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OZET

YAPAY SINiR AGLARI VE SONLU ELEMANLAR
METODUNDAN (ANSYS) OLUSAN KARMA BiR MODELI
KULLANARAK CATLAK iCEREN SONLU PLAKALARIN

GERILME YOGUNLUK FAKTORLERININ TAHMIiNi

Yusuf YABIR

Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Damismani: Prof. Dr. Bora YILDIRIM
Mayis 2019, 94 sayfa

Bu caligmanin amaci gerilme yogunluk faktorii formiilii bulunmayan yar eliptik yiizey
catlag: igeren 2 farkl: tipteki plakanin gerilme yogunluk faktorlerini tahmin etmek i¢in
yapay sinir ag1 modeli gelistirmekti. Bu plakalardan biri 6n ve arka yiiziinde birer adet
yart eliptik yiizey catlagi igermektedir. Digerinin ise On ve arka yiiziinde birbirine paralel
2 adet yarn eliptik yiizey ¢atlagi bulunmaktadir. Ilk olarak sinir ag1 modelinin egitilmesi
icin gerekli olan veriler sonlu elemanlar metodu (Ansys) yardimiyla olusturulmustur.
Birinci durum i¢in (her iki yiizeyde de 1 tane yari eliptik yiizey catlagi iceren) mindr
yarigapin (a), mindr yarigapin major yarigapa oraninin (a/c) ve mindr yarigapinin plaka
kalinligina oranmin (a/t) farkli degerleri kullanilarak toplamda 179 Ansys simiilasyonu
yapilmistir. Birinci durum i¢in bu simiilasyonlar sonucunda 8234 adet veri liretilmis (her
simiilasyon i¢in 46 farkli parametrik ag1 degeri) ve bu verilerin 1061 tanesi yapay sinir
ag1 modelinin egitilmesinde kullanilmistir. Bunun yani sira ikinci durum i¢in (her iki
yiizeyde birbirine paralel 2 adet yan eliptik yiizey catlagi iceren) a, a/c, a/t ve h’in (iki
paralel catlak arasindaki dikey uzaklik) farkli degerleri kullanilarak 523 Ansys

simiilasyonu yapilmigtir. Bu simiilasyonlardan sonra 24058 tane veri elde edilmis ve 4248



tanesinden agmn egitim asamasinda yararlanilmistir. Yapay sinir agt modellemesinde
Matlab sinir ag1 modiilii (nntool) kullanilmistir. Egitim asamasinda farkli tipte ag yapilari
kullanilmistir. Egitilen sinir aglarinin dogrulugu, en iyi ag modelini belirleyebilmek igin
Ansys’te iiretilen 760 (birinci durum) ve 1139 (ikinci durum) tane yeni veri kullanilarak
test edilmistir. Sonug olarak birinci durum i¢in minimum sapma degeri 2 tane gizli
katman ve her bir gizli katmanda 15 néron iceren ag modelinde elde edilmistir ve
minimum sapma degeri % 0.32 olarak hesaplanmistir. Benzer sekilde ikinci durum i¢in
minimum sapma degeri % 0.49 olarak hesaplanmis ve bu model 3 gizli katman ve her bir
gizli katman i¢in 14 ndron icermektedir. Bu ¢alisma sonucunda herhangi bir simiilasyon
/ analiz yapmadan 2 farkli durum icin gerilme yogunluk faktdrii degerlerini tahmin

edebilme potansiyeline sahip 2 tane yapay sinir ag1 modeli elde edilmistir.

Anahtar Kelimeler: Yapay Sinir Aglari, Sonlu Elemanlar Metodu, Kirilma, Yar1 Eliptik
Yiizey Catlagi, Gerilme Yogunluk Faktori
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ABSTRACT

ESTIMATION OF STRESS INTENSITY FACTORS FOR
CRACKED FINITE PLATES USING A HYBRID MODEL OF
ARTIFICIAL NEURAL NETWORK AND FINITE ELEMENT

METHOD (ANSYS)

Yusuf YABIR

Master of Science, Department of Mechanical Engineering
Supervisor: Prof. Dr. Bora YILDIRIM
May 2019, 94 pages

The aim of this study was to develop an artificial neural network model in order to
estimate stress intensity factor values of two different types of semi elliptical surface
cracked plates which have no explicit stress intensity factor formula. One of these plates
contains one semi elliptical surface crack at both sides, front side and back side. The other
one contains two parallel semi elliptical surface cracks at the front and back side. First of
all, data which were needed for neural network model training were generated in aid of
finite element method (Ansys). In the first case (one semi elliptical surface crack at both
sides), 179 Ansys simulations were done in total using different values of minor radius
(a), the ratio of minor radius to major radius (a/c) and the ratio of minor radius to plate
thickness (a/t). As a result of these simulations in case 1, 8234 data were generated (46
different parametric angles for each simulation) and 1061 of these data were used to train
the artificial neural network model. Besides, 523 Ansys simulations were done using
different values of a, a/c, a/t and h (vertical distance between two parallel cracks) for the
second case (two parallel semi elliptical surface cracks at both sides). 24058 data were

obtained after these simulations and 4248 of them were utilized for the network training

iii



process. Matlab neural network module (nntool) was used for artificial neural network
modelling. Different types of network structures were used in the training process. The
accuracy of the trained neural networks for the first and second case were tested using
760 and 1139 new data respectively, which were generated via Ansys so as to determine
the best network model. Consequently, minimum deviation value (difference between
Ansys and Matlab neural network result) of case 1 was obtained for the network model
that has 2 hidden layers and 15 neurons for each hidden layer and minimum deviation
was calculated as 0.32%. Similarly, minimum deviation value of the model for the second
case was calculated as 0.49% and this model has 3 hidden layers and 14 neurons for each
hidden layer. As a result of this study, for two different types of cases, two artificial neural
network models which have the potential to estimate stress intensity factor values without

doing any simulations, were obtained.

Keywords: Artificial Neural Network, Finite Element Method, Fracture, Semi Elliptical

Surface Crack, Stress Intensity Factor



ACKNOWLEDGEMENTS

Firstly, I would like to express my profound thankfulness to my respectable supervisor,
Prof. Dr. Bora Yildirim, for his encouragement, guidance and supervision. I completed

this study with the help of him.

Most of all, I would like to give thanks to my wife for her moral support, patience and

endless love.

Yusuf YABIR
May 2019, Ankara



TABLE OF CONTENTS

OZET ..., i
ABSTRACT ... il
ACKNOWLEDGEMENTS . ... v
TABLE OF CONTENTS ... .o e vi
LIST OF TABLES. .. .o e vii
LIST OF FIGURES. ... .o e, iX
LIST OF SYMBOLS AND ABBREVIATIONS......coiiiiiiiie e Xiii
L. INTRODUCGTION. ...ttt e 1
1.1. Aim and Scope of the Study........cooovniiiiiii 2

1.2, LATETAtUI® SUIVEY .. .ottt ettt et et 4

2. THEORY, MODELLING AND METHODS.......ooiiiiiiiiiiiecee e, 7
3 B U 11T ) o PSPPI 7
2.1.1. Fracture Theories and Stress Intensity Factor Formulation.................. 7

2.1.2. Finite Element Method..............c.ooiii i 12

2.1.3. Artificial Neural Network............oooii 15

2.2. Modelling and Methods............cooiiiiiiiiii e 23
2.2.1. Finite Element Model Establishment.....................ooo 24

2.2.2. Mesh Convergence Study...........ovuvvuiiiiiiiniiiiiiiieieeaen 27

2.2.3. Verification of the Finite Element Model with Formula................... 33

2.2.4. Artificial Neural Network Model Development............................. 36

2.2.5. Data Generation with Finite Element Analysis (Ansys)................... 43

2.2.6. Training of Artificial Neural Network Model........................o. . 50

2.2.7. Testing of Artificial Neural Network Model....................ooo 53

3. ANALYSIS AND RESULTS . ...ttt 55
3.1. Analysis and Results for Case 1...........ccooiiiiiiiiiiiiiii e 56

3.2. Analysis and Results for Case 2..........ccooiiiiiiiiiiiiiii i 69

3.3. Conclusions and Recommendations. ..............cooeviiiiiiiiiiiinininennenn. 87
REFERENCES . ... e 90
APPENDIIX .. .o 93

Vi



Table 2.1.
Table 2.2.
Table 2.3.

Table 2.4.
Table 2.5.
Table 2.6.

Table 2.7.
Table 2.8.
Table 2.9.

Table 2.10.
Table 2.11.
Table 2.12.
Table 2.13.
Table 2.14.

Table 3.1.

Table 3.2.
Table 3.3.

Table 3.4.

Table 3.5.

Table 3.6.

Table 3.7.

Table 3.8.

LIST OF TABLES

Main parts of biological human neuron and artificial neural network......17
Convergence study for main mesh size................cooiiiiiiiiiiinnnn.n. 29

Ansys result for main mesh size 3, circumferential division 64, crack front

division 45 and mesh contour 10..............oooiiiiiiiiiiiiiii e 29
Convergence study for number of mesh contours............................. 30
Convergence study for number of circumferential division.................. 30

Stress intensity factor calculation result for circumferential division 96,

main mesh size 3, crack front division 45 and mesh contour 10............ 31
Verification of finite element model with Newman Raju Equation.........34
An example of mean error calculation for verification process............. 34

Verification of the Ansys model with Newman Raju equation (h=20 cm,
A= 0.05) .o 36

Values of input variables used in Ansys for case 1 (179 simulations)......43

Values of input variables used in Ansys for case 2 (523 simulations)...... 44
A sample study for determination of plate dimension........................ 49
Simulations done for testing the trained model (case 1)...................... 53
Simulations done for testing the trained model (case 2)........................ 54

Deviation values of 760 test data for different types of network structures

Minimum and maximum values needed for normalization (case 1)........ 61
Weights of the trained neural network for case 1 — between input neurons
(4) and first hidden layer neurons (15).........coooiiiiiiiiiiiiiiiin, 61
Weights of the trained neural network for case 1 — between five of first
hidden layer neurons (1-5) and second hidden layer neurons (15)......... 62
Weights of the trained neural network for case 1 — between five of first
hidden layer neurons (6-10) and second hidden layer neurons (15)........ 62
Weights of the trained neural network for case 1 — between five of first
hidden layer neurons (11-15) and second hidden layer neurons (15)...... 63
Weights of the trained neural network for case 1 — between second hidden
layer neurons (15) and output neuron (1)...........cooviiiiiiiiiiiiinnnnnn. 63

Bias weights of the trained neural network forcase 1........................ 64

vii



Table 3.9.

Table 3.10.
Table 3.11.

Table 3.12.

Table 3.13.

Table 3.14.

Table 3.15.

Table 3.16.

Table 3.17.

Table 3.18.

Table 3.19.

Deviation values of 1139 test data for different types of ANN in case 2...71
Minimum and maximum values needed for normalization (case 2)........ 74
Weights of the trained neural network for case 2 — between input neurons
(5) and first hidden layer neurons (14).........ccooeviiiiiiiiiiiiiii e, 74
Weights of the trained neural network for case 2 — between five of first
hidden layer neurons (1-5) and second hidden layer neurons (14)......... 75
Weights of the trained neural network for case 2 — between five of first
hidden layer neurons (6-10) and second hidden layer neurons (14)........ 75
Weights of the trained neural network for case 2 — between four of first
hidden layer neurons (11-14) and second hidden layer neurons (14)...... 76

Weights of the trained neural network for case 2 — between five of second

hidden layer neurons (1-5) and third hidden layer neurons (14)............ 76
Weights of the trained neural network for case 2 — between five of second
hidden layer neurons (6-10) and third hidden layer neurons (14)........... 77
Weights of the trained neural network for case 2 — between five of second
hidden layer neurons (11-14) and third hidden layer neurons (14)......... 77
Weights of the trained neural network for case 2 — between third hidden
layer neurons (14) and output neuron (1)...........cooevviiiiiiiiiiiinniinnnnn. 78
Bias weights of the trained neural network forcase 2........................ 78

viii



Figure 1.1.

Figure 1.2.

Figure 2.1.
Figure 2.2.

Figure 2.3.

Figure 2.4.
Figure 2.5.

Figure 2.6.

Figure 2.7.

Figure 2.8.

Figure 2.9.

Figure 2.10.
Figure 2.11.
Figure 2.12.
Figure 2.13.
Figure 2.14.
Figure 2.15.

Figure 2.16.

Figure 2.17.
Figure 2.18.

LIST OF FIGURES

First case - two semi elliptical surface cracked plate - (a) front and back

sides and (c) right hand side of the plate.....................oooiiiiiin. . 2
Second case - four semi elliptical surface cracked plate — (a) front and back
sides and (b) right hand side of the plate......................cooiiiiiii. 3
Schematic representation of Griffith theory [12]...............cooooiiiiain, 7

(a) and (b) Schematic representation of stress state around the crack

Variation of geometry correction factor for edge and center crack [15]...10

Mode I stress intensity factor calculation of a plate with center crack

15 10
Mode I stress intensity factor calculation of a plate with double crack
1 11
Mode I stress intensity factor calculation of a plate with single edge crack
15 11
Mode I stress intensity factor calculation of single semi elliptical surface
cracked body [17]. .o 11
Representation of minor, major radius and parametric angle in semi
elliptical surface crack [18].......ccoviiiiiiiii e, 12
A simple finite element model [19].............coiiiiiiiiiiiii . 13
Types of elements used in finite element analysis........................... 13
Finite element method flowchart [20]................oii 14
Schematic representation of a biological human neuron [21]...............15
A simple artificial neural network model.......................o 16

Summation and activation function of an artificial neural network model

Effect of the input weights to the corresponding output of the input......19
Effect of bias to the output of the network.....................cc. 19

X



Figure 2.19.

Figure 2.20.

Figure 2.21.

Figure 2.22.

Figure 2.23.
Figure 2.24.
Figure 2.25.
Figure 2.26.
Figure 2.27.
Figure 2.28.

Figure 2.29.
Figure 2.30.

Figure 2.31.
Figure 2.32.
Figure 2.33.
Figure 2.34.
Figure 2.35.
Figure 2.36.
Figure 2.37.
Figure 2.38.
Figure 2.39.
Figure 3.1.
Figure 3.2.
Figure 3.3.
Figure 3.4.
Figure 3.5.
Figure 3.6.

Some of the activation / transfer functions (a) hard limit (b) linear (c)
logistic sigmoid (d) tangent hyperbolic.................coooiiiiiiiiiinin, 20
Schematic representation of gradient descent backpropagation

FUNCHION. ... e 22

Front and back side of the semi elliptical surface cracked bodies considered

in the thesis (a) case 1 (D) CaSE 2. uviniiiriiiiii i, 24
Fracture module in Ansys and an example for the plate used for

ALY ZES. ettt e e 25
Creating semi elliptical crack using fracture module........................ 25
Symmetry conditions for case 1 (a) and case 2 (b).........c.coevvvinnnnn. 26
Details of a semi elliptical crack in fracture module in Ansys............ 27
Schematic representation of a semi elliptical crack [25]................... 27
Graphical representation of the convergence study for mesh contour....30
Graphical representation of convergence study for circumferential
470 T3 10 ) P P 31
Representation of the crack used in Ansys (general view)................. 32
Detailed view (a) and meshed model of the semi elliptical crack used in
N 1) 33
Basic model for a multi layered artificial neural network.................. 37
ANN model for the first problem at the first step of modelling............ 38
ANN model for the second case at the first step of modelling............. 38
Feed forward back propagation neural network.............................. 39
Levenberg — Marquardt training function flowchart [28].................. 40
Difference between good fit (a) and overfitted (b) ANN model [33]......51
An underfitted model [33]......ceiiiii 51
Variation of mean errors for training and test data [34]..................... 51
Graph of the tangent hyperbolic function.........................oooeeae. 52
Matlab nntool module. ..., 55
Training parameters used in the training process.............c..coeevuen... 56
Variation of stress intensity factor for different values of a/t (a/c=0.5)...56
Variation of stress intensity factor for different values of a/t (a/c=1).....57
Schematic representation of the trained model for case 1.................. 58
Output screen at the end of training process for case 1 (4 input neurons, 2

hidden layers, 15 neurons for each hidden layers and 1 output neuron)..58

X



Figure 3.7.
Figure 3.8.

Figure 3.9.

Figure 3.10.

Figure 3.11.

Figure 3.12.

Figure 3.13.

Figure 3.14.

Figure 3.15.

Figure 3.16.

Figure 3.17.

Figure 3.18.

Figure 3.19.
Figure 3.20.

Figure 3.21.
Figure 3.22.

Figure 3.23.

Performance graph of the training process (case 1)...........c.ccoevennnnn. 59
Change in the value of gradient, damping factor and number of validation
check during training (case 1)........coviiiiiiiiiiiiiii i, 59
Correlation coefficient for training, validation and test data (case 1).....60
Variation of SIF along the crack front for case 1 (a=0.0442 m, a/c=1.3,
a/t=0.33, deviation=1.32%0).....c..ceiiitiiii 64
Variation of SIF along the crack front for case 1 - (a) Ansys result and
(b) Comparative graph (a=0.0425 m, a/c=2.5, a/t=0.41, deviation=
04990 . . e 65
Variation of SIF along the crack front for case 1 - (a) Ansys result and
(b) Comparative graph (a=0.0088 m, a/c=1.1, a/t=0.15, deviation=

0,08 00) ettt e 66
Variation of SIF along the crack front for case 1 — (a) Ansys screen and
(b) Comparative graph (a=0.003125 m, a/c=0.25, a/t=0.44, deviation=
0,38 00) ettt e 67
Variation of SIF along the crack front for case 1 (a=0.012 m, a/c=0.4,
a/t=0.47, deviation=0.65%0).........ooeiiiiii 68
Variation of SIF along the crack front for case 1 (a=0.05 m, a/c=2,
a/t=0.25, deviation=0.2%) ... ....oouiirii i 68
Variation of SIF along the crack front for case 1 — (a) Ansys result and

(b) Comparative graph ( a=0.0189 m, a/c= 0.7, a/t=0.38, deviation=

0. 130 et 69
Variation of stress intensity factor for different values of a/h (a/c=0.3,

AMF0.2) 70
Variation of stress intensity factor for different values of a/h (a/c=1, a/t=
004 e 70
Schematic representation of the trained model for case 2.................. 71

Output screen at the end of training process for case 2 (5 input neurons, 3
hidden layers, 14 neurons for each hidden layers and 1 output neuron)..72
Performance graph of the training process (case 2)...........c.cceevuvennn.. 72
Change in the value of gradient, damping factor and number of validation
check during training (Case 2).........oveeiiiiiieiiiiiiiiieeieeeaeennen 73

Correlation coefficient for training, validation and test data (case 2).....73

X1



Figure 3.24.

Figure 3.25.

Figure 3.26.

Figure 3.27.

Figure 3.28.

Figure 3.29.

Figure 3.30.

Figure 3.31.

Figure 3.32.

Figure 3.33.

Figure 3.34.

Figure 3.35.

