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OZET

AKSESUAR KAYIS SISTEMLERINDE ENINE (YANAL)
TITRESIMIN AZALTILMASI: KAYIS
GERGISININ MODEL ONGORULU

KONTROLU

Veysel Murat ONAL
Yiiksek Lisans, Makina Miihendisligi Boliimii
Tez Damismani:Yrd. Do¢. Dr. Can Ulas DOGRUER

Haziran 2017, 141 sayfa

Serpantin kay1s sistemi glinlimiiz otomotiv endiistrisinde olduk¢a yaygin bir
sekilde kullanilmaktadir. Motorda daha az yer kaplama, kayis kaymasini
azaltma ve benzeri avantajlar1 sebebiyle diger siirlis sistemlerine nazaran
daha fazla tecih edilmesi, serpantin kayislarin titresimlerinin kontrol
edilmesini Onemli kilmaktadir. S6z konusu titresimin control altina
alinabilmesi admna simdiye kadar ¢ok sayida gergi mekanizmasi
kullanilmistir. Bu calismada, Model Ongériilii Kontrol ile bir gergi kontrolii
yapilmig ve sistemin performansi bahsi gecen control sistemi kullanilmadigi
haliyle karsilastirilmak suretiyle bir c¢ok ornek olay caligmalariyla
degerlendirilmistir. Bu calismada, bir ¢oklu yaprt dinamik programi
kullanilarak kayis-kasnak sistemi olusturulmustur. Sonraki adim ise; s6z
konusu dinamik modelin kullanilmas1 suretiyle gerginin model 6ngoriilii
kontrolcti ile kontroliidiir. S6z konusu kayis kasnak sisteminin kontrolii i¢in
kullani1lan model 6ngoriilii kontrolciinin i¢ modelci kurulumunda ise yapay
sinir aglarindan yararlanilmistir. En son olarak, ¢oklu yap1 dinamigi model
sonuclarinin - MPC’li, PID’li olarak karsilagtirilmasiyla  calisma
tamamlanmaistir.



Anahtar Kelime: Aksesuar Kayisi, Serpantin Kayis, Model Ongoriilii
kontrol, Yapay Sinir Aglar1, Kayis Gergisi, Coklu Yap1 Dinamigi,PID



ABSTRACT

REDUCTION OF TRANSVERSE VIBRATION OF A

SERPENTINE BELT SYSTEM: MODEL PREDICTIVE

CONTROL OF ABELT TENSIONER

Veysel Murat ONAL

Master of Science Degree, Department of Mechanical
Engineering

Supervisor: Asst. Prof. Dr. Can Ulas DOGRUER
June 2017, 141 pages

The serpentine belt systems are widely used in today’s automotive industry.
The preference of serpentine belts in the market over the traditional belts
due to the advantages such as consuming less space in the engine
compartment, reduced slips etc. makes the vibration control of this type of
belt crucial. In order to control the vibration of the belt, number of tensioner
types are used. In this study, a tensioner which is controlled by model
predictive algorithm is introduced to a belt system and system performance
is compared to the belt system which is not controlled for various case
studies. The belt and pulley system is designed with multibody dynamic
simulation program in this study. The internal model of MPC, which is used
to control the belt drive model, is established with the help of artificial
neural networks. Finally, the study is completed by making comparisons
on the results of the multi body dynamic model with MPC and the model
controlled by PID.

Keywords: Accessory Belt, Serpentine Belt, Model Predictive Control,
Neural Network, Tensioner, Multi Body Dynamic, PID
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CHAPTER 1: INTRODUCTION

1.1 Background

The means of power transmission in automotive industry are the belt drive systems. As the
most popular belt drive system, the serpentine belt drive system requires a well design for
the control of the belt transverse vibration due to the undesired consequences such as
decrease in the performance of the accessories and the early failure of the drive system parts.
These consequences has motivated automotive industry to consider tensioners in their

design.

There are two main classifications of automotive belt drive tensioners, namely,
passive and active belt tensioners. If the belt tension is adjusted with the help of purely
mechanical power, it is called as passive one. However, if electronic actuations are used, it

is called as active one or automatic tensioners.

