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ABSTRACT 

 

 

CLASSIFICATION OF THE GLASERITE STRUCTURES FAMILY 

BY MEANS OF GROUP THEORY 

 

 

Serpil Albay 

 

 

Master of Science, Department of Physics Engineering 

Supervisor: Assoc. Prof. Dr. Emre Taşcı 

June 2019, 91 pages 

 

 

In this thesis, an extensive analysis of the evaluation of group-subgroup 

relations of glaserite-type compounds by means of group theory phase 

transition constraints is aimed. Relations of more than 100 structures were used 

to create a diagram tree containing the information of structures, index, 

transformation matrix, lattice distortion and global distortion, as well as possible 

theoretical structures evaluated in order to find intermediate glaserite-type 

compounds between the high and low symmetry structures. Glaserite-type 

compounds are compared among the most related structures according to their 

cation occupancies of their general chemical formula. Comparison of the 

crystals was obtained in accordance with their symmetry information via Bilbao 

Crystallographic Server online tools. In addition, the case study was 

demonstrated step by step to calculate and analyze the group-subgroup 

relations of BaNa(PO4)2  crystal via transformation of        minimal 

supergroup to      maximal subgroup. 

 

Keywords: Glaserite, Glaserite-type structure, crystallography, group-subgroup 

relations, symmetry           
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ÖZET 

 

 

GRUP TEORİSİ İLE GLASERİT YAPILAR AİLESİNİN 

SINIFLANDIRILMASI 

 

 

Serpil Albay 

 

 

Yüksek Lisans, Fizik Mühendisliği Bölümü 

Danışman: Doç. Dr. Emre Taşcı 

Haziran 2019, 91  sayfa 

 

 

Bu tez çalıĢmasında, glaserite-tipi yapıların, grup teorinin izin verdiği 

grup-altgrup geçiĢlerinin kapsamlı bir Ģekilde değerlendirilmesi amaçlanmıĢtır. 

100‟den fazla glaserite-tipi bileĢik kullanılarak diyagram oluĢturulmuĢtur. Bu 

diyagramda, yapı bilgisi, indis, dönüĢüm matrisi, örgü ve genel bozulma bilgileri 

yer almaktadır. Bu bilgilerin yanı sıra, yüksek ve düĢük simetri yapıları arasında 

bulunan olası ara bileĢikler de öngörülerek diyagrama eklenmiĢtir. Glaserit- tipi 

yapıların kimyasal formülündeki katyon doluluğuna göre, yapısal olarak birbirine 

en yakın olanlar arasında karĢılaĢtırma yapılmıĢtır. Kristal yapılar, uzay 

gruplarına göre, Bilbao Kristalografi sunucusunun çevrimiçi araçları kullanılarak 

karĢılaĢtırılmıĢtır. Bunun yanı sıra, BaNa(PO4)2 kristalinin              uzay 

grubundan            uzay grubuna geçiĢi örnek incelemesi olarak detaylıca 

ele alınmıĢtır. 

 

Anahtar Kelimeler: Glaserite, Glaserite-tipi yapılar, kristalografi, grup-altgrup 

iliĢkileri, simetri 
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I. GROUP THEORY 

 

 SYMMETRY 1.

Symmetry deals with similarity between the portions of an object or a living 

being. In nature, there are a lot of examples of symmetry that show symmetrical 

pattern like butterfly wings, honeycombs, starfishes, flowers, snowflake, etc. 

The beauty of the nature originates from the sense of the symmetry. Generally, 

symmetry provides advantages for animals and, flowers through every part of 

the nature. Advantages might manifest themselves in the hunt for a cheetah 

who needs to run quickly, or might be a flap for a bird, or might be the 

pollination for a flower which needs to seem attractive. However, asymmetry is 

sometimes also a way to survive with respect to requirements of adaptation.  

Rotational symmetry, mirror symmetry, translational symmetry and reflection 

are some of the symmetry types existed in two and three dimensions  [1]. 

 

1.1. Isometries – Symmetry Operations 

Isometric mapping maintains all distances and angles unchanged while affine 

mappings do not maintain distances invariant but preserve parallelism. Parallel 

shift is called translation [2]. Isometries are special form of affine mappings and 

they do not let any distortion between the image of a body and the original body 

[3]. Since there is no distortion, the image of a body has the same volume with 

the main body. So, this stability of the volume can be expressed by the following 

condition: 

           

 

Where   is an isometry represented in matrix-column representation of the 

mapping (discussed in Section 1.3). 

 

Symmetry denotes infinite integration of parts by which isometries map onto a 

whole object. Mapping onto itself means that an observer cannot realize the 

difference of the object‟s state between before and after the mapping [3].  
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1.2. Graphical Representation  

An easy way of understanding the repeating order is to choose a point in two 

dimensional coordinate system. For example, the point at         can be rotated 

counter-clockwise direction by an angle of     four times to coincide with its 

initial point.  
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Figure 1.1. Order of     Operation 
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2.   (
  
     

)   (
  
  )                   4.    (

    
  

)   (
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If we select our initial point as       and        we can easily write    operation 

in general form by examining its effect on these points. 

 

  (
 
 
)    (

 
 
) 

     (
 
 
)    (

  
    

) 

 

Then, general matrix representation of fourfold symmetry operator in two 

dimensions becomes; 
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    (
   
     

) 

 

Applying    operation only a finite number of times is not sufficient to explore 

the full symmetry (that is, before reaching the identity operation) since 

symmetry has a meaning only when it is applied repeatedly until no new 

components can be derived. 

 

             Table 1.1. Multiplication Table (also known as Cayley Table) 

 

           

            

             

            

             

 

In Table 1.1, operation      shows counter-clockwise rotation of    ,    shows 

clockwise rotation of     and   is identity.   represents a rotation of      and 

thus, choosing direction of rotation makes no difference. 

 

General formula of rotation axis in  -dimensional coordinate system is defined 

as [4]; 

   (
                     
                        

) 

 

  shows number of rotations needed to overlap final point and initial point. 

 

In  -dimensional system, rotation axis specifies the rotation matrices. Rotations 

about the  ,   and   axes are defined as [4]; 

 

         (
   
                      
                        

) 
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         (
                      

   
                        

) 

 

         (
                      
                        

   

) 

 

Example: Consider   dimensional coordinate system. Let‟s write  -fold 

rotational symmetry matrix along   axis. 

 

      (
   
                
                  

) 

 

  (
       
      
         

) 

 

Symmetry operation found above (       ) (to be read in row-wise direction 

with                               ) is representative matrix showing a rotation 

about x-axis by choosing coordinate system (     ). If different coordinate 

system is chosen, not the  -fold rotational symmetry operation itself but its 

representation is changed according to new coordinates.  

 

Since a symmetry operation maps a position to another, it is equivalent to an 

active transformation and if need arises, it can also be interpreted as a passive 

transformation where the coordinate system (i.e., the axes) is manipulated to 

yield the same result. 

 

1.3. Matrix-Column Representation  

Affine mappings   can be described using a coordinate system that is referred 

by a system of linear equations. A       matrix   and a       column vector 

   constitute the matrix-column pair        
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Thus, a general position    
     

     
   related to another position            via an 

affine mapping       can be expressed as: 

 

  
                         

  
                           

  
                           

 

In matrix form: 

 

(

  
 

  
 

  
 

) = (
         

         

         

) (

  
  
  
)  + (

  
  
  
) 

 

This may be abbreviated as:  

 

                 

 

Composition of the two mappings    and    produce a new affine mapping    

as follows: 

         

 

Here, the order of operations is important as in general they do not commute.  

 

              

 

Rule of composition can be obtained by successively acting the         and 

         operator pairs on a position  . 

 

             

        
                       

 

If              , then         pair equals to the following equation that 

shows successive application of    and   mappings. 
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Each affine mapping pair is a combination of the        and      . The 

mappings pair with unit matrix,       , represents translations and       

describes rotational part and keeps origin fixed. Consequently,   characterizes 

the linear part while    represents the translational part of the affine mapping    

[2]. 

 

Inverse affine mapping occurs on the condition that           . For the       

pair, the following equations can be derived: 

 

                   

                          

 

Thus,                       

If             then,               

 

Isometries cannot be defined with only using         matrices since the 

distances are preserved. Isometries always obey the condition  

           and they are always invertible. Successive and inverse products 

             
    of affine mapping pairs are also included in the set of all 

isometries that forms a group [2]. 

 

We can proceed with an example to show affine mapping pairs and isometry 

conditions. 

 

Example: Consider the representation of the    threefold screw rotation axis: 

              

Linear equations refer to the coordinate system describing affine mappings: 

 

                                                          
        

                                                          
        

        
          



7 

 

Case of        shows that   is a fixed point that is invariant under this 

mapping. But in this example there is no fixed point since the motion is the 

screw rotation. Linear and translation parts will be represented as follows in 

matrix form: 

 

    (
    
    
      

)  and     (
 
 
   

) 

 

 (

  
 

  
 

  
 

)   (
    
    
      

) (
 
 
 
)   (

 
 
   

)  

 

    |
    
    
      

|   , satisfies the            condition. 

 

      pair can be written in       matrix form. In order to check the 

invertibility condition, we have to convert the pair into a       augmented 

matrix form which is defined in Section 1.4 

 

   

(

 
 

1000

3/2100

0011

0010





)

 
 

 

 

     

(

 
 

1000

3/2100

0001

0011







)

 
 

    and              

(

 
 
 

1000

0100

0010

0001

 

)

 
 

 =        

 

 

1.4. Augmented Matrix 

The system of equations is a combination of a       matrix   and 

      column-vector   in a       matrix. In order to avoid complications, it is 
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possible to add a 4th row           to the system equation to complete it to a 

square matrix. This re-formed square matrix is called the augmented matrix [2]. 

 

    

(

 
 

1000

wW

)

 
 

 

 

An affine mapping pair       can be described now in augmented form  . 

Successive application of the pairs is defined as the multiplication of their 

augmented matrices. 

 

           

 

Thus, inverse affine mapping can also be represented by      as an alternative 

form to                         Similar to column  ,     and   have to be 

augmented to       matrices. Determinant of the linear part (or rotational part) 

  and augmented matrix   are equal.  

 

 

 

                 

 

    𝑊        𝐖      



9 

 

   |
    
    
      

|     
|
|

1000

3/2100

0011

0010





|
|
   

 

 

1.5. Seitz Notation 

Seitz symbol is a notation that describes the symmetry operations of the space 

groups. Seitz symbols consist of a rotation part   and a translation part    

          

Corresponding symbols to   shows the type of the symmetry and orientation of 

the symmetry elements to the basis. [5] 

Symbols of  : 

   is used for the identitiy 

    is used for the inversion 

 m is used for reflections 

        and   for rotations 

        and    are used for rotoinversions 

 

Example: General position of P32 (#145) has the following coordinate triplets 

and corresponding Seitz symbols: 

 

Table 1.2. Seitz Notation of the General Position of P32 

 

Coordinate Triplets ITA Symbol Seitz Symbol 
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Superscript signs (     ) show direction of rotation. While       sign indicates 

clockwise rotations,     sign points to counter-clockwise rotations. Subscript of 

the rotation part shows characteristic direction of motion by indicating the 

rotation around an axis. In the view of such information, for the operation 

denoted by        
               symbol, we can explain that there is a rotation by 

     angle around z axis followed by a translation by     along z axis. 

 

Example: Let‟s choose a point with the coordinates                 

(
 
 
 
)   (

   
   
   

) 

Then, we apply left-handed 32 screw rotation operation       
              : 

(

  
 

  
 

  
 

)   (
    
    
      

) (
   
   
   

)   (
 
 
   

) 

After the first rotation by      and translation along z, the new coordinate of the 

point will be:  

(

  
 

  
 

  
 

)   (
    
    
     

) 

After the second consecutive application of the operation: 

(

  
 

  
 

  
 

)   (
      
    
     

) 

And after applying the operation for a third time, the point comes to its initial 

coordinates on   and   axes.  
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There is translation only along z axis. So, if one looks the point over z axis, the 

initial point seems not to change at all (and by employing crystallographic unit 

cell translations, this point can be shown to be equivalent to the starting point as 

            ). 

(

  
 

  
 

  
 

)   (
   
   
    

)  (
   
   
   

)(
   
   
   

) 
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 GROUP AXIOMS 2.

The set of isometries correspond to a symmetry group if it satisfies the following 

4 axioms [2]: 

 

Let   be a set of isometries (symmetry group). 

 

1- Identity 

A group has a special symmetry element   such that upon being 

operated on another element of the group the result is the 

operated element itself. This   element is called the identity 

element of the group.  

   is an element of   

  such that                         

 

2- Invertibility 

For each symmetry element   of the group, there is a 

corresponding element     such that upon being operated on 

each other the result is the identity operator  , and     is called 

the inverse of   operator. 

    is inverse of   

  such that            ,     ,        

 

3- Associativity 

For three elements          of the group, as long as the order of 

the elements is kept, any order of operations yields the same 

result.  

  (    )  (    )  ,                   

 

4- Closure 

If       are elements of the group, their product    must also be 

an element of the group. 

         and        , then       
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Some Definitions [2]: 

 

- If           for all pairs in  , group is called Abelian 

(commutative). 