Variation of SIF along the crack front for case 2 (a=0.0168 m, a/c=0.8,

h=0.05 m / a/h=0.336, a/t=0.27, deviation=0.21%)...........ccceeevrenn. .. 79
Variation of SIF along the crack front for case 2 (a=0.005 m, a/c=1, h=
0.003 m/ a/h=1.67, a/t=0.35, deviation =0.19%)...........ccccevieininnn. 79

Variation of SIF along the crack front for case 2 — (a) Ansys result and
(b) Comparative graph (a=0.01125 m, a/c=2.25, h=0.015 m / a/h=0.75,
a/t=0.25, deviation =0.439%0).....ccooiriii 80
Variation of SIF along the crack front for case 2 — (a) Ansys result and
(b) Comparative graph (a=0.003 m, a/c=0.3, h=0.015 m / a/h=0.2,
a/t=0.25, deviation =0.15%0).....c..iiieiiii i 81
Variation of SIF along the crack front for case 2 — (a) Ansys result and
(b) Comparative graph (a=0.0081 m, a/c=0.9, h=0.013 m / a/h=0.623,
a/t=0.33, deviation =0.39%)......cccoiiriiii 82
Variation of SIF along the crack front for case 2 — (a) Ansys result and
(b) Comparative result (a=0.0054 m, a/c=1.8, h=0.025 m / a/h=0.216,
a/t=0.3, deviation =1.25%)......coiiiriiiii e 83
Variation of SIF along the crack front for case 2 (a=0.014 m, a/c=0.5,
h=0.05 m / a/h=0.28, a/t=0.32, deviation =0.93%)...............ccceenn.. .. 84
Variation of SIF along the crack front for case 2 (a=0.024 m, a/c=1.2,
h=0.15 m / a/h=0.16, a/t=0.36, deviation =0.46%)............ceevrrrnn.... 84
Variation of SIF along the crack front for case 2 (a) Ansys result (b)
Comparative graph (a=0.0036 m, a/c=1.2, h=0.02 m / a/h=0.18, a/t=0.2,

deviation =0.85%0). .. ..ooeniii i 85
Variation of SIF along the crack front for case 2 (a=0.008 m, a/c=0.5,
h=0.005 m / a/h=1.6, a/t=0.45, deviation =0.17%)............cceevrrrnn.... 86
Variation of SIF along the crack front for case 2 (a=0.01 m, a/c=2,
h=0.008 m a/h=1.25, a/t=0.35, deviation =0.28%)...........ccceceerren... 86
Variation of SIF along the crack front for case 2 (a=0.006 m, a/c=1.5,
h=0.01 m / a/h=0.6, a/t=0.42, deviation =0.5%)..............ccceevreeenn... 87

xii



LIST OF SYMBOLS AND ABBREVIATIONS

SIF Stress Intensity Factor

ANN Artificial Neural Network

FEA Finite Element Analysis

E Elastic modulus

a Minor radius of the semi elliptical crack
c Major radius of the semi elliptical crack
t Thickness of the cracked plate / body

S} Parametric angle

h Distance between two parallel cracks

b Width of the plate

Y Specific surface energy

Ge Strain energy release rate

c Applied stress

Ki Stress intensity factor in Mode 1

Ku Stress intensity factor in Mode 2

K Stress intensity factor in Mode 3

f Geometry correction factor

Ki Critical stress intensity factor in Mode 1
Kire Critical stress intensity factor in Mode 2
Kie Critical stress intensity factor in Mode 3
W Weight in the artificial neural network model
) Difference between target and output in ANN
n Learning rate

J Jacobian matrix

Damping factor

=

xiii






1. INTRODUCTION

In mechanical engineering, stress distribution over the component is very critical for the
design of any mechanical part. So stress analysis is done in order to determine critical

points of the component and specify the shape and material of the mechanical part.

Fracture mechanics is one of the branches of solid mechanics and it deals with the
behaviour of cracks which are in the materials [1]. In this field, there are some theories
which can be used to identify the behaviour of the material with discontinuity [2].
Discontinuity is a very important phenomenon in engineering design of materials because
all of the materials / machine elements have discontinuities such as notches, flaws, cracks,
etc. and these discontinuities effect the strength of the materials and cause crack

propagation.

Crack propagation in the structures may lead to failure. In fracture mechanics field, a
concept which is called stress intensity factor (SIF) is used to determine the stress
intensity near the crack tip (magnitude of the singularity at the crack) and to guess a crack
starts to grow or not. Therefore the calculation of SIF is very important for anti breaking

design of materials and it has a significant role in determining the crack propagation.

Crack propagation can be predicted by comparing the critical SIF value and calculated
SIF. If calculated SIF value is greater than the critical value, propagation starts and
fracture occurs. The value of SIF can be calculated using some formulas (analytical
method), numerical methods, finite element method (FEM) etc. Some formulas can be
used for determination of SIF (for known cracked bodies) but there is no explicit formula
for complicated bodies in general. For these situations, FEM can be easily used and very
accurate results can be obtained. But if it is needed to perform so many simulations, SIF
calculation with FEM procedure may be time consuming. Therefore, for these cases, an
artificial neural network (ANN) model may be utilized to generate an explicit formula or

a network, which calculates SIF values for different cases accurately and fast.

ANN is a very powerful computational tool and it is used to estimate the result of any
problem or case utilizing some input values and relations / weights. Actually, ANN is a
simulation of the human brain. It is very common all over the world in recent years. This

tool can be used for pattern recognition / classification or function approximation



problems and very accurate results can be obtained. It analyzes the input and output data
given to the network like a human brain, then forms a network which consists of a lot of
weights, adjusts these weights and finally trained neural network is utilized to estimate /

calculate the values of outputs. So ANN is easier and faster than FEM approach.

1.1. Aim and Scope of the Study

In fracture mechanics, there are some formulas in order to calculate the SIF. These
formulas can be obtained from some handbooks, but they are only valid for some common
bodies, so, for complicated cases, there is no explicit formula. Therefore, it is needed a

new approach to calculate these SIF values.

In this thesis, the aim is to form an ANN structure for two different bodies / plates so as
to estimate SIF values precisely. There is no formula for these two different cases / plates
in literature. So, the formed ANN structure can be directly used as a formula in aid of a
simple code or Matlab neural network module. In the first case, the plate has two semi
elliptical surface cracks, one of them is at the front side and the other one is at the back

side of the plate and these cracks are symmetric to each other as shown in Figure 1.1.

front side «—— —» back side

Semi elliptical
t crack

<«——» (minor radius a)

(b)

0.100¢m)

(a)

Figure 1.1.  First case - two semi elliptical surface cracked plate - (a) front and back

sides and (c) right hand side of the plate



In the second case, the plate has four semi elliptical surface cracks, two of them are at the
front side (parallel to each other — vertical distance between the cracks is h), the other
ones are at the back side (parallel to each other - vertical distance between the cracks is

h) and again these cracks are symmetric to each other as shown in Figure 1.2.

front side «——— » back side
/ Semi elliptical crack
a (minor radius a)

h

Semi elliptical crack

(b) < , (minor radius a)

Figure 1.2.  Second case - four semi elliptical surface cracked plate — (a) front and back

sides and (b) right hand side of the plate



In this study, firstly, finite element analysis (FEA) software Ansys will be used to
calculate SIF of various cases. As it was stated before, there are two different plates in
this thesis. In the first case (only one semi elliptical surface crack in both sides of the
plate), variables are minor and major radius of the crack and plate thickness. In the second
case (two semi elliptical surface cracks in both sides), variables are minor and major
radius of the crack, plate thickness and distance between two parallel cracks. Using
different values of these variables, hundreds of simulations will be done in Ansys. Then,
using these data, ANN will be trained. Training is adjusting the network weights so as to
get the best output results. Matlab neural network tool (nntool) will be utilized for neural
network analysis. After successfully training, the network will be tested again with new
data and results obtained with Matlab nntool will be compared with Ansys outputs. After
obtaining deviation good enough for the test data, this trained neural network structure
(weights, number of layers, etc.) will be presented in order to estimate SIF of any other
cases without using FEM. Thus, developed ANN will be used as an explicit formula. By
means of ANN, it will take less time to calculate SIF and there will be no need to do any

simulations in Ansys.

1.2. Literature Survey

In literature, there are some studies which use the finite element method (Ansys, Abaqus,
LS Dyna, etc.) and artificial neural network as a hybrid model to compute/predict some
outputs like stress intensity factor, maximum stress, maximum strain, maximum
deformation, etc. In these studies, in general, when the difference between finite element
analysis results and trained neural network results was less than 5% more or less, trained
network was considered as a successful model. It can be deduced from these papers that
if there is no explicit formula for the output parameter and calculation of the output of the
problem using some software packages is tedious or forming the experimental set up and
doing the experiment is troublesome, using a neural network is very advantageous and

useful due to its speed and accuracy.

Rusia & Pathak [3] studied on the calculation of maximum equivalent von Mises stress,
strain and directional deformation for a hexagonal plate with central hole using Ansys
workbench and ANN. In this study, input variables were edge length, hole diameter, plate
thickness and applied stress. It was carried out 81 different Ansys simulations and using

these data, ANN was trained. Then accuracy of the network was tested with 4 new cases



and it was found that deviation for maximum equivalent von Mises stress, strain and
directional deformation were 3.605%, 3.921% and 7.705% respectively. Rusia & Pathak
[4] also followed the same procedure for a triangular plate with a central hole and
deviations were 3.85% (maximum equivalent von Mises stress), 4.2% (maximum

equivalent strain) and 3.98% maximum directional deformation) for this case.

In Nicholas, Padmanaban, Vasudevan & Selvaraj’s study [5], buckling strength of a
laminated composite plate with a central circular hole was predicted in aid of ANN.
Different values of thickness, fiber orientation, material and stacking sequence were
selected and FEA was utilized to obtain the data. Then, using these data, an ANN was
constructed. As a result of this study, it was proposed to take advantage of this ANN

model to estimate the buckling strength of the composite plate.

Ali et al. [6] predicted the SIF for different single edge crack positions of a plate. Abaqus
and Matlab were utilized to create a prediction tool. In this study, plate size and crack
length were constant and only changing parameter was crack position along the y axis. It
was shown that the SIF value of the crack which was close to the middle of the plate was

lower than the other ones.

Kutuk, Atmaca & Guzelbey [7] formed an explicit formula for three types of cracks using
FEM — Ansys and ANN. Types of cracks were center crack, single edge crack and double
edge crack. Variables which were used to obtain input data via Ansys for ANN were type
of the crack, crack length, width of the plate and applied stress. ANN was trained with
these data and an explicit formulation was created in aid of weights of the ANN structure.

As a conclusion, the results of new formulation and FEM were in good agreement.

Jabur & Mohsin’s study [8] was about the variation of SIF and effect of crack position,
crack orientation, etc. There were five different cases in this study. These were double
edge cracked plate (one crack for each side), double edge cracked plate with different
positions along y axis, four edge cracked plate with different positions along y axis (two
cracks for each side), double edge cracked plate with different crack orientation and
double edge cracked plate with different crack orientation and kinked. In this study, it
was seen that SIF values increased linearly with relative crack length and applied stress
in case 1, SIF values increased exponentially when cracks were close to the upper or

lower side of the plate for case 2, SIF values were increased exponentially when the



distance between cracks increased in case 3. Also, it was shown that decrease in SIF
values for case 3 were higher than case 2 when crack was close to the middle of the edge

(mutual shielding effect).

Rubio, Abella & Rubio [9] studied on estimation of SIF of semi elliptical cracked rotating
shaft subjected to bending. In this study, crack was in the middle of the shaft and Abaqus
was used to carry out finite element simulations. Variables were crack depth ratio, crack
shape ratio, position of the crack and rotation angle. An ANN model was formed using
input and output (SIF) data. It was shown that the ANN approach was successful to
predict SIF of semi elliptical cracked rotating shaft subjected to bending. It was proposed

to use ANN because of its efficiency, ease of use and low computational costs.

Kilic, Ekici & Hartomacioglu [10] developed an ANN model to estimate the ballistic
penetration depth of a bullet fast and accurately. Firstly, real tests/experiments were
conducted for different speed range of a bullet and these data were used to validate LS
Dyna model. Then, data obtained via LS Dyna were given to the neural network and this
neural network was trained. ANN model’s input variables were impact velocity and
thickness of the armor. Finally, the ANN model was formed and its prediction accuracy

was 95%.



2. THEORY, MODELLING AND METHODS

2.1. Theory

2.1.1. Fracture Theories and Stress Intensity Factor Formulation

Fracture is the separation of the material into two or more parts because of the stresses
and it is induced by crack initiation and crack propagation [11]. Crack initiation is the
first part and crack propagation is the second part of the fracture. There are some reasons

for crack initiation / crack propagation like creep, fatigue, impact, thermal stresses etc.

In literature, there are some theories to explain crack growth and fracture of the material.

Some of them are Griffith, Orowan and Irwin theories.

According to Griffith theory, materials always have a preexisting crack and this crack
grows if the elastic energy release is greater than the work which is necessary to form
new fracture surfaces. It is only valid for brittle materials. This theory is shown

schematically in Figure 2.1.

Crack length

Energy, U

Total
—na2tc2/E

Figure 2.1. Schematic representation of Griffith theory [12]

There are two formulas in Figure 2.1. First one is surface energy and other one is elastic
energy decrease in the material. As it can be seen from the figure above, total energy
increases, but after a certain point total energy starts to decrease. This point is known as
the critical crack length.

na’to?

AUeigstic = _T (2.1)

AUsurface = 4aty (2.2)
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Related formulas for Griffith theory are given above. Equation (2.1) is the formula for
decrease of elastic energy. Equation (2.2) is the formula for energy needed to form new
fracture surfaces and last formula (2.3) is known as Griffith criterion. In these equations,
parameter y represents the specific surface energy (J/m?). According to this formula if the
length of the preexisting internal crack is greater than 2a (a is calculated with Eq. (2.3)),

crack grows and fracture occurs.

Another approach is Orowan theory. This approach is very similar to the Griffith’s theory.
In this theory, plastic work is also included. Griffith’s approach does not include plastic

work and is not valid for metals. Orowan’s theory’s formula is given below.

EG,
mwa

o= (2.4)
As it can be seen from Eq. (2.4), Orowan’s and Griffith’s formulas are very similar. The
only difference is 2y and Ge. G is known as the strain energy release rate and includes

plastic work [12].

The last approach is Irwin’s theory. In this theory, stress state in the vicinity of the crack
tip is very critical. Schematic representation of stress state around crack tip is given in

Figure 2.2. Also related equations for Irwin’s approach are given below.

&)

l—f b Crack tip

4
x

(2) (b)

Figure 2.2. (a) and (b) Schematic representation of stress state around the crack tip
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For a body which is under tension (Figure 2.2), normal and shear stress distribution

formulas in the vicinity of sharp crack are shown below.

1 0 (0N . (36
Oy = K,/(Zrtr)zcos(z)[l —sin (E) sin (7)] (2.5)

0 30
= K,/(Zrtr)zcos(—)[l + sin (E) (7)] (2.6)
1 6. . (0 36
Tyy = K,/(an)zcos(i) sin (E) cos <7>] (2.7)
In the equations (2.5), (2.6) and (2.7) K is the SIF value. Subscript I indicates that SIF

value is valid for opening / tension mode. There are three types of fracture modes. Figure

2.3 shows these types of modes.

r
A5 7

IMode I Mode Il Mode IlI

Figure 2.3. Fracture modes — opening, shearing and tearing mode respectively [13]

As illustrated in Figure 2.3 in mode I, plane of fracture is perpendicular to the load
direction, in mode II, direction of fracture is same with load and in mode III, propagation

of fracture plane is perpendicular to the shear force.

Each material has a different value of Ki, Ki and K. Because the strain energy release
rate is different for each mode. In this study, mode I, opening mode calculations will be

considered. Because opening mode is the most important and widespread mode [14].

Formulation of SIF of a semiinfinite body for mode I is given below Eq. (2.8) [15].

K; = ovma (2.8)

For finite bodies, this formula is multiplied by f which is a geometry factor as seen in Eq.

(2.9). Geometry factor varies with the shape of the model.

K, = fovma (2.9)
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Figure 2.4. Variation of geometry correction factor for edge and center crack [15]

In Irwin’s approach, if the SIF value of any fracture mode reaches a certain value, crack
grows and fracture occurs. This certain value is known as critical SIF value (Kie-Kire-
Kie). Critical SIF value is a material property and it has different values for different

types of modes. It also depends on temperature, plane stress, strain condition, loading rate

etc.

In literature, there are some formulas for common geometries in order to calculate mode

I STF values. Some of these geometries and corresponding formulas are illustrated below.

o

SUBSEYRR

K, = fovma

4

20— f=(1-01 (%)2 +0.96 (%) ) Sec(%a)

Figure 2.5. Mode I stress intensity factor calculation of a plate with center crack [16]
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K, = fovma

f =[1+ 0.122cos* (%a)]\/tan (%a) /(%a)

Figure 2.6. Mode I stress intensity factor calculation of a plate with double crack [16]

K, = fovna
2.02a
f=1(0752+—=—+037(1
2b
—sin (Z—Z))3)/(cos(72t—: ] — tan (Z—Z)

Figure 2.7. Mode I stress intensity factor calculation of a plate with single edge crack [16]

| {0

K; =a50\/%f(®)

Q=1+ 1.464(%)1'65
as = [1.13 — 0.09(a/c)][1 + 0.1(1 — sin(®))?]

a~ 2
c

(@) = [sin’@ + ( ) cos?Q]1/*

Figure 2.8. Mode I stress intensity factor calculation of single semi elliptical surface

cracked body [17]
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Equations in Figure 2.8 are known as Newman-Raju equations. In these equations, a, ¢
and @ / © represent minor radius, major radius and parametric angle respectively. These

parameters are shown schematically in Figure 2.9 below.

(a)

a/c > 10

a/c < 1.0

A
aN) 1 4 /e
| ¢ = e c -

Figure 2.9. Representation of minor, major radius and parametric angle in semi elliptical

surface crack [18]

In aid of these SIF equations, SIF values of some geometries can be calculated easily. But
for complicated geometries, there is no explicit formula to determine SIF values

analytically. So in these cases, numerical calculations like FEM approach can be used.

2.1.2. Finite Element Method

FEM or FEA is a numerical method which is used to solve engineering problems. As it
was said in the previous section, if the model or problem can not be solved or too hard to
solve analytically, FEM is a very good choise. It is suitable for linear or nonlinear

problems.

Basic principles for FEA is quite simple. In this approach, complex geometry is divided

into smaller bodies which are called as element or finite element. All of these elements

12



are connected to each other. Connection points of the elements to the each others are

known as nodes. A simple model of element and node is illustrated in figure 2.9.

CETTTIT
\
g a Elgmcnl
ite ehement 1
rmodel ¢

Figure 2.10. A simple finite element model [19]

There are different types of elements like line (1D), plane (2D) and solid (3D) elements.
These elements are also divided into subcategories like for two dimensional elements
triangular, quad, etc. and for three dimensional elements tetrahedron, hexahedron

quadratic, etc. Some of these types of elements are shown below in Figure 2.11.

1-D (Line) Element

PRSSRRER

(Spring, truss, beam. pipe, ctc.)

2-D (Plane) Element

(Membrane, plate, shell, etc.)

3-D (Solid) Elememt

Figure 2.11. Types of elements used in finite element analysis



In FEA, equations are formed for each element and then whole system equations are

formed using matrices. Finally, these equations are solved in aid of appropriate boundary

conditions. Number of equations are too large for more complicated problems, so,

computers and packaged softwares like Ansys, Abaqus etc. are used to get approximate

solution for these problems.

Flowchart which illustrates the steps in FEM calculation is given below in Figure 2.12.

Finite Element
Method
(FEM)

, i Derivation of
Discretization Identification of elemental .
of Interpolation stiffness matrix Assemblage of Calculation of the
Domam Function and load vectors Matrix unknown u
Deyived
._. Using — : Consideration of
Division of the Solution (field variable) not : Individual Stiffness boundary
structure into known Equilibrum (local) Conditions in the
finite number in domain (or continuum)- Principles and load vectors system of
of elements field variable can be are assembled equations-
determined s Adjustment
by function- \Qr:?é:g?ez:,l to stiffness and
interpolation function (e.g. Galorkin KI{U} = {F} load malricies
| | Method)

Determine No of ; I
elementsin [ | Determine || gio14 variablos
domain types includes:
(hence size of | | of elements | | ramoaratyre.
elements) Displacement,
Velocity, Stress,
Pressure
; Elements with
Trianguler | [Rectangular||  oyrved
boundaries

Figure 2.12. Finite element method flowchart [20]

In Ansys, there are two different types of SIF calculation method. These are displacement
extrapolation method and interaction integral method. Interaction integral method is used

commonly for SIF calculation and it is very similar to the J integral method.

Corresponding equations for J integral and interaction integral are given as follows.
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I=-0, qii Ok 161101 j-0""“k jutt. -0 ju ™ 1.i] av/] sOqnds (2.10)
In the equation (2.10), o, € and u are stress, strain and displacement respectively.
o =(K“ N 2mr)f () + (K™ uN2mr)f"5(0)+ (K™ mN2rr)f"5(6) (2.11)
U =K/ 2u) (Nr/21)g5(0,v) + (K™ 1/20) (Nir/21) g0, v) + (K™ m/21) (Nr/2m)g™(0,v)
e =1/2(u™ +u™ ;) (2.12)

J=[(KF+ Kif)/(1-V)]/E+[Ku(1+ v)]/E (2.13)
J=[(Kr+K" )P +(Ku+Ki*)* ] (1- VV)/E+(Kuf K™ )(1+ v)/E (2.14)
J=J+J"+] (2.15)

I=[2(1- V)/E] (KiK™+ KuKi™)+(1/wKmKu™ (2.16)

In these equations (Eq (2.11), (2.12), (2.13), (2.14), (2.15), (2.16)), ] represents J integral

and I represents interaction integral. Also p is shear modulus.