1.2 Motivation

Although there are variety of belt tensioner models, the tendency to automatic tensioners are
increasing. Nevertheless, the development of the automatic belt tensioners are restricted to
the specific regions due to the mass production of the belt tensioner makers. It is possible to
find a better solutions from pre-existing ones to decrease the transverse vibration of the belt
spans. In addition to the producer’s behaviour, studies in belt drive system area are mainly
around understanding of the belt behaviour rather than control of the vibration. Although
there are small amount of studies related to vibration control of the belt drive system for
which main interest is on longitudinal vibration rather than transverse vibration, no control
system includes model prediction. This idea is the motivation to use Model Predictive
Control (MPC) in this study.

1.3 Thesis Objectives and Scope of Research

The objective of this study is to control the transverse vibration of a serpentine belt
system which includes the fundamental parts of a belt system. The fundamental parts
mentioned here are one driven, one driver, one tensioner pulleys and belt. In order to use

MPC, either a linear mathematical model should be found or a model should be constructed



with the help of training data and this model should be linearized later. The second approach
is preferred in this study. Then, results with and without MPC control are compared.

1.4 Organization and Content of Thesis

Transverse vibration control of a belt drive pulley system in this study is explained in six
chapters. General idea about the thesis structure is given in introduction. A brief literature
review is presented in chapter 2. The basic theories regarding the MBD used in this study,
neural networks, and MPC are explained in chapter 3. The most important part of this study,
methods used for this thesis, are described in chapter 4. This chapter includes description of
the system components, building an MBDS, controlled parameters and inputs decision, data
collection, building neural network for plant model, MPC design with NN approximation,
use of MPC with MBD. Chapter 5 includes results and related discussions. Finally, the work

presented in this study is summarized and future works are discussed in chapter 6.



CHAPTER 2: LITERATURE REVIEW

There are several study concepts regarding the belt such as axially moving materials, steady
state belt- pulley mechanics, serpentine belt drive studies which deals with rotational
vibration of pulleys by assuming belt as linking springs or transverse vibration of individual
spans without considering the pulley effect or coupled vibration for limited range and
situations [1]. The method used in this study is to employ a multi-body dynamic simulations
to model the belt drive and design a predictive controller for this model. Thus, the literature
reviews related to abovementioned concepts are not given and the classification of this

chapter is made according to the general market information.

2.1 Introduction

Power is transmitted from a driver shaft to one or more driven shaft by means of mechanical
elements such as belts, ropes, chains and gears. Although gears are good for small distances,
they cannot be used for long distances because it makes the drive system bulky which yields
increase in weight and cost. From the perspective of the strength and slippage, the rope
cannot be used to transmit torque in driving the accessory pulleys on the engine.
Furthermore, since the cost and the comfort are as important factors as the performance for
today’s consumers, the chain is not preferred as much as belt. The chain is expensive as
although there is almost no need for replacement cost, it is costly in terms of its production
and the material used for it. The chain is not comfortable as belts because it works more
loudly and it does not transmit the torque as smooth as belt. Although there are advantages
of the belt drive system, the excessive transverse vibration of this system is an open question.
To solve this issue, transverse vibration of a commonly used belt driving system, serpentine

belt system, is considered in this thesis and the literature review depends on this belt system.

2.2 Serpentine Belt System

The advantages of using belt over the other power transmission systems are mentioned in
the introduction. However, the main focus of this thesis is on serpentine type belts. The
reasons why it is considered relies on the priority of this type belt system over the
conventional multiple belt systems in terms of consuming less space in the engine, reduced
slip, easier replacement and maintenance, increase in power transmission and decrease in

cost due to the previous advantages. The serpentine type belt systems consist of four main



parts which are driver pulley, driven pulley, tensioner and belt. The number of driven pulleys
depend on the number of the accessories. The idler pulley term may be used as fixed
tensioner or the assistive pulley for tensioning other than active tensioner in the literature.
Several advantages of this belt system is mentioned up to this point; however, it has a
lifespan like. Since this type of belt is used commonly in the market, increase in life of its
system is crucial. There are many reasons for the failure. The reasons may be misalignment,
belt pulley contact, belt slip and so on. One of the most important challenge to increase the
life of the system is controlling the transverse vibration of the belt which also cause the noise.
In order to eliminate this problem, many tensioner types have been proposed and they are
explained in this section.