 

- If all elements of a group can be obtained by one of its 

elements, the group is called cyclic. 

 

e.g.           
2   

3     

 

- If   is an Abelian group and   
n    , then group   is called 

finite and cyclic of order n. 
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 GROUP RELATIONS 3.

3.1. Group-Subgroup Relations 

Relationship between symmetries points out correlation of group and subgroup. 

Group-subgroup relation plays a significant role the comparison of crystal 

structures. 

 

Symmetry group consists of its symmetry operations and these operations must 

obey closure, identity, associativity and invertibility rules as explained in the 

previous section. 

 

Let   and   represent two symmetry groups; 

 

                     }      and                              

 

If each      , then   is a subgroup of   and   is a supergroup of   and thus 

denoted by the symbol:  

         

 

If there is no intermediate group between   and  , then   is a maximal 

subgroup of  , and   is a minimal supergroup of    

 

If we have two symmetry groups and there is a group-subgroup relation 

between them, expressing the connection between group and subgroup 

requires a matrix called transformation matrix. Transformation from a high 

symmetry group to a low symmetry group is always expressed by a 

transformation matrix. This transformation matrix is accompanied with an index. 

 

The two symmetry groups are not necessarily related to each other only by a 

group-subgroup relation. For example, two symmetry groups having a common 

subgroup can share part of their symmetry operations in common; or two 

groups having a common supergroup can have different part of the symmetries 

of the supergroup [3]. 
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       Figure 3.1. Related Groups and Subgroups 

 

 

 

3.2. Index 

Index is an integer value that infers relation between groups and subgroups. 

Index is related to either to translation loss or point group symmetry loss or both 

of them. High symmetry reduction to low symmetry during symmetry break by 

means of phase transition expresses a mathematical relation. This relation 

shows allowed transition between the symmetry groups. There are the 

translationengleiche index and the klassengleiche index (discussed in Section 

7.1.1 and Section 7.1.2). 

 

If index,      is a prime number, there can be no intermediary group between   

and  ;  

 

[                             

 

  
   

   
 

 

Figure 3.2 shows an example of subgroups chain.  Index between   and   can 

be calculated by the multiplication of the index between   and    and the index 

between     and  . 
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Figure 3.2. Subgroup Chain 

 

              

Hermann‟s theorem claims that if a subgroup is a maximal subgroup of the 

group, it is either a klassengleiche subgroup (loss of translation symmetry) or a 

translationengleiche subgroup (loss of point group symmetry). 

 

3.3. Conjugacy Class 

Let           be subgroups of the group   and that they satisfy the following 

condition: 

     
      ,      and      

 

Then,          are called conjugate subgroups in    

 

   may not be the only element of the group which transforms   to   ; there 

may exist several elements of   which can result in the same conjugacy 

relation. When all elements of the   are run, the set of all elements which are 

conjugate to   is called the conjugacy class [3]. 
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3.4. Conjugate Subgroups 

There can be conjugate subgroups of a space group. Let          be 

subgroups of   and    be conjugate to   in  . Conjugacy class formed by   

and     states that [3]: 

 

-   and     belong to the same space group, 

-   and    have the same lattice dimensions, 

-   and     have equivalent symmetry operations in  . 

 

Maximal subgroups   and     can be conjugate in   in two ways [3]: 

 

1- Orientational Conjugation: The conjugate subgroups have different 

orientation of the unit cells, and their axes can intersect by applying 

symmetry operations of    These symmetry operations are the conjugate 

subgroups lost in transformation. Translationengleiche maximal 

subgroups can be conjugate in minimal supergroup in only orientational 

conjugation way. 

 

2- Translational Conjugation: Enlargement of a primitive unit cell of a 

minimal supergroup  , by a factor of 3 or higher, may generate conjugate 

subgroups. Conjugate subgroups lose translational symmetry operators 

thus ending up having larger unit cell than group  . Taking different parts 

of repeating elements of   creates conjugate subgroups and they can be 

distinguished by their position of the origins. Their origins can be mapped 

onto each other by applying translational symmetry operators of  .  

If the origin of the unit cell of   is not fixed by symmetry (floatable) in a 

direction, then enlargement in that direction does not result in conjugate 

subgroups. Translational conjugation may occur among klassengleiche 

and isomorphic maximal subgroups. 
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3.5. Normalizers 

In addition to   , the element of the group  , that maps two conjugate 

subgroups onto each other, there exist further elements   , and these elements 

can map the subgroup   onto itself.  

 

    
      ,      

 

The set of    includes the elements of the  , but there may exist further 

elements which provide the relation above. The group consisting of all the 

elements     is called the normalizer of   in  . 

 

               
     =    

 

Normalizer is an intermediate group between the group and the subgroup. 

 

 ≤     ≤  

 

Euclidean Normalizer: It is a special group that represents a normalizer group 

between space group   and supergroup  . The elements of   can map the 

  onto itself. All space groups are subgroups of their corresponding    

 

Affine Normalizer: In addition to mapping a space group onto itself, the affine 

normalizer allows the lattice to expand or compress. Euclidean normalizer is a 

subgroup of the affine normalizer. 

 

Chirality-preserving Euclidean Normalizer: Chirality-preserving Euclidean 

normalizer is a subgroup of Euclidean normalizer not including inversion, 

rotoinversion, reflection and glide reflection operators. 

 

 ≤      ≤      

 

If Euclidean normalizer       is non-centrosymmetric, then chirality-preserving 

Euclidean normalizer is identical to Euclidean normalizer [3]. 
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3.6. Coset Decomposition 

If    , then   can be decomposed in terms of    

 

Let                               and                             

 

        

 

 ,    ,     etc. represent left cosets (if         and similarly  ,    ,     

etc. represent right cosets of group  .  

 

Let    represents the elements of   that forms new cosets with respect to  . 

 

Left coset decomposition        ∑    
 

   
  

Right coset decomposition;       ∑    
 

   
 

 
  shows number of cosets i.e. index     of   in   ,     

 
Properties of Coset Decomposition [2]: 

 
1. Each symmetry element of   appears in only one coset. 

2. Number of elements in a coset is equal to the order of    

3. The number of left cosets and right cosets are equal and this number 

shows the index of   in        

4. Only one of the cosets represents the subgroup,  . 

5. When left and right cosets are same, the subgroup is called normal 

subgroup. Otherwise, subgroup belongs to conjugate subgroup. 

 

Lagrange‟s Theorem states that groups that have prime order have no proper 

subgroups (i.e.                
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3.7. Transformation Matrix 

As previously stated, relations between different structures e.g., 

group-subgroup relations are identified by a matrix called the transformation 

matrix.  

Transformation can be used in two fundamental ways in crystallography. First 

aspect is used to define transformations of the coordinate system and the unit 

cell. When comparison of different settings of monoclinic, orthorhombic and 

rhombohedral space groups is considered, unit cell transformation is specifically 

revealed. Expressing the phase transitions and group-subgroup relations by a 

transformation matrix referred by a transformed coordinate system is useful for 

non-conventional crystal structures. Secondly, transformation may express a 

change of coordinate of a point without changing the coordinate system. This is 

related to symmetry operations of crystal structures [6]. 

 

Briefly, changing the coordinate system is necessary for the following cases [3]: 

 

1. For comparison of two same crystal structures that have been described 

in different coordinate systems (due to such as identification through 

different experimental processes & instruments), transformation of the 

coordinate system is required. Also to investigate the group-subgroup 

relation of two space groups having been described in different 

coordinate systems, transformation of the coordinate system is 

necessary. 

 

2. Phase transitions are generally described in conventional data and it is 

convenient to transform the high symmetry phase structure into the 

settings of the low symmetry (high symmetry phase‟s non-conventional 

settings) phase for their comparison. 

 

 

3. Orthonormal bases are more desirable to use than conventional bases to 

describe physical data (such as elasticity, thermal conductivity, etc.) in 

crystallography. So, point coordinates, indices of planes and directions 
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have to be converted to orthonormal bases whenever possible to be 

compared to those data from literature. 

 

Origin shift and change of bases can be represented by a matrix pair      .  

  is       square matrix representing changes in bases and   column 

matrix describes the origin shift. Their combined matrix pair       

corresponds to the transformation matrix. 

 

Let         be the basis vectors of a space group   and   is the origin. 

 

Origin shift can be described by; 

        

 

   corresponds to the new origin of the new coordinate system. 

 

Figure 3.3. Origin Shift 

 

Column vector   consist of coordinates of the point   with respect to   and 

column vector    shows coordinates of the point   in new coordinate system   . 

Considering  Figure 3.3, we can write: 

 

     ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

      ⃗⃗⃗⃗ ⃗⃗  ⃗ 

    ⃗⃗ ⃗⃗  ⃗ 

Then, we can obtain: 

 

       



22 

 

So, the transformed coordinates of the point can be rewritten as: 

 

                    

 

Now, we can consider the change of matrix pair       of group   in the new 

coordinate system as using the equation we obtained in Section 1.3 

 

             
   

We obtain: 

                        

                          

 

From here, we can derive the following equation by using            in the 

previous equation. 

                             

 

Since               , we can obtain the         matrix pair after the origin 

shift. 

              
             

 

Decomposition of the equation shows: 

 

     and             

 

Above expression shows that there is no change in column part   by origin 

shift. If   equals to unit matrix,    , then there will be no change in 

translation part, either. 

 

Transformed basis vectors           is obtained by linear combination of old 

basis vectors          and       transformation matrix  . 
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Figure 3.4. Change of Basis 

 

Example: In Figure 3.4, basis vectors          are transformed to new basis 

         by a matrix  . Symmetry operators and point coordinates are 

transferred to the new basis. 

       

       

     

 

Then, the       transformation matrix   is written as; 

 

  (
      
    
      

) 

 

 

3.8. Metric Tensor 

Metric parameters consist of lengths of the basis vectors and the intervector 

angles. Let         be basis vectors in   dimension. Then, scalar products of all 

pairs of the basis vectors can be collected in a       matrix called the metric 

tensor [7]. 
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Figure 3.5. Intervector Angles in 3D 

 

Metric tensor can be easily written with lattice parameters of a crystal consisting 

of the basis lengths and the angles between non-coplanar vectors.  

 

  (
       ⃗     

 ⃗    ⃗  ⃗  ⃗   

       ⃗     

) 

 

Transformation of a basis to another one can be derived by transformation 

matrix  .  Similar relation holds for the metric tensor and transformed metric 

tensor. 
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II. GROUP THEORY IN SOLID STATE PHYSICS 

 

 POINT GROUPS 4.

Crystallographic point groups represent finite-dimensional groups containing 

reflection and rotation symmetry operators that leave a common point fixed 

under applications of the respective operator. There are 32 crystallographic 

point groups as classified in Table 4.1. Comprehensive approach to the „point 

group‟ term requires dealing with site symmetry (as mentioned in this study) in 

crystals and external shape of ideally developed macroscopic crystals in order 

to avoid confusion [8] [3] [9]. 

 

Table 4.1. Three Dimensional Crystal Systems and Point Groups  [10] 

 

Crystal System Point Groups 

Triclinic    ̅ 

Monoclinic         

Orthorhombic             

Tetragonal    ̅              ̅         

Trigonal    ̅        ̅  

Hexagonal    ̅              ̅         

Cubic      ̅      ̅     ̅  

 

 

Consider a system (that does not repeat itself, i.e., without translational 

symmetry), consisting of a finite number of atoms, which maps onto itself by the 

set of isometries. The set of all symmetry operations constitutes to the point 

group of the system. Site symmetry of a point consists of all the point group 

symmetry operations that leave that point in the system unchanged [11]. The 

number of operators in a site symmetry set is equal to the ratio of the number of 

point group operators to the multiplicity of the point. 
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The point group symbol can be obtained by reducing the glide planes of the 

space group to mirror planes and screw axes of the space group to rotation 

axes [12]. Equivalently, one can obtain the point group operators of a space 

group by discarding all the translational components.  
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 BRAVAIS LATTICES 5.

There are 14 possible three dimensional Bravais lattices exhibiting symmetry 

features. These Bravais lattices are classified in   crystal systems by the angles 

and length of the primitive translations [13]. There are   Bravais lattices in two 

dimensions and   in one dimension. Bravais lattice shows the arrangement of 

the bases in a unit cell [14]. 

 

Two lattices belong to the identical Bravais lattice group as long as they 

coincide within their point group symmetry and centering mode of their units. 

Therefore, same crystal family may have various Bravais types by centering 

modes. Otherwise, lattices can be classified according to their domain topology, 

called Voronoi types. There are   types of lattices in three dimensions with 

respect to Voronoi classification. If topological and symmetry properties appear 

in classification,    Symmetrische Sorten types appear in three dimensions [7]. 