2.1.3. Artificial Neural Network

ANN is a tool used in machine learning. It is a computational model and it is used to form
or generate a relationship between the given inputs and outputs. This tool is utilized for
function approximation and pattern recognition problems. It is a very powerful tool for
problems which involve complicated relationship between input and output data. It is an
imitation of biological human neuron. Representation of a biological human neuron is

shown in Figure 2.13.

dendrites%\(})l

2
synapses
nucleus axon > e

cell body

Figure 2.13. Schematic representation of a biological human neuron [21]
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As it can be seen from Figure 2.13, a human neuron consists of dendrites, cell body,
nucleus, axon and synapses. Dendrites receive signals from other neurons and they
transmit these signals to the nucleus. Some of these signals are dominant or have larger
magnitude and some of them are not dominant. So effect of these messages coming from
other neuron is not the same. Then the nucleus sums these messages and transmits them
to the axon. Axon process these signals and in aid of synapses (contact points), new

messages are transmitted to the other neuron’s dendrites.

x1

wi
x2

w2

x3 3

whn
xn

Figure 2.14. A simple artificial neural network model

In figure 2.14 above, it can be noticed that ANN is very similar with the biological human
neuron. Parameters x1, x2, x3, etc. are inputs for ANN and wl, w2, w3, etc. are the

weights of these inputs.

In ANN, input and output data are given to the model, this model compares these data
and tries to form best relationship between these inputs and outputs executing some
mathematical manipulations. Basically, the main principle of ANN is to adjust the
weights of the inputs and to obtain minimum error and the best fit to the output. Adjusting
the weights so as to get the best relation between input and output data is called training

the network.

Main training or learning procedure of a network is as follows. Every input of the model
is multiplied by its own weight and all of these multiplication results are summed. This
part is known as summation part and it is similar with the nucleus or soma part of the
biological human neuron. After multiplication and summation process, data goes to

activation / transfer function part.
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The transfer function part is again similar with the axon part of the biological human
neuron. Finally processed data are compared with the target data which is given to the
model as an output, error is calculated and then the same procedure is executed again to

minimize the error using new input weights.

Table 2.1. Main parts of biological human neuron and artificial neural network

Biological Human Neuron Articial Neural Network
Soma / Nucleus Node / Summation Function
Dendrite Input
Synapse Weight
Axon Transfer / Activation Function
bias
o b
X, -—-{w'\\ § T
@ s b Activation
© /'j_'_' Function
o e
= X I\MQ\‘, ™ Output
73] 2 Z ! k
E . ; SR,
Summation
X W)

m

kam !

Figure 2.15. Summation and activation function of an artificial neural network model

[22]

Summation and activation function parts can be seen in Figure 2.15 above. This is a
simple ANN model and there are two layers, input and output. If data are linearly
separable, two layers, input and output, are enough for the best fit and this model is known
as perceptron. But if there is nonlinearity, at least one hidden layer must be used in the

model and it is called as multilayer perceptron. Hidden layer is an intermediate layer.

Actually, having multiple hidden layer makes the model more flexible and it helps the
model to learn more complex relationships. An example of multi layered model is shown

below in Figure 2.16.
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Figure 2.16. A multi layered artificial neural network (input, hidden and output layer)
[23]

Moreover, there is a terminology which is called bias in ANN. It can be seen in the
network models in figure 2.15 and 2.16. This is an extra node or neuron used in the model.
It is a constant valued node, 1 or another constant value. ANN model changes the value
of bias for every hidden and output layer node during training. It is used to shift the
transfer function of the node to the left or right. So it increases the flexibility of the

network and thus model fits better.

It is said that bias increases the flexibility of the model. Let’s consider two cases for the
logistic sigmoid activation function. One of them is the case that the weight of the input
changes (Figure 2.17). Other one is the case that weight of the input is constant, but bias

of the neuron or node changes (Figure 2.18).
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Figure 2.17. Effect of the input weights to the corresponding output of the input

As it can be noticed in figure 2.17 that weight of the input changes from 1 to 8 and it only

changes the steepness of the graph.

— — —no bias
081 *  bias=3
— & — bias=6
bias=-3 / /
06 bias=-6 4 / / _

output

5 10

input value

Figure 2.18. Effect of bias to the output of the network

As shown in figure 2.18, the bias value shifts the activation function and so, the estimation
capacity of the model increases. This is the main advantage of the bias node in ANN. In
figure 2.15 and 2.16, it can be seen that after the summation function, there is a part which
is called activation function or another words, transfer function. It is very important for

ANN because in aid of activation or transfer functions, ANN can easily learn complex
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and nonlinear models. So selecting the type of the activation function is an important
subject. In an ANN model, every input is multiplied by their weights, then multiplied
inputs go to the summation function. After the summation function, all of the data go to
activation fiunction and it processes these data. There are different types of activation
functions. Some of them are linear and some of them are nonlinear. If the linear activation
function is used, ANN loses its flexibility and it becomes a linear estimation model. But
nearly all of engineering problems include nonlinearity, so using nonlinear activation
function makes the network model more flexible. Some of the activation functions used

in ANN model are given in Figure 2.19.

........... e bacl—— 0 for x<0

> f9)=

........................ 1 for x>0

a = hardlim(n) (@)

AO > fioo)=x
____________ s

a = purelin(n) (b)

Fd f)=1/(1+e~)

(©)

F J)=(e* —e *)/(e* +e™*

(d)

a = tansig(n)

Figure 2.19. Some of the activation / transfer functions (a) hard limit (b) linear (c) logistic

sigmoid (d) tangent hyperbolic
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Hard limit activation function is a threshold function. The purelin activation function is
linear and tangent hyperbolic and logistic sigmoid activation functions are nonlinear

activation functions.

In ANN, some training or learning algorithms are used to obtain the best fit for inputs and
outputs. These algorithms are divided into two categories. One of these is incremental

training and the other one is batch training.

In batch training, weights of the inputs or the hidden layer are updated when all of the

inputs of the network are given to the network.

In incremental training, weights of the inputs are updated for every input and network
constantly updates the weights. Therefore, batch training takes less time. Incremental
training is also known as online training. Most of the algorithms are batch training

algorithms.

Basically, in incremental training weights are updated for each datum, in batch training
weights are updated for one epoch. Epoch means one set of updates of the network

weights for all of the inputs. It is a kind of iteration.

Some of the training / learning functions used in ANN are presented below.

e QGradient descent backpropagation

e QGradient descent with momentum backpropagation

e QGradient descent with adaptive learning rate backpropagation

e QGradient descent with momentum and adaptive learning rate backpropagation
e Resilient Backpropagation

e Gauss Newton

e Scaled Conjugate Gradient

e Levenberg-Marquardt

The main purpose of all of these training functions is to minimize the output error and
obtain the best relationship between input and output data. But intermediate steps differ
from each other and these steps specify training function’s speed, learning capacity,

computer memory usage, etc.
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Let’s consider a simple training function — gradient descent backpropagation example and
learn some of the basic concepts of ANN. For computation of output error, there is a
terminology which is error function. It evaluates the difference between the target value

and output value.

Target value is desired value which is given to the network by the user and the output

value is the value which ANN computes using its weights and activation functions.

There are different types of error functions like mean square error, sum square error, etc.

In this example sum square error is used and its equation is given in Eq. (2.17).

E(W):]/z[ (ytarget—youtput) 2] (217)

In gradient descent backpropagation approach, aim is to approach the minimum value of

error function using the derivative of the error function.

Figure 2.20. Schematic representation of gradient descent backpropagation function

Derivative of the error function with respect to the weight is calculated and it gives

information about the direction which it is needed to move.

a_E_ 0E a}’output
ow aYOutput ow

(2.18)

y in equation (2.18) represents activation function. In this example, it is assumed that

activation function is a linear function.
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y=f(x)2(wx) (Linear activation function) (2.19)

G_E_ 0E  OYoutput
ow a}’output ow

= _(ytarget - youtput)x = —6x (2-20)

Equation (2.19) and (2.20) show the calculation the derivative of error function. The term
0 represents the difference between target value and output value. Derivation of error
function is negative, so in order to decrease error, weight of the input is moved to the

negative direction of derivative as shown in Eq. (2.21). (Figure 2.20)

—(=6x) =6x (2.21)

Final step is to calculate the new value of weight using the gradient of the error function
and follow the same procedure to obtain error small enough. After some epochs, value of
the difference between the new weight and old weight becomes so small, nearly zero. It

means the error is very small.

Wnew = Wold + 77 5)6 (2.22)

Term 1 in Eq. (2.22) is known as the learning rate of the model. The value of learning
rate is very important for training procedure. If it is too low, training function takes too
much time to converge. Also, if it is too high, training function becomes unstable. For
gradient descent backpropagation algorithm, learning rate is constant, but for some types
of algorithms, learning rate changes during the learning process and it improves

performance of the training function.

Another parameter used in some of the training functions like gradient descent with
momentum backpropagation, gradient descent with momentum and adaptive learning rate

backpropagation etc. is momentum coefficient (Eq. 2.23).

Whew = Wola + 11 6X +momentum coeffcient*Aw (2.23)

Momentum coefficient in improves the stability of the network model. Also in aid of

momentum coefficient, it can be avoided from converging to a local minimum value [24].

2.2. Modelling and Methods

As stated in previous chapters, in this study, the aim is to estimate SIF values of two
different semi elliptical surface cracked bodies. One of these bodies has two semi

elliptical surface cracks (first case), one of them is at the front side and the other one is at
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the back side. In the second case, the body has four semi elliptical surface cracks, two of

them is at the front side and two of them is at the back side.

In this study, firstly, finite element models for both cases were established, then data were
generated using these finite element models. After FEA step, ANN models were
established for both cases and these models were trained with data obtained with FEM.
Finally, two succesfully trained ANN models were developed for calculation of SIF

values without any simulation or analytical calculation.

2.2.1. Finite Element Model Establishment
In this study, for FEA, Ansys Workbench was used. Figure 2.21 shows the front side of

the cases considered in this thesis. Back sides of the bodies are same with the front sides.

ol i <% T
47"—}

(b)
(a) _ Vi

ol ol

Figure 2.21. Front and back side of the semi elliptical surface cracked bodies considered

in the thesis (a) case 1 (b) case 2

Ansys Static Structural module was used in this thesis. Plates used in Ansys were square.
It was considered that the dimensions of the semi elliptical cracks in the plates were so
small compared with the dimensions of the plates. So in the FEA, appropriate dimension
for the plates was used. Firstly, plate was created using geometry section in static

structural module, then model section was utilized for FEA.

In model section, crack was created using fracture module. Figure 2.22 shows the created

plate and fracture module.
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Figure 2.22. Fracture module in Ansys and an example for the plate used for analyzes

Different types of cracks can be created using fracture module. In this study, as stated

before, semi elliptical crack was used. Figure 2.23 shows the types of the cracks in

fracture module and formation of a semi elliptical crack.

Project
B Model (A4)
ﬁ Geometry

,:)Jq. Coordinate Systems
Symmetry

- s

Patch Conforming Method

:} Generate All Crack Meshes

S Pre-Meshed Crack
*, Delete == Interface Delamination
gk Rename (F2) = Contact Debonding

Figure 2.23. Creating semi elliptical crack using fracture module

In FEM, using symmetry conditions makes the model simpler and reduces time required
to solve the problem. So in this study, symmetry conditions were used. In the first case,

half of the plate and in the second case, quarter of the plate was modeled. These models

are shown in figure 2.24.
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Figure 2.24. Symmetry conditions for case 1 (a) and case 2 (b)
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2.2.2. Mesh Convergence Study

In FEA, mesh convergence study is very important. Because it must be provided that
mesh size is small enough to obtain the accurate result. In most of finite element studies,
only parameter which effects the result accuracy is main mesh size. So in these studies,
firstly bigger element size is used, then it is decreased gradually. After a certain point,

change in the mesh size does not change the result considerably. This point is considered

as the ideal mesh size for

In this study, there were some parameters which have a significant role on the accuracy
of the SIF value. These were main mesh size, circumferential division, crack front
division and mesh contour. As shown in figure 2.25 and 2.26, three of these parameters,

circumferential division, crack front division and mesh contour, are related with semi

elliptical crack.

analysis.

Details of "Semi-Elliptical Crack"

Figure 2.25. Details of a semi elliptical crack in fracture module in Ansys

Circumferential
Divisions = 16

Figure 2.26. Schematic representation of a semi elliptical crack [25]
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Schematic representation of a semi elliptical crack and its defining parameters are given
in figure 2.26. As seen in figure 2.26, there are some parameters used to form a semi
elliptical crack in Ansys. Mesh contour is the circles around the crack tip line and contour
nearest to the crack tip line has largest contour number. For instance, in figure 2.26, the
number of mesh contour is 3 and innermost circle is defined as the contour 3. Largest
contour radius is the radius of mesh contour 1 which is the outmost circle. Circumferential
division is the division number of the mesh contours and its value must be multiples of 8.
The last parameter, crack front division is the division number of the crack tip line.
Almost all of these parameters effect accuracy of the SIF. So mesh convergence study
was done to determine the ideal values of these parameters and main mesh size in this
thesis. Another parameter which effects the accuracy of the result is dimension of the
body / plate. Because in this study, as stated before, it was considered that the SIF value
of the semi elliptical crack was not dependent to the length / width of the plate. So
determination of optimum value for length and width of the plate is also important.
Procedure which was followed to determine the optimum value of the dimension of the

plate was explained in the results section.

Meshing around the crack line is much more important for the SIF calculation of semi
elliptical surface cracked bodies. Because maximum deformation occurs at these points.
So semi elliptical crack dependent parameters like mesh contour, circumferential
division, etc. play much more critical role than the mesh size for the accuracy of the SIF
value. In mesh convergence study, the results of FEM, Ansys, were compared with the
Newman Raju equation (figure 2.8) which is valid for semi elliptical surface cracked
plate. (only one crack at the front side of the body) Different values of main mesh size,
circumferential division, crack front division and mesh contour were used in FEA. Firstly,
three of these parameters were taken as constant and value of one of these parameters was
changed. Obtained result was compared with the equation result and optimum value was

determined. The same procedure was followed for each of these parameters.

In mesh convergence analysis, it was considered that value of applied stress, largest
contour radius, major radius (c) and minor radius (a) were 1 MPa, 1 mm, 10 mm and 5

mm respectively. 200 mm cube was used.

e (Convergence study for main mesh size

o Other parameters (constant parameters) were considered as

28



= Circumferential division 64
= Mesh contour 10

= Crack front division 45

Results of the convergence study for main mesh size are given in table 2.2 below. As seen
in this table, optimum value for main mesh size is 3. Table 2.3 shows the result of the

analysis for main mesh size 3 mm.

Table 2.2. Convergence study for main mesh size

Main Mesh Size (mm) 6 4 3 2.5 2
Mean Error % 1.196 1.177 1.151 1.15 1.15

Table 2.3. Ansys result for main mesh size 3, circumferential division 64, crack front

division 45 and mesh contour 10

64-3-45-10 Ki Values (Pavm)
C Angle KIFEM . KIanalytic
a(m a/c FEM | ———— | Analytical | ———— Error %
M1 () ©) ov(ma/Q) yuea | I ma/Q) ’

0,005|0,0110,5| 0 86534 0,836 87343,0 0,844 0,92619
0,005|0,0110,5| 6,13 | 86298 0,834 86461,7 0,835 0,18937
0,005|0,01]0,5| 12,07 | 85943 0,830 87009,7 0,841 1,22597
0,005|0,01]0,5|22,98 | 89181 0,862 90482,6 0,874 1,43854
0,005|0,01]0,5] 32,58 | 93650 0,905 94829,1 0,916 1,2434
0,005|0,01]0,5]|41,13 [ 97803 0,945 98907,4 0,956 1,11663
0,005|0,01]0,5] 52,62 102810 0,993 104003,7 1,005 1,14776
0,0050,01]0,5] 63,05 | 106450 1,029 107819,7 1,042 1,27036
0,005|0,01]0,5| 76,01 | 109460 1,058 111050,8 1,073 1,43254
0,005/0,0110,5] 90 |110580 1,068 1122924 1,085 1,52492
Mean error for optimum mesh size 1,151

e Convergence study for mesh contour
o Other parameters (constant parameters) were considered as
= Circumferential division 64
* Main mesh size 3 mm

= Crack front division 45

Error values for 7 different cases are shown in table 2.4 and as it is seen in figure 2.27,

the optimum value of mesh contour is 10.
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Table 2.4. Convergence study for number of mesh contours

Number of Mesh Contours 2 3 4 5 8 10

12

Mean Error % 1.33 1.278 | 1.235 | 1.197 | 1.165 | 1.151

1.15

1.34 T T T T T T T T T T T
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Figure 2.27. Graphical representation of the convergence study for mesh contour

e Convergence study for circumferential division
o Other parameters (constant parameters) were considered as
= Mesh contour 10
= Main mesh size 3 mm

= Crack front division 45

Results of the convergence study for the number of circumferential division are presented

in table 2.5. As it is understood from figure 2.28, ideal value is 96.

Table 2.5. Convergence study for number of circumferential division

Circum, 8 16 | 32 | 48 64 | 72 80 | 88 96 | 104
Division
Mean 1) o360 | 1546 | 1332 123 | 1151 | 1.134 | 1.121 | 1.092 | 1.08 | 1.076
Error %
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Convergence study for number of circumferential division
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Figure 2.28. Graphical representation of convergence study for circumferential division

Table 2.6. Stress intensity factor calculation results for circumferential division 96, main

mesh size 3, crack front division 45 and mesh contour 10

96-3-45-10 Ki Values (Pavm)
Angle Klrgm ) Kl nalytic
©) FEM Y (a/0) (ma/Q) Analytical (/o) J(ra/Q)
0,005| 0,01 [0,5| O 86523 0,836 873430 0,844 0,93879
0,005| 0,01 [0,5| 6,13 | 86324 0,834 86461,7 0,835 0,1593
0,005| 0,01 [0,5| 12,07 | 86015 0,831 87009,7 0,841 1,14322
0,005| 0,01 [0,5|22,98 | 89276 0,863 90482,6 0,874 1,33355
0,005| 0,01 0,5|32,58 | 93725 0,906 94829,1 0,916 1,16432
0,005| 0,01 [0,5|41,13 | 97848 0,945 98907,4 0,956 1,07113
0,005| 0,01 [0,5|52,62 | 102910 0,994 104003,7 1,005 1,05161
0,005| 0,01 0,5 63,05 | 106540 1,029 107819,7 1,042 1,18689
0,005| 0,01 [0,5| 76,01 | 109580 1,059 111050,8 1,073 1,32448
0,005| 0,01 [0,5| 90 | 110670 1,069 112292,4 1,085 1,44477
1,08

a(m)|c(m) |alc Error %

Optimum values for circumferential division, mesh contour and main mesh size were
determined as 96, 10 and 3 mm respectively. Last parameter which effects the accuracy
of SIF value was crack front division. As seen in convergence studies above, crack front

division value was considered as 45. In this thesis, the main purpose was to estimate SIF
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value for case 1 and case 2 for different values of major radius, minor radius, parametric
angle, etc. So it was needed so many angle values for each analysis in order to train the
ANN model and estimate SIF value accurately at any angle. In the result of a simulation
in Ansys, the program gives x, y and z coordinates of the crack front and corresponding
SIF values. If the crack front division value is selected as 45, Ansys gives 90 different
coordinates for SIF calculation, so it means, 90 different values are obtained in one
analysis. Actually, 90 different values were enough for this study, but an extra analysis
was done for crack front division value 90 (minor radius 2.5 mm and major radius 5 mm)
and results were compared with each other to be sure for the value of 45. Mean error
values of analysis for 96 (circumferential division), 3 (main mesh size), 90 (crack front
division), 10 (mesh contour) and 96 (circumferential division), 3 (main mesh size), 45
(crack front division), 10 (mesh contour) were 1.35% and 1.36% respectively. Error
values were so close to each other and therefore value of 45 for crack front division was
acceptable. Besides, taking crack front division value as 90 made the analysis more

tedious job. It took almost doubled the time compared to analysis using the value of 45.

In consequence of mesh convergence study, it was determined that the value of
circumferential division, main mesh size, crack front division and mesh contour were 96,

3, 45 and 10 respectively.

Representation of crack in Ansys is given in figure 2.29 and meshed model of the crack

is given in figure 2.30.