2.2.1 Tensioner Types

Belt tension is the key to proper functioning of the accessory belt drive system. The tensioner
ensures the sufficient tension to power the accessories. If the tension is less than the desired
level, this situation causes belt slip which results in noise. Furthermore, excessive slip cause
excessive heat for accessories, especially on accessory bearings. Thus, accessory
performance reduces. Moreover, excessive heat reduces the performance and the life of the
belt. On the other hand, if the level of the tension is more than enough, the bearings starts to
bend which results in the early failure of both bearings and their corresponding accessories.
In some cases, the result can reach dangerous level at which belt becomes free of contact
with the pulleys. In this case, the functions of the accessories are lost. The loss of contact
between the belt and the accessories like the water pump, power steering pump, and
alternator not only cease their functioning but also the entire system because the vehicle

becomes quickly unusable due to loss of engine cooling[2].

In order to solve the tension adjustment problem, several tensioner types are proposed. The
tensioners can be classified into three main categories which are manual, semi-automatic

and automatic tensioners.

2.2.1.1 Manual Tensioners

Manual tensioners can be thought as a primitive version of the tensioners. A typical manual

tensioner can be seen from Figure 1.



Figure 2.1 An example for manual tensioners [3]

As it can be seen from the figure, there is a slot inside the tensioner block. After adjusting
the position of the tensioner arm by moving it in slot manually, the tensioner position can be

fixed by means of mechanical joints like bolts.

The advantage of using manual tensioner is its compact design, its being cheap and easily
producible. However, since belt motion does not follow a simple way and fluctuation is not
that much simple using manual tensioner does not seem to be a good idea. In addition to this,

belt tension should be adjusted manually.

2.2.1.2 Semi- Automatic Tensioners

In this type of tensioners, springs are used to compensate for belt elongation. This is achieved

by predefined spring force adjusted at ambient temperature.



Semi-automatic tensioning pulley
with double eccentric

With steel outer ring

Ball bearing

Here ina double-row design

Inner eccentric, compensates for tolerances
during fitting

Outer eccentric, ensures dynamic tensloning
function

Figure 2.2 A semi- automatic belt tensioner with double eccentric [4]

Although temperature fluctuations, load changes and belt elongation are somewhat

compensated, it is compulsory to adjust tension manually.

2.2.1.3 Automatic Tensioners

Automatic tensioners have a set of springs and due this set, it provides an additional integral
mechanical damping function. It is similar to semi- automatic tensioners but it does not need
manual adjustment. This set provides almost constant belt tension by self-adjusting to load

and temperature changes.

pivot post
and bushing

O

tension
arm

tension
spring

mounting
base

Figure 2.3 Basic auto tensioner parts [5]



CHAPTER 3: THEORY

The theory of the thesis is divided into three main categories. Firstly, the general information
related to the MBD used in this study is given. Secondly, artificial neural networks are

introduced and a fundamental summary of MPC is mentioned finally.

3.1 Multibody Dynamic

If the area of the study in the system analysis is to know the position, velocity and
acceleration of a part in a mechanical design, it is the case for dynamic analysis. Dynamic
analysis enable users to evaluate the abovementioned kinematic properties of a mechanical
system under the effect of dynamic loads such as translational forces. The dynamic analysis
can be done by rigid and flexible elements. Rigidity is an assumption which says the rigid
bodies cannot be deformed. If the interest of the analysis is to see the static analysis effects
like deformation, buckling effect, fatigue, bending, twisting, flexibility in the dynamic

analysis; flexible or deformable elements can be used [6].

As the flexible elements increase in a dynamic analyses, there can be several consequences
such as increase in CPU consumptions, extra memory usage and long run times due to the
need for extra calculations for each time step. As the complexity of the system increases, the
consequences will be more significant. In addition to the complexity, if the system works in
a transient region, simulation’s being slow will be at the top limits. In order to overcome this
issue, there are two methods. The first method says that faster computers, more processors
and parallel solvers should be preferred; however, this method cannot be the solution for
every time. The second method suggests that if the main focus is not to get the values
gathered as a result of deformation like stress- strain, it is better to assume the bodies as rigid
bodies [6].

The common method used in the industry is to use a hybrid model which is combination of
both rigid and flexible elements. The belt drive system used in this study composed of
pulleys, flanges and belt. Whereas belt is modeled with flexible beam elements, the other
components are modeled as rigid. The beam element used in the simulation program is

named as Beam2 Element under the title of flexible finite elements.