 

Table 5.1. Crystal Systems and Bravais Lattices 

 

 Crystal System Bravais Lattices Conditions 

1 Triclinic Primitive 
a≠b≠c 

α≠β≠γ≠90° 

2 Monoclinic 

Primitive 

Base centred (one face 

centred) 

a≠b≠c  

α=γ=90° β≠90° 

3 Orthorhombic 

Primitive 

Base centred 

Face centred 

Body centred 

a≠b≠c  

α=β=γ=90° 

4 Tetragonal 
Primitive 

Body centred 

a=b≠c 

α= β= γ=90°  

5 Hexagonal Primitive 
a=b≠c 

α= β= 90° γ=120°  

6 
Trigonal 

(Rhombohedral) 
Primitive 

a=b≠c 

α= β= 90° γ=120°  

7 Cubic 

Primitive 

Face centred 

Body centred 

a= b= c 

α=β=γ=90° 
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5.1. Triclinic 

In this system, crystals consist of unequal three axes inclining with oblique 

angles with respect to each other. Triclinic crystal structure has the lowest 

symmetry among all unit cells containing only   and  ̅ point group symmetries 

which are both cyclic. Unit cell of triclinic system is represented in primitive type 

and positioned as contacting   Bravais lattice points on the corners.   

   percentage of all minerals belongs to this system [15]. Rhodonite ([Mn, Fe, 

Mg, Ca]SiO3) is an example of triclinic crystal system having  ̅ symmetry axis 

[15] [10]. 

 

5.2. Monoclinic 

As in triclinic system, monoclinic system has three unequal edges and two axes 

being perpendicular to each other while the remaining angle is oblique. 

Monoclinic crystal system has      and     point groups of which the first two 

are cyclic. Point group   represents the  -fold symmetry along b-axis, while    

always refers to a vertical mirror plane containing either the a-axis or the c-axis. 

    of all known minerals crystalize in this system and most of them have      

point group symmetry [10]. Aegerine mineral (NaFeSi2O6) crystallizes in 

monoclinic system with     site symmetry [15]. 

 

5.3. Orthorhombic 

Orthorhombic system is described by vectors of three perpendicular axes 

having unequal length. This crystal system has 4 Bravais lattices; primitive, 

body-centred, base-centred and face centred. It can be confusing when β axial 

angle of monoclinic unit cell is very close to    , when it may be seen as 

pseudo-orthorhombic system. Orthorhombic crystal system can be 

distinguished by the  -fold symmetry axes that hold its own shape under 

     rotating of cell along c-axis. In this case, primitive and base-centred 

lattices exchange their centering type. Similarly, body-centred and face-centred 

unit cells swap their alignment. Orthorhombic system has    ,     and     

point group symmetries. Baryte (BaSO4) is an example of the crystal having 

monoclinic structure with                    symmetry [15] [10]. 
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5.4. Tetragonal 

In this system, crystals are expressed by three perpendicular axes, two of which 

have equal length. Tetragonal crystal system can be distinguished by the four-

fold symmetry axes that overlap the atoms onto themselves by a 90° rotating of 

cell. Tetragonal system consists of primitive and body-centred Bravais lattices. 

As an example, Apophyllite ([K,Na]Ca4Si8O20[F,OH]) crystalizes in tetragonal 

structural system with             (     ) point group symmetry [15] [10]. 

 

5.5. Hexagonal 

Hexagonal crystal system has four axes, three of equal horizontal axes at 120° 

to each other. The other axis is perpendicular to the other three. Rotating the 

unit cell by 60° holds the atom positions same without changing their 

appearance. The fewest substances are assigned to hexagonal crystal system. 

Vanadinite (Pb5(VO4)3Cl) (   ) and graphite have structures belonging to the 

hexagonal system [15] [10]. 

 

5.6. Trigonal (Rhombohedral) 

Rhombohedral crystal system is also called trigonal system and can be 

considered as a subdivision of hexagonal system. The unit cell in this system 

has 3-fold symmetry by means of rotating the cell by 120° results in same 

appearance of the atoms. Calcite (CaCO3)  ( ̅     and Selenium crystallizes in 

this form [15] [10]. 

 

5.7. Cubic 

The cubic crystal system has the highest symmetry. It also has the greatest 

number of restrictions. Not only do all the angles equal 90°, but all the sides 

have the same length as well. There are three Bravais lattices with cubic 

symmetry; primitive, body-centred and face-centred. Fluorite (CaF2) crystallizes 

in cubic form with     ̅    site symmetry [15] [10]. 
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5.8. Unit Cell, Primitive Cell, Centring Factor 

Unit cell is the basic repeating parallelepiped unit (in 3 dimensions) having all 

symmetries of the crystal structure. Coordinates of all points inside the unit cell 

must obey the condition, meaning that atomic positions are normalized (also 

called “direct” or “fractional” coordinates) [3]; 

 

            

 

Geometry of particles in the unit cell identifies the structure of a crystal. Sides of 

a unit cell describe the basis vectors      . Magnitudes of the basis vectors and 

the angles between them shown in Figure 3.5 constitute to the lattice 

parameters of a crystal [10]. 

 

Primitive unit cell is an arrangement of a unit cell by located lattice points just on 

the corners. Primitive unit cell contains only one lattice point. Conventional 

bases are the bases used in International Tables Volume A to introduce 

crystallographic bases. There is no need to identify conventional bases in 

primitive lattice since bases are chosen to ease calculations as they are parallel 

to symmetry axes.  

 

Table 5.2. Unit Cell Centrings 

 

Centring 

Symbol 
Centring Type 

Centring 

Factor 
Coordinates of Lattice Points 

P Primitive         

C C-face centred     
 

 
 
 

 
   

A A-face centred       
 

 
 
 

 
 

B B-face centred     
 

 
   

 

 
 

I Body-centred     
 

 
 
 

 
 
 

 
 

F Face centred   
    

 

 
 
 

 
     

 

 
   

 

 
;   

 

 
 
 

 
   

R 
Rhombohedrally-

centred 
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Lattices are called centred when their conventional basis selection is not 

primitive. In other words, non-primitive unit cell has more than one lattice point 

in it. Table 5.2 shows centring symbols, centring types, centring factors and 

corresponding lattice points in unit cells. Centring factor indicates the number of 

lattice points in a conventional unit cell. 

 

5.9. Pearson Symbol 

Pearson symbol is used to define and classify crystal structures according to 

their features. Pearson symbol consists of three parts constituted from an 

italicized lower-case letter, an italicized capital letter and a number, 

respectively. Lower-case letter indicates the crystal system (e.g., m for 

monoclinic), and capital letter indicates the centring of lattices (e.g., P for 

primitive lattice) and the numerical part points to the number of atoms in the 

conventional unit cell [16]. 

 

Table 5.3. Pearson Symbols of Bravais Lattices 

 

 Crystal System Bravais Lattices Pearson Notation 

1 Triclinic Primitive aP 

2 Monoclinic 

Primitive 

Base centred (one face 

centred) 

mP 

mC, mA, mB 

3 Orthorhombic 

Primitive 

Base centred 

Face centred 

Body centred 

oP 

mC, mA, mB 

oF 

oI 

4 Tetragonal 
Primitive 

Body centred 

tP 

tI 

5 Hexagonal Primitive hP 

6 Rhombohedral Primitive hR 

7 Cubic 

Primitive 

Face centred 

Body centred 

cP 

cI 

cF 
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Pearson symbol does not define a unique space group for a crystal i.e., two 

different crystal structures belonging to different space groups may be 

designated to the same Pearson symbol. The following example shows this 

ambiguity due to Pearson notation. 

 

Example: Both Al3Zr and SeTl structures have tetragonal crystal system with 

body-centred unit cell. 

 

Crystal Structure Al3Zr SeTl 

Space Group I4/mmm I4/mcm 

Space Group Number 139 140 

Pearson Symbol tI16 tI16 
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 SPACE GROUPS 6.

Space group is formed by the set of all symmetry operators of an object. In 

other words, space group shows the symmetry group of a three-dimensional 

crystal. There are 230 space groups identified by the combination of 32 point 

group symmetries and 14 Bravais lattices. Each crystal belongs to one of these 

space groups according to the match of its structural properties with the space 

group constraints. 

 

Table 6.1. Space Groups with Corresponding Crystal System Numbers 

 

Crystal System 
Space Group 

Examples 

# of Space 

Groups 

ITA Space Groups 

Range 

Triclinic           1,2 

Monoclinic                     #3 - #15 

Orthorhombic                   #16 - #74 

Tetragonal                #75 - #142 

Trigonal                  #143 - #167 

Hexagonal                    #168 - #194 

Cubic                  #195 - #230 

 

 

6.1. Hermann-Mauguin Notation 

Hermann-Mauguin notation is a way to identify the symmetries indicating the 

coordinate system choice. In this notation, a number of     or   symbols are 

used to specify the space group symmetries. The first symbol is always an 

upper-case letter indicating the centring of the Bravais lattice. The remaining 

symbols show the point group symmetry with additional information of glide 

planes and screw rotation axis since point group symmetry doesn‟t include glide 

plane and screw axis.  

 

In Hermann-Mauguin notation [15]; 
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1.                express the rotational symmetry axis, e.g.   indicates  -fold 

rotation and  ̅,  ̅  ̅, ̅ and  ̅ indicate rotoinversion. For example,  ̅ refers to 

a rotation of      followed by inversion with respect to the center. 

2. The letters m,e,a,b,c,n refers to mirror and glide planes. 

3. The   sign has a meaning of “perpendicular to”. For example,      

monoclinic system has rotational symmetry axes perpendicular to the 

mirror plane. However,     has  -fold rotational symmetry axes parallel 

to the mirror plane. 

4. The symbols with a subscripted number e.g.   ,    indicates screw 

symmetry. For example,    symbol implies a rotation of      followed by 

a translation order of      along the indicated axis.  

 

Table 6.2. Principal Directions of the Point Groups 

 

Crystal 

System 
Point Groups 

Primary 

Direction 

Secondary 

Direction 

Ternary 

Direction 

Triclinic    ̅ - - - 

Monoclinic         [100] - - 

Orthorhombic             [100] [010] [001] 

Tetragonal 
   ̅              

 ̅         
[001] [010], [100] 

[0-10], [110] 

 

Trigonal    ̅        ̅  [001] 
[010], [100], 

[-1-10] 
- 

Hexagonal 
   ̅              

 ̅         
[001] 

[010],[100], 

[-1-10] 

[1-10],[120] 

[-2-10] 

Cubic      ̅      ̅     ̅  
[100] 

[010] 

[001] 

[111],[1-1-1], 

[-11-1],[-1-

11] 

[1-10],[110], 

[01-1],[011], 

[-101],[101] 

 

 

Example: Hermann-Mauguin notation of the space group (#221) is defined as; 

   ̅ . Its extended notation is      ̅   . Each symbol will be analyzed in 

order to understand Hermann-Mauguin decoding. 
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Hermann-Mauguin notation of the point groups‟ part consists of three principal 

directions.     shows primary direction,  ̅ shows secondary and     shows 

ternary direction. Related principal directions are shown in Table 6.2. 

 

6.2. Classification of Symmetry Operations 

Determinant and trace of the       pair are the main invariants of isometry. 

While matrix part of the pair,    depends on the basis only, column part,  , 

depends on the selection of both basis and origin [2]. 

 

Table 6.3 shows the characterization of   with respect to its trace and 

determinant. “Type” row represents Hermann-Mauguin point groups‟ notations. 

The odd rotoinversion operators  ̅ and  ̅ contains inversion operator resulting in 

the doubling their orders. 

 

Table 6.3 Characterization of the Matrix   [2] 

 

                     

                              

Type            ̅  ̅  ̅  ̅   

Order                     

 

 

 

Primitive Bravais 

lattice 

 -fold rotation axes 

perpendicular to mirror plane 

Six edge-diagonal       

 -fold rotation axes 

perpendicular to 

mirror plane 

 Four  -fold rotoinversion 

axes (body-diagonals) 
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6.2.1. Identity 

Identity;  ,       

    (unit matrix),     (zero column) 

Identity leaves every point of space fixed. 

 

6.2.2. Translation 

Translation;         

         (coefficients of the lattice translation vector) 

There is no fixed point, shift of entire point space. 

 

6.2.3. Rotation or Screw Rotation 

         ;                 ( : rotation angle) 

Rotation; one line fixed rotation axis. 

 

Screw rotation; no fixed point screw axis. Screw operation is a combination of 

rotation and translation operators. Symmetry notation is    representing the  -

fold rotation around the axis by an angle of        and translation along the 

axis by      where   is a positive integer which is less than   [10]. 

 

6.2.4. Inversion 

Inversion;        or        or   ̅    

      

Exactly one fixed point. Inversion   , inverts the space with respect to the 

center of inversion (fixed point). 

 

6.2.5. Rotoinversion 

          ,      

Rotoinversion can be decomposed into a rotation with –     

Exactly one fixed point. Rotoinversion axis intersects the fixed point. 
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6.2.6. Reflection or Glide Reflection 

         ,      but       

Reflection;               ; mirror plane of fixed point.  

Glide reflection;                   

No fixed point. Glide reflection isometry can be decomposed into a reflection by 

glide plane and a translation by glide vector. 

 

6.3. Site symmetry 

Site symmetry corresponds to point group symmetries in a space group. Higher 

site symmetry has lower multiplicity and space groups are named with the 

higher site symmetry operator. For example; for the monoclinic space group 

          ,   shows centring of the Bravais lattice and     is higher site 

symmetry operator for the space group.  

 

All site symmetries of a group can be generated by the high site symmetry 

operators. Generally, higher site symmetry is the origin of the unit cell. During 

symmetry reduction, site symmetry reduces i.e., Wyckoff position of the atoms 

does not split and atoms are still symmetrically-equivalent. In other case, site 

symmetry remains the same i.e., Wyckoff position splits [11]. 