Crack front
division 45

Figure 2.29. Representation of the crack used in Ansys (general view)
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Circumferential
division 96

Crack tip

Mesh
contour 10

Figure 2.30. Detailed view (a) and meshed model of the semi elliptical crack used in

Ansys

2.2.3. Verification of the Finite Element Model with Formula

As a result of mesh convergence study, optimum values of 4 different parameters were
determined. But mesh convergence study was done for the model that minor and major
radius was 5 mm and 10 mm and so mean error value was only valid for this model. So
few Ansys simulations were done and mean error values were calculated so as to verify
the model which was obtained in consequence of mesh convergence study. Table 2.7

shows the results of these simulations.
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Table 2.7.

Verification of finite element model with Newman Raju Equation

Circumferential Division ; 96
Main Mesh Size : 3 mm

Crack Front Division : 45
Mesh Contour : 10
Major Radius ¢ (m) | Minor Radius a (m) | a/c | Mean Error %

0.005 0.0025 0.5 1.35
0.005 0.004 0.8 0.65
0.005 0.005 1 0.23
0.005 0.006 1.2 0.5
0.01 0.003 0.3 1.3
0.01 0.005 0.5 1.08
0.01 0.008 0.8 0.6
0.01 0.01 1 0.38

Total mean error 0.76

As one can see in table 2.7 above, total mean error value (error between FEA-Ansys and
Newman Raju equation) was calculated 0.76% as a result of 8 different cases. This value
was well enough, so this model (96-3-45-10- circumferential division, main mesh size,
crack front division and mesh contour) was used in the subsequent Ansys simulations. An

example of mean error calculation in table 2.7 (c= 0.005 m, a= 0.005 m) is given in table

2.8 as follows.

Table 2.8. An example of mean error calculation for verification process

Angle| FEM | Klggm | Analytical | Klanalytic
a(m)|c(m)|alc (og) (Pa \/m) m (Pazjltm) m Error %
0,005(0,005| 1 | 0,00 | 90272 1,131 91341,0 1,144 |1,17031
0,005(0,005( 1 | 2,00 | 91315 1,144 90771.,9 1,137 | 0,5983
0,005|0,005| 1 | 6,00 | 90088 1,128 89695,2 1,123 10,43791
0,005|0,005| 1 | 8,00 | 89445 1,120 89190,3 1,117 |0,28556
0,005{0,005| 1 |{ 10,01 | 88682 1,111 88706,1 1,111 |0,02711
0,005|0,005| 1 | 12,00 | 88175 1,104 88247,1 1,105 |0,08166
0,005{0,005| 1 | 14,00 | 87602 1,097 87809,0 1,100 |0,23575
0,005|0,005| 1 | 15,99 | 87211 1,092 87397,2 1,095 | 0,2131
0,005[0,005| 1 | 17,98 | 86753 1,087 87005,9 1,090 |0,29061
0,005{0,005| 1 {19,99 | 86440 1,083 86634,2 1,085 10,22414
0,005{0,005| 1 21,98 | 86062 1,078 86288,9 1,081 |0,26298
0,005[0,005| 1 |23,99 | 85803 1,075 85962,5 1,077 |0,18555
0,005|0,005| 1 |26,02 | 85481 1,071 85654,6 1,073 |0,20266
0,005(0,005| 1 |28,03 | 85267 1,068 85372,1 1,069 | 0,1231
0,005(0,005| 1 |30,00 | 84993 1,064 85114,4 1,066 |0,14259
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0,005]0,005| 1 |32,00| 84821 1,062 84873,4 1,063 |0,06168
0,005]0,005| 1 |33,97 | 84588 1,059 84655,4 1,060 |0,07964
0,00510,005| 1 | 35,97 | 84446 1,058 84453,0 1,058 |0,00825
0,005]0,005| 1 | 38,00 | 84243 1,055 84265.,4 1,055 0,0266
0,005]0,005| 1 |40,00| 84127 1,054 84098.4 1,053 ]0,03403
0,005]0,005| 1 |41,97 | 83951 1,051 839504 1,051 |0,00076
0,005]0,005| 1 | 43,97 | 83856 1,050 83814,9 1,050 |0,04899
0,005]0,005| 1 | 46,03 | 83699 1,048 83691,7 1,048 0,0087
0,005]0,005| 1 |47,96 | 83621 1,047 83588,9 1,047 10,03836
0,005]0,005| 1 |50,03 | 83483 1,046 83492,3 1,046 |0,01118
0,005]0,005| 1 | 51,99 | 83422 1,045 83413,1 1,045 10,01062
0,00510,005| 1 |53,99| 83300 1,043 83342,7 1,044 10,05122
0,005]0,005| 1 | 55,96 | 83252 1,043 83283,3 1,043 10,03763
0,005]0,005| 1 |58,00| 83141 1,041 83231,5 1,042 |0,10871
0,005]0,005| 1 | 60,00 | 83103 1,041 83188,8 1,042 |0,10312
0,005]0,005| 1 | 61,97 | 83003 1,040 83154,0 1,041 |0,18162
0,005]0,005| 1 | 64,02 | 82979 1,039 83124,7 1,041 10,17529
0,005]0,005| 1 | 66,04 | 82893 1,038 83101,7 1,041 10,25109
0,005]0,005| 1 | 68,03 | 82879 1,038 83083,8 1,041 |0,24655
0,005]0,005| 1 | 70,00 | 82805 1,037 83070,3 1,040 |0,31942
0,005]0,005| 1 | 71,95 | 82800 1,037 83060,4 1,040 |0,31346
0,005]0,005| 1 | 73,98 | 82733 1,036 83052,8 1,040 | 0,3851
0,005]0,005| 1 | 76,00 | 82739 1,036 83047,7 1,040 |0,37176
0,005]0,005| 1 | 77,99 | 82681 1,036 83044,5 1,040 |0,43766
0,005]0,005| 1 |79,98 | 82694 1,036 83042,5 1,040 10,41966
0,00510,005| 1 | 81,95 | 82646 1,035 83041,5 1,040 10,47621
0,005]0,005| 1 | 84,03 | 82666 1,035 83041,0 1,040 10,45156
0,005]0,005]| 1 | 85,99 | 82623 1,035 83040,9 1,040 | 0,5032
0,00510,005| 1 | 88,05 | 82649 1,035 83040,9 1,040 10,47194
0,00510,005| 1 90,00 | 82613 1,035 83041,0 1,040 |0,51538
Mean Error % | 0,23

Moreover, an extra study was done in order to check the accuracy of the Ansys model. In
this study, 3 different simulations were done for case 2. The value of a/t (ratio of minor
radius to thickness) was selected so small and the value of h (vertical distance between
two parallel cracks) was selected so large in these simulations. Because it is expected that,
if the thickness of the plate is much larger than the minor radius of the crack, nearly the
same SIF results of the plate which has crack / cracks only in one side, are obtained and
if the two parallel cracks are far away from each other (the value of h is so large), SIF
results approach the SIF value of the plate that has one crack instead of two parallel cracks
(no mutual shielding effect). The value of a/t was taken as 0.05 and the value of h was

taken as 20 cm for this extra study. In the wake of simulations, as it was expected, SIF
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results were so close to the results of one semi elliptical surface cracked plate. The results
of this study are shown in table 2.9 below. As seen in table 2.7 and table 2.9, mean error

values are so close to each other. (0.65% - 0.74%, 0.23% - 0.26%, 0.5% - 0.45%)

Table 2.9. Verification of the Ansys model with Newman Raju equation (h=20 cm, a/t=

0.05)
Major Radius ¢ (m) | Minor Radius a (m) | Mean Error %
0.005 0.004 0.74
0.005 0.005 0.26
0.005 0.006 0.45

2.2.4. Artificial Neural Network Model Development

The main purpose of an ANN is to correlate input and corresponding output values
successfully. In order to provide this condition, some basic parameters like network type,
training function, transfer function, input layer, hidden layer, output layer etc. are used.
Matlab Neural Network Module (nntool) was utilized in this study to model ANN and
perform neural network analysis. Basically, there are some main steps to develop an

efficient ANN model. These basic steps are given as follows.

Step #1

e Determining number of input and output neurons

Step #2
e Determining the network type

Step #3

e Selecting an appropriate training function

Step #4

e Designating the total number of hidden layers

Step #5

e Selecting optimum number of hidden layer neurons

Step #6

e Determining transfer functions for hidden layer / layers and output layer
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At the beginning of ANN modelling part in this thesis, there was a main neural network
model, but nearly all of the model parameters like number of input, hidden and output
layer neurons, the number of hidden layers etc. were unknown as shown in figure 2.31

below.

Input layer : Hidden layers i Output layer

i h, h, h, 0

(/ : " @
o N ' it:z.“ﬂr»'

Input 1

Output 1

QOutput n

Figure 2.31. Basic model for a multi layered artificial neural network [26]

First step and the simplest step is related to number of input - output neurons. Number of
input and output neurons depend on the problem. Number of input neuron is the variables
used in the problem like thickness of the body, minor and major radius of the semi
elliptical surface crack, etc. and number of output neuron is the parameters which was

obtained at the end of the problem.

There were two different problems for this study. In the first case, there was a plate which
had one semi elliptical surface crack at both sides, front side and back side. Variables in
the first study were minor radius (a), ratio of minor radius to major radius (a/c), parametric
angle (O) and ratio of minor radius to thickness of the plate (a/t). a/t was considered as a
variable which effects SIF value. Because Jabur and Mohsin showed in their study [8]
that SIF value for the plate which had two edge cracks in both sides (front and back)
increased when thickness of the plate was decreased. Therefore, there were 4 variables
and number of input neurons was 4 for the first case. Also number of output neuron was
1, since the only parameter which was desired to calculate was SIF value. Schematic
representation of this model is shown in figure 2.32. But number of hidden layers and

number of hidden layers’ neurons were still unknown at this step.
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n hidden layer
n hidden layer neuron

Figure 2.32. ANN model for the first problem at the first step of modelling

In the second case, there was a plate which had two semi elliptical cracks at both sides.
In this case, four variables used in the first case were utilized again and an extra parameter
was added to the input layer. This parameter was h (a/h was also a good choice but h was
chosen) which was the vertical distance between two parallel cracks at the front or back
side. It was added as a variable, because in Jabur and Mohsin’s study [8], it was shown
that in the case of parallel cracks, SIF reduced when h was decreased due to the mutual
shielding effect. So, number of input layer neurons was 5 for the second case. Number of
output neuron was again 1 like in the first case. As stated in the first case section, number
of hidden layers and hidden layer neurons were still unknown at the first step of neural
network modelling. Figure 2.33 shows the model used in the second case.

Input layer Hidden layer Output
layer

SIF

Figure 2.33. ANN model for the second case at the first step of modelling
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The second step is determining the network type. There are different types of networks
for ANN modelling. In this study, feed forward back propagation network type was used.
In this type of network, first of all, feed forward process is executed, then back
propagation operation is performed. This process array is repeated again and again for
each epoch to obtain the best weights and best model. Feed forward network is formed of
series of layers like input layer, hidden layer, output layer, etc. Layers have a connection
to the next layer. Input data come to the first layer, then data go to next layer for instance
hidden layer. Finally output layer generates the output of the network. In other words,

data flows in one direction.

In backpropagation process, network error is calculated using the output of the network,
which is the result of feed forward operation and the target value, then signal / data goes
back to the input layer so as to adjust the weights of the input and hidden layers and reduce
calculated error. This is the main procedure for feed forward back propagation network

type. Figure 2.34 shows this procedure.

Feed forward of input data
| Input signals

Input Hidden QOutput
layer layer layer

Error signals |

Back propagation of error signals

Figure 2.34. Feed forward back propagation neural network

The third step of neural network modelling is selecting the appropriate training function.
For feed forward back propagation network type, there are different types of training
functions like gradient descent with momentum back propagation, Levenberg Marquardt
back propagation, gradient descent with momentum and adaptive learning rate

backpropagation, resilient back propagation etc. It is not an easy job to know which
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training function is appropriate for any study. This selection depends on some factors like
problem complexity, number of data and corresponding weights and biases, accuracy of
the result etc. Some of training functions are appropriate for pattern recognition problems
and some of them are ideal for function approximation problems. Besides, some of
training functions converge faster than others, get results more accurate than others, use

less memory than others.

This study, estimation of SIF values of semi elliptical surfaces cracked plates, was a
function approximation problem. So Levenberg Marquardt back propagation training
function was used in neural network studies. Because usually for function approximation
problems which have a few hundred total weights, Levenberg Marquardt back
propagation type training function converges faster than other ones. Also Levenberg
Marquardt back propagation algorithm gives the most accurate results. But this algorithm
uses more memory than other ones. So if number of weights in the neural network model
is so large, using Levenberg Marquardt back propagation algorithm necessitates more
computer memory [27]. Main procedure which is executed in the background by Matlab

neural network toolbox (nntool) for Levenberg Marquardt is shown in figure 2.35 below.

}-[ wp,m=1 j‘

Error evaluation

H=p=+10

Jacobian matrix computation ]
W= Wy,

!

Wie=Wikil  m=m+1

A p=px10
restore wy

i } Error evaluation
o

Epn ] -
Error goal
/

Tareim >

End

L

Figure 2.35. Levenberg — Marquardt training function flowchart [28]
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In figure 2.35, wi and wi+1 represent the current weight and the next weight, respectively.
Also Ex and Ex+ represent the last total error and current total error of the network
respectively. In Levenberg Marquardt back propagation algorithm, first of all, initial total
error of the network is calculated using initial random weights. It is called as random
weights because at the beginning of the training process, Matlab neural network toolbox
assigns random values which are between 0 and 1 to all of the weights. As seen in

flowchart above, then Jacobian matrix is formed. Jacobian matrix can be formed as

follows.
OF (z1,w) OF (x1,w)
= : :
IF (zp,w) OF (zy, w)
Ehul o aww

This matrix is an A by B matrix. A is the number of input data set for training of the
network and B is total number of weights. F(x;,w) is the network error function for i th
input data vector. After forming Jacobian matrix, equation (2.24) is solved in order to

calculate the weight update vector, 6 and update all of the weights.
(JT+ul)o=J"E; (2.24)

In this equation, parameter p is known as damping factor or combination coefficient. It
adjusts the step size in order to approach minimum error value. If its value is decreased,
step size increases. Its default initial value is 0.001 in Matlab nntool and default value of
its decrease and increase factor are 0.1 and 10 respectively. After updating weights, new
total error is recalculated and new total error is compared with last total error value. If it
is greater than last total error, damping factor is multiplied by increase factor, thus step
size 1s decreased and weight update vector is calculated again. If new total error is smaller

than last total error, damping factor is multiplied by decrease factor and new epoch starts.

Also in Matlab nntool, error goal value can be defined. As seen in figure 2.35, if new
error value is smaller than error goal, training is stopped and this trained network is used

for estimation of the desired output.

The forth step of neural network modelling study is designating the total number of

hidden layers and the next step is selecting optimum number of hidden layer neurons.

41



Hidden layer increases the complexity of the model and it develops flexibility of the
model. Besides, number of hidden layer neurons influences the model estimation
capability of the network. But using many hidden layers or hidden layer neurons makes
the analysis so difficult to solve and neural network analysis takes so much time. There
is no certain rule for this determination process. So the best way to determine the number
of hidden layers and corresponding neurons is the trial and error method. Neural network
training is done using smaller number of hidden layer and hidden layer neuron and these
values are increased gradually in this method. Then error values are compared with each
other in order to determine the optimum number of hidden layers and corresponding

neurons.

Training studies were done using different values of hidden layer and neuron. Optimum
number of hidden layer - neuron was determined with regard to the total error values.
Studies done in the forth and fifth steps of neural network modelling were explained in

analysis and results section.

The final step for neural network modelling is determining the appropriate transfer
function for hidden layer / layers and output layer. As explained in the previous chapters,
there are different types of transfer functions, for instance, linear, logistic sigmoid,
tangent hyperbolic transfer function, etc. Nonlinear transfer functions like logistic
sigmoid or tangent hyperbolic are used for hidden layers in order to increase flexibility
of the model. As seen in figure 2.19, in the theory of ANN section, the output of the
logistic sigmoid (logsig) transfer function is between 0 and 1. If the input data for logistic
sigmoid function is substantially negative, output of the hidden neuron which has logsig
transfer function, become 0 and thus learning process almost stops [29]. But the output
of tangent hyperbolic transfer function is between -1 and 1, this makes the model more
balanced and it is reasonable to utilize tansig for all hidden layers [30]. Also tangent
hyperbolic function has stronger gradient than logistic sigmoid function. So tangent
hyperbolic transfer function was used for hidden layers of the model. But even so, logistic

sigmoid could be a good option.

For output layer, linear activation function was used. Because linear output layer is
commonly used for function approximation problems and there is no need to use a

nonlinear activation function [30-31].

42



2.2.5. Data Generation with Finite Element Analysis (Ansys)

In this thesis, so many FEM studies were needed in order to train neural network
successfully and estimate SIF values for case 1 (two semi elliptical cracks) and case 2
(four semi elliptical cracks) accurately. Because both cases were complicated for neural

network modelling and training.

In the first case, variables of analysis were minor radius (a), ratio of minor radius to major
radius (a/c) and ratio of minor radius to plate thickness (a/t). In the second case, these
were minor radius (a), ratio of minor radius to major radius (a/c), ratio of minor radius to
plate thickness (a/t) and vertical distance between the parallel cracks (h). 179 finite
element simulations were done for case 1 and 523 simulations were done for case 2 using
different values of foregoing variables. Table 2.10 and table 2.11 show the values of
variables used in each analysis so as to generate training data for case 1 and case 2

respectively.