3.1.1 Belt Drive Model

The simulation system composed of the all fundamentals parts of a serpentine belt system.
It includes a driver pulley, a driven pulley (accessory pulley), a tensioner and the belt. The
idler pulley is not the fundamental part of the serpentine belt system. Thus, it does not exists
in our simulation system. The increase in the number of pulley means an increase in the
length of the belt and calculation procedure which result in longer simulation time and

nonessential cpu consumption for this thesis.

3.1.1.1 Belt

The belt is composed of number of beam elements which are connected with a beam force.
The advantage of using beam element is its 6 degree of freedom which represents a belt

movement better than truss.

N3 N4

Figure 3.1 Coordinate system of the belt body

Belt is composed of several belt bodies and these bodies are connected at the nodes. As can
be seen from the figure, the orientation of center marker of node depends on the direction
used. The positive initial velocity triggers the belt in positive x- direction for the given figure

above.



Figure 3.2 Nodal mass and moment of inertia

The terms related to nodal masses and moments of inertia are explained below.

The mass formula can be wriiten as follows
m= pLA
and moment of inertia formula is as given below

I
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I
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where,

Yo, is density

L is belt element length
A IS cross sectional area

| is the area moment of inertia

W is belt width

T is belt thickness

1)

(2)

©)

(4)



3.1.1.2 Pulleys and Flanges

All the pulleys whether it is a driver, driven, or tensioner pulley are represented by a roller.
Simply, it is a cylinder which is contacted to the bottom contact nodes or the top contact
nodes of the belt depending upon whether it is located the inside or the outside of belt

assembly loop.

Front Side

Figure 3.3 Dimension of a pulley [7]

Flanges can be thought as a kind of lid for the rollers. They restrict the motion of the belt so
that in case of belt movement over a roller, belt do not lose the contact with pulley. This is
achieved by contact between the sloped surface of flange and belt contact nodes. Depending
on the configuration, flange can be in contact with lower side contact nodes or upper side

contact nodes of the belt.

Front Side

Figure 3.4 Dimension of a flange [7]
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3.1.2 Contact Forces

In order to understand how the contact between the belt segment and pulleys are established,
the contact force and the formula has to be adressed.

Owing to the interaction between belt system and solid bodies (pulleys, flanges), there are
large contact forces. These forces are calculated with the contact parameters. The

explanations of the parameters used in RecurDyn are given below [7].

The contact normal force can be written as

1:nn =ko™ +C£‘5

" 5m3
'

(5)

where
k is the spring coefficients
c is the damping coefficients

o is the penetration

5 is time differentiation of the penetration

m, is the non-linear contact force exponent for stiffness
m, is the non-linear contact force exponent for damping

m, indentation damping effect exponent

In order to overcome the unrealistic case (negative contact force) which occurs in case of

small penetration, m3 is greater than 1.
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Roller

Friction

. Bl

Figure 3.5 Normal and friction force of contact [7]

Since contact normal force is known, the friction force can be written as follows

fi = u(o)-|f,] (6)
o 0.0,0,0,, 1) sign(-v) vl <o,

Her= Sfep U:Usaﬂsaud:'/ud Slgn(—u) ‘U‘ZUS (7)

where

fo is the contact normal force
w is the friction coefficient

- us is the static friction coefficient

- ud is the dynamic friction coefficient
vs IS the static threshold velocity
vq IS the dynamic threshold velocity

The relationsship between tangential velocity of v and the friction coefficient of p is revealed

in figure 3.6
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Figure 3.6 Relationship between pand v [7]

3.1.3 Distance Measurement

In order to control a belt system actively, it is a must to collect the data from the system in
order to know the state of the system. Generally, ultrasonic or laser sensors are used to collect
data from the belt spans in real life. To simulate sensor behavior and collect the data needed,

sensor tab is available in Recurdyn.

The center position, direction and the range of the sensor are given. Since the transverse
vibration of the belt is interested in this thesis, the position of the sensor is adjusted so that

its position in x-direction is at the middle of the longest span and the direction.

