) ) ]

s e l e c t e d = { ’ I n d i v i d u a l s ’ : s e l e c t e d _ i n d i v i d u a l s ,

’ F i t n e s s ’ : s e l e c t e d _ f i t n e s s e s }

re turn s e l e c t e d

def p a i r i n g ( e l i t , s e l e c t e d , method = ’ F i t t e s t ’ ) :

i n d i v i d u a l s = [ e l i t [ ’ I n d i v i d u a l s ’ ] ] + s e l e c t e d [ ’ I n d i v i d u a l s ’ ]

f i t n e s s = [ e l i t [ ’ F i t n e s s ’ ] ] + s e l e c t e d [ ’ F i t n e s s ’ ]

i f method == ’ F i t t e s t ’ :

p a r e n t s = [ [ i n d i v i d u a l s [ x ] , i n d i v i d u a l s [ x + 1 ] ]

f o r x in range ( l e n ( i n d i v i d u a l s ) / / 2 ) ]

i f method == ’Random ’ :

p a r e n t s = [ ]
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f o r x in range ( l e n ( i n d i v i d u a l s ) / / 2 ) :

p a r e n t s . append ( [ i n d i v i d u a l s [ r a n d i n t ( 0 ,

( l e n ( i n d i v i d u a l s ) �1 ) ) ] ,

i n d i v i d u a l s [ r a n d i n t ( 0 , ( l e n ( i n d i v i d u a l s ) � 1 ) ) ] ] )

whi le p a r e n t s [ x ] [ 0 ] == p a r e n t s [ x ] [ 1 ] :

p a r e n t s [ x ] [ 1 ] = i n d i v i d u a l s [

r a n d i n t ( 0 , ( l e n ( i n d i v i d u a l s ) �1) ) ]

i f method == ’ Weighted Random ’ :

n o r m a l i z e d _ f i t n e s s = s o r t e d ( [ f i t n e s s [ x ] /

sum ( f i t n e s s ) f o r x in
range ( l e n ( i n d i v i d u a l s ) / / 2 ) ] , r e v e r s e = True )

cummul i t ive_sum = np . a r r a y ( n o r m a l i z e d _ f i t n e s s ) . cumsum ( )

p a r e n t s = [ ]

f o r x in range ( l e n ( i n d i v i d u a l s ) / / 2 ) :

p a r e n t s . append ( [ i n d i v i d u a l s [

r o u l e t t e ( cummuli t ive_sum , rnd ( ) ) ] ,

i n d i v i d u a l s [ r o u l e t t e (

cummuli t ive_sum , rnd ( ) ) ] ] )

whi le p a r e n t s [ x ] [ 0 ] == p a r e n t s [ x ] [ 1 ] :

p a r e n t s [ x ] [ 1 ] = i n d i v i d u a l s [

r o u l e t t e ( cummuli t ive_sum , rnd ( ) ) ]

re turn p a r e n t s

def c r o s s o v e r ( p a r e n t s , method= ’ S i n g l e S t a t i o n ’ ) :

i f method == ’ S i n g l e P o i n t ’ :

p i v o t _ p o i n t = r a n d i n t ( 1 , 6 )

o f f s p r i n g s = [ p a r e n t s [ 0 ] [ 0 : p i v o t _ p o i n t ]+

p a r e n t s [ 1 ] [ p i v o t _ p o i n t : ] ]

o f f s p r i n g s . append ( p a r e n t s [ 1 ]

[ 0 : p i v o t _ p o i n t ]+ p a r e n t s [ 0 ] [ p i v o t _ p o i n t : ] )

i f method == ’ S i n g l e S t a t i o n ’ :

s e c t i o n = r a n d r a n g e ( 0 , 4 )

o f f s p r i n g s = [ p a r e n t s [ 0 ] . copy ( ) ]

i f s e c t i o n == 0 :

o f f s p r i n g s [ 0 ] [ 0 ] = p a r e n t s [ 1 ] [ 0 ]

o f f s p r i n g s [ 0 ] [ 2 ] = p a r e n t s [ 1 ] [ 2 ]

o f f s p r i n g s . append ( p a r e n t s [ 1 ] )

o f f s p r i n g s [ 1 ] [ 0 ] = p a r e n t s [ 0 ] [ 0 ]

o f f s p r i n g s [ 1 ] [ 2 ] = p a r e n t s [ 0 ] [ 2 ]

e l i f s e c t i o n == 1 :

o f f s p r i n g s [ 0 ] [ 1 ] = p a r e n t s [ 1 ] [ 0 ]