Table 2.10. Values of input variables used in Ansys for case 1 (179 simulations)

a(mm) | a/c | a/t a(mm) | a/c | a/t a(mm) | a/c | a/t
1,5 03] 0,1 5 1 |045 3 0,3] 0,3
1,5 03] 0,2 6 1,21 0,1 3 0,3 10,35
L5 03] 03 6 1,2] 0,2 3 03] 04
1,5 10,3]0,35 6 1,21 0,3 3 0,3 ]0,42
L5 (03] 04 6 1,2 10,35 3 0,3 ] 0,45
2,5 10,5] 0,1 6 1,2| 04 5 0,5] 0,1
25 10,5] 0,2 6 1,2 0,42 5 0,5] 0,2
25 10,5] 03 6 1,2 ] 0,45 5 0,5] 0,3
2,5 10,5]0,35 75 |1,5] 0,1 5 0,51 0,35
25 105] 04 75 |1,5] 02 5 0,5 04
2,5 10,5]042 75 |1,5] 03 5 0,5]0,42
2,5 10,5]045 7,5 |1,5]0,35 5 0,51 0,45

4 0,8 0,1 75 |1,5] 04 8 0,8 0,1
4 0,8] 0,2 7,5 11,5]042 8 0,8] 0,2
4 0,8 10,35 7,5 |1,5]045 8 0,8] 0,3
4 0,8 0,4 9 1,81 0,1 8 0,8 0,35
4 0,81 0,42 9 1,81 0,2 8 08| 04
4 0,8 | 0,45 9 1,8] 0,3 8 0,8 | 0,42
5 1 |01 9 1,8 10,35 8 0,8 | 0,45
5 1 |02 9 1,8 0,4 10 1] 0,1
5 1 |03 9 1,8 10,42 10 1 ]0.2
5 1 |0,35 9 1,8 10,45 10 1 |03
5 1 | 04 3 03] 0,1 10 1 ]0,35
5 1 ]042 3 03] 0,2 10 1|04
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10 1 1042 12 10,8 0,3 12,5 10,5| 0,3
10 1 [0,45 12 10,8]0,35 12,5 10,51 0,35
12 1,2 0,1 12 108 04 125 10,5| 04
12 1,21 0,2 12 10,8042 12,5 10,5042
12 1,21 0,3 12 10,8045 12,5 10,51 0,45
12 1,2 | 0,35 15 1 ]0.2 20 0,8 0,2
12 1,2 0,4 15 1 |03 20 10,8] 0,3
12 1,2 0,42 15 1 |0,35 20 ]0,810,35
12 1,2 10,45 15 1 |04 20 10,8] 04
15 1,5/ 0,1 15 1 1042 20 10,8042
15 1,5] 0,2 15 1 |045 20 10,8045
15 1,5] 0,3 18 1,21 0,2 25 1 |02
15 1,5 0,35 18 1,2 0,3 25 1103
15 1,5] 0,4 18 1,2 10,35 25 1 10,35
15 1,5]0,42 18 1,2 0,4 25 1 |04
15 1,51 0,45 18 1,2 10,42 25 1 1042
18 1,8 0,1 18 1,2 10,45 25 1 |045
18 1,8 0,2 225 |1,5] 02 30 1,2 0,2
18 1,81 0,3 22,5 |1,5] 03 30 1,21 0,3
18 1,8 | 0,35 22,5 |1,5]0,35 30 1,2 | 0,35
18 1,8 0,4 225 | 1,5] 0,4 30 1,21 0,4
18 1,8 10,42 22,5 |1,5]0,42 30 1,2 0,42
18 1,8 | 0,45 22,5 | 1,51]0,45 30 1,2 10,45
45 03] 0,2 27 1,8 0,2 37,5 | 1,5]0,25
45 103] 0,3 27 1,81 0,3 37,5 | 1,5] 0,3
45 10,3]0,35 27 1,8 | 0,35 37,5 | 1,5]0,35
45 03] 04 27 1,8 0,4 37,5 | 1,5| 04
45 10,3042 27 1,8 | 0,42 37,5 [ 1,510,442
45 1031045 27 1,8 10,45 37,5 | 1,5]0,45
7,5 10,5] 0,2 7,5 10,3] 0,2 45 1,8 10,25
75 10,5] 03 75 103] 03 45 1,81 0,3
7,5 10,5]0,35 7,5 10,3]0,35 45 1,8 | 0,35
75 10,5] 04 75 103] 04 45 1,81 0,4
7,5 10,5]0,42 7,5 10,3042 45 1,8 0,42
7,5 10,5]0,45 7,5 10,310,445 45 1,8 | 0,45
12 10,81 0,2 12,5 [0,5] 0,2
Table 2.11. Values of input variables used in Ansys for case 2 (523 simulations)
3 | B-ah) o, 3 | B-oah o 2 | B-ah o
mm mm mm mm mm mm
1,510,3] 100 {0,015 0,1 1,510,3| 100 |0,015] 0,2 2,510,5(100 {0,025 0,1
1,5]0,3| 50 [0,030| 0,1 1,510,3] 50 {0,030 0,2 2,510,5] 50 {0,050] 0,1
1,510,3] 20 {0,075 0,1 1,510,3| 25 10,060 0,2 2,510,5] 25 {0,100] 0,1
1,510,3] 10 {0,150 0,1 1,5/0,3| 10 [0,150] 0,2 2,510,5| 10 [0,250] 0,1
1,5103| 5 10,300 0,1 1,5103| 5 ]0,300] 0,2 2,510,551 5 10,500] 0,1
1,510,3] 3 ]0,500| 0,1 1,5/0,3| 3 10,500 0,2 2,510,5(2,5(1,000] 0,1
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2,510,5]100]0,025]| 0,2 511120 10,250]/0,45 9 11,8] 20 [0,450] 0,2
2,510,5| 50 10,050] 0,2 5 (11]10 0,500)|0,45 9 [1,8] 10 |0,900| 0,2
2,510,5] 25 10,100 0,2 5|11 5 ]1000|0,45 9 11,8] 5 |1,800] 0,2
2,5/0,5| 10 10,250 0,2 5 1] 3 |1,667/045 9 [1,8] 3 [3,000| 0,2
2,5/0,5] 5 10,500 0,2 6 [1,2]100(0,060| 0,1 9 [1,8]100 (0,090 0,3
2,510,5] 3 ]0,833] 0,2 6 |1,2] 50 10,120] 0,1 9 11,8] 50 [0,180] 0,3
2,510,5/100]0,025] 0,3 6 [1,2] 20 [0,300| 0,1 9 [1,8] 20 {0,450 0,3
2,510,5] 50 {0,050 0,3 6 |1,2] 10 10,600] 0,1 9 11,8] 10 [0,900] 0,3
2,5/0,5| 25 [0,100] 0,3 6 [1,2] 5§ [1,200] 0,1 9 11,8 5 [1,800] 0,3
2,510,5] 10 10,250 0,3 6 |1,2] 3 ]2,000] 0,1 9 11,8] 3 [3,000] 0,3
2,510,5] 5 10,500 0,3 6 |1,2]1100(0,060| 0,2 9 11,81100(0,090| 0,4
2,5/0,5] 3 ]0,833] 0,3 6 [1,2] 50 |0,120| 0,2 9 [1,8] 50 {0,180 0,4
4 10,8]100(0,040| 0,1 6 |1,2] 20 [0,300| 0,2 9 11,81 20 [0,450] 0,4
4 10,8| 20 [0,200] 0,1 6 [1,2] 10 |0,600| 0,2 9 [1,8] 10 {0,900 0,4
4 10,8] 10 [0,400| 0,1 6 |1,2] 5 [1,200] 0,2 9 11,8] 5 |1,800] 0,4
4 10,8 5 [0,800] 0,1 6 [1,2] 3 |2,000| 0,2 9 [1,8] 3 [3,000| 0,4
5 [ 1]100]0,050] 0,1 6 [1,2]100[0,060| 0,3 9 [1,8]100{0,090|0,42
5 111]5010,100] 0,1 6 |1,2] 50 [0,120] 0,3 9 11,8] 50 [0,180]0,42
5 [ 11]25]0,200] 0,1 6 [1,2] 20 {0,300 0,3 9 [1,8] 20 [0,450|0,42
511110 ]0,500] 0,1 6 |1,2] 10 [0,600| 0,3 9 11,8] 10 {0,900]0,42
51115 [1,000]0,1 6 [1,2] 5 [1,200] 0,3 9 11,8 5§ [1,800/0,42
5111 3 ]L667]|0,1 6 |1,2] 3 [2,000] 0,3 9 11,8] 3 [3,000]0,42
5 [ 11]100/0,050| 0,2 6 [1,2]100[0,060| 0,4 9 [1,8]100|0,090)0,45
5 11]50/0,100/ 0,2 6 [1,2] 50 [0,120]| 0,4 9 [1,8] 50 |0,180)0,45
511120 0,250] 0,2 6 |1,2] 20 [0,300| 0,4 9 11,8] 20 10,450]0,45
5 (1]100,500| 0,2 6 [1,2] 10 [0,600| 0,4 9 [1,8] 10 |0,900)0,45
5111 5 [1,000] 0,2 6 |1,2] 5 |[1,200] 0,4 9 11,8] 5 |1,800]0,45
5 1] 3 |1,667]0,2 6 [1,2] 3 [2,000| 0,4 9 [1,L8] 3 |3,000)0,45
511 ]1000,050| 0,3 6 |1,2]1100[0,060]0,42 3 10,311001]0,030] 0,1
5111]5010,100] 0,3 6 |1,2] 50 [0,120]0,42 3 10,3] 50 10,060| 0,1
5 111]20/0,250| 0,3 6 [1,2] 20 [0,300|0,42 3 10,3] 20 [0,150] 0,1
511110 (0,500 0,3 6 |1,2] 10 [0,600]0,42 3 10,3] 10 10,300] 0,1
51115 [1,000]0,3 6 [1,2] 5§ [1,200/0,42 3 1031 5 [0,600] 0,1
5111 3 [1,667]0,3 6 |1,2] 3 [2,000]0,42 3 10,3] 3 ]1,000] 0,1
5 [ 1]100]0,050| 0,4 6 [1,2]100|0,060)0,45 3 10,3]100 /0,030 0,2
5111]5010,100| 0,4 6 |1,2] 50 10,120]0,45 3 10,3] 50 [0,060| 0,2
5117120 0,250] 0,4 6 |1,2] 20 10,300]0,45 3 10,3] 25 (0,120] 0,2
5 11]100,500| 0,4 6 [1,2] 10 |0,600)0,45 3 10,3] 20 |0,150| 0,2
5111 5 [1,000] 0,4 6 |1,2] 5 [1,200]/0,45 3 10,3] 10 [0,300| 0,2
5 1] 3 |1,667]04 6 [1,2] 3 |2,000/0,45 3 10,3] 5 [0,600| 0,2
5 1 ]1000,050{0,42 9 11,8100 ]0,090| 0,1 3 10,3] 3 [1,000] 0,2
511]50/0,100/0,42 9 [1,8] 50 [0,180] 0,1 8 10,8100 0,080| 0,1
5 111]20/0,250/0,42 9 [1,8] 25 10,360 0,1 8 10,8] 50 /0,160| 0,1
5(11]10 0,500/0,42 9 [1,8] 10 [0,900] 0,1 8 10,8] 20 /0,400| 0,1
51115 [1,000/042 9 [1,8] 5§ [1,800] 0,1 8 10,8 10 10,800| 0,1
5[ 1] 3 |1,667/042 9 [1,8] 3 (3,000 0,1 8 10,8] 5 |1,600] 0,1
5 [ 1]100/0,050)0,45 9 [1,8]100 /0,090 0,2 8 10,8] 3 |2,667| 0,1
5111]50/0,100)0,45 9 [1,8] 50 |0,180) 0,2 8 10,8{100 0,080 0,2
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8 10,8 50 |0,160| 0,2 10| 1 127,5]0,364| 0,4 15 11,5] 3 |5,000]0,45
8 10,8] 20 10,400| 0,2 10(1]17,5/0,571| 0,4 18 {1,8{1000,180| 0,1
8 10,8 10 |0,800| 0,2 101 |10 |1,000] 0,4 18 11,8] 50 0,360 0,1
8 10,8] 5 |1,600| 0,2 10 1] 5 [2,000]04 18 1,8 25 |0,720| 0,1
8 10,8] 3 12,667| 0,2 10| 1 [1000,100/0,42 18 [1,8]17,5/1,029| 0,1
8 10,8/1000,080] 0,3 10| 1 | 50 |0,200|0,42 18 11,8 10 |1,800] 0,1
8 10,8] 50 10,160| 0,3 10 1] 25 |0,400/0,42 18 [1,8] 5 |3,600| 0,1
8 10,8] 20 10,400 0,3 101 /17,5/0,571]0,42 18 11,8] 3 16,000] 0,1
g8 10,8 10 10,800] 0,3 10 1] 10 |1,000/0,42 18 [1,8]100 |0,180| 0,2
8 10,8 5 |1,600] 0,3 10 1] 5 |2,000{0,42 18 11,8] 50 [0,360| 0,2
8 10,8/1000,080| 0,4 10 | 1 | 100/0,100]0,45 18 11,8] 25 [0,720] 0,2
8 10,8 50 10,160| 0,4 10| 1 | 50 |0,200)|0,45 18 [1,8]17,5]1,029| 0,2
8 10,8] 20 10,400 0,4 101 | 25 /0,400]0,45 18 11,8 10 |1,800| 0,2
g8 10,8 10 10,800| 0,4 101 [17,5/0,571|0,45 18 [1,8] 5 [3,600| 0,2
8 10,8 5 |1,600]| 0,4 10 1 | 10 |1,000]0,45 18 11,8|100 /0,180 0,3
8 10,8] 3 2,667| 0,4 10 1] 5 |2,000/0,45 18 [1,8] 50 0,360 0,3
8 10,8]1000,080[0,42 15 [1,5[1000,150| 0,1 18 [1,8] 25 [0,720| 0,3
8 10,8 50 |0,160|0,42 15 1,5] 50 10,300 0,1 18 11,8]17,5/1,029] 0,3
8 10,8] 20 10,400[0,42 15 [1,5] 25 |0,600| 0,1 18 [1,8] 10 1,800 0,3
8 10,8 10 |0,800|0,42 1511,5/17,5/0,857] 0,1 18 11,8] 5 |3,600] 0,3
8 10,8] 5 11,600[0,42 15 [1,5] 10 |1,500| 0,1 18 [1,8] 3 [6,000| 0,3
8 10,8 3 |2,667]0,42 15 11,5 5 |3,000] 0,1 18 11,8100 /0,180 0,4
8 10,8]1000,080]0,45 15 [1,5/100 /0,150 0,2 18 [1,8] 50 [0,360| 0,4
8 10,8] 50 10,160]0,45 15 [1,5] 50 {0,300 0,2 18 [1,8] 25 [0,720| 0,4
8 10,8 20 10,400]0,45 15 11,5] 25 |0,600| 0,2 18 11,8[17,5/1,029] 0,4
8 10,8 10 10,800]0,45 15 1,5/17,5/0,857| 0,2 18 [1,8] 10 [1,800| 0,4
8 10,8 5 |1,600]0,45 15 11,5] 10 |1,500| 0,2 18 11,8 5 |3,600] 0,4
8 10,8] 3 |2,667]|0,45 15 [1,5] 5 |3,000]| 0,2 18 [1,8]100 {0,180|0,42
10| 1 ]100]0,100] 0,1 15 1,5/1000,150] 0,3 18 1,8] 50 ]0,3600,42
101 ] 50 10,200] 0,1 15 1,5] 50 10,300 0,3 18 |1,8] 25 10,720]0,42
10 1|20 0,500] 0,1 15 [1,5] 25 |0,600| 0,3 18 [1,8117,5]1,029|0,42
10| 1 ] 10 |1,000] 0,1 1511,5/17,5/0,857] 0,3 18 1,8] 10 |1,800]0,42
10 1] 5 |2,000] 0,1 15 [1,5] 10 |1,500| 0,3 18 [1,8] 5 [3,6000,42
101 ] 3 ]3,333] 0,1 15 11,5 5 |3,000] 0,3 18 11,8]100/0,180]0,45
10 | 1 [1000,100| 0,2 15 [1,5] 3 [5,000| 0,3 18 [1,8] 50 |0,360)0,45
101 ] 50 [0,200] 0,2 15 11,5/100 0,150 0,4 18 |1,8] 25 |0,720]0,45
101 ] 20 [0,500| 0,2 15 11,5] 50 10,300 0,4 18 11,8[17,5/1,029]0,45
10 1] 10 |1,000| 0,2 15 [1,5] 25 0,600 0,4 18 [1,8] 10 |1,800)0,45
101 ] 5 [2,000] 0,2 15 11,5/17,5/0,857] 0,4 18 11,8] 5 |3,600]0,45
10 1] 3 |3,333/0,2 15 [1,5] 10 |1,500| 0,4 18 [1,8] 3 [6,000)|0,45
10| 1 1100 (0,100| 0,3 15 11,5 5 |3,000] 0,4 18 11,8] 2,5 |7,200]0,45
10 1] 50 /0,200| 0,3 15 [1,5] 3 [5,000| 0,4 4,510,3]100]0,045] 0,2
10 1] 30 0,333|0,3 15 1,5[1000,150/0,45] [4,5]0,3] 50 {0,090 0,2
10 1] 20 0,500| 0,3 15 1,5] 50 10,300/0,45] [4,5]0,3] 20 |0,225)| 0,2
10 1] 10 |1,000| 0,3 15 |1,5] 25 10,600/0,45| [4,5]0,3] 10 [0,450| 0,2
10 1] 5 |2,000]0,3 15 (1,5[17,5/0,857|0,45]| 14,5]03] 5 [0,900| 0,2
10| 1 [1000,100| 0,4 15 |1,5] 10 |1,500/0,45] [4,5]0,3] 3 [1,500| 0,2
10 1] 50 |0,200| 0,4 15 [1,5] 5 |3,000/0,45] |[4,5]0,3]1000,045| 0,3
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4,510,3] 50 10,090| 0,3 151 11000,150| 0,4 27 11,8]1120(0,225]| 0,4
4,510,3] 20 |0,225] 0,3 15[1] 50 (0,300 0,4 27 11,81 100 (0,270| 0,4
4,510,3] 10 10,450] 0,3 1511 |25 0,600| 0,4 27 11,8] 60 [0,450] 0,4
451031 5 10,900] 0,3 15(1]17,5/0,857| 0,4 27 11,8127,5/0,982| 0,4
45103 3 |1,500] 0,3 15(1] 10 |1,500| 0,4 27 11,8] 15 |1,800| 0,4
7,510,5[100]0,075] 0,2 1511 5 |3,000] 0,4 27 11,81 5 [5,400] 0,4
7,510,5] 50 10,150 0,2 151 [100/0,150)|0,45 27 11,8] 3 (9,000| 0,4
7,510,5] 20 10,375]| 0,2 1511 |40 0,375]0,45 27 11,8]1200,225]0,45
7,510,5] 10 10,750 0,2 1511 ]25/0,600|0,45 27 11,8 50 10,5400,45
7,510,5] 5 [1,500] 0,2 1511 [12,5/1,200]0,45 27 11,8127,5/0,98210,45
7,510,5] 3 12,500] 0,2 1511 6 12,500]0,45 27 11,8]17,5|1,54310,45
7,510,5]100 (0,075 0,3 I5]1] 3 |5,000/0,45 27 11,8 10 |2,7000,45
7,510,5] 50 10,150 0,3 18 11,2100 |0,180| 0,2 27 11,81 4 16,750]0,45
7,510,5] 20 [0,375] 0,3 18 [1,2] 50 |0,360| 0,2 6 [0,3]120 /0,050 0,2
7,510,5] 10 10,750 0,3 18 11,2 25 [0,720] 0,2 6 10,3] 50 [0,120] 0,2
7,510,5] 5 [1,500] 0,3 18 [1,2] 15 |1,200| 0,2 6 [0,3]27,5/0,218| 0,2
7,510,5] 3 (2,500 0,3 18 [1,2] 7,5 |2,400| 0,2 6 [0,3] 15 /0,400 0,2
7,510,5{100]0,075| 0,4 18 11,2 3 [6,000| 0,2 6 10,3175 (0,800] 0,2
7,510,5] 50 0,150 0,4 18 1,21 100 (0,180 0,3 6 [0,3] 3 [2,000| 0,2
7,510,5] 25 10,300| 0,4 18 [1,2] 50 0,360 0,3 6 10,31120(0,050] 0,3
7,510,5117,5/0,429| 0,4 18 [1,2] 25 |0,720| 0,3 6 [0,3] 50 {0,120 0,3
7,510,5] 10 10,750| 0,4 18 1,2 15 |1,200] 0,3 6 10,31 20 [0,300] 0,3
7,510,5] 5 1,500 0,4 18 [1,2] 7,5 [2,400| 0,3 6 [0,3] 10 [0,600| 0,3
7,510,5]100 |0,075|0,42 18 [1,2] 3 [6,000| 0,3 6 03] 5 [1,200] 0,3
7,510,5| 50 10,150|0,42 18 [1,2]100 /0,180 0,4 6 /03] 3 [2,000] 0,3
7,510,5] 25 ]0,300/0,42 18 [1,2] 50 [0,360| 0,4 6 10,3]120(0,050| 0,4
7,510,5117,5]0,4290,42 18 [1,2| 30 10,600 0,4 6 10,3] 50 [0,120] 0,4
7,510,5] 10 |0,750/0,42 18 [1,2117,5]1,029| 0,4 6 10,3] 20 {0,300 0,4
7,510,5] 5 ]1,500]/0,42 18 [1,2| 10 |1,800] 0,4 6 10,3] 10 [0,600| 0,4
7,510,5] 3 ]2,500/0,42 18 1,2 5 |3,600] 0,4 6 /03] 5 |[1,200] 0,4
7,510,5] 100 ]0,075|0,45 18 [1,2]120 0,150 0,45 6 10,3 3 [2,000| 0,4
7,510,5] 50 10,150]0,45 18 [1,2| 60 |0,300]0,45 0,51120]0,083| 04
7,510,5] 25 10,3000,45 18 |1,2] 30 |0,600)0,45 0,5] 50 {0,200] 0,4
7,510,5117,5]0,429]0,45 18 [1,2| 18 |1,000]0,45 0,5] 20 [0,500| 0,4
7,510,5] 10 10,750(0,45 18 1,2 10 |1,800)0,45 0,5] 10 [1,000] 0,4
7,510,5] 5 ]1,500]0,45 18 1,2 3 16,000]0,45 0,5 5 [2,000| 04
1511 1100 0,150| 0,2 27 11,81100]0,270| 0,2 0,5 3 [3,333/04
151 ]50 0,300/ 0,2 27 11,8 50 0,540 0,2 0,8]120]0,133] 0,2
1511125 0,600| 0,2 27 11,8]27,5]10,982| 0,2 0,8 50 [0,320| 0,2
15111(17,5/0,857| 0,2 27 11,8117,5[1,543| 0,2 0,8] 25 [0,640| 0,2
151 ] 10 [1,500] 0,2 27 |1,8] 10 [2,700| 0,2 0,8]112,5]1,280| 0,2
15| 1] 5 |3,000] 0,2 27 [1,8] 3 19,000 0,2 0,8] 5 [3,200) 0,2
151 [100/0,150| 0,3 27 11,81 100 (0,270 0,3 0,8] 3 [5,333/0,2
15[1]500,300| 0,3 27 11,8] 50 {0,540 0,3 0,8]120(0,133] 0,3
15]1]250,600| 0,3 27 11,81 25 [1,080] 0,3 0,81 50 10,320 0,3
15(11]17,5/0,857| 0,3 27 [1,8] 15 1,800 0,3 0,8127,5[0,582] 0,3
15111]75]2,000] 0,3 27 11,8] 7,5 13,600] 0,3 0,8] 15 [1,067| 0,3
I5]1] 3 |5000]0,3 27 11,8] 3 (9,000 0,3 0,8] 6 [2,667] 0,3