\~~Sensing Point

Point O

Figure 3.7 Sensing point of distance sensor
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How a distance sensor works for a sheet body is explained in Recurdyn Help as mentioned

below:

- The closest point in the range is found

- The minimum distance from sensor center to mid plane is calculated

doin =11 —rp‘ (8)

where
rs is the position of sensor center
rp is the position of the closest point of body on the direction and in the range of the
sensor
- The angle,0, between the direction of dmin and the direction of the output desired is

determined as

r—r
@ = COS_l gs S P (9)
=1,

- Finally, the output of the sensor is found as follows
— dmin
" |cosd)|

(10)

3.2. Introduction to Artificial Neural Networks

The name Neural Network comes from the inspiration of brain cells which are called as
neurons. Basically, dendrites, a cell body and the axon are the elements of a neuron.
Electrical signals comes to dendrites and these elements carry the signals to the cell body.
After signal processing in the cell body, the signal is sent to the other neuron’s dendrites
with the help of axon. Neuron arrangement (interconnections) and synapses, contact points
between neurons, determines the networks’ function. Similar to the natural or biological
neural networks, artificial neural networks use parallel structure arrangement and transfer

functions to understand the relations between inputs and outputs.

3.2.1 Network Architecture

There are two main concepts in Artificial Neural Networks which is base for the other

concepts. These two basic concepts are cells (neurons) and architecture. The main idea of

14



Neural Networks is weight adjustment in the network by comparing the output of the
network for the collected input and the target. This can be understood better from the below

figure.
INPUT NN
DATA OUTPUT
—_—
NEURAL COMPARISON
— —
P NETWORK WITH TARGET
COMPARE
D DATA
WEIGHT ADJUSTMENT <
WEIGHTED
DATA

Figure 3.8 Schematic of neural network training process

3.2.1.1 Single Neuron

Though a Neural Network system may consist of several interconnections amoung the
number of cells, their theory can be understood with the help of a simple neuron. The best
way to address the neuron concept is to use figures. Below figure shows simple neurons
without and with an offset. Generally, the offset is called as bias in Neural Networks. The
input to the bias part is given as 1 for the simplicity. Using bias depends on the system
behavior; that is, it is not a must for Neural Networks.
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Input  Neuron without bias Input  Neuron with blas
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Figure 3.9 Schematic of simple neurons [9]

Explanations of the symbols of the above figure are as follows:

p scalar input

W scalar weight

b bias or offset

n output of sum or pw simply

f transfer or activation function
a scalar neuron output

As can be seen from the figure, there are two parameters to change. These parameters,

weight and bias, are used to get desired value from the network.

3.2.1.2 Transfer Functions

The relation between sum of inputs n and network output a is defined with the help of transfer
functions. There are several transfer functions used in neural networks. Linear Transfer
Function (purelin) and Logarithmic sigmoid transfer function (logsig) are the most

commonly used ones among the others. Thus, they will be explained briefly.
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a = purclinin) a = logsig(n)

Figure 3.10 Linear and Log-sigmoid transfer functions [9]

Purelin is used for linear approximations. Log-sigmoid transfer function gives output

between 0 and 1. It is generally used for backpropogation due to its being differentiable.

The boxes near each functions are the representations only.

3.2.1.3 Neuron with Vector Input

The inputs given to the neurons are not necessarily a single scalar input. In case of multiple

inputs vectors are used for the neuron.

Input Neuron w Vector Input
' N

Where

R = number of

" 2 elemenisin

input vector

= Wp +5)

Figure 3.11 Neuron with vector input [9]

The symbols different from the previous symbols are

R number of individual inputs
pi (i=1,2,...R) individual inputs
W1,| weights

17



As a result, the net input n can be described as
n=(wl21pl +wl,2p2 +...+w1,RpR) +b (11)

Another schematic demonstration of the above figure is done with abbreviated notation
where matrix and vector representation is used and corresponding dimensions are given

below the symbols and boxes.

]nput Neuron
N7 3\
p o
&xl w -\4 a 1;1'
12k f
1x1
1-0 b N
R . 1%1 1_)
a=Wp+b)

Figure 3.12 Neuron with vector input in abbreviated notation [9]

This demonstration ease the understanding of the architecture.

3.2.1.4 Single Layer

The part except for the inputs in the above figures can be considered as layer. A layer can

have more than one neurons. This situation can be shown with the below figure.