 

6.4. Wyckoff Position 

Crystallographic orbit refers to a set of symmetrically-equivalent points in a 

group. If coordinates of the points are fixed according to symmetry operations of 

the space group, then the orbit is called Wyckoff position. Wyckoff position (WP) 

represents the equivalent points set or atoms in the unit cell by a notation 

containing one number and a letter e.g.,     where   is the multiplicity which 

represents number of equivalent points in the corresponding orbit, and letter   is 

an alphabetical label (         etc.) incremented from the highest site symmetry 

point (i.e., lowest multiplicity). Each independent set of atoms in a unit cell 

boundary is described by a WP notation. Letter selection depends on the choice 

of origin and coordinate system. Wyckoff set includes equivalent WPs having 

the same site symmetries.  



38 

 

For example, positions of the space group      representing by     site 

symmetry constitute a Wyckoff set, see in Figure 6.1. Similarly, all equivalent 

positions around  -fold rotation axis form another Wyckoff set [11][17]. 

 

Two sites corresponding to the same Wyckoff position in a structure does not 

necessarily mean that they belong to the same crystallographic orbit. 

 

 

Figure 6.1 Wyckoff Sets of Space Group      [5] 

 

 

6.4.1. General Position vs Special Positions 

General position represents a set of symmetrically equivalent points in a unit 

cell on the condition that each point remains invariant only with the application 

of the identity operator, not by the application of the other symmetry operators. 

General position refers to the position of the points of a space group with site 

symmetry   such that it has the greatest number of multiplicity [10]. 

 

Special position represents a set of symmetrically equivalent points in a unit cell 

on the condition that each point remains unchanged with the application of the 

identity operator in addition to at least one more symmetry operator of the 
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space group. Number of special positions depends on the number and type of 

site symmetry operators that leave the points unchanged [18] [19]. 

 

Multiplicity shows the number of equivalent points in a unit cell of a crystal. 

Ratio of multiplicity of general position and multiplicity of special position is 

always an integer. Multiplicity of special position is always less than that of the 

multiplicity of the general position. 

 

 

 

 

Figure 6.2. Unit Cell Representation of       Space Group and its Symmetry 

Operations [20] 
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Figure 6.3. General Position and Special Positions of       [20] 

 

Figure 6.2 and Figure 6.3 were extracted from the International Tables for 

Crystallography, Vol A, (2006) [20]. 

 

Figure 6.3 shows an example of general position and special positions. In this 

case, general position‟s multiplicity is    showing the maximum number of 

equivalent points in a  crystallographic orbit in the unit cell. As indicated above, 

multiplicity of special positions (       and  ) is less than the multiplicity of 

general position.  

 

Numbers in the parentheses ( ), ( ) etc. coming before the general position and 

symmetry operations show a label of relationship between the positions and 

symmetry operators [10]. 

 

6.5. Description of Structures  

Description of a structure requires information of the space group number, 

lattice parameters, number of independent sites in its unit cell, Wyckoff 

positions of the representative atoms and atomic positions. This information is 

mandatory to identify and distinguish the structures. In this study, all the 

analyzed structures are collected by R. Nikolova and V. Kostov-Kytin of the 

General position 

Special positions 
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Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences 

[21], and their structural relations are analyzed via Bilbao Crystallographic 

Server online tools [22] [23] in the format, presented in Figure 6.4.  

 

 

 

 

 

 

 

Figure 6.4. Description of a Structure 

WP 

Index distinguishing 

the sites which have 

same elements 

Atom type 

Number of independent sites 

ITA space number 
Lattice parameters (a, b, c, α, β, γ) 

Atom positions  𝑥 𝑦 𝑧  
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 GROUP -  SUBGROUP RELATIONS 7.

Correlation of different crystal structures is defined by the relation of the space 

groups the crystals belong to. This relation implies point groups and lattices of 

the structures i.e., group-subgroup relations deal with symmetry relations of the 

space groups. 

 

7.1. Index 

Index is a mathematical property that defines the principal relation between 

groups and subgroups. Index of a subgroup in a supergroup explains roughly 

how much its unit cell grows or/and the ratio of its point group symmetries loss.  

Let   be the supergroup and   be its subgroup. Index of   in   is shown as: 

 

          

 

As mentioned in Section 3.6, the number of left and right cosets is equal, and 

this number equals to the index of   in  . According to Hermann theorem, if the 

index is a prime number, it is either a translationengleiche index or a 

klassengleiche index [11].  

 

A subgroup which is either a translationengleiche subgroup or a klassengleiche 

subgroup is called a maximal subgroup of its minimal supergroup. From this 

definition, there cannot be any other intermediate group between the maximal 

subgroup and the minimal supergroup. 

 

7.1.1. Translationengleiche Index (ip) 

Translationengleiche subgroup (also called t-subgroup) is the maximal 

subgroup of its minimal supergroup that keeps translational symmetries same 

while loses some or all point group symmetry operations i.e., they are 

translational symmetry-equivalent subgroups. 

 

Translationengleiche index is found by the ratio of the number of point group 

symmetries excluding the translational part.   
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Translationengleiche index:  

 

   
                                       

                                     
 

 

7.1.2. Klassengleiche Index (il) 

Klassengleiche subgroup (also called k-subgroup) keeps point group 

symmetries unchanged while losing a number of translational symmetries. For 

example, if a unit cell of a structure grows by 2 times, translational symmetries 

decreases by 2 times without a loss in point group symmetries (even though the 

number of translation symmetries of a crystal is infinite, in such a case of 

doubling its unit cell, it loses odd valued translation operators in a specific 

direction, hence, halving the number of its translation operators). 

 

Klassengleiche index is found by the ratio of the number of the conventional 

formula unit per centring factor for the super- and sub-groups (see Section 5.8). 

Klassengleiche index formula: 

 

   
  
  

  
  
  

 

 

7.2. Transformation Matrix  

Transformation matrix expresses the basis changes and origin shift to define 

the relation between different crystal structures by means of group-subgroup 

symmetry relations. In other words, transformation matrix represents unit cell 

transformation upon symmetry reduction. Unit cell transformation is necessary 

to analyze the group-subgroup relation if group and the subgroup are described 

in different coordinate systems. Transformation matrix is identified by a matrix 

pair       where the       matrix refers to the change of basis, and the 

      column vector represents the origin shift. Transformation matrix is 

discussed in Section 3.7. 
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7.3. Wyckoff Position Splitting 

Symmetry transformation from a group to its subgroup requires a one-to-one 

relation of their orbits. Symmetry reduction is not allowed if there is no 

correlation between Wyckoff positions of the group and the corresponding 

subgroups. During symmetry reduction, either WP of a supergroup splits into 

symmetrically-independent positions or its site symmetry operators are reduced, 

or both cases happen at the same time. Multiplicity of a WP shows the change 

of the number of the atoms of an orbit in subgroup and the total multiplicity of 

the group and subgroup gives information of their volume ratio. For example, 

WP position of a site in a supergroup is    and it splits into    of a subgroup. 

Splitting shows that the volume of that subgroup unit cell has grown by   times 

compared to the unit cell of supergroup [3] [11]. 

 

7.4. Spontaneous Strain 

During the group-subgroup transformation, strain is an essential part in order to 

describe the plausibility of the phase transition. Comparison of the two 

structures‟, that is, the distorted structure‟s and the reference structure‟s lattice 

parameters yields the stress. In other words, incompatibility between the two 

structures‟ unit cells gives the degree of lattice distortion. Stress only depends 

on lattice parameters.  

 

The following relation gives the degree of lattice distortion [24]; 

  
 

  
√∑  

 

 

   

 

where    represents the eigenvalues of finite Lagrangian strain tensor  . 

 

  
 

 
           and       

     

 

   represents the standard root tensor that transforms conventional coordinate 

system to the Cartesian bases. In other words,    is the root square of the 

diagonalized metric tensor. 
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7.5. Bärnighausen Tree 

Bärnighausen tree is a useful schematic representation that gives information 

about a group-subgroup relation. It includes information of Hermann-Mauguin 

symbols of high symmetry and low symmetry space groups, index and index 

type of the subgroup, transformation matrix (basis transformation and origin 

shift) if there is a change, high symmetry and low symmetry crystal structures 

(name or chemical formula), elements, Wyckoff labels, site symmetries and 

atomic positions. 

 

 

 

Figure 7.1. Bärnighausen Tree Representing Group-Subgroup Relation [11] 
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7.6. Case Study 

In this section, group-subgroup relation will be analyzed using the phase 

transformation of BaNa(PO4)2      →      as an example. Transformation 

matrix, index, atomic orbits, Wyckoff positions splitting and distortion will be 

calculated. Transition between the crystal BaNa(PO4)2 (Barium Sodium 

Phosphate) of              space group and the crystal BaNa(PO4)2 of 

           space group will be achieved in detail [25].  

 

           

               

 

 

 
Figure 7.2. BaNa(PO4)2 (P-3m1) (#164) Parameters 

 

 

 

Figure 7.3. BaNa(PO4)2 (P-3m1) Structure [26] 
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Figure 7.4. BaNa(PO4)2 (C2/m) (#12) Parameters 

 

 

 

 
Figure 7.5. BaNa(PO4)2 (C2/m) Structure [26] 

 

 

 

1. Calculating the Index 

 

To calculate the index in a group-subgroup transformation, it is checked if there 

is a loss of point group symmetry and/or translation operators. We have to find 

the klassengleiche index and the translationengleiche index separately. 

 

In order to find the translationengleiche index, we need to know general 

positions (point group symmetry operations) of the space groups.   

 

Translationengleiche index     
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The symmetry operations (excluding the translational symmetry operators) of 

the space group              and            are given below in Seitz 

symbol notation, respectively. 

 

          ∣          ∣∣      
 
   ∣∣         ∣∣         ∣∣         ∣∣      

   ∣           ∣∣       
 
   ∣∣         ∣∣         ∣∣         ∣∣     [5] 

 

         ∣         ∣∣       ∣         ∣∣       [5] 

 

There are    symmetry operations of       space group. Excluding the 

translational part, there are   symmetry operations of     . 

 

   
  

 
   

 

Klassengleiche index can be obtained by estimating the number of the 

conventional unit per centring factor. 

 

Klassengleiche index     

 

   

     
     
     
     

 

 
 
 
 

   

 

      and       show the number of conventional formula units. Wyckoff 

positions of the corresponding atoms in high symmetry and low symmetry 

structures show the ratio of conventional formula unit. For example, high 

symmetry structure       of BaNa(PO4)2 has   Na atom while low symmetry 

structure      of BaNa(PO4)2 has    Therefore, the ratio of the conventional 

unit cells 
     

     
 is found to be  . 
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Centring factor   of primitive unit cell;         

Centring factor   of face-centred unit cell         

 

        and         

 

Thus, from the    equation, the klassengleiche index will be: 

     

Total index is evaluated by multiplying the translationengleiche index with the 

klassengleiche index. 

 

          

 

It is clearly seen that there are no translations loss in the subgroup, there is only 

point group symmetry lost in transition. So,      is a translationengleiche 

subgroup of      . For example, subgroup      does not contain 

          mirror symmetry operation represented as      ∣∣    in Seitz 

notation, while it is contained in the space group     . 

 

Since   is a prime number, there is no other group between       and     . 

So              is minimal supergroup of             and      is 

maximal subgroup of      . 

 

 

2. Finding the Transformation Matrix 

 

There might be more than one matrix which refers to the same transformation in 

different paths when expressing the relations between groups and subgroups. 

In our case,    possible transformation matrices are obtained by using 

SUBGROUPGRAPH program of Bilbao Crystallographic Server [27]. With index 

 , there are   transformation matrices corresponding to   maximal subgroups of 

         .  
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𝑔𝑚 

 

𝑔𝑚 

 

                                                                    

                                                                   

                    

 

In matrix form; 

 

   (
     
       
         

       
 
 
 
) 

 

   (
      
      
        

       
 
 
 
) 

 

   (
        
        
        

       
 
 
 
) 

 

Conjugacy relation states that; 

 

     
      ,      and      

 

Then,   and    are conjugate subgroups and they are symmetrically equivalent.  

Figure 7.6 shows a path between   and    conjugate subgroups. 

 

             
   ,      

 

From conjugacy relation we can write; 

 

          
             

    

 

                                                                    

                   
       

 

      
         ,       is affine normalizer of group  . 
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Figure 7.6. Conjugated maximal subgroups of the minimal supergroup 

 

 

Let          be the maximal subgroups of   associated with             

 

By application of the conjugacy rules to our case, we can check if    is an 

element of   and satisfies the following conditions; 

 

  
                    

              
                  

  
                    

              
        

  
                    

              
        

 

       
           

               
    must be the elements of           which 

are lost by the subgroups during the symmetry reduction. 

 

We can apply any of the symmetry operators of the group          . 

 

For           

 

In matrix form: 

   (
    
    
    

       
 
 
 
) 

 

The element         correspond the identity operation. Calculations are 

obtained by using GNU Octave [28]. 
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        and         satisfy the condition that      and     . 