o f f s p r i n g s [ 0 ] [ 3 ] = p a r e n t s [ 1 ] [ 3 ]

o f f s p r i n g s . append ( p a r e n t s [ 1 ] )

o f f s p r i n g s [ 1 ] [ 1 ] = p a r e n t s [ 0 ] [ 1 ]

o f f s p r i n g s [ 1 ] [ 3 ] = p a r e n t s [ 0 ] [ 3 ]

e l i f s e c t i o n == 2 :
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o f f s p r i n g s [ 0 ] [ 4 ] = p a r e n t s [ 1 ] [ 4 ]

o f f s p r i n g s [ 0 ] [ 6 ] = p a r e n t s [ 1 ] [ 6 ]

o f f s p r i n g s . append ( p a r e n t s [ 1 ] )

o f f s p r i n g s [ 1 ] [ 4 ] = p a r e n t s [ 0 ] [ 4 ]

o f f s p r i n g s [ 1 ] [ 6 ] = p a r e n t s [ 0 ] [ 6 ]

e l i f s e c t i o n == 3 :

o f f s p r i n g s [ 0 ] [ 5 ] = p a r e n t s [ 1 ] [ 5 ]

o f f s p r i n g s [ 0 ] [ 7 ] = p a r e n t s [ 1 ] [ 7 ]

o f f s p r i n g s . append ( p a r e n t s [ 1 ] )

o f f s p r i n g s [ 1 ] [ 5 ] = p a r e n t s [ 0 ] [ 5 ]

o f f s p r i n g s [ 1 ] [ 7 ] = p a r e n t s [ 0 ] [ 7 ]

re turn o f f s p r i n g s

def m u t a t i o n ( i n d i v i d u a l , m u a t a t i o n _ r a t e =2 , method= ’ R e s e t ’ ) :

gene = [ r a n d i n t ( 0 , 7 ) ]

f o r x in range ( m u a t a t i o n _ r a t e �1):

gene . append ( r a n d i n t ( 0 , 7 ) )

whi le l e n ( s e t ( gene ) ) < l e n ( gene ) :

gene [ x ] = r a n d i n t ( 0 , 7 )

m u t a t e d _ i n d i v i d u a l = i n d i v i d u a l . copy ( )

i f method == ’ Gauss ’ :

f o r x in range ( l e n ( gene ) ) :

# a1 parame te r

i f gene [ x ] == 0 :

m u t a t e d _ i n d i v i d u a l [ 0 ] =

round ( i n d i v i d u a l [ 0 ] + g a u s s ( 0 , 0 . 0 0 1 ) , 4 )

# c1 parame te r

e l i f gene [ x ] == 2 :

m u t a t e d _ i n d i v i d u a l [ 2 ] =

round ( i n d i v i d u a l [ 2 ] + g a u s s ( 0 , 0 . 0 0 1 ) , 4 )

# d1 parame ter3

e l i f gene [ x ] == 3 :

m u t a t e d _ i n d i v i d u a l [ 3 ] =

round ( i n d i v i d u a l [ 3 ] + g a u s s ( 0 , 0 . 0 0 1 ) , 4 )

# a2 parame te r

e l i f gene [ x ] == 4 :

m u t a t e d _ i n d i v i d u a l [ 4 ] =

round ( i n d i v i d u a l [ 4 ] + g a u s s ( 0 , 0 . 0 0 1 ) , 4 )

# b2 parame te r

e l i f gene [ x ] == 5 :

m u t a t e d _ i n d i v i d u a l [ 5 ] =

round ( i n d i v i d u a l [ 5 ] + g a u s s ( 0 , 0 . 0 0 1 ) , 4 )

# c2 parame te r

e l i f gene [ x ] == 6 :

m u t a t e d _ i n d i v i d u a l [ 6 ] =

round ( i n d i v i d u a l [ 6 ] + g a u s s ( 0 , 0 . 0 0 1 ) , 4 )
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# d2 parame te r

e l i f gene [ x ] == 7 :

m u t a t e d _ i n d i v i d u a l [ 7 ] =

round ( i n d i v i d u a l [ 7 ] + g a u s s ( 0 , 0 . 0 0 1 ) , 4 )

i f method == ’ R e s e t ’ :

f o r x in range ( l e n ( gene ) ) :

# a1 parame te r

i f gene [ x ] == 0 :

m u t a t e d _ i n d i v i d u a l [ 0 ] =

round ( rnd ( ) ⇤ 1 . 2 + 3 , 2 )