Inputs  Layer of Neurens
™

" 2

W/

a={Wp+h)

Figure 3.13 Single layer [9]
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The terms used for the neural network is as follows:

pi(i=1,2,...R)

wji =1,2,...5)
W

bj i=1,2,...S)

ni G=1,2,...S)

aj (i=1,2,...5)

number of elements in input vector
number of neurons in layer
individual inputs

input vector

individual weights

weight matrix

bias for each neuron

bias vector

net input for each neuron
network outputs for each neuron
network output column vector

transfer function

The weight function in matrix form can be shown as

| W5

i o
Wy o

wg o

- WiR
4 I.UE,R

wew wSﬂ

(12)

It should be noted that it is not necessary to put neither same number of neurons with

inputs nor the same transfer functions for each neuron output.
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a=f (Wp+b)
Figure 3.14 Single layer in abbreviated notation [9]

The above figure shows the same layer with abbreviated notation. Given matrix

dimensions makes the drawing more clear.
3.2.1.5 Multiple Layers
As the name implies, more than one layer is used for this structure. Due to the existence of

multiple layers, there is a need for weights between layers in addition to the weight

between input and first layer sum.

~
h 4
HE»
I

g

h 4

"-n.ﬁ anm .
B

Al
Woga ; b
)

1
W/ J AW J AN J
2 =f{Iw"'p+b) a* = F{LW"a'+ b’ g = LW +b)

a* = PLW LW T (IWY p+b') + b) + b)

Figure 3.15 Multiple layer [9]
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The abbreviated notation of the above structure can be shown as in below figure.

Input Layer 1 Layer 2 Layer 3
N0 N NS ™
p o o ;-¥
IWu —— I LW MLV L
Rxl Stad . §2x1 $3xi
T -\)@i. £l 5ax51 -\‘ m £ s:xs:x w 3
s'xl 5,1 x4
1- b 1- be 1= s
Sixi 1 S2xi 2 Sixi 3
R S il R iy,
at = fLIWup +bt) a: = F2(LWxia1+be) a3 =3 (L Wazna+hs)

at =f3 (LW £2 (LWL (TWLp + b+ beybe)- ¥

Figure 3.16 Multiple layer in abbreviated notation [9]

Net inputs, biases, weghts and network outputs are shown with superscripts. Each number
refers to the layers in order. As mentioned previously, the weights can be divided into two

categories. They can be shown as
W input weights
LW " layer weights

where i shows the layer number and j refers to i-1 and j becomes i in case of i is equal to 1.

That is the case for the first layer.
The crucial properties of the multiple layers are summarized below.

- Each layer may have different number of neurons.

- Output of a layer is an input for the next layer

- The first layer is called as Input Layer

- The last layer is called as Output Layer

- Layers other than the Input and Output Layer is called as Hidden Layer ( Input
Layer can be count as a Hidden layer in the literature)

- Any fuction can be approximated with finite number of discontinuities [10]
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It should be also noted that the output of the last layer is the result of the network and it can
be also shown with y. If the above multiple layer is considered, y=a®.

3.2.2 Structures of Neural Network Data

There are 2 main type of networks,namely static and dynamic. In perspective of input data,
there are two class of structure for the networks. The distinction between input data
structures are done according to the importance of time sequence. Whereas the order is

unimportant for concurrent inputs, it is crucial for sequential inputs.

3.2.2.1 Concurrent Inputs in a Static Network

If there is no feedback or delay in network which is called as static network, being
sequential will be unimportant. That is why sequential inputs are not considered in this
chapter. In other words, inputs can be thought as concurrent for this case. In fact, in case of
sequential inputs for static network response will not alter but the way for training will
change.

Inputs Linear Neuron

N A\

pt wi,l. n a
DN s o« i e

P, W, lb

o/ J

a = purelin(Wp+b)

Figure 3.17 Static network [9]

As can be seen from the above figure, there is no interactions between the inputs and the

output is also concurrent.

3.2.2.2 Sequential Inputs in a Dynamic Network

If there is a feedforward connection or a feedback, the network is called as dynamic network.
This definition also classify the dynamic network as feedforward and recurrent dynamic

network. Here, the term recurrent is used instead of feedback. If delay exist in the network,

the case is a sequence of input usually.
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Figure 3.18 Dynamic network with a delay input [9]

An example to this case is given in the above figure in which there is only one delay for

the sake of simplicity.

The inputs given to the network from the multibody dynamic simulation is divided into
three categories as training, validation and test. The training data is used to teach the
network how the system behave. Validation data is used to reach the peak of the
generalization up to when training continues. Finally, how much the network works for

different data sets is evaluated according to the test data.