 

Thus, the conjugacy relation calculations show that the subgroups          are 

conjugate subgroups of  . They have orientational conjugation since they are 

translationengleiche subgroups in   as discussed in Section 3.4. Since 

         maximal subgroups are conjugate, any one of the corresponding 

transformation matrices can be chosen for the rest of the calculations. 

 

Now, it can be proceeded with                       .    refers to group-

subgroup transformation matrix. In order to calculate the overall transformation 

matrix, affine normalizer and Euclidean normalizer must be found first. 

 

Wyckoff Splitting Compatibility: 

By using the selected group-subgroup transformation matrix, correspondence of 

the Wyckoff positions of the subgroup           corresponding to the Wyckoff 

positions of           can be found. Coordinates of the all Wyckoff positions 

are available at Bilbao Crystallographic Server [5]. 

 

      𝑧 

    𝑦 𝑥  𝑦 𝑧           𝑧  

 

      𝑧 

    𝑦 𝑥  𝑦 𝑧           𝑧  

 

      𝑧 

    𝑥  𝑦  𝑥 𝑧           𝑧  
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Table 7.1. Wyckoff Positions of P-3m1 [5] 
 

Multiplicity Wyckoff letter Site Symmetry Coordinates 

12 j 1 (x, y, z) (-y, x-y, z) (-x+y, -x, z) 

(y,x,-z) (x-y, -y, -z) (-x,-x+y, -z)  

(-x, -y, -z) (y,-x+y,-z) (x-y,x,-z)   

(-y, -x, z) (-x+y,y,z) (x,x-y,z) 

6 i .m. (x,-x,z) (x,2x,z) (-2x,-x,z)            

(-x,x,-z) (2x,x,-z) (-x,-2x,-z) 

6 h .2. (x,0,1/2) (0,x,1/2) (-x,-x,1/2)        

(-x,0,1/2) (0,-x,1/2) (x,x,0) 

6 g .2. (x,0,0) (0,x,0) (-x,-x,0) (-x,0,0) 

(0,-x,0) (x,x,0) 

3 f .2/m (1/2,0,1/2) (0,1/2,1/2) (1/2 

1/2,1/2) 

3 e .2/m. (1/2,0,0) (0,1/2,0) (1/2,1/2,0) 

2 d 3m. (1/3,2/3,z) (2/3,1/3,-z) 

2 c 3m. (0,0,z) (0,0,-z) 

1 b -3m. (0,0,1/2) 

1 a -3m. (0,0,0) 

 

Table 7.1 and Table 7.2 show multiplicity, site symmetries and Wyckoff 

positions of the space groups         and       , respectively. These are 

given in conventional settings. Applying group-subgroup transformation matrix 

to the positions of         , it is expected to obtain positions of the        

group. 

 

Table 7.2. Wyckoff Positions of C2/m [5] 
 

Multiplicity Wyckoff letter Site Symmetry Coordinates 

8 j 1 (x, y, z) (-x,y,-z) (-x,-y,-z) (x,-

y,z) 

4 i m (x,0,z) (-x,0,-z) 

4 h 2 (0,y,1/2) (0,-y,1/2) 

4 g 2 (0,y,0) (0,-y,0) 

4 f -1 (1/4,1/4,1/2) (3/4,1/4,1/2) 

4 e -1 (1/4,1/4,0) (3/4,1/4,0) 

2 d 2/m (0,1/2,1/2) 

2 c 2/m (0,0,1/2) 

2 b 2/m (0,1/2,0) 

2 a 2/m (0,0,0) 
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Group-subgroup transformation matrix is                      .  

 

Unit cell of the BaNa(PO4)2 crystal in         space group has the atomic 

sites at 1a, 1b, 2d and 6i represented by multiplicity and Wyckoff letters. Low 

symmetry structure of this case has 2b, 2d, 4i and 8j occupancy. According to 

Wyckoff splitting rules, 1a of         must go to 2a of the       . Similarly, 

1b of         must go to 2c of the       . However, subgroup has 2b 

instead of 2a and 2d instead of 2c. This incompatibility can be fixed using 

Euclidean normalizer to generate alternative but equivalent set of positions. 

 

Euclidean normalizer takes the Wyckoff positions to transformed positions. 

WYCKSET program of Bilbao Crystallographic Server helps to find the 

corresponding element of the Euclidean normalizer [5]. Coset representatives of 

the Euclidean normalizer which transform Wyckoff positions of      are shown 

in Figure 7.7. 

 

 

Figure 7.7.  Transformation of the Wyckoff Positions of        via Elements of 

Euclidean Normalizer 
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In this case, the Euclidean normalizer element which transforms Wyckoff 

positions that correspond to low symmetry structure‟s positions is: 

 

     
 

 
     

In matrix form; 

(
    
    
    

       
   
 
 

) 

 

Transformed Wyckoff positions represented by   
 

 
     satisfy actual positions 

of the glaserite-type compound BaNa(PO4)2.  

 

Table 7.3 shows Wyckoff positions of the atoms of the crystal and transformed 

Wyckoff positions with the application of Euclidean normalizer. 

 

Coordinate system of maximal subgroup is related to minimal supergroup with 

transformation matrix                       and index  .  

 

Table 7.3. Wyckoff Splitting Compatibility 

 

 

 

 

P3-m1 
 

Group-subgroup 

Trans. matrix 

C2/m 

Atom 

name 

Wyckoff 

position 

Atom 

name 

Wyckoff 

position 

Euclidean 

normalizer 

Transformed 

wyckoff 

position 

Na 1a -a+b,-a-b,c;0,0,0 Na 2a x+1/2,y,z 2b 

Ba 1b -a+b,-a-b,c;0,0,0 Ba 2c x+1/2,y,z 2d 

Ba 2d -a+b,-a-b,c;0,0,0 Ba 4i x+1/2,y,z 4i 

P 2d -a+b,-a-b,c;0,0,0 P 4i x+1/2,y,z 4i 

O 2d -a+b,-a-b,c;0,0,0 O 4i x+1/2,y,z 4i 

O 6i -a+b,-a-b,c;0,0,0 O 4i+8j x+1/2,y,z 4i+8j 
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Lattice Compatibility: 

In this case, transformation of a group to a subgroup with possible paths is 

being studied. This experimentally-observed glaserite-type structure (GTS) 

does not fit completely with the reference structure (being the high symmetry 

structure represented in the low symmetry structure‟s setting via the 

transformation matrix). Comparison of reference and observed structures 

reveals another transformation related to lattice expansion and compression 

that is the affine normalizer. Lattice compatibility transformation matrix is 

calculated with affine normalizer. 

 

TRANSTRU and COMPSTRU programs of Bilbao Crystallographic Server are 

used to compare the reference and observed structures of the group  

           [29]. 

 

 
 

Figure 7.8. Reference Structure vs. Glaserite-type Structure of      Space Group 



57 

 

Figure 7.8 shows the difference of lattice parameters and atomic positions 

between the reference and glaserite-type crystal structures. 

 

There are two transformation options obtained from COMPSTRU program that 

have the best matches of lattice parameters. These transformations represent 

the element of the affine normalizer.  

 

            

              

 

Both of them have no effect to change coordinate of the lattices and obey the 

general formula of affine normalizer of      shown in Figure 7.9. 

 

Overall transformation matrix is found by multiplication of group-subgroup 

transformation matrix, Euclidean normalizer element and affine normalizer 

element. Since there are two options for affine normalizer selection, both of 

them may be applied separately, and then equivalency of the overall matrices 

may be checked.  

 

 

 
Figure 7.9. General Formula of Affine Normalizer of      Space Group (unique axis b) 

(u:odd; n:integer; g:even) 

 

 

                         

 

                are in       augmented matrix form. 

 

            (
     
       
         

    
    
      
    

) 
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            (
      
    
      

  
        
      
      

) 

 

                      
 

 
  

 

 
   

 

Transformation matrix, index, distortion and atomic displacement results can be 

calculated together by using STRUCTURE RELATIONS program of Bilbao 

Crystallographic Server. The most suitable transformation matrix that connects 

the structures of group BaNa(PO4)2 and subgroup BaNa(PO4)2 is; 

 

                
 

 
  

 

 
   

 

    (
          
        
           

  
        
      
      

) 

 

We have 3 transformation matrices referring a relation between the group and 

the subgroup. Any one of them is suitable to define transformation between  

        and        in this case, but equivalency of these matrices will be 

checked first.  

 

 

Figure 7.10. Identical Transformation Matrices between the Group and the Subgroups 
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Figure 7.10 shows transformation paths of the group   to subgroup   with three 

transformation matrices.              substitute            ,             and     for 

this case, respectively. In order to check whether all overall transformation 

matrices are equivalent or not by the following equality must be provided. 

 

    
       

   

    
       

   

    
       

   

 

 

  

 

 

 

 

   and    are equivalent 

   and    are equivalent 
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Calculations show that obtained overall matrices are equivalent. 

 

3. Finding Atomic Orbits 

 

It can be proceeded with any one of the overall transformation matrices since 

they are equivalent.               will be used for the following calculations. 

 

  (
     
       
         

    
    
      
    

) 

 

Atomic positions of the reference structure in the subgroup        setting are 

found by the following relation: 

 

        

 

  represents atomic position in the unit cell of         and    represents 

atomic position of        subgroup. 

 

 

 

 

 

   and    are equivalent 
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Table 7.4. Atomic Positions and Wyckoff Positions of BaNa(PO4)2 ) (#164) 

 

 
 

 

For     atom; 

 

                           

 

    (
           
         
         

    
    
    
    

) 

 

    (
 
 
 
) 

 

             (
    
   
   

)  

 

           position is representative position of     atom in the subgroup unit 

cell. In order to find all possible orbits for     , all symmetry operators of the 

subgroup must be applied. 

 

 



62 

 

 

 

Figure 7.11. Symmetry Operators of      [5] 

 

 

Figure 7.11 shows symmetry operators of the subgroup     . With 

translational part, there are 8 symmetry operators.     atom is positioned in 1a 

WP for the group      . In addition to position of      in subgroup unit cell, 

Wyckoff position splitting will be found by applying all symmetry operators of the 

subgroup (which can as well be derived from supergroup symmetry operators 

by applying              ) to the representative position of      . 
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     →    

All possible orbits for     ; 

 

           x     y     z 

                         

                             

                            

                         

                          

                          

                          

                              

 

 

  

Table 7.5. Atomic Positions and Wyckoff Positions of BaNa(PO4)2 ) (#12) 

 

 

 

Wyckoff splitting shows that     atom of the group is identified with two 

separate position coordinate in the subgroup unit cell because of symmetry lost 

i.e. 1a WP splits into 2b WP. (See Table 7.4 and Table 7.5). 

 

For     atom; 

                           

 

1.                   

2.                  0  → ( 𝟏𝟐) 

 

       →     
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    (
 
 
   

) 

 

             (
    
   

       
)  

 

All possible orbits for     ; 

 

            x     y      z 

                             

                             

                           

                             

                               

                           

                           

                                   

 

 

Similarly, Wyckoff position splitting of    ,    ,   ,    and    atoms and their 

corresponding atomic orbits in subgroup unit cell are found by repeating the 

same calculations. After calculations are completed, it is proved that all results 

match up with expected results in this case.  

 

4. Calculating Degree of Lattice Distortion 

 

Strain that results in lattice distortion in crystals is discussed in Section 7.4. 

Distortion between reference structure of     in crystallography database and 

actual glaserite-type structure of     will be found. 

 

The following relation gives degree of lattice distortion [24]; 

 

1.                     

2.                      → ( 𝟏𝟐) 

 

                 →     
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√∑  

 

 

   

 

 

   represent eigenvalues of finite Lagrangian strain tensor. 

 

  
 

 
           and       

     

 

In order to find degree of lattice distortion, metric tensors and standard root 

tensors of the two structures will be found first.  

 

 

 

First cell corresponds to ideal structure and second one represents deformed 

(distorted) parameters of GTS. 

 

Let           be the corresponding metric tensors. Using lattice parameters, 

metric tensors and standard root tensors are found. 

 

 

    (
          

          
                 

) 

 

    (
                 

          
                 

) 
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Standard root tensors; 

 

    (
         

         
         

)          (
         

         
         

) 

 

Then, finite Lagrangian strain tensor and its eigenvalues are obtained by using 

GNU Octave [28]. 

 

 

 

                                                          

 

  
 

  
√  

    
    

  

 

From calculation, degree of lattice distortion between two structures is found as; 

 

                    

 

Strain result is compatible with the STRUCTURE RELATIONS program’s 

results. 
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5.  Calculating Degree of Global Distortion 

 

Global distortion amplitude is calculated by displacements and corresponding 

site‟s multiplicities. Global distortion gives information of atomic displacement 

between reference structure and GTS. 

 

 

Figure 7.12. Atomic Displacements between Reference Structure and Glaserite-type 
Structure 

 

Maximum distance between the atomic positions of the structures is: 

 

            

 

  ,   and    are given in relative units and     represents absolute distance in 

Å. 

Let   be number of atoms and   be corresponding site‟s symmetry. 

 

Global distortion amplitude is found by the following formula: 

 

√∑  
 

 

   

   

 

From STRUCTURE RELATIONS program, global distortion amplitude is found 

0.0884 for this case.
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III. APPLICATION OF GROUP THEORY TO THE GLASERITE-

TYPE STRUCTURES FAMILY 

 

 INTRODUCTION TO GLASERITE AND GLASERITE-TYPE 8.