-
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16 10,8] 3 [5,333] 0,3 20| 1 11501]0,133]10,45 30 11,5] 60 |0,5000,45
16 {0,8]150|0,1070,42 20| 1 | 50 [0,4000,45 30 [1,5(32,5/0,9230,45
16 10,8] 60 [0,267]0,42 201 1 | 25 10,800]0,45 30 11,5] 20 |1,500]0,45
16 10,8]27,5/0,5820,42 201 ] 15 |1,333/0,45 30 |1,5] 12 |2,500)0,45
16 [0,8] 15 |1,0670,42 20| 1 | 10 |2,0000,45 30 |[1,5] 5 |6,000)|0,45
16 10,8] 7,5 [2,133]0,42 20 1 | 4 ]5,000]/0,45 36 11,8]1150(0,240| 0,3
16 [0,8] 3 |5,333/0,42 30 |1,5]150 0,200 0,2 36 |1,8] 60 |0,600| 0,3
16 10,8]15010,107]0,45 30 11,5] 60 |0,500| 0,2 36 11,8] 35 [1,029] 0,3
16 0,8 80 |0,200)0,45 30 |1,5] 30 |1,000| 0,2 36 |1,8] 20 |1,800] 0,3
16 10,8] 30 10,533]0,45 30 11,5]17,5|1,714] 0,2 36 |1,8] 9 [4,000] 0,3
16 10,8]17,5]0,914]0,45 30 11,5] 7,5 [4,000| 0,2 36 |11,8] 3 [12,00] 0,3
16 [0,8] 10 |1,600)0,45 30 |1,5] 3 |10,00| 0,2 36 |1,8]1500,240| 0,4
16 10,8] 5 13,200]0,45 30 11,5]150(0,200| 0,3 36 11,8] 80 [0,450] 0,4
20| 1 [150(0,133| 0,3 30 |1,5] 60 |0,500] 0,3 36 |1,8] 40 10,900| 0,4
201 1 | 60 10,333] 0,3 30 11,5(27,5[1,091| 0,3 36 |1,8] 25 [1,440| 0,4
20 1 | 30 [0,667] 0,3 30 |1,5]17,5|1,714] 0,3 36 |1,8]12,5/2,880] 0,4
20 1] 151,333/ 0,3 30 |1,5] 10 |3,000] 0,3 36 |1,8] 5 |7,200] 0,4
2011 | 7,512,667| 0,3 30 11,5] 4 [7,500] 0,3 36 11,8]1500,240|0,45
20 1] 3 [6,667]| 0,3 30 |1,5]1500,200| 0,4 36 |1,8] 80 |0,450)0,45
201 1 1150(0,133] 0,4 30 11,5] 60 [0,500| 0,4 36 11,8] 40 [0,9000,45
20 1 | 75 (0,267 0,4 30 |1,5]27,5|1,091] 0,4 36 |1,8] 25 |1,440)/0,45
201 1 | 30 ]0,667| 0,4 30 11,5]17,5[1,714] 0,4 36 11,8] 10 |3,600]0,45
201 [17,5(1,143| 0,4 30 |1,5] 10 |3,000] 0,4 36 |1,L&] 4 19,000)0,45
20 1] 10 [2,000| 0,4 30 |1,5] 4 |7,500] 0,4

20 1 | 5 14,000] 0,4 30 11,5]1200,250]0,45

At the end of each analysis, 91 SIFs and corresponding coordinate values were obtained.
Using x, y and z coordinate points, parametric angle was calculated for each coordinate
and its value was 0 at the beginning of the semi elliptical crack tip and 180 at the end of
the crack tip. Actually SIF value for 0" and 180°, 10" and 170 etc. were almost the same
due to the symmetry. So the results of half of the crack (from 0° to 90" or 90" to 180")

were used in neural network process.

As mentioned before, in this thesis, it was considered that semi elliptical crack was so
small compared to the plate dimensions. That is to say, SIF of the crack was not dependent
to the dimensions of the plate. So in finite element studies, simulations were done using
different values of plate dimensions (width and length) and results of these simulations
were compared with each others. For instance, width and length of plate were taken as 20
cm. (In Ansys studies, the minimum value of the dimension was taken as 20 cm). Then
same analysis was done using the value of width and length of plate as 30 cm and 50 cm.
After these simulations, outputs of the simulations for 20 cm and 30 cm were checked

against analysis for 50 cm. When the difference between analysis for 20 cm and 50 cm
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was smaller than 0.3% more or less, value of width and length of the plate was considered
as 20 cm or when the difference was greater than nearly 0.3%, check for 25, 30, 35, 40
cm etc. against 50 cm plate were done and the most reasonable value for plate dimension
was selected. The reason why these comparisons were made was that using greater values
for plate dimensions made the analysis more tedious job. For example, analysis for 40 cm
or 50 cm took time three times more than analysis for 20 cm. So, a deviation threshold
was determined (0.3% more or less) and optimum plate dimension was used in
simulations. Table 2.12 shows an example for comparison study (a= 0,016 m, a/c= 0,8,

a/t=0,2). As a result of study in table 2.12, 30x30 cm plate was used in FEA.

Table 2.12. A sample study for determination of plate dimension

a/t=0,2 50x50 |50x50| Deviation % | 25495 |25x25| 30x30 | 30x30
a © / Angle| KI KI |30x30 (25x25| KI K1 K1 KI
(m) | (m) are © PaVm |Norm. Plate | Plate PaVm |Norm.| PaVm | Norm.

0,016/0,020(0,8| 0,00 [161070{ 1,019 0,186 | 0,323 |161590| 1,023 |161370| 1,021
0,016/0,020/0,8| 2,26 |162410(1,028 | 0,185 | 0,320 [162930| 1,031 [162710| 1,030
0,016/0,020{0,8| 4,51 |162290|1,027| 0,179 | 0,320 |162810| 1,030 |162580| 1,029
0,016/0,020]0,8| 6,76 |160890|1,018| 0,168 | 0,311 [161390] 1,021 |161160| 1,020
0,016/0,020{0,8| 9,01 |160210{ 1,014 | 0,169 | 0,300 |160690| 1,017 |160480| 1,016
0,016/0,020]0,8|11,24|159020| 1,006 | 0,182 | 0,302 |159500| 1,009 |159310| 1,008
0,016/0,020/0,8/13,47|158430{ 1,003 | 0,202 | 0,316 [158930] 1,006 |158750| 1,005
0,016/0,020{0,8|15,69|157580{ 0,997 | 0,222 | 0,324 |158090| 1,000 |157930| 0,999
0,016/0,020/0,8/17,90|157290]0,995| 0,216 | 0,318 |[157790| 0,999 |157630| 0,998
0,016/0,020{0,8{20,09|156800{ 0,992 | 0,210 | 0,300 |157270{ 0,995 |157130| 0,994
0,016/0,020(0,8/22,27|156760( 0,992 | 0,211 | 0,268 [157180] 0,995 [157090| 0,994
0,016/0,020/0,8{24,43|156530{ 0,991 | 0,204 | 0,236 [156900{ 0,993 |156850| 0,993
0,016/0,020]0,8 /26,58 |156660| 0,991 | 0,191 | 0,236 [157030] 0,994 [156960| 0,993
0,016/0,020]0,8 /28,71 |156600{ 0,991 | 0,172 | 0,249 [156990] 0,993 |156870| 0,993
0,016/0,020{0,8{30,83|156870{ 0,993 | 0,159 | 0,249 [157260{ 0,995 |157120| 0,994
0,016/0,020]0,8/32,92|156970{ 0,993 | 0,147 | 0,248 |[157360] 0,996 |157200| 0,995
0,016/0,020{0,8|35,00|157310{ 0,996 | 0,153 | 0,267 |157730{ 0,998 |157550| 0,997
0,016/0,020/0,8 /37,07 |157480] 0,997 | 0,165 | 0,286 |157930| 0,999 |157740| 0,998
0,016/0,020(0,8{39,12|157860{ 0,999 | 0,184 | 0,304 |158340| 1,002 |158150| 1,001
0,016/0,020{0,8|41,15|158080{ 1,000 | 0,190 | 0,310 |158570| 1,003 |158380| 1,002
0,016/0,020/0,8{43,17|158490{ 1,003 | 0,170 | 0,315 [158990| 1,006 [158760| 1,005
0,016/0,020(0,8|45,16|158760| 1,005 | 0,145 | 0,321 [159270| 1,008 |158990| 1,006
0,016/0,020{0,847,15|159190| 1,007 | 0,151 | 0,333 |159720| 1,011 |159430| 1,009
0,016/0,020/0,8{49,12|159500{ 1,009 | 0,144 | 0,332 [160030{ 1,013 [159730| 1,011
0,016/0,020{0,8|51,08|159950{ 1,012 | 0,163 | 0,338 |160490| 1,016 |160210| 1,014
0,016/0,020(0,8|53,02|160270{ 1,014 | 0,175 | 0,343 |160820| 1,018 |[160550| 1,016
0,016/0,020(0,8|54,95|160670{ 1,017 | 0,205 | 0,361 |161250{ 1,020 |161000| 1,019
0,016/0,020/0,8{56,87|160950{ 1,019 | 0,217 | 0,367 |161540| 1,022 |161300] 1,021
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0,016/0,020]0,8|58,77[161350{ 1,021 | 0,211 | 0,347 [161910] 1,025 |161690| 1,023
0,016/0,020/0,8{60,67 |161630{ 1,023 | 0,204 | 0,328 [162160| 1,026 161960 1,025
0,016/0,020]0,8|62,55|162020| 1,025 | 0,179 | 0,302 [162510| 1,028 |162310| 1,027
0,016/0,020(0,8|64,42|162290| 1,027 | 0,166 | 0,290 [162760| 1,030 |162560| 1,029
0,016/0,020]0,8|66,29 [162650{ 1,029 | 0,141 | 0,289 [163120| 1,032 |162880| 1,031
0,016/0,020/0,8|68,14|162900| 1,031 | 0,123 | 0,289 [163370| 1,034 |163100| 1,032
0,016/0,020/0,8{70,00|163200| 1,033 | 0,129 | 0,270 [163640| 1,036 |163410| 1,034
0,016/0,020/0,8|71,84 |163380{ 1,034 | 0,135 | 0,251 [163790| 1,037 |163600| 1,035
0,016/0,020/0,8|73,68|163610| 1,035 | 0,141 | 0,238 [164000| 1,038 |163840| 1,037
0,016/0,020]0,8|75,49[163720| 1,036 | 0,165 | 0,250 |164130| 1,039 |163990| 1,038
0,016/0,020/0,8|77,32|163930| 1,037 | 0,171 | 0,262 [164360| 1,040 |164210| 1,039
0,016/0,020(0,8{79,15|164020| 1,038 | 0,171 | 0,287 [164490| 1,041 |164300| 1,040
0,016/0,020]0,8|80,95[164180| 1,039 | 0,158 | 0,305 [164680| 1,042 |164440| 1,041
0,016/0,020]0,8|82,78 [164230{ 1,039 | 0,146 | 0,311 [164740| 1,043 |164470| 1,041
0,016/0,020]0,8|84,56 [164360| 1,040 | 0,140 | 0,292 |164840| 1,043 |164590| 1,042
0,016/0,020/0,8|86,38 |164380| 1,040 | 0,140 | 0,280 [164840| 1,043 |164610| 1,042
0,016/0,020(0,8|88,19|164430| 1,041 | 0,176 | 0,304 [164930| 1,044 |164720| 1,042
0,016/0,020{0,8{90,00 [164390| 1,040 | 0,195 | 0,316 [164910| 1,044 |164710| 1,042

Deviation (%) according to 50x50| 0,173 | 0,298

2.2.6. Training of Artificial Neural Network Model

Data generated using Ansys Static Structural were used to train the ANN model. As
explained in ANN model development section, feed forward back propagation network
type and Levenberg Marquardt training function were used in the model. Also tangent
hyperbolic and linear transfer function were utilized for hidden and output layers

respectively.

In case 1, 179 simulations were done in Ansys and 8234 different data were obtained
since each analysis had 46 different parametric angles changing from 0 to 90°. Similarly,
523 simulations were done in Ansys for case 2 and 24058 different data were obtained to
train the ANN model. Although there were 8234 data for case 1 and 24058 data for case
2, a certain part of these data were used for the training process. Because overfitting is an
important problem in ANN training process and it must be taken into consideration.
Overfitting 1s the case that trained model estimate the output, which is given to the
network successfully, but when new data are given to the network, error value becomes
so large. In other words, the ANN model memorizes the presented data and does not have
the ability to generalize the new data [32]. The difference between overfitted and good fit

model is shown in figure 2.36 as follows.
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Figure 2.36. Difference between good fit (a) and overfitted (b) ANN model [33]

If too many same kinds of data are presented to the network in order to train it, overfitting
problem may occur. Moreover, if very few data are presented to the network, a new
problem which is called underfitting may occur. Underfitting can also occur if the model
is not complex enough to learn the relationships successfully. Underfitted network can

estimate neither the given data nor new data. Figure 2.37 shows an underfitted model.

Values ,

Figure 2.37. An underfitted model [33]

Test Data

Errors

Training Data

e ———

Underfitting Good Model Overfitting

Figure 2.38. Variation of mean errors for training and test data [34]
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In the light of information provided above, 1061 data were selected from 8234 data for
case 1 and 4248 data were selected from 24058 data.

Before training process, all of these data must be scaled. This is known as normalization
of the data. It is very important for the ANN learning process. It brings the data to a
specific range like from 0 to 1, -1 to 1, -0.9 to 0.9 etc. in order to regulate importance of
each input. It makes the training process faster, more efficient and reduces the complexity
of the model since as a result of normalization, small values are used instead of large
values. In general, simulation or experiment data range from value too small to value too
large. So without normalization, larger values become dominant during training. Also in
some cases, model cannot distinguish the effect of inputs on the output. For example, if
one of the input is 10, the other one is 1000 and transfer function is tangent hyperbolic,
results of both inputs become 1. So the network cannot see the difference between these
data. In this thesis, tangent hyperbolic transfer function was used for hidden layers. A

graph of the tangent hyperbolic function is given in figure 2.39.

tanh x

10 _ —_—

Figure 2.39. Graph of the tangent hyperbolic function

As seen in figure 2.39 above, tangent hyperbolic function produces the result ranges -1 to
1. Also when x is between nearly -0.9 and 0.9 or -1 and 1, change in the function is
relatively high and it makes the training process faster and easier. Due to these reasons,
all training data were normalized between -0.9 and 0.9 before training process in order to
ease mathematical operations and get results faster. General equation for normalization

and equation used in this thesis are given in Eq. (2.25) and Eq. (2.26) as follows.
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Xnorm :(b-(l) (x'xmin)/(xmax'xmin) ta (225)
Xnorm:].8(X'Xmin)/(Xmax—Xmin)'O.9 (226)

2.2.7. Testing of Artificial Neural Network Model

Testing is an important part of the ANN modelling process. So model obtained after
training process must be checked using new data. Because in some cases, model estimates
the desired value accurately for given values, but when it comes to new data, model does
not perform good performance. Therefore, extra simulations were done to check the
accuracy of the trained model for case 1 and case 2. In case 1, 118 extra simulations were
done and accuracy of the trained model was checked using 760 new data (almost 7 angle
for each analysis). Also in case 2, 25 extra simulations were done and 1139 new data were
used for checking the model (almost 7 parametric angle for each analysis). Values of

variables used for extra simulations are presented in table 2.13 and 2.14.

Table 2.13. Simulations done for testing the trained model (case 1)

a(mm) | a/c | a/t 3 1 0,4 4 0,8 10,25
1,5 105 0,2 3 1 (042 5 1 (0,25
42,5 | 2,5 1041 3 1 (0,45 7,5 1,5 10,25
442 | 1,3 10,33 36 | 1,2 10,2 3 0,3 10,25
12 0,4 10,47 36 | 1,2 10,25 5 0,5 10,25
8.8 1,1 {0,15 36 | 1,2 10,3 10 1 10,25
3,125 10,25 | 0,44 3,6 | 1,2 10,35 12 1,2 10,25
50 2 10,25 36 | 1,204 18 1,8 10,25
18,9 | 0,7 | 0,38 36 | 1,2 (042 4,5 |03 (0,25
1,5 | 0,5 0,25 36 | 1,2 10,45 12 0,8 10,25
1,5 1 05| 0,3 4,5 1,51 0,2 15 1 (0,25
1,5 | 0,5 0,35 4.5 1,5 10,25 27 1,8 10,25
1,5 10504 4,5 1,51 0,3 6 0,31 0,2
1,5 | 0,5 0,42 4,5 1,5 | 0,35 6 0,3 10,25
1,5 | 0,5 0,45 4,5 1,51 04 6 0,3103
24 108 | 0,2 4,5 1,5 | 0,42 6 0,3 10,35
24 |08 0,25 4,5 1,5 | 0,45 6 0,31 04
24 108 | 0,3 54 | 1,8 | 0,2 6 0,3 10,42
24 |08 0,35 54 | 1,8 10,25 6 0,3 10,45
24 108 |04 54 | 1,8 10,3 10 0,51 0,2
2,4 10,8 (042 54 | 1,8 10,35 10 0,5 10,25
24 |08 (0,45 54 | 1,8 ] 04 10 0,51 03
3 1 0,2 54 | 1,8 10,42 10 0,5 10,35

3 1 10,25 54 | 1,8 10,45 10 0,51 04

3 1 0,3 1,5 | 0,3 (0,25 10 0,5 10,42

3 1 10,35 2,5 10,5 (0,25 10 0,5 10,45
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16 108102
16 | 0,8 10,25
16 | 08103
16 | 0,8 10,35
16 |08 ] 04
16 | 0,8 1042
16 | 0,8 10,45
20 1 102
20 1 10,25
20 1 103
20 1 10,35
20 1 | 04
20 1 10,42
20 1 1045

Table 2.14. Simulations done for testing the trained model (case 2)

24 1,2 1 0,2
24 1,2 10,25
24 1,2 10,3
24 1,2 10,35
24 1,2 | 04
24 1,2 10,42
24 1,2 10,45
30 1,5 | 0,2
30 1,5 10,25
30 1,5 10,3
30 1,5 10,35
30 1,51 04
30 1,5 10,42
30 1,5 10,45

36 1,8 | 0,2
36 1,8 10,25
36 1,8 | 0,3
36 1,8 10,35
36 1,8 1 04
36 1,8 10,42
36 1,8 1045
7,5 10,3 10,25
20 | 0,8 |0,25
25 1 10,25
37,5 | 1,5 10,25
45 1,8 10,25

a(mm) | a/c | h(mm) -a/h a/t
3,6 1,2 | 20 | 0,180 | 0,2
5,4 1,8 3 1,800 | 0,3
5,4 1,8 | 25 | 0,216 | 0,3

5 1 3 1,667 | 0,35
5 0,5 | 20 | 0,250 | 0,25
3 0,3 1| 15 | 0,200 | 0,25
12,5 0,5 8 | 0,156 | 0,3
6 1,5 | 10 | 0,600 | 0,42
14,4 1,8 | 100 | 0,144 | 0,45
10,2 1,2 | 80 | 0,128 | 0,4
11,25 |2,25] 15 | 0,750 | 0,25
10 2 8 1,250 | 0,35
24 1,2 | 150 | 0,160 | 0,36
7,5 1 25 10,300 | 0,3
12 1 4 3,000 | 04
14 0,5 50 | 0,280 | 0,32
204 |0,85| 35 | 0,583 | 0,25
16,8 0,8 | 50 | 0,336 | 0,27
6 0,3 | 17,5 0,343 | 0,38
5,25 0,3 1] 10 | 0,525 | 0,3
3,75 03| 10 | 0,375 | 0,2
8 0,5 5 1,600 | 0,45
7,5 0,51 7,5 | 1,000 | 0,26
4,5 0,75 30 | 0,150 | 0,1
8,1 0,9 | 13 | 0,623 | 0,33
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3. ANALYSIS AND RESULTS

As stated in the previous chapter, 1061 and 760 data were used in the ANN training and
testing process respectively for case 1. Also 4248 and 1139 data were used in the training
and testing process respectively for case 2. Normalized values of these data were used in
all of the neural network simulations. First of all, training data were given to the network
model, then this network model was trained and finally accuracy of the model was
checked using test data. Finally, model which had minimum deviation was selected as the

ultimate model. Figure 3.1 shows screenshot of the Matlab nntool module.