3.2.2.3 Concurrent Inputs in a Dynamic Network

In some special cases, concurrent inputs can be used instead of sequence inputs for
dynamic networks. If it is desired to see results for number of different sequences,

concurrent sequences set can be used. These sequences behaves as individual sequences

and does not affect the others.

3.2.3 Training

The simplest definition of the training is the adjustment of the network independent

variables, weights and biases, so that network output is close enough to the target values.

The measurement of closeness is determined by the difference between the target values and

network outputs. That is, as the differences (errors) are small enough according to the

algorithm used the convergence is accepted. Generally, mean square error is used for the

neural networks and the formula of this error criteria is given below.

13 2 s 2
F=mse==>(e) = (t -a) (13)
N i=1 =1

1
N s

23



where

F mean square error

N number of target values

ti(i=1,2,...,N) target values or outputs

ai (i=1,2,...,N) network output

ei (i=1,2,...,N) corresponding errors for each network output and target values

Although error information gives us the convergence for the system behavior, it is only a
tool for training method which defines how to make updates for the independent network
parameters and when to stop. There are several training algorithms; however, it is possible
group them into two main branch which are incremental and batch mode. As their name
implies, whereas all inputs send to the network before any update in batch training mode,
computation of gradient and updates are done incrementally; that is, after each input in
incremental training mode. Since making calculations after all inputs both shorten the
processing time and gives a chance to evaluate the system behaviors from all inputs, batch

mode does not only give faster results but also smaller errors [9].

The error can be calculated with the help of mean square error concept easily. However, in
order to evaluate the performance depending on this error there are two ways of
optimizations which are gradient and Jacobian method. There are many algorithms using
gradient or Jacobian optimization methods like Levenberg-Marquardt, Bayesian
Regularization, BFGS Quasi-Newton, Resilient Backpropagation, Scaled Conjugate
Gradient, Conjugate Gradient with Powell/Beale Restarts, Fletcher-Powell Conjugate
Gradient, Polak-Ribiére Conjugate Gradient, One Step Secant, Variable Learning Rate
Gradient Descent, Gradient Descent with Momentum and Gradient Descent. Since
Levenberg-Marquardt algorithm is the fastest one among the mentioned ones, it is used for

the belt drive system defined in this thesis.

3.2.3.1 Levenberg-Marquardt

Owing to the need for speed in the training algorithms, gradient descent methods are put a
side and new methods developed such as Quasi-Newton, Levenberg-Marquardt and

Conjugate gradient. Levenberg-Marquardt is chosen from the fast algorithms in this study
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since it gives responses faster and its accuracy is better compared to the other methods for
the belt drive model described.

The update in Levenberg-Marquardt is done by using both gradient and Hessian Matrix as

follows

Xkr1=Xk-/H + ul] ™t g (14)
where

X terms in algorithm

H Hessian matrix

u scalar

g gradient

I identity matrix

Since Hessian Matrix is a second order partial derivatives of the errors, it is easier to use
matrix of the first derivatives of error, Jacobian matrix, which can be calculated with the
help of backpropogation. The matrix of second order partial derivatives, Hessian matrix is

H=JTJ (15)

In addition to Hessian matrix, gradient can also be written in terms of Jacobian as follows

g=1J"e (16)
where

J Jacobian matrix

e error vector

Finally, the update for the terms will become

X1 =Xk-[JTT + i JTe (17)
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The performance function is reduced with decrease in scalar, p. This is because if p is large,
the situation will be gradient descent with a small step size; on the other hand, if p is zero
the situation will be as in Newton’s method which is faster and more accurate near an error
minimum [9]

3.2.4 Dynamic Neural Network Concept and NARX

Since the belt drive model parameters are time-dependent, the network with memory,
dynamic neural networks, should be used for this study. These networks are demonstrated
in the form of Layered Digital Dynamic Network (LDDN) which consists of weights, bias,
netprod or summing junction for net input and transfer function. The Nonlinear Auto
Regressive with Exogenous Inputs (NARX) model is a kind of dynamic network with
feedback. Here, the term “exogenous” refers to the independent inputs and these inputs are
gathered from multibody dynamic simulation program for this study. The explanation of this
model can be made step by step from linear models to the nonlinear models for inputs with

time-series.