COMPOUNDS 

Glaserite is a mineral that can be found naturally as shells in fumaroles of 

volcanoes and as components in oceanic, lacustrine and continental evaporite 

deposits which was firstly determined in 1928 by Gossner. Glaserite is also 

called Aphthitalite having the unchangeable and salt meaning in Greek [30]. 

Glaserite is in trigonal crystal system and belongs to              space 

group. 

 

Formula of the glaserite is [31]: 

           

 

Glaserite-like or glaserite-type compounds (GTC) refer to the minerals and 

synthetic substances which have isostructural properties with glaserite. 

Hexagonal arrangement of the cations and anions of the glaserite is formed in 

two types of columns (see Figure 8.1). First type of columns contains only 

cations              while second type contains both anions and cations 

           
   . Glaserite structure has been examined as hexagonal packing, 

as seen in Figure 8.2, composed of rods which anions and cations are tightly 

bound along it. This arrangement may be different for glaserite-type compounds 

since they have similarity to the glaserite but they are not necessarily identical 

to it. Making an analogy between the ions of glaserite and GTCs can require to 

determine the vacancies of the GTC ions along the columns  [21] [32] [33] [34]. 
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Figure 8.1. Hexagonal Packing Composed of Two Types of Columns [26] 

 

  

 

Figure 8.2. Hexagonal Arrangement of the Glaserite [26] 

 

 

General formula of the GTC structure is figured out as follows [21]: 
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This formula gives information of two significant structural properties about 

glaserite-type compounds [21]: 

 

1.            
   layer is the main structural unit and all atomic positions are 

fully occupied on this layer. 

2. Occupancy of   and   atomic positions are related to layer charge. Either 

both of them may be occupied; one is occupied while the other one 

unoccupied; or both of them may be unoccupied. 

3.   and   positions are not occupied when the layers of GTC are 

electroneutral.           and            are examples of this condition.  
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 CLASSIFICATION OF KNOWN GLASERITE-TYPE 9.

COMPOUNDS 

Stability condition of glaserite-type topology was defined in 1996 as [35]; 

 

             

 

where    is Shannon ionic radii and               . 

 

After study and revision of the GTC by Nikolova and Kostov-Kytin [21], 

considering the structures of        and            , stability condition is 

expanded as; 

           

 

Crystal characterization of over 100 GTC with glaserite-type topology (GTT) 

which was studied in this thesis was collected by Nikolova and Kostov-Kytin of 

the Institute of Mineralogy and Crystallography, Bulgarian Academy of 

Sciences. Except one compound, all of them are oxides. Nikolova and Kostov-

Kytin evaluated chemical diversity and structural versatility of the GTT. Stability 

criteria was outlined with respect to the cation compositions and site occupancy 

by them [21] [34] [36] [37]. 

 

According to the revisions and verifications of gathered GTCs up to now 

reconsidered by Nikolova and Kostov-Kytin, information on glaserite-type 

compounds and topology is summarized as below: 

“ 

1. There are 5 minerals and more than 100 synthetic compounds that adopt 

glaserite-type topology. 

2. From general formula, X, Y, M and T cations correspond 47 elements of 

the periodic table. 

3. T position is substituted by11 elements consisting of transition metals (V, 

Cr, Mo, W, Re, Fe, Ru) and non-metals (Si, P, S, Se). T is always fully 

occupied. 
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4. M position is substituted by 32 elements consisting of alkali metal (Na), 

alkali earth metals (Mg, Ca), transition metals (Sc, Y, Ti, Zr, Hf, V, Cr, 

Mo, Mn, Fe, Co, Ni, Cu, Zn, Cd), lanthanides (Gd, Tb, Dy, Ho, Er, Tm, 

Yb, Lu) and poor metals (Al, In, Tl, Ge, Sn, Sb). Like T position, M is also 

fully occupied.  

5. X and Y are substituted by 10 elements. When they are occupied, they 

consist of alkali metals (Na, K, Rb, Cs), alkali earth metals (Ca, Sr, Ba), 

transition metals (Ag) and poor metals (Tl, Pb).  

6. The charge of            
  layer takes one of the                    

values.” [21] 

 

Considering number of elements occupying the atomic position;   and   

positions may have      and   elements while M and T cation positions may 

have   and   elements. 

 

 

Table 9.1. Derivatives of the General Formula of GTC [21] 

 

No General Formula Conditions Example 
Number 

of GTC 

1 XY2[M(TO4)2] X≠Y≠M≠T BaNa2Mg(PO4)2 12 

2 XY2[M(TO4)2] X=Y≠M≠T Ag3Fe(VO4)2 31 

3 XY2[M(TO4)2] X≠Y; X=M; Y≠M≠T KNaSO4 1 

4 XY□[M(TO4)2] X≠M≠T;Y=0 RbFe(MoO4)2 41 

5 (X1,X2)Y□[M(TO4)2] X1≠X2≠M≠T; Y=0 Ba0.3Sr0.7Zr(PO4)2 1 

6 X(Y1,Y2)[M(TO4)2] X=Y1≠Y2; Y2=M≠T BaNaPO4 4 

7 X□Y2[M(TO4)2] Y≠M≠T; X=0 K2Zr(PO4)2 1 

8 X□Y□[M(TO4)2] M≠T; X=0, Y=0 Ni(ReO4)2 7 

9 X□Y□[M((T1,T2)O4)2] M≠T1;T1≠T2;X=0, 

Y=0 
Zr((Mo,W)O4)2 1 

10 X□Y□[(M1,M2)(TO4)2] X≠M1≠M2≠T; Y=0 K(Mg0.5Zr0.5)(MoO4)2 1 

11 XY2[M(TO4)2] X=Y=M≠T Tl2WO4 2 

12 XY2H[M(TO4)2] X=Y≠M≠T Na3HMg(PO4)2 5 

13 XY□H[M(TO4)2] X≠M≠T; Y=0 KHZr(PO4)2 2 
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Table 9.1 (obtained by Nikolova and Kostov-Kytin, Bulgarian Chemical 

Communications, Volume 45, Number 4, pp. 418–426, 2013) shows structural 

diversity of GTC with respect to the specifications and occupancy of the 

positions of cations and corresponding examples.  
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 IDENTIFICATION OF RELATIONS OF GLASERITE-TYPE 10.

SUB-FAMILIES 

Determined group-subgroup relations are identified via transformation matrix, 

index, maximum distance between the atomic positions of the paired atoms, the 

degree of lattice distortion (spontaneous strain), the measure of compatibility 

(measure of similarity) and the global distortion on the following table [38] [39] 

[24]. Between the structures of the same space groups (with index  ), “high 

symmetry” and “low symmetry” labels shows transformation direction since 

there can be no actual high and low symmetry hierarchy between them.  

 

The structures data are available from: 

http://yunus.hacettepe.edu.tr/~emre.tasci/strrel_serpil_albay_glaserites_case_st

udy/all_structure_data.html address, where they can also be visualized directly 

or downloaded in CIF format. 

 

Alternative link: 

http://test3.cryst.ehu.es/strrel_serpil_albay_glaserites_case_study/all_structure

_data.html  

 

 

http://yunus.hacettepe.edu.tr/~emre.tasci/strrel_serpil_albay_glaserites_case_study/all_structure_data.html
http://yunus.hacettepe.edu.tr/~emre.tasci/strrel_serpil_albay_glaserites_case_study/all_structure_data.html
http://test3.cryst.ehu.es/strrel_serpil_albay_glaserites_case_study/all_structure_data.html
http://test3.cryst.ehu.es/strrel_serpil_albay_glaserites_case_study/all_structure_data.html
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Table 10.1. Relations of Glaserite-type Sub-Families 

 

High Symmetry Structure  Low Symmetry Structure 
 

     

ID Space Group Formula ID Space Group Formula Index 
Transformation 

Matrix (P) 

Max. 

Distance 

(dmax) 

(Å) 

Degree 

of 

Lattice 

Distor-

tion 

(S) 

Measure of 

Compatibilit

y  (Δ) 

Global 

Distortion  

(Å) 

19 P-3m1(#164) RbFe(MoO4)2 20 P-3(#147) RbFe(MoO4)2 2 a,b,c;0,0,0 0.3226 0.0069 0.067 0.7943 

19 P-3m1(#164) RbFe(MoO4)2 22 P-3(#147) CsFe(SO4)2 2 a,b,c;0,0,0 1.0558 0.0933 0.495 2.0429 

98 P-3m1(#164) BaZr(PO4)2 96 C2/m(#12) BaGe(PO4)2 3 a-b,a+b,c;0,0,-1/2 0.9691 0.0565 0.339 1.8982 

5 P-3m1(#164) RbIn(WO4)2 20 P-3(#147) RbFe(MoO4)2 2 a,b,c;0,0,0 0.4002 0.0223 0.096 1.06 

7 P-3m1(#164) KSc(MoO4)2 8 P-3c1(#165) KFe(MoO4)2 2 a,b,2c;0,0,0 0.1976 0.0107 0.032 0.7437 

6 P-3m1(#164) KAl(MoO4)2 8 P-3c1(#165) KFe(MoO4)2 2 a,b,2c;0,0,0 0.2145 0.0098 0.038 0.769 

52 C2/m(#12) NaFe(SeO4)2 65 C2/c(#15) NaFe(MoO4)2 2 a,-b,-2c;0,0,0 1.3166 0.0559 0.757 4.2437 

51 C2/m(#12) NaV(SO4)2 65 C2/c(#15) NaFe(MoO4)2 2 a,-b,-2c;0,0,0 1.2632 0.0605 0.746 4.0584 

58 C2/m(#12) NaFe(SO4)2 65 C2/c(#15) NaFe(MoO4)2 2 a,-b,-2c;0,0,0 1.239 0.06 0.724 4.1439 

58 C2/m(#12) NaFe(SO4)2 67 C2/c(#15) NaAl(MoO4)2 2 a,-b,-2c;0,0,0 1.0902 0.0596 0.656 3.7387 

98 P-3m1(#164) BaZr(PO4)2 60 C2/m(#12) BaHf(PO4)2 3 a-b,a+b,c;0,0,-1/2 0.9263 0.0251 0.218 1.654 

98 P-3m1(#164) BaZr(PO4)2 61 C2/m(#12) BaSn(PO4)2 3 a-b,a+b,c;0,0,0 1.0312 0.0417 0.333 1.9909 

119 P-3m1(#164) KFe(MoO4)2 116 P-3c1(#165) KIn(WO4)2 2 a,b,2c;0,0,0 1.9289 0.0114 0.21 8.0092 

119 P-3m1(#164) KFe(MoO4)2 8 P-3c1(#165) KFe(MoO4)2 2 a,b,2c ; 0,0,1/2 0.1933 0.0009 0.028 0.6742 
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8 P-3c1(#165) KFe(MoO4)2 67 C2/c(#15) NaAl(MoO4)2 3 a-b,-a-b,-c ; 0,0,0 0.5625 0.0361 0.195 2.036 

57 C2/m(#12) BaZr(PO4)2 70 C2/c(#15) PbTi(PO4)2 2 

a+2c,-b,-a ; 

1/4,1/4,-1/2 0.3891 0.0256 0.084 1.0493 

116 P-3c1(#165) KIn(WO4)2 201 P2/c(#13) NaHZr(PO4)2 6 

a-b,a+b,-a+b+c ; -

1/2,0,0 1.2322 0.0661 0.183 4.109 

116 P-3c1(#165) KIn(WO4)2 116_1 C2/c(#15) KIn(WO4)2 3 

a-b,a+b,-a+b+c ; -

1/2,0,0 

    
116_1 C2/c(#15) KIn(WO4)2 201 P2/c(#13) NaHZr(PO4)2 2 -a,b,-c;-1/2,0,0 1.2322 0.0661 0.21 4.6764 

10 P-3m1(#164) RbIn(MoO4)2 20 P-3(#147) RbFe(MoO4)2 2 a,b,c ; 0,0,0 0.3547 0.0208 0.083 0.9284 

57 C2/m(#12) BaZr(PO4)2 201 P2/c(#13) NaHZr(PO4)2 4 

a,-b,-a-2c ; 

3/4,1/4,-1/2 1.4236 0.036 0.325 6.3346 

57 C2/m(#12) BaZr(PO4)2 57_1 C2/c(#15) BaZr(PO4)2 2 

a,-b,-a-2c ; 

3/4,1/4,-1/2 

    
57_1 BaZr(PO4)2 C2/c(#15) 201 P2/c(#13) NaHZr(PO4)2 2 -a,b,-c;-1/2,0,0 1.4236 0.036 0.325 6.3346 