I Neural Network/Data Manager (nntool) |
i Input Data: P Output Data:
input | [networkl _outputs
@ Target Data: x Error Data:
target networkl _errors
& Input Delay States: & Layer Delay States:
[ o] (S e ] ([ 0pen ) (8 Bpor- ] (3 0ekee |

Figure 3.1. Matlab nntool module

In the training process, firstly, Matlab nntool module randomly splits the data into three
parts, training (70%), validation (15%) and testing (15%) part. (Percentage values are
default — dividerand command) Also initial values of the weights are randomly selected
between 0 and 1. Since Matlab randomly splits the data and selects initial weights at the
start of each training process, network models which have the same structure does not
give the same results. The training data set is used to train the network. The validation
data set is not directly used for training, it is used to control the performance of the model
and overfitting. When the neural network model starts to overfit, value of validation data
set error starts to increase. So Matlab checks validation data set error and stops training

in the minimum value of validation data set error. This is known as early stopping. Best
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point for training is this point. Finally test data set is used to check overall training
performance of the model [35]. Most of default training parameters for Levenberg
Marquardt training function were used for training the network. The only parameter
which was changed was validation check (max fail). Value of validation check was
selected as 15 (default value 6). This is the number of epochs which validation data set
error fails to decrease. Values of training parameters used in Matlab are shown in Figure

3.2 below.

Training Info | Training Parameters

showWindow true mu 0.001
cshowCommandLine |false mu_dec 01

show 25 mu_inc 10

epochs 1000 mu_max 10000000000
time Inf

goal a

min_grad 1le-07

mazx_fail 15

Figure 3.2. Training parameters used in the training process

3.1. Analysis and Results for Case 1
Some of the Ansys simulation results (normalized SIF distribution) for case 1 are given

in figure 3.3 and figure 3.4.

1.5 T T T T T T T
alt=0.2

alt=0.3
alt=04 N
alt=0.45

141

Kl/{a-/(Tra/Q))

0.8

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 08 1
28/

Figure 3.3. Variation of stress intensity factor for different values of a/t (a/c=0.5)
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0 0.1 02 0.3 04 0.5 0.6 0.7 0.8 0.9 1

28/

Figure 3.4. Variation of stress intensity factor for different values of a/t (a/c=1)

In ANN simulations, for case 1 (two semi elliptical surface cracked body — one crack at
each side), number of input neurons was 4 and number of output neuron was 1. Since the
number of hidden layers and corresponding neurons were unknown, different network
structures were formed and accuracy of these network models were compared with each
other using 760 test data in order to get the most appropriate structure. Results of

aforementioned study are shown in table 3.1.

Table 3.1. Deviation values of 760 test data for different types of network structures

(case 1)
Number of hidden | Number of hidden ..
Deviation %
layers layer neurons
1 5 2.519
1 8 1.966
1 10 1.701
1 15 1.415
1 20 1.151
2 5 1.218
2 10 0.407
2 15 0.32
2 16 0.852
2 18 0.969
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As seen in table 3.1 above, minimum deviation value was 0.32% and so number of hidden
layers and hidden layer neurons were selected as 2 and 15 respectively. Schematic

representation of this network is given in figure 3.5.

Hidden Layer 1 Hidden Layer 2 Output Layer

Figure 3.5. Schematic representation of the trained model for case 1

Simulation / training results of the ANN model in figure 3.5 are shown in figure 3.6,

figure 3.7, figure 3.8 and figure 3.9 below.

Meural Metwork T

Meural Network

Algorithms

Data Division: Random (dividerand)
Training: Levenberg-Marquardt (trainlm)
Performance: Mean Squared Error  (mse)
Calculations  MATLAB

Progress

Epoch: 0 I: 143 iterations | 1000
Tirmne: 0:00:08

Performance: 2.3 I:I 0.00
Gradient: 960 [ R0BE-05 0 | 1.00e-07
Mu: 0.00100 | L.00e-07 | 1.00e+10
Validation Checks: 0| 15 ] 15
Plots

(plottrainstate)

Plot Interval: D 1 epochs

v Opening Performance Plot

o] Stop Training @ Cancel

Figure 3.6. Output screen at the end of training process for case 1 (4 input neurons, 2

hidden layers, 15 neurons for each hidden layers and 1 output neuron)
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Mean Squared Error (mse}

gradient

val fail

10!

10°

107

Best Validation Performance is 4.0348e-06 at epoch 128

= Train
Validation

20 40

&0 80
143 Epochs

100 120

Figure 3.7. Performance graph of the training process (case 1)

Gradient = 6.0837e-05, at epoch 143

140

10°

Mu = 1e-07, at epoch 143

Validation Checks = 15, at epoch 143

Figure 3.8.

143 Epochs

Change in the value of gradient, damping factor and number of validation

check during training (case 1)
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Figure 3.9. Correlation coefficient for training, validation and test data (case 1)

As seen in figure 3.9, the correlation coefficient for training, validation and test data was
very close to 1 in case 1. In other words, the statistical relationship between output data

of the trained model and target data was great.

This trained ANN model can be used for estimating SIF value of plates / bodies which
have two semi elliptical surface cracks, one crack at the front side and at the back side.
This model can be directly used with Matlab nntool module or an easy program-code
which is generated using trained network weights. Of course, normalization (between -
0.9 and 0.9) is needed to estimate SIF for different values of a, a/t, a/c, parametric angle
and KI. So minimum and maximum values of these variables which are needed to do

normalization are given in table 3.2.
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Table 3.2. Minimum and maximum values needed for normalization (case 1)

a(m) a/c Angle (°) a/t KI (Pavm)
First Input | Second Input | Third Input | Fourth Input Output
Neuron Neuron Neuron Neuron Neuron
Minimum | 0,0015 0,3 0,00 0,1 41282
Maximum 0,045 1,8 90,00 0,45 252180

The weights of the trained neural network model which can be utilized to calculate new

SIF values are presented as follows. There are 331 weights in total.

Table 3.3. Weights of the trained neural network for case 1 — between input neurons (4)

and first hidden layer neurons (15)

Hidden Input Neuron | Input Neuron | Input Neuron | Input Neuron
Layer 1 ! 2 3 4
a a/c Angle a/t

Neuron 1 -0.42701 0.94449 0.85053 0.65408
Neuron 2 1.2402 -2.1679 0.19388 0.062815
Neuron 3 0.34417 -0.41592 0.54089 1.5928
Neuron 4 0.1643 -0.083261 1.6154 0.05083
Neuron 5 -0.36543 0.33353 -0.40976 -1.2158
Neuron 6 -0.62662 0.16397 1.0986 0.010568
Neuron 7 0.41838 -0.36187 -0.54367 -0.024711
Neuron 8 -0.65558 -0.064784 -0.40357 -0.011902
Neuron 9 -0.97312 0.48175 -0.10424 -0.7897
Neuron 10 0.37438 -0.67761 1.2339 0.028733
Neuron 11 -0.20426 0.15174 1.1676 0.010823
Neuron 12 0.21878 0.95215 0.97847 -0.065358
Neuron 13 -0.08453 0.043741 -2.761 -0.0030389
Neuron 14 2.1669 -0.044939 0.085944 -0.0021232
Neuron 15 0.056003 -0.88445 0.88815 0.037334
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layer neurons (1-5) and second hidden layer neurons (15)

Table 3.4. Weights of the trained neural network for case 1 — between five of first hidden

Hidden 1 | Hidden 1 | Hidden 1 | Hidden 1 | Hidden 1
Neuron 1 | Neuron 2 | Neuron 3 | Neuron 4 | Neuron 5
Hidden 2 Neuron 1 -0.3215 -0.8446 -0.20217 | -0.20144 | -0.6414
Hidden 2 Neuron 2 0.39491 0.30376 | -0.49667 | -0.84706 | -1.1407
Hidden 2 Neuron 3 0.82872 0.80843 0.3291 -1.1579 -1.1665
Hidden 2 Neuron4 | -0.51058 | 0.25985 | -0.83835 1.423 0.29119
Hidden 2 Neuron 5 0.46518 | 0.001291 1.3892 -0.14459 | 0.086084
Hidden 2 Neuron 6 0.10942 | -0.10132 | -0.019605 1.0256 0.3452
Hidden 2 Neuron 7 | -0.072161 | -0.13344 | 0.21014 0.22298 | 0.55573
Hidden 2 Neuron 8 -0.69952 | 0.60918 0.33515 1.3807 0.28218
Hidden 2 Neuron 9 | 0.047818 | -0.55185 | -0.48336 | 0.034563 | -1.2371
Hidden 2 Neuron 10 | 0.74063 0.69689 | -0.68432 | -0.60947 0.5943
Hidden 2 Neuron 11 | 0.71763 1.1707 -0.75717 -0.1526 0.96512
Hidden 2 Neuron 12 | -0.088566 | 0.8537 0.23353 0.20498 | 0.20898
Hidden 2 Neuron 13 | 0.85399 | 0.052766 | 0.062017 | -0.1275 0.56747
Hidden 2 Neuron 14 | -0.3615 -0.79864 | 0.41507 0.14989 | 0.16949
Hidden 2 Neuron 15 | 0.12788 0.76244 | -0.37496 -0.6977 | -0.12389

Table 3.5. Weights of the trained neural network for case 1 — between five of first hidden

layer neurons (6-10) and second hidden layer neurons (15)

Hidden 1 | Hidden 1 | Hidden 1 Hidden 1 Hidden 1
Neuron 6 | Neuron 7 | Neuron 8 | Neuron 9 | Neuron 10
Hidden 2 Neuron 1 0.42393 1.1186 -0.83278 | -0.087296 -0.64169
Hidden 2 Neuron 2 0.19131 0.14367 | -0.17467 | -0.021887 -0.18483
Hidden 2 Neuron 3 | -0.31162 -0.4474 0.16819 0.092968 -0.16538
Hidden 2 Neuron 4 0.5384 0.62739 | -0.42028 | 0.065541 0.069728
Hidden 2 Neuron 5 0.27536 | -0.30876 | -0.58348 | 0.025174 -0.13438
Hidden 2 Neuron 6 | -0.80907 |-0.080145 | -1.0571 0.70178 0.055557
Hidden 2 Neuron 7 | -0.33107 | -0.85041 0.4723 | -0.0080075 | 0.054043
Hidden 2 Neuron 8 | -0.058243 1.1824 -0.40283 0.23221 -0.37391
Hidden 2 Neuron 9 -0.6812 -0.77293 | -0.47245 0.27638 -0.25189
Hidden 2 Neuron 10 | -0.9932 1.2919 0.35618 1.354 0.38969
Hidden 2 Neuron 11 | 0.032561 | -0.14252 | -0.54883 0.53154 0.616
Hidden 2 Neuron 12 1.0365 2.0561 0.51968 | -0.019701 0.38611
Hidden 2 Neuron 13 | -0.71646 | -0.52628 | -1.0127 0.013605 -0.34072
Hidden 2 Neuron 14 | -0.22589 | -0.063222 | -0.97837 | -0.046975 -0.39371
Hidden 2 Neuron 15 | -0.61784 | -0.56204 | 0.9297 | -0.0032049 | -0.13688
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Table 3.6. Weights of the trained neural network for case 1 — between five of first hidden

layer neurons (11-15) and second hidden layer neurons (15)

Hidden 1 | Hidden1 | Hidden1 | Hidden 1 | Hidden 1

Neuron 11 | Neuron 12 | Neuron 13 | Neuron 14 | Neuron 15
Hidden 2 Neuron 1 0.50652 -0.65793 -0.3648 0.5921 1.2845
Hidden 2 Neuron 2 | 0.0035707 | -0.18061 0.78762 -0.12277 -0.5683
Hidden 2 Neuron 3 -0.35708 1.2729 -0.15221 0.80107 1.009
Hidden 2 Neuron 4 0.37078 -0.51 -0.2307 -0.77743 | -0.20083
Hidden 2 Neuron 5 0.30357 0.31036 -0.71597 | 0.096744 | -0.52224
Hidden 2 Neuron 6 | -0.43593 0.41164 0.011278 0.25884 | -0.046408
Hidden 2 Neuron 7 | -0.15922 0.37388 0.3937 0.059262 0.51525
Hidden 2 Neuron 8 0.16937 0.61789 | -0.053082 | -0.3212 -0.71607
Hidden 2 Neuron 9 0.34156 0.4547 0.093368 0.54569 -0.48429
Hidden 2 Neuron 10 | -1.4508 -0.70737 | 0.060086 1.489 -0.98288
Hidden 2 Neuron 11 -1.3411 0.42265 1.1978 0.55676 -0.10703
Hidden 2 Neuron 12 | 0.63658 0.11929 | -0.036442 1.044 -0.26534
Hidden 2 Neuron 13 | -0.17472 -0.26463 -0.23347 3.111 -0.29454
Hidden 2 Neuron 14 | 0.26741 0.55687 0.72461 -0.91425 0.1019
Hidden 2 Neuron 15 | 0.55861 0.031693 -2.1144 0.16156 -0.82013

Table 3.7. Weights of the trained neural network for case 1 — between second hidden

layer neurons (15) and output neuron (1)

Hidden 2 | Hidden2 | Hidden 2 | Hidden 2 Hidden 2
Neuron1 | Neuron2 | Neuron3 | Neuron4 | Neuron 5
Output neuron 1.2937 -1.7401 1.3352 -0.5922 -0.60146
Hidden 2 | Hidden2 | Hidden 2 | Hidden 2 Hidden 2
Neuron 6 | Neuron7 | Neuron 8 | Neuron 9 | Neuron 10
Output neuron -0.19176 -1.6159 -0.41521 0.60459 -0.004914
Hidden 2 | Hidden2 | Hidden 2 | Hidden 2 Hidden 2
Neuron 11 | Neuron 12 | Neuron 13 | Neuron 14 | Neuron 15
Output neuron 0.13383 1.251 3.0383 0.56691 -0.64608
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Table 3.8. Bias weights of the trained neural network for case 1

Neuron Corresponding Neuron Corresponding
Bias Bias

Hidden 1 Neuron 1 -3.0685 Hidden 2 Neuron 1 -1.4028

Hidden 1 Neuron 2 -2.5259 Hidden 2 Neuron 2 0.13168
Hidden 1 Neuron 3 -2.7273 Hidden 2 Neuron 3 -0.92564
Hidden 1 Neuron 4 -2.0641 Hidden 2 Neuron 4 0.73684
Hidden 1 Neuron 5 2.2634 Hidden 2 Neuron 5 -0.28852
Hidden 1 Neuron 6 0.59668 Hidden 2 Neuron 6 0.39252
Hidden 1 Neuron 7 -0.30205 Hidden 2 Neuron 7 -0.54189
Hidden 1 Neuron 8 -0.44699 Hidden 2 Neuron 8 0.071495
Hidden 1 Neuron 9 0.17927 Hidden 2 Neuron 9 -0.67006
Hidden 1 Neuron 10 0.031039 Hidden 2 Neuron 10 -0.12947
Hidden 1 Neuron 11 -0.75374 Hidden 2 Neuron 11 -0.20851
Hidden 1 Neuron 12 1.9494 Hidden 2 Neuron 12 -1.099

Hidden 1 Neuron 13 -3.1826 Hidden 2 Neuron 13 0.62752
Hidden 1 Neuron 14 2.7321 Hidden 2 Neuron 14 0.9354

Hidden 1 Neuron 15 -1.7077 Hidden 2 Neuron 15 -2.0187

Output Neuron -1.9611

Graphs of Ansys and trained ANN results (case 1 — 2 hidden layer — 15 hidden layer
neurons for each hidden layer) for some new values (test values) of input variables are

presented in the following figures.
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Figure 3.10. Variation of SIF along the crack front for case 1 (a=0.0442 m, a/c=1.3,

a/t=0.33, deviation=1.32%)
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Figure 3.11. Variation of SIF along the crack front for case 1 — (a) Ansys result and (b)
Comparative graph (a=0.0425 m, a/c=2.5, a/t=0.41, deviation=0.49%)
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Figure 3.12. Variation of SIF along the crack front for case 1 — (a) Ansys result and (b)
Comparative graph (a= 0.0088 m, a/c= 1.1, a/t=0.15, deviation= 0.08%)
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Figure 3.13. Variation of SIF along the crack front for case 1 — (a) Ansys result and (b)
Comparative graph (a= 0.003125 m, a/c= 0.25, a/t= 0.44, deviation=

0.38%)
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Figure 3.14. Variation of SIF along the crack front for case 1 (a=0.012 m, a/c=0.4,
a/t=0.47, deviation=0.65%)
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Figure 3.15. Variation of SIF along the crack front for case 1 (a=0.05 m, a/c=2, a/t=0.25,
deviation=0.2%)
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Figure 3.16. Variation of SIF along the crack front for case 1 — (a) Ansys result and (b)
Comparative graph (a=0.0189 m, a/c=0.7, a/t=0.38, deviation=0.13%)

3.2. Analysis and Results for Case 2
Figure 3.17 and figure 3.18 below shows the SIF (normalized) distribution for different
values of a/h.
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Figure 3.17. Variation of stress intensity factor for different values of a/h (a/c=0.3,

a/t=0.2)
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Figure 3.18. Variation of stress intensity factor for different values of a/h (a/c= 1, a/t=

0.4)
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Same procedure in case 1 was followed for case 2 (four semi elliptical surface cracked
body — two cracks at each side). In case 2, there were 5 input neurons and 1 output neuron.
As stated before, extra input neuron was h for the second case. Actually, a/h could be
used as an input neuron instead of h in ANN, but h was also a good choice, so h was
selected as an extra input neuron. The results of the study, which was done to determine

optimum number of hidden layer and hidden layer neurons are given in table 3.9.

Table 3.9. Deviation values of 1139 test data for different types of ANN in case 2

Number of Number of hidden .
. Deviation %
hidden layer layer neurons
1 5 3.45
1 10 1.53
1 20 1.29
2 10 0.66
2 14 0.58
2 15 0.54
2 16 0.63
2 20 0.82
3 10 0.83
3 14 0.49
3 15 0.68
3 20 1.38

The best result was obtained as 0.49%. Number of hidden layers and corresponding
hidden layer neurons was 3 and 14 respectively for the best case. Schematic

representation of this neural network structure is shown in figure 3.19 below.

Hidden Layer 1 Hidden Layer 2 Hidden Layer 3 Output Layer

Figure 3.19. Schematic representation of the trained model for case 2

Training results of the model for case 2 are shown in figure 3.20, figure 3.21, figure 3.22
and figure 3.23 as follows.
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Figure 3.20. Output screen at the end of training process for case 2 (5 input neurons, 3

hidden layers, 14 neurons for each hidden layers and 1 output neuron)
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Figure 3.21. Performance graph of the training process (case 2)
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Figure 3.22. Change in the value of gradient, damping factor and number of validation

check during training (case 2)
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Figure 3.23. Correlation coefficient for training, validation and test data (case 2)
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As shown in figure 3.23, the correlation between output and target data was quite well.
So weights of this network model can be used to estimate SIF values of plates which
contain two semi elliptical surface cracks in both sides, front and back. As mentioned in
the previous study for case 1, normalization is needed to estimate new stress intensity
factor values. Table 3.10 shows the minimum and maximum values of a, a/c, h, parametric

angle and a/t.

Table 3.10. Minimum and maximum values needed for normalization (case 2)

a(m) alc h(m) | Angle (°) Wt KI
First Second Third Fourth . (Pa\/m)
Fifth Input
Input Input Input Input Neuron Output
Neuron Neuron Neuron Neuron Neuron
Minimum 0,0015 0,3 0,0025 0,00 0,1 37332
Maximum 0,045 1,8 0,15 90,00 0,45 224030

The weights of the trained network which can be used to calculate new SIF values for

case 2 are given as follows. There are 519 weights in total.