STEP 1:Linear Model for SISO (Single Input- Single Output)

The output y(t) is calculated by using past inputs and outputs values as
y()+ay(t—1)+asy(t=2)+...4a,y(t—na)=bu(t)+bou(t—1)+...+b, u(t—nb+1)+e(t) (18)
or by leaving the output alone

y(t) = bqu(t)+byu(t—1)+...+b, u(t—nb+1)+e(t) - agy(t—1)-asy(t=2)-...-ay(t—na)  (19)

Now, it is possible to write the equation in the vectoral form so that weights can be seen

separately.
y()=[-as,—ay,...—apg,01,09,...bppl [Y({t=1),y(t~2),....y(t—na),u(t),u(t-1),...,
u(t—nb—1)]" (20)

The first vector is a weight vector in the form of row vector and the second vector is the

regressor which includes delayed inputs and outputs.

STEP 2:Nonlinear Model Extension
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If weight vector is deleted and regressor are used in a non-linear function f, the nonlinear
extension will be completed. This time output will be

y(O=f(y(t-1).y(t-2).y(t=3)....,.u(t),u(t-1),u(t=2),.. u(t-nu)) (21)

In fact, it is not a must to use the delayed inputs and outputs. For instance, y(t-1)2, u(t-1) y(t-
2), tan(u(t-1)), and u(t-1) y(t-3) can be used in regressor [9].

NONLINEARITY

ESTIMATOR
REGRESSOR
" NONLINEAR
> /" FUNCTION 'I y
P uueny),... \ >
| LINEAR J
FUNCTION

Figure 3.20 Block diagram of NARX

As can be seen from the figure NARX structure composed of two blocks which are regrssors
and Nonlinearity Estimator. Neural Network will be used as Nonlinearity Estimator for this
study. In other words, the nonlinear function f will be represented by neural network.

Inputs Layer 1 Layer 2
N7 N\ N\
p'(t)=u() n'() ') 2'()) = y(0)
w" —waz-'\ , —>
» 8%t g n() | | |sxi
S'xR f S'xS -/'(:)_“J<1 f
b' S'x1 1+ b’
R' §'x1 S’ 5'x1 S’
T
D LW'"
L
\_/ | J J

Figure 3.21 NARX architecture with two layer [9]
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The above figure shows an example to NARX network structure. The only figure reference
not mentioned up to now is Tapped Delay Line (TDL) which is used for the networks with

time series.

N A
p(k) pdik) a(k)
prrng v Al ne) |

0 Ix2 — 7[
1 1 b
! Ixl
AN W v
2 Linear layer

Figure 3.22 Tapped delay line diagram [9]

The tapped delay line with three time zone is given in the above diagram for illustration. As
can be seen from the figure the input values are given for 3 different time which are shown
with the numbers 0,1 and 2 and these numbers reveals the current signal, the previous signal
the signal delayed before that respectively. Since it is required to know the previous terms
of input and outputs for NARX formula mentioned previously, delays are used as system’s

memory which enables to use previous input and output values.
3.3 Model Predictive Control, MPC

Model Predictive Control Theory is divided into five categories as introduction, controller
horizons, cost function, constraints and optimizer.

3.3.1 MPC Introduction

Model Predictive Control approach is similar to the human prediction. The steps of a
prediction depends on a model which is learned with experience or from the description of
an external source. Since how system behaves, the model output, for a limited horizon can
be guessed, the control of the system become easier. With the help of future anticipation,

the precautions can be taken to be in the safe zone or to be near the desired values.
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Figure 3.23 MPC block diagram

As can be seen from the above figure, MPC is a closed loop controller like PID; nevertheless,
it uses a Plant Model for prediction with an optimizer. Depending on model’s being either
linear or non-linear, MPC is named as Linear Model Predictive Controller (LMPC) or Non-
Linear Model Predictive Controller (NMPC) in some sources of the literature. The
distinction between these two classes of MPC is done by the consideration of whether cost
functions and constraints are linear or non-linear in some other sources [11]. According to
the second definition, MPC is a linear one if only if there is no non-linearity in either cost
functions or constraints. Since control input strongly depends on the prediction from the
plant model, the model should be as close as possible to the original plant. There are several
ways to represents a model such as state-space, transfer function, Hammerstein-Wiener and