98 P-3m1(#164) BaZr(PO4)2 22 P-3(#147) CsFe(SO4)2 2   a,b,c ; 0,0,1/2 0.7021 0.0476 0.308 1.7074 

99 C2/c(#15) SrTi(PO4)2 200 P2/c(#13) KHZr(PO4)2 2 -a,b,-c ; 0,0,0 2.238 0.4419 7.51 11.0826 

67 C2/c(#15) NaAl(MoO4)2 200 P2/c(#13) KHZr(PO4)2 2 -c,b,a+c ; 1/4,3/4,0 2.5205 0.2082 1.566 11.4488 

134 P-3m1(#164) CsEr(WO4)2 116 P-3c1(#165) KIn(WO4)2 2 a,b,2c ; 0,0,0 0.4806 0.0482 0.169 1.7369 

136 P-3m1(#164) CsLu(WO4)2 49 C2/m(#12) KFe(CrO4)2 3 a-b,a+b,c ; 0,0,-1/2 1.0446 0.0845 0.343 2.0722 

47 C2/m(#12) KFe(SO4)2 65 C2/c(#15) NaFe(MoO4)2 2 -a,b,-2c ; 0,0,0 2.241 0.0811 1.049 7.6555 

100 C2/m(#12) NaCr(CrO4)2 201 P2/c(#13) NaHZr(PO4)2 4 

a,-b,-a-2c ; 

3/4,1/4,0 1.3196 0.0326 0.242 5.8411 

137 P-3m1(#164) CsYb(WO4)2 102 C2/m(#12) RbCr(CrO4)2 3 a-b,a+b,c ; 0,0,-1/2 1.0089 0.087 0.399 2.1043 

53 C2/m(#12) BaMo(PO4)2 65 C2/c(#15) NaFe(MoO4)2 2 -a,b,-2c ; 0,0,0 2.066 0.0768 0.974 6.6461 

134 P-3m1(#164) CsEr(WO4)2 100 C2/m(#12) NaCr(CrO4)2 3 a-b,a+b,c ; 0,0,-1/2 0.9109 0.1157 0.228 1.8962 
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121 P-3m1(#164) CsV(MoO4)2 96 C2/m(#12) BaGe(PO4)2 3 a-b,a+b,c ; 0,0,-1/2 0.8988 0.1023 0.422 1.8108 

32 P-3m1(#164) K3Na(SeO4)2 31 P-3(#147) K3Na(SeO4)2 2 a,b,c;0,0,0 0.0252 0.0033 0.003 0.0572 

32 P-3m1(#164) K3Na(SeO4)2 33 C2/c(#15) K3Na(SeO4)2 6 a-b,-a-b,-2c ; 0,0,0 0.1906 0.0036 0.025 0.7001 

32 P-3m1(#164) K3Na(SeO4)2 32_1 C2/m(#12) K3Na(SeO4)2 3 a-b,-a-b,-c ; 0,0,0         

32_1 C2/m(#12) K3Na(SeO4)2 33 C2/c(#15) K3Na(SeO4)2 2 -a,b,-2c ; 0,0,0 0.1906 0.0036 0.025 0.7001 

75 P-3m1(#164) K3Na(RuO4)2 74 C2/c(#15) K3Na(RuO4)2 6 a-b,a+b,2c ; 0,0,1/2 0.3937 0.0046 0.055 1.3643 

75 P-3m1(#164) K3Na(RuO4)2 75_1 C2/m(#12) K3Na(RuO4)2 3 a-b,a+b,c ; 0,0,1/2         

75_1 C2/m(#12) K3Na(RuO4)2 74 C2/c(#15) K3Na(RuO4)2 2 -a,b,2c;0,0,0 0.3937 0.0046 0.055 1.3643 

28 P-3m1(#164) K3Na(FeO4)2 48 C2/m(#12) K3CaH(PO4)2 3 a-b,a+b,c ; 0,0,-1/2 0.5156 0.0215 0.047 0.9321 

76 P-3m1(#164) 
Rb3Na(RuO4)

2 48 C2/m(#12) K3CaH(PO4)2 3 a-b,-a-b,-c ; 0,0,0 0.5528 0.0431 0.051 1.0369 

48 C2/m(#12) K3CaH(PO4)2 38 P2_1/m (#11) Na3In(PO4)2 2 -a,b,-c ; -1/4,1/4,0 1.1719 0.0603 0.323 3.9408 

59 C2/m(#12) Ag3In(PO4)2 38 P2_1/m (#11) Na3In(PO4)2 2 -a,-b,c ; 1/4,1/4,1/2 0.7441 0.0231 0.13 2.7218 

38 P2_1/m (#11) Na3In(PO4)2 171 P2_1/c (#14) Na2SrMg(PO4)2 2 -a,b,-2c ; -1/2,0,0 2.1762 0.0258 0.493 11.4356 

68 C2/c(#15) 

Ag2SrMn(VO

4)2 171 P2_1/c (#14) Na2SrMg(PO4)2 2 

-a,b,-c ; 1/4,1/4,-

1/2 0.4262 0.0313 0.09 1.8956 

2 C2/m(#12) 

K2CsHo(PO4)

2 68 C2/c(#15) 

Ag2SrMn(VO4)

2 2 -a,-b,2c ; 0,0,0 0.6342 0.06 0.25 2.6095 

24 P-3m1(#164) BaNa(PO4)2 34 C2/m(#12) BaNa(PO4)2 3 

a-b,-a-b,-c ; 1/2,-

1/2,0 0.0499 0.0007 0.005 0.0884 

2 C2/m(#12) BaNa(PO4)2 197 C2/c(#15) K2KNa(CrO4)2 2 -a,b,-2c ; 0,0,0 0.6819 0.0306 0.159 2.2275 

91 P-3m1(#164) 

Na2CaMg(PO

4)2 2 C2/m(#12) K2CsHo(PO4)2 3 a-b,a+b,c ; 0,0,-1/2 0.4599 0.0328 0.149 0.9404 

197 C2/c(#15) 

K2KNa(CrO4)

2 42 P2_1/c (#14) 

Na2CaMg(PO4)

2  2 

-a,b,-c ; -1/4,1/4,-

1/2 2.2357 0.0731 0.206 8.7642 
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59 C2/m(#12) Ag3In(PO4)2 78 C2/c(#15) K3Na(MoO4)2 2 -a,b,-2c ; 0,0,0 1.195 0.061 0.376 4.4172 

118 P-3m1(#164) KNa(SO4) 29 P3m1 (#156) 

(K, 

Na)3Na(SO4)2 2 

b,a,-c ; 

2/3,1/3,0.00379 3.2411 0.0062 0.356 7.1515 

38 P2_1/m (#11) Na3In(PO4)2 37 P-1(#2) Na3HZr(SiO4)2 2 a,b,c;0,0,0 0.4854 0.0191 0.149 1.5782 

26 P-3m1(#164) K3V(VO4)2 30 P-3(#147) 

Ag2BaMn(VO4)

2 2 a,b,c;0,0,0 0.4689 0.0089 0.06 1.2048 

117 P-3m1(#164) 

K2RbGd(VO4

)2 93 P-3(#147) K2CsSc(PO4)2 2 a,b,c;0,0,0 0.5169 0.0445 0.163 1.0519 

123 P-3m1(#164) 

K2CsYb(PO4)

2 170 P-3(#147) 

Na2BaMg(PO4)

2 2 -a,-b,c ; 0,0,0 0.5107 0.059 0.16 1.1898 

28 P-3m1(#164) K3Na(FeO4)2 72 P-3(#147) K3Sc(PO4)2 6 a-b,a+2b,c ; 0,0,0 0.6505 0.035 0.156 2.8182 

28 P-3m1(#164) K3Na(FeO4)2 28_1 P-31m (#162) K3Na(FeO4)2 3 a-b,a+2b,c ; 0,0,0         

28_1 P-31m (#162) K3Na(FeO4)2 72 P-3(#147) K3Sc(PO4)2 2 a,b,c;0,0,0 0.6505 0.035 0.156 2.8182 

87 C2/c(#15) 

(K2.5Na0.5)N

a(MoO4)2 63 P2_1/c (#14) Sr3Mg(SiO4)2 2 

a+c,-b,-c ; 

3/4,1/4,1/2 2.6475 0.0569 0.297 11.3791 

170 P-3(#147) 

Na2BaMg(PO

4)2 128 P-1(#2) Na3MgH(PO4)2 3 a,b,c;0,0,0 3.411 0.3161 0.435 6.8378 

59 C2/m(#12) Ag3In(PO4)2 64 C2/c(#15) Na3Fe(PO4)2 2 -a,b,-2c ; 0,0,0 1.7314 0.0413 0.452 6.5336 

129 P-3m1(#164) 

K2RbTb(VO4

)2 93 P-3(#147) K2CsSc(PO4)2 2 a,b,c;0,0,0 0.524 0.044 0.16 1.0646 

65 C2/c(#15) NaFe(MoO4)2 67 C2/c(#15) NaAl(MoO4)2 1 -a,b,-c;0,0,-1/2 0.2467 0.0142 0.05 0.7617 

5 P-3m1(#164) RbIn(WO4)2 10 P-3m1(#164) RbIn(MoO4)2 1 a,b,c;0,0,0 0.1532 0.0022 0.028 0.384 

6 P-3m1(#164) KAl(MoO4)2 7 P-3m1(#164) KSc(MoO4)2 1 a,b,c;0,0,0 0.2137 0.0195 0.044 0.4723 

57 C2/m(#12) BaZr(PO4)2 96 C2/m(#12) BaGe(PO4)2 1 -a,b,-c;0,0,0 0.2701 0.034 0.107 0.5736 

5 P-3m1(#164) RbIn(WO4)2 19 P-3m1(#164) RbFe(MoO4)2 1 a,b,c;0,0,0 0.2622 0.015 0.049 0.7204 

10 P-3m1(#164) RbIn(MoO4)2 19 P-3m1(#164) RbFe(MoO4)2 1 a,b,c;0,0,0 0.176 0.0136 0.03 0.4785 
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47 C2/m(#12) KFe(SO4)2 49 C2/m(#12) KFe(CrO4)2 1 -a,b,-c;0,0,-1/2 0.1808 0.0294 0.109 0.4171 

20 P-3(#147) RbFe(MoO4)2 22 P-3(#147) CsFe(SO4)2 1 a,b,c;0,0,0 0.9942 0.0869 0.53 2.4021 

51 C2/m(#12) NaV(SO4)2 52 C2/m(#12) NaFe(SeO4)2 1 -a,b,-c;0,0,0 0.1635 0.0182 0.023 0.3965 

60 C2/m(#12) BaHf(PO4)2 61 C2/m(#12) BaSn(PO4)2 1 -a,b,-c;0,0,-1/2 0.3734 0.0153 0.113 0.7771 

70 C2/c(#15) PbTi(PO4)2 99 C2/c(#15) SrTi(PO4)2 1 -a,b,-c;-1/2,0,-1/2 0.1033 0.0061 0.022 0.2768 

119 P-3m1(#164) KFe(MoO4)2 121 P-3m1(#164) CsV(MoO4)2 1 a,b,c;0,0,0 0.4435 0.0332 0.156 0.8116 

121 P-3m1(#164) CsV(MoO4)2 124 P-3m1(#164) CsAl(MoO4)2 1 a,b,c;0,0,0 0.0699 0.0098 0.04 0.2154 

12 P-3m1(#164) TlSc(MoO4)2 16 P-3m1(#164) TlAl(MoO4)2 1 a,b,c;0,0,0 0.1663 0.021 0.059 0.4664 

53 C2/m(#12) BaMo(PO4)2 57 C2/m(#12) BaZr(PO4)2 1 -a,b,-c ; 0,0,-1/2 0.2177 0.0157 0.09 0.4411 

201 P2/c(#13) NaHZr(PO4)2 200 P2/c(#13) KHZr(PO4)2 1 -a,b,-c ; 0,0,-1/2 0.6374 0.0205 0.117 2.9392 

61 C2/m(#12) BaSn(PO4)2 96 C2/m(#12) BaGe(PO4)2 1 -a,b,-c ; 0,0,-1/2 0.106 0.0187 0.016 0.2302 

7 P-3m1(#164) KSc(MoO4)2 12 P-3m1(#164) TlSc(MoO4)2 1 -a,-b,c ; 0,0,0 0.1571 0.01 0.047 0.3342 

52 C2/m(#12) NaFe(SeO4)2 58 C2/m(#12) NaFe(SO4)2 1 -a,b,-c ; 0,0,0 0.3527 0.0209 0.051 0.7342 

19 P-3m1(#164) RbFe(MoO4)2 135 P-3m1(#164) CsTm(WO4)2 1 a,b,c;0,0,0 0.0524 0.035 0.048 0.1455 

135 P-3m1(#164) CsTm(WO4)2 98 P-3m1(#164) BaZr(PO4)2 1 a,b,c ; 0,0,1/2 0.2712 0.0743 0.138 0.6054 

98 P-3m1(#164) BaZr(PO4)2 136 P-3m1(#164) CsLu(WO4)2 1 a,b,c ; 0,0,1/2 0.2826 0.0561 0.139 0.6619 

47 C2/m(#12) KFe(SO4)2 101 C2/m(#12) KCr(CrO4)2 1 -a,b,-c ; 0,0,-1/2 0.315 0.0269 0.104 0.5518 

101 C2/m(#12) KCr(CrO4)2 51 C2/m(#12) NaV(SO4)2 1 -a,b,-c ; 0,0,-1/2 0.2103 0.0416 0.035 0.5052 

102 C2/m(#12) RbCr(CrO4)2 100 C2/m(#12) NaCr(CrO4)2 1 -a,b,-c ; 0,0,0 0.4096 0.0653 0.178 0.8332 

47 C2/m(#12) KFe(SO4)2 52 C2/m(#12) NaFe(SeO4)2 1 -a,b,-c ; 0,0,0 0.4556 0.0393 0.103 0.8144 
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16 P-3m1(#164) TlAl(MoO4)2 10 P-3m1(#164) RbIn(MoO4)2 1 -a,-b,c ; 0,0,0 0.2294 0.0238 0.054 0.6696 