Table 3.11. Weights of the trained neural network for case 2 — between input neurons (5)

and first hidden layer neurons (14)

Hidden Input Input Input Input Input
Lavier | Neuron 1 Neuron2 | Neuron3 | Neuron4 | NeuronS5
a a/c h Angle a/t
Neuron 1 1.0915 -0.15327 | -0.15692 0.70624 1.2628
Neuron 2 0.01693 -0.43757 0.02355 0.87277 | 0.0052101
Neuron 3 | -0.0021194 | -0.25133 | -0.011249 | -0.8989 0.0042421
Neuron 4 0.8491 0.087192 -3.0433 -0.34526 -1.0325
Neuron 5 0.23869 -0.10184 -1.995 0.022941 | 0.00089902
Neuron 6 | -0.070998 | -0.030719 | -0.05481 -0.53242 | -0.011168
Neuron 7 -0.1898 -0.15371 | -0.026677 | 0.088734 | 0.040566
Neuron 8 | -0.033088 | 0.035834 | -0.088377 3.5867 -0.0035772
Neuron 9 0.56783 0.073921 | -0.024985 | -0.1346 0.01989%4
Neuron 10 | 0.015561 0.25292 | 0.0056634 | 0.50251 | -0.0091427
Neuron 11 -0.29586 0.35175 0.085431 | -0.10228 | -0.049459
Neuron 12 0.40334 0.255 -0.21209 | 0.040556 | 0.049014
Neuron 13 -0.1333 0.046731 | -0.019336 | -0.7502 -0.90116
Neuron 14 -1.1516 -0.38473 | -0.048309 | -0.16799 | -0.056272

74




Table 3.12. Weights of the trained neural network for case 2 — between five of first hidden

layer neurons (1-5) and second hidden layer neurons (14)

Hidden 1 | Hidden 1 | Hidden 1 | Hidden 1 Hidden 1

Neuron 1 | Neuron 2 | Neuron3 | Neuron4 | Neuron 5

Hidden 2 Neuron 1 | -0.30156 | -0.44793 | -0.20202 | -0.10219 | 0.019826

Hidden 2 Neuron 2 | -0.050305 -1.085 -2.2141 0.44215 -0.40958
Hidden 2 Neuron 3 -0.1071 0.6549 0.23295 | -0.0090748 | -1.1705
Hidden 2 Neuron 4 | 0.038803 0.34249 | -0.24311 0.18069 5.4888
Hidden 2 Neuron 5 | 0.049521 | -0.18286 | 0.047912 | 0.020069 -1.0049
Hidden 2 Neuron 6 | 0.059901 0.51512 1.379 0.025512 -1.201

Hidden 2 Neuron 7 | -0.70981 | -0.30653 | -0.42189 | 0.020777 | -0.40223
Hidden 2 Neuron 8 | -0.015308 | 0.38711 0.13803 | -0.026693 0.8129
Hidden 2 Neuron 9 | 0.014094 -0.357 -0.6547 0.18446 -5.2823

Hidden 2 Neuron 10 | 0.074961 -2.2339 | -0.37341 | 0.061475 -0.77314
Hidden 2 Neuron 11 | 0.46266 -0.68548 1.7319 0.15273 -1.6127
Hidden 2 Neuron 12 | -0.20277 | -0.44257 | 0.23871 | -0.088718 -4.5798

Hidden 2 Neuron 13 | 0.17865 -0.87569 | -2.0584 0.4676 -0.97385
Hidden 2 Neuron 14 | 0.67561 3.8097 1.1527 -0.020641 1.2123

Table 3.13. Weights of the trained neural network for case 2 — between five of first hidden

layer neurons (6-10) and second hidden layer neurons (14)

Hidden 1 Hidden 1 Hidden 1 | Hidden 1 | Hidden 1

Neuron 6 | Neuron7 | Neuron 8 | Neuron9 | Neuron 10
Hidden 2 Neuron 1 0.98466 -1.2891 -2.4112 -2.6756 1.7245
Hidden 2 Neuron 2 0.53351 -0.97961 0.19449 -0.27808 1.0762
Hidden 2 Neuron 3 -0.27834 | -0.80785 | -0.026329 | -0.076969 | -0.13879
Hidden 2 Neuron 4 1.3717 0.070298 0.18441 5.3644 2.0447
Hidden 2 Neuron 5 -0.67142 -0.28954 0.42736 -1.3489 -0.5978
Hidden 2 Neuron 6 0.74131 -0.46677 -1.2823 0.16468 0.46524
Hidden 2 Neuron 7 0.82491 -1.5965 -1.1629 1.7945 1.6
Hidden 2 Neuron 8 -0.11638 -0.16074 0.13978 1.4467 -0.13568
Hidden 2 Neuron 9 3.9418 -0.7314 0.18654 -1.8478 3.0989
Hidden 2 Neuron 10 | 0.84101 0.67924 -1.8988 1.9545 1.2396
Hidden 2 Neuron 11 | -0.92988 2.2383 -0.71915 | -0.51694 -1.0571
Hidden 2 Neuron 12 1.4416 -0.10142 -0.4952 -2.995 1.8547
Hidden 2 Neuron 13 1.1515 1.1962 -0.1326 0.75842 1.6161
Hidden 2 Neuron 14 -3.3145 0.27305 -1.1508 -1.5574 -2.7703
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Table 3.14. Weights of the trained neural network for case 2 — between four of first hidden

layer neurons (11-14) and second hidden layer neurons (14)

Hidden 1 Hidden 1 Hidden 1 Hidden 1
Neuron 11 | Neuron 12 | Neuron 13 | Neuron 14
Hidden 2 Neuron 1 -2.1994 0.14952 0.38555 1.3627
Hidden 2 Neuron 2 -0.18189 -0.47321 0.6818 -0.95061
Hidden 2 Neuron 3 -0.30386 | -0.091085 | -0.31293 -0.38075
Hidden 2 Neuron 4 -1.1809 -1.4401 0.245 -1.5755
Hidden 2 Neuron 5 0.10023 0.60188 -0.27159 0.41592
Hidden 2 Neuron 6 -0.30166 0.16904 -0.2453 -0.21051
Hidden 2 Neuron 7 -1.283 -0.35916 -0.17708 -0.86378
Hidden 2 Neuron 8 -0.11652 -0.45793 0.27111 0.35243
Hidden 2 Neuron 9 -3.6305 1.1681 0.42808 0.44174
Hidden 2 Neuron 10 | -0.57565 -0.71235 0.030133 0.60822
Hidden 2 Neuron 11 0.78198 | -0.027381 -2.5173 -0.023424
Hidden 2 Neuron 12 | -0.25266 0.04734 -0.34934 2.1482
Hidden 2 Neuron 13 | 0.60337 -0.6942 1.4654 -1.2087
Hidden 2 Neuron 14 4.8783 2.476 0.39282 -1.0294

Table 3.15. Weights of the trained neural network for case 2 — between five of second

hidden layer neurons (1-5) and third hidden layer neurons (14)

Hidden 2 | Hidden 2 | Hidden 2 | Hidden 2 | Hidden 2

Neuron 1 | Neuron 2 | Neuron 3 | Neuron 4 | Neuron 5
Hidden 3 Neuron 1 0.48792 1.5911 0.70391 -1.5683 1.2768
Hidden 3 Neuron 2 -1.1829 1.7719 | -0.83676 | 0.55071 | -0.63037
Hidden 3 Neuron 3 -1.409 0.34674 -1.467 0.36564 | -0.60663
Hidden 3 Neuron 4 | 0.22773 | -0.13991 | 0.97268 | 0.94437 | -1.4344
Hidden 3 Neuron 5 | -0.77096 | 0.86034 | -1.1853 1.4272 0.11966
Hidden 3 Neuron 6 2.5949 3.0229 0.52493 | -0.1708 -2.1661
Hidden 3 Neuron 7 | 0.72154 | 0.60897 | 0.014369 | -0.22702 | 0.18548
Hidden 3 Neuron 8 | 0.39692 | 0.40231 1.4766 | -0.48711 1.3766
Hidden 3 Neuron 9 | 0.56237 | -1.9749 | -0.74059 | 0.040125 | 0.62056
Hidden 3 Neuron 10 | -0.35604 | 2.6759 | -0.53756 1.2463 | -0.45025
Hidden 3 Neuron 11 1.204 0.5165 | -0.29581 | -0.30227 | -0.80392
Hidden 3 Neuron 12 | 0.56269 | -0.96393 | 1.4105 0.49196 | 0.41359
Hidden 3 Neuron 13 | -0.68732 | -0.85675 | 0.33881 | 0.23779 | -0.35665
Hidden 3 Neuron 14 | -0.61021 | -0.51551 | 2.3447 0.34212 | 0.071467
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Table 3.16. Weights of the trained neural network for case 2 — between five of second

hidden layer neurons (6-10) and third hidden layer neurons (14)

Hidden 2 | Hidden 2 | Hidden 2 | Hidden 2 Hidden 2

Neuron 6 | Neuron 7 | Neuron 8 | Neuron 9 | Neuron 10
Hidden 3 Neuron 1 -0.54047 | 0.13995 2.4254 -3.2544 0.85881
Hidden 3 Neuron 2 -0.15006 | -0.27567 | -2.4397 | -0.41347 0.22406
Hidden 3 Neuron 3 -0.6843 -0.55949 | -0.57878 | -2.1559 0.33745
Hidden 3 Neuron 4 0.68274 | -0.98037 | 0.75695 -3.8808 -0.65833
Hidden 3 Neuron 5 | 0.082187 1.629 0.95974 -4.5351 -0.46093
Hidden 3 Neuron 6 1.4622 -0.92506 | 0.11408 0.70707 -0.47452
Hidden 3 Neuron 7 | 0.048872 -0.922 0.21467 0.71919 -0.22168
Hidden 3 Neuron 8 0.4965 -0.68202 | 1.5046 1.3107 -0.68548
Hidden 3 Neuron 9 -1.1255 0.84017 | -1.0205 1.9879 0.15822
Hidden 3 Neuron 10 | -0.045041 | -0.79547 | -1.6868 | 0.040975 0.12995
Hidden 3 Neuron 11 | -0.059603 | -0.99046 | -0.8073 | -0.54721 -0.21513
Hidden 3 Neuron 12 | 0.86512 -0.7559 | -0.83564 -1.094 -0.28217
Hidden 3 Neuron 13 | 0.043486 | 0.17555 | -0.46567 | 0.34901 0.31948
Hidden 3 Neuron 14 1.5109 2.1869 -1.4442 2.6571 -0.2287

Table 3.17. Weights of the trained neural network for case 2 — between five of second

hidden layer neurons (11-14) and third hidden layer neurons (14)

Hidden 2 Hidden 2 Hidden 2 Hidden 2
Neuron 11 | Neuron 12 | Neuron 13 | Neuron 14
Hidden 3 Neuron 1 -0.33401 -0.28126 -2.0985 -0.020685
Hidden 3 Neuron 2 0.19553 0.77562 -0.67455 0.41775
Hidden 3 Neuron 3 0.31976 0.24627 -0.47507 0.61992
Hidden 3 Neuron 4 -3.5536 -0.31732 1.2575 2.3676
Hidden 3 Neuron 5 -0.20153 0.054166 0.19574 0.91705
Hidden 3 Neuron 6 -1.0355 0.045199 -0.67906 -1.1842
Hidden 3 Neuron 7 -0.0112 -0.081335 | -0.079661 -0.50929
Hidden 3 Neuron 8 0.21992 -0.34582 0.31342 1.7256
Hidden 3 Neuron 9 0.29966 -0.73143 2.2809 -1.6553
Hidden 3 Neuron 10 3.3501 1.2815 -1.6182 -0.076039
Hidden 3 Neuron 11 0.38135 0.1119 -0.27676 0.32178
Hidden 3 Neuron 12 | 0.14668 1.7087 1.1373 0.16558
Hidden 3 Neuron 13 | -0.33798 | -0.0051902 0.4454 -0.41927
Hidden 3 Neuron 14 | 0.89925 0.42521 1.6836 -2.7714
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Table 3.18. Weights of the trained neural network for case 2 — between third hidden layer

neurons (14) and output neuron (1)

Hidden 3 | Hidden3 | Hidden3 | Hidden 3 | Hidden 3
Neuron 1 | Neuron2 | Neuron3 | Neuron4 | Neuron 5
Output neuron -3.0675 -1.1443 -0.99036 -0.18037 -0.41857
Hidden 3 | Hidden3 | Hidden3 | Hidden 3 | Hidden 3
Neuron 6 | Neuron7 | Neuron 8 | Neuron 9 | Neuron 10
Output neuron | 0.24138 -5.8344 1.5425 -1.8328 2.5842
Hidden 3 | Hidden3 | Hidden 3 | Hidden 3
Neuron 11 | Neuron 12 | Neuron 13 | Neuron 14
Output neuron | -4.2545 -1.7598 -4.9477 0.96746
Table 3.19. Bias weights of the trained neural network for case 2
Neuron Bias Neuron Bias Neuron Bias
Hidden 1 Hidden 2 Hidden 3
Neuron 1 -1.9736 Neuron 1 1.5712 Neuron 1 1.2874
Hidden 1 Hidden 2 Hidden 3
Neuron 2 -1.2323 Neuron 2 0.83569 Neuron 2 -0.8938
Hidden 1 Hidden 2 Hidden 3
Neuron 3 1223 Neuron 3 -2.3163 Neuron 3 0.92272
Hidden 1 Hidden 2 Hidden 3
Neuron 4 -2.0328 Neuron 4 -0.33238 Neuron 4 -2.8767
Hidden 1 Hidden 2 Hidden 3
Neuron 5 ~2:4289 Neuron 5 0.056568 Neuron 5 1.272
Hidden 1 Hidden 2 Hidden 3
Neuron 6 -0.50732 Neuron 6 -0.83125 Neuron 6 0.074583
Hidden 1 Hidden 2 Hidden 3
Neuron 7 -0.13996 Neuron 7 -0.78137 Neuron 7 1.796
Hidden 1 Hidden 2 Hidden 3
Neuron 8 42614 Neuron 8 0.041732 Neuron 8 -0.60849
Hidden 1 Hidden 2 Hidden 3
Neuron 9 1.0754 Neuron 9 -1.5447 Neuron 9 1.5064
Hidden 1 Hidden 2 Hidden 3
Neuron 10 0.55214 Neuron 10 ~2.0486 Neuron 10 4.245
Hidden 1 Hidden 2 Hidden 3
Neuron 11 -0.37748 Neuron 11 -1.4753 Neuron 11 0.487
Hidden 1 Hidden 2 Hidden 3
Neuron 12 0.50327 Neuron 12 -0.15825 Neuron 12 0.65162
Hidden 1 Hidden 2 Hidden 3
Neuron 13 1.4872 Neuron 13 -0.57347 Neuron 13 L1572
Hidden 1 Hidden 2 Hidden 3
Neuron 14 -2.2588 Neuron 14 7.7324 Neuron 14 -2.9705
Output N. 1.2917
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Comparative graphs of Ansys and trained ANN results (case 2 — 3 hidden layers — 14
hidden layer neurons for each hidden layer) for some new values of input variables are

shown in the following figures.
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Figure 3.24. Variation of SIF along the crack front for case 2 (a=0.0168 m, a/c=0.8,
h=0.05 m / a/h=0.336, a/t=0.27, deviation=0.21%)
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Figure 3.25. Variation of SIF along the crack front for case 2 (a=0.005 m, a/c=1, h=0.003
m / a/h=1.67, a/t=0.35, deviation=0.19%)
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Figure 3.26. Variation of SIF along the crack front for case 2 — (a) Ansys result and (b)
Comparative graph (a=0.01125 m, a/c=2.25, h=0.015 m / a/h=0.75,
a/t=0.25, deviation=0.43%)
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Figure 3.27. Variation of SIF along the crack front for case 2 — (a) Ansys result and (b)

Comparative graph (a=0.003 m, a/c=0.3, h=0.015 m / a/h=0.2, a/t=0.25,
deviation=0.15%)
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Figure 3.28. Variation of SIF along the crack front for case 2 — (a) Ansys result and (b)
Comparative graph (a=0.0081 m, a/c=0.9, h=0.013 m / a/h=0.623, a/t=0.33,
deviation=0.39%)
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Figure 3.29. Variation of SIF along the crack front for case 2 — (a) Ansys result and (b)
Comparative result (a=0.0054 m, a/c=1.8, h=0.025 m / a/h=0.216, a/t=0.3,

deviation=1.25%)
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Figure 3.30. Variation of SIF along the crack front for case 2 (a=0.014 m, a/c=0.5, h=0.05
m / a/h=0.28, a/t=0.32, deviation=0.93%)
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Figure 3.31. Variation of SIF along the crack front for case 2 (a=0.024 m, a/c=1.2, h=0.15
m / a/h=0.16, a/t=0.36, deviation=0.46%)
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Figure 3.32. Variation of SIF along the crack front for case 2 (a) Ansys result (b)
Comparative graph (a=0.0036 m, a/c=1.2, h=0.02 m / a/h=0.18, a/t=0.2,
deviation=0.85%)
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Figure 3.33. Variation of SIF along the crack front for case 2 (a=0.008 m, a/c=0.5,
h=0.005 m / a/h=1.6, a/t=0.45, deviation=0.17%)
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Figure 3.34. Variation of SIF along the crack front for case 2 (a=0.01 m, a/c=2, h=0.008
m a/h=1.25, a/t=0.35, deviation=0.28%)
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Figure 3.35. Variation of SIF along the crack front for case 2 (a=0.006 m, a/c=1.5, h=0.01
m / a/h=0.6, a/t=0.42, deviation=0.5%)

In the Ansys simulations in case 1 and case 2, applied stress value was taken as 1 MPa
(unit value). So some of the simulations were repeated, taking the applied stress as 100
MPa to check the correlation between the applied stress and corresponding SIF. As it was
expected, as a result of this control study, deviation value was calculated as 0.02% more
or less. Since the deviation value was too small, it can be considered that there is a linear
relationship between the applied stress and SIF. So these trained ANN models can be
used for different values of applied stresses (MPa). For instance, if the applied stress value
1s 100 MPa, it is enough to multiply the trained network output by 100 so as to get the

result.

3.3. Conclusions and Recommendations
As a consequence of this thesis, two neural network models which have the potential to
estimate SIF values, were developed for two different types of semi elliptical surface

cracked plates / bodies.

For the first case (two semi elliptical surface cracked plate-one of them is at the front side

and the other one is at the back side), trained model contains 2 hidden layer and 15 neuron
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for each hidden layer. For the second case (four semi elliptical surface cracked plate-two
of them is at the front side and the others are at the back side), final neural network model
consists of 3 hidden layer and 14 neuron for each hidden layer. Since the second case /
problem is more complex than case 1, ANN model for the second case is more
complicated (there is an extra input node h-vertical distance between two parallel semi
elliptical cracks) than case 1 in order to get the best relationship between input, output

and target data.

As presented in the previous section, deviation values of these neural network models
which can be used for case 1 and case 2 are 0.32% and 0.49% (deviation between the
Ansys result and the trained ANN model result) respectively. 760 new data were used so
as to check the accuracy of the model and calculate the deviation percentage for case 1.
Also 1139 test data were used in order to determine the deviation percentage for case 2.

These deviation values are well enough for SIF estimation.

There are 331 and 519 weights for the trained model of case 1 and case 2 respectively.
Weights of the trained models were given in the analysis and results section. These
weights are very important for ANN modeling. Because if these weights are known, there
is no need to use the trained ANN Matlab nntool module file. Only a simple code which
is created using the weights of the trained models and the transfer functions, is enough to

estimate the values of SIFs of case 1 and case 2.

By means of these ANN models, there is no need to do any time consuming simulations
and any numerical calculations. These trained ANN models can be used like an explicit
SIF formula. Moreover, these trained network models can calculate / estimate SIF values
of too many cases (500, 1000, 10000 etc.) simultaneously within seconds with good
margin of error and therefore it is a time saving process. Because, some of the simulations
which are executed to calculate SIF value of the cracked plate in Ansys Workbench, take

one hour more or less.

If the variety of training data is increased, better deviation values may be calculated.
Moreover, if more test data are used to check the accuracy of the trained model, better

ANN structures may be obtained.
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Neural network modeling process can also be used to estimate SIF values of other
complicated bodies (have no analytical formula to calculate SIF) which contain different
types of cracks like semi elliptical surface crack, edge crack, embedded elliptical crack,

center crack, etc., following the procedure in this thesis.
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