# c1 parame te r

e l i f gene [ x ] == 2 :

m u t a t e d _ i n d i v i d u a l [ 2 ] =

round ( m u t a t e d _ i n d i v i d u a l [ 0 ] + ( rnd ( ) ) , 2 )

# d1 parame te r

e l i f gene [ x ] == 3 :

m u t a t e d _ i n d i v i d u a l [ 3 ] =

round ( m u t a t e d _ i n d i v i d u a l [ 1 ] +

( rnd ( ) ⇤ 0 . 8 + 0 . 1 5 ) , 2 )

# a2 parame te r

e l i f gene [ x ] == 4 :

m u t a t e d _ i n d i v i d u a l [ 4 ] =

round ( rnd ( ) ⇤ 1 . 2 + 3 , 2 )

# b2 parame te r

e l i f gene [ x ] == 5 :

m u t a t e d _ i n d i v i d u a l [ 5 ] =

round ( m u t a t e d _ i n d i v i d u a l [ 2 ] +

( rnd ( ) ⇤ 0 . 5 + 1 . 2 5 ) , 2 )

# c2 parame te r

e l i f gene [ x ] == 6 :

m u t a t e d _ i n d i v i d u a l [ 6 ] =

round ( m u t a t e d _ i n d i v i d u a l [ 4 ] +

( rnd ( ) ) , 2 )

# d2 parame te r

e l i f gene [ x ] == 7 :

m u t a t e d _ i n d i v i d u a l [ 7 ] =

round ( m u t a t e d _ i n d i v i d u a l [ 5 ] +

( rnd ( ) ⇤ 0 . 6 + 0 . 4 ) , 2 )

re turn m u t a t e d _ i n d i v i d u a l

def n e x t _ g e n e r a t i o n ( gen ) :

e l i t = {}

n e x t _ g e n = {}

e l i t [ ’ I n d i v i d u a l s ’ ] = gen [ ’ I n d i v i d u a l s ’ ] . pop (�1)

e l i t [ ’ F i t n e s s ’ ] = gen [ ’ F i t n e s s ’ ] . pop (�1)

s e l e c t e d = s e l e c t i o n ( gen , s e l e c t i o n _ t y p e )
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p a r e n t s = p a i r i n g ( e l i t , s e l e c t e d , p a i r i n g _ t y p e )

o f f s p r i n g s = [ [ [ c r o s s o v e r ( p a r e n t s [ x ] )

f o r x in range ( l e n ( p a r e n t s ) ) ]

[ y ] [ z ] f o r z in range ( 2 ) ]

f o r y in range ( l e n ( p a r e n t s ) ) ]

o f f s p r i n g s 1 = [ o f f s p r i n g s [ x ] [ 0 ]

f o r x in range ( l e n ( p a r e n t s ) ) ]

o f f s p r i n g s 2 = [ o f f s p r i n g s [ x ] [ 1 ]

f o r x in range ( l e n ( p a r e n t s ) ) ]

unmuta ted = s e l e c t e d [ ’ I n d i v i d u a l s ’ ]+

o f f s p r i n g s 1 + o f f s p r i n g s 2

muta t ed = [ m u t a t i o n ( unmuta ted [ x ] , m u t a t o i o n _ t y p e )

f o r x in range ( l e n ( gen [ ’ I n d i v i d u a l s ’ ] ) ) ]

u n s o r t e d _ i n d i v i d u a l s = muta t ed +

[ e l i t [ ’ I n d i v i d u a l s ’ ] ]

u n s o r t e d _ n e x t _ g e n = [ f i t _ t e s t ( mu ta t ed [ x ] )

f o r x in range ( l e n ( mu ta t ed ) ) ]

u n s o r t e d _ f i t n e s s = [ u n s o r t e d _ n e x t _ g e n [ x ]

f o r x in range ( l e n ( gen [ ’ F i t n e s s ’ ] ) ) ] +

[ e l i t [ ’ F i t n e s s ’ ] ]

s o r t e d _ n e x t _ g e n = s o r t e d ( [ [ u n s o r t e d _ i n d i v i d u a l s [ x ] ,

u n s o r t e d _ f i t n e s s [ x ] ]

f o r x in range ( l e n ( u n s o r t e d _ i n d i v i d u a l s ) ) ] ,

key=lambda x : x [ 1 ] )

n e x t _ g e n [ ’ I n d i v i d u a l s ’ ] = [ s o r t e d _ n e x t _ g e n [ x ] [ 0 ]