124 P-3m1(#164) CsAl(MoO4)2 137 P-3m1(#164) CsYb(WO4)2 1 a,b,c ; 0,0,1/2 0.3778 0.0314 0.091 0.7448 

32 P-3m1(#164) K3Na(Se4)2 10 P-3m1(#164) RbIn(MoO4)2 1 a,b,c;0,0,0 0.3766 0.0079 0.091 0.99 

33 C2/c(#15) K3Na(SeO4)2 65 C2/c(#15) NaFe(MoO4)2 1 -a,b,-c ; 0,0,-1/2 0.6739 0.0536 0.248 2.2289 

75 P-3m1(#164) K3Na(RuO4)2 32 P-3m1(#164) K3Na(SeO4)2 1 -a,-b,c ; 0,0,1/2 0.1284 0.0107 0.016 0.3063 

76 P-3m1(#164) 

Rb3Na(RuO4)

2 75 P-3m1(#164) K3Na(RuO4)2 1 a,b,c;0,0,0 0.0415 0.0106 0.023 0.0977 

76 P-3m1(#164) 

Rb3Na(RuO4)

2 28 P-3m1(#164) K3Na(FeO4)2 1 -a,-b,c ; 0,0,1/2 0.0778 0.0254 0.016 0.2215 

28 P-3m1(#164) K3Na(FeO4)2 25 P-3m1(#164) K3Na(CrO4)2 1 -a,-b,c ; 0,0,1/2 0.0333 0.0026 0.013 0.0864 

48 C2/m(#12) K3CaH(PO4)2 35 C2/m(#12) Na3HZr(GeO4)2 2 -a,b,-2c ; -1/2,0,0 2.1519 0.0327 0.2203 6.8425 

33 C2/c(#15) K3Na(SeO4)2 68 C2/c(#15) 

Ag2SrMn(VO4)

2 1 -a,-b,c ; 0,0,0 0.4735 0.0367 0.091 1.5825 

74 C2/c(#15) K3Na(RuO4)2 68 C2/c(#15) 

Ag2SrMn(VO4)

2 1 -a,b,-c ; 0,0,-1/2 1.7163 0.0481 0.204 5.6279 

68 C2/c(#15) 

Ag2SrMn(VO

4)2 71 C2/c(#15) 

Na2BaCu(VO4)

2 1 -a,b,-c ; 0,0,-1/2 0.4411 0.0144 0.137 1.3198 

171 P2_1/c (#14) 

Na2SrMg(PO

4)2 42 P2_1/c (#14) 

Na2CaMg(PO4)

2  1 

-a,b,-c ; -1/2,1/2,-

1/2 0.369 0.0069 0.067 1.7079 

42 P2_1/c (#14) 
Na2CaMg(PO

4)2  44 P2_1/c (#14) Ca3Mg(SiO4)2 1 a+c,-b,-c ; 0,0,-1/2 0.3906 0.0108 0.063 1.5575 

44 P2_1/c (#14) 

Ca3Mg(SiO4)

2 63 P2_1/c (#14) Sr3Mg(SiO4)2 1 -a,b,-c ; 0,1/2,-1/2 0.7056 0.0196 0.088 2.7615 

2 C2/m(#12) 

K2CsHo(PO4)

2 34 C2/m(#12) BaNa(PO4)2 1 -a,b,-c ; -1/2,0,0 0.7275 0.0407 0.191 1.617 

24 P-3m1(#164) BaNa(PO4)2 118 P-3m1(#164) KNa(SO4) 1 -a,-b,c ; 0,0,1/2 0.2927 0.0032 0.027 0.5525 

91 P-3m1(#164) 
Na2CaMg(PO

4)2 77 P-3m1(#164) K2RbGd(VO4)2 1 a,b,c ; 0,0,1/2 0.4996 0.033 0.027 0.7781 

78 C2/c(#15) 

K3Na(MoO4)

2 80 C2/c(#15) K3Na(WO4)2 1 -a,b,-c ; 0,0,-1/2 0.0496 0.0029 0.005 0.1729 
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80 C2/c(#15) K3Na(WO4)2 64 C2/c(#15) Na3Fe(PO4)2 1 -a,b,-c ; 0,0,-1/2 1.7022 0.102 0.176 5.4742 

25 P-3m1(#164) K3Na(CrO4)2 26 P-3m1(#164) K3V(VO4)2 1 -a,-b,c ; 0,0,0 0.342 0.0186 0.065 0.9928 

117 P-3m1(#164) 

K2RbGd(VO4

)2 123 P-3m1(#164) K2CsYb(PO4)2 1 a,b,c;0,0,0 0.4003 0.0324 0.139 0.8716 

26 P-3m1(#164) K3V(VO4)2 117 P-3m1(#164) K2RbGd(VO4)2 1 -a,-b,c ; 0,0,1/2 0.1864 0.0283 0.032 0.4959 

123 P-3m1(#164) 

K2CsYb(PO4)

2 129 P-3m1(#164) K2RbTb(VO4)2 1 a,b,c;0,0,0 0.3943 0.0289 0.136 0.8595 

95 P-1(#2) KMn(SeO4)2 37 P-1(#2) Na3HZr(SiO4)2 2 2a,b,c ; 1/2,1/2,1/2 2.9086 0.1197 0.449 8.682 

95 P-1(#2) KMn(SeO4)2 128 P-1(#2) Na3MgH(PO4)2 1 a,b,c;0,0,0 3.411 0.4433 0.795 5.8025 

93 P-3(#147) 
K2CsSc(PO4)

2 30 P-3(#147) 
Ag2BaMn(VO4)

2 1 -a,-b,c ; 0,0,1/2 0.657 0.0317 0.214 1.7414 

66 C2/c(#15) Ag3Fe(VO4)2 197 C2/c(#15) K2KNa(CrO4)2 1 -a,b,-c ; 0,0,-1/2 2.1632 0.044 0.301 6.2186 

72 P-3(#147) K3Sc(PO4)2 73 P-3(#147) K3Lu(PO4)2 1 a,b,c;0,0,0 0.1658 0.0093 0.02 0.6182 

73 P-3(#147) K3Lu(PO4)2 126 P-3(#147) Ba3Mg(SiO4)2 1 b,a,-c ; 0,0,0 0.5654 0.022 0.123 1.9609 

31 P-3(#147) K3Na(SeO4)2 126 P-3(#147) Ba3Mg(SiO4)2 3 -a+b,-a-2b,c ; 0,0,0 0.323 0.0247 0.041 1.2264 

31 P-3(#147) K3Na(SeO4)2 20 P-3(#147) RbFe(MoO4)2 1 a,b,c;0,0,0 0.4847 0.0241 0.126 1.2879 

118 P-3m1(#164) KNa(SO4) 122 P-3m1(#164) Tl2(MoO4) 1 -a,-b,c ; 0,0,1/2 0.4517 0.0543 0.048 1.0458 

122 P-3m1(#164) Tl2(MoO4) 21 P-3m1(#164) Tl2(WO4) 1 a,b,c;0,0,0 0.0728 0.0009 0.009 0.185 

87 C2/c(#15) 

(K2.5Na0.5) 

Na(MoO4)2 66 C2/c(#15) Ag3Fe(VO4)2 1 -a,-b,c ; 0,0,-1/2 0.7987 0.0678 0.163 3.0329 

128 P-1(#2) 

Na3MgH(PO4

)2 37 P-1(#2) Na3HZr(SiO4)2 2 2a,b,c ; 1/2,0,0 2.4789 0.1549 0.907 8.9617 
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 CONCLUSION 11.

Group-subgroup relations of Glaserite-type compounds were determined and 

corresponding transformations were shown on the diagram tree. Online version 

of the diagram can also be visited via: 

 

http://yunus.hacettepe.edu.tr/~emre.tasci/strrel_serpil_albay_glaserites_case_st

udy/DiagramComplete_size.png 

 

Alternative link: 

http://test3.cryst.ehu.es/strrel_serpil_albay_glaserites_case_study/DiagramCom

plete_size.png 

 

Some of the structures‟ data collected by Nikolova and Kostov-Kytin was 

excluded due to duplication and the remaining ones are sorted in subclasses 

according to the structural diversity of the GTC as shown in Table 9.1. Making 

an analogy between the structures requires structural similarity by means of 

space groups‟ constraints. Lattice compatibility of two space groups that is 

validated by group theory is not the only constraints for comparison of two 

structure i.e., there must be Wyckoff splitting compatibility, also. 

 

Resistance of the reformation of the new unit cell during transformation 

constitutes degree of lattice distortion. In this study, among the compared 

structures, transformation from the group             to the subgroups 

                      and           constitutes bigger lattice distortion 

amplitude compared to other group-subgroup transitions. 

 

Global distortion amplitude is calculated via low symmetry structure‟s sites‟ 

multiplicities and the corresponding atomic displacements between the high and 

low symmetry structures. According to the diagram tree, transition from high 

symmetry structure RbFe(MoO4)2         to low symmetry structure 

RbFe(MoO4)2       reveals the biggest global distortion amplitude 

           . Three of the four results that have global distortion amplitude 

above      belong to                transformation (see Table 10.1). 

http://yunus.hacettepe.edu.tr/~emre.tasci/strrel_serpil_albay_glaserites_case_study/DiagramComplete_size.png
http://yunus.hacettepe.edu.tr/~emre.tasci/strrel_serpil_albay_glaserites_case_study/DiagramComplete_size.png
http://test3.cryst.ehu.es/strrel_serpil_albay_glaserites_case_study/DiagramComplete_size.png
http://test3.cryst.ehu.es/strrel_serpil_albay_glaserites_case_study/DiagramComplete_size.png


83 

 

 

Transformation of the structures that are divided into similar classification in 

accordance with their cations‟ occupancies gives more precise results. On the 

other hand, by assuming a void on an excess element provides the 

determination of group-subgroup relations between structures with different 

number of atoms in their compared unit cells. K3Na(SeO4)2 crystal belongs to 

2nd subclass,                ,(             of the general formula 

                    of GTC while RbIn(MO4)2 crystal in the form of 4th 

derivative                         of the general formula. Both 

structures belong to same space group. Assuming the void on K1 atom (2d WP) 

helps to relate these two structures with small strain and global distortion.  

 

It is possible to estimate possible theoretical structures in intermediate group‟s 

setting between two space groups to find maximal subgroup and minimal 

supergroup. According to the diagram tree, there is a transformation between 

K3Na(SeO4)2         and K3Na(SeO4)2           with index 6. There may 

be an intermediate group between them. By using online PSEUDO program 

[40][23] and after calculations, a possible structure K3Na(SeO4)2 belonging to 

          space group is found. The other structures KIn(WO4)2             , 

BaZr(PO4)2             and K3Na(RuO4)2             are possible estimated 

structures and are shown on Table 10.1 and the diagram. 

 

Diagram tree shows all of the derived relations of group-subgroup containing 

transformation matrix, index, maximum distance between the atomic positions, 

the degree of lattice distortion, the measure of compatibility and the global 

distortion data. Moreover, big global distortions during phase transition are 

presented in color according to their range, possible theoretical structures are 

indicated via dashed lines and transformation of the structures by assumed 

voids are also distinguished by dashed and colored lines. 

 

Since the calculation results take up a lot of space (around 270 pages in printed 

format), they are not included as hard copies in this thesis.  The data output of 
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the relations of the pairs shown in diagram, along with other information, is 

accessible via the following link: 

 

http://yunus.hacettepe.edu.tr/~emre.tasci/strrel_serpil_albay_glaserites_case_st

udy/ 

 

Alternative link: 

http://test3.cryst.ehu.es/strrel_serpil_albay_glaserites_case_study/ 

 

The relation between the structures of the same space groups generally has 

neither point group symmetry loss nor translational symmetry loss. According to 

the diagram, there are four cases of relations between the same space groups 

having a klassengleiche index, meaning that the volume of one of the unit cell is 

significantly different with respect to the others. The following four crystals‟ 

relations of the same space groups correspond to the transformation via 

klassengleiche index. 

 

Na3MgH(PO4)2   (P-1(#2))        Na3HZr(SiO4)2 (P-1(#2)) 

K3Na(SeO4)2    (P-3(#147))      Ba3Mg(SiO4)2  (P-3(#147)) 

KMn(SeO4)2        (P-1(#2))        Na3HZr(SiO4)2 (P-1(#2))    

K3CaH(PO4)2  (C2/m(#12))       Na3HZr(GeO4)2 (C2/m(#12))   

http://yunus.hacettepe.edu.tr/~emre.tasci/strrel_serpil_albay_glaserites_case_study/
http://yunus.hacettepe.edu.tr/~emre.tasci/strrel_serpil_albay_glaserites_case_study/
http://test3.cryst.ehu.es/strrel_serpil_albay_glaserites_case_study/
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