f o r x in range ( l e n ( s o r t e d _ n e x t _ g e n ) ) ]

n e x t _ g e n [ ’ F i t n e s s ’ ] = [ s o r t e d _ n e x t _ g e n [ x ] [ 1 ]

f o r x in range ( l e n ( s o r t e d _ n e x t _ g e n ) ) ]

gen [ ’ I n d i v i d u a l s ’ ] . append ( e l i t [ ’ I n d i v i d u a l s ’ ] )

gen [ ’ F i t n e s s ’ ] . append ( e l i t [ ’ F i t n e s s ’ ] )

re turn n e x t _ g e n

# S e t i n g t h e work ing d i r e c t o r y

c h d i r ( M a i n F o l d e r P a t h + ’ \ \ Lane_Change_Resu l t s ’ )

# C r e a t i n g t h e F i r s t G e n e r a t i o n

pop = p o p u l a t i o n ( 1 6 )

gen = [ ]

gen . append ( f i r s t _ g e n e r a t i o n ( pop ) )

f i t n e s s _ a v g = np . a r r a y ( [ sum ( gen [ 0 ] [ ’ F i t n e s s ’ ] ) /

l e n ( gen [ 0 ] [ ’ F i t n e s s ’ ] ) ] )

f i t n e s s _ m a x = np . a r r a y ( [ max ( gen [ 0 ] [ ’ F i t n e s s ’ ] ) ] )

r e s = open ( R e s u l t _ f i l e , ’ a ’ )

r e s . w r i t e ( ’ \ n ’+ s t r ( gen )+ ’ \ n ’ )
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r e s . c l o s e ( )

# The f u n c t i o n t h a t c h e c k s t h e f i t n e s s t o f i n d r e p e t i t i o n

def f i t n e s s _ s i m i l a r i t y _ c h e c h ( m a x _ f i t n e s s , n u m b e r _ o f _ s i m i l a r i t y ) :

r e s u l t = F a l s e

s i m i l a r i t y = 0

f o r n in range ( l e n ( m a x _ f i t n e s s ) �1) :

i f m a x _ f i t n e s s [ n ] == m a x _ f i t n e s s [ n + 1 ] :

s i m i l a r i t y += 1

e l s e :

s i m i l a r i t y = 0

i f s i m i l a r i t y == n u m b e r _ o f _ s i m i l a r i t y �1:

r e s u l t = True

re turn r e s u l t

f o r x in range ( 2 ) :

gen . append ( n e x t _ g e n e r a t i o n ( gen [ x ] ) )

f i t n e s s _ a v g = np . append ( f i t n e s s _ a v g , sum (

gen [ x ] [ ’ F i t n e s s ’ ] ) / l e n ( gen [ x ] [ ’ F i t n e s s ’ ] ) )

f i t n e s s _ m a x = np . append ( f i t n e s s _ m a x ,

max ( gen [ x ] [ ’ F i t n e s s ’ ] ) )

r e s = open ( R e s u l t _ f i l e , ’ a ’ )

r e s . w r i t e ( ’ \ n ’+ s t r ( gen [ x +1] )+ ’ \ n ’ )

r e s . c l o s e ( )

f i n i s h = F a l s e

whi le f i n i s h == F a l s e :

i f max ( f i t n e s s _ m a x ) > 0 :

break
i f max ( f i t n e s s _ a v g ) > �20000:

break
i f f i t n e s s _ s i m i l a r i t y _ c h e c h ( f i t n e s s _ m a x , 50) == True :

break
gen . append ( n e x t _ g e n e r a t i o n ( gen [ �1] ) )

f i t n e s s _ a v g = np . append ( f i t n e s s _ a v g , sum (

gen [ �1][ ’ F i t n e s s ’ ] ) / l e n ( gen [ �1][ ’ F i t n e s s ’ ] ) )

f i t n e s s _ m a x = np . append ( f i t n e s s _ m a x ,

max ( gen [ �1][ ’ F i t n e s s ’ ] ) )

r e s = open ( R e s u l t _ f i l e , ’ a ’ )

r e s . w r i t e ( ’ \ n ’+ s t r ( gen [�1])+ ’ \ n ’ )

r e s . c l o s e ( )

r e s = open ( R e s u l t _ f i l e , ’ a ’ )

153



r e s . w r i t e ( ’Maximum F i t n e s s = ’+ s t r ( f i t n e s s _ m a x ) +

’ , Avarage F i t n e s s ’+ s t r ( f i t n e s s _ a v g ) )

r e s . c l o s e ( )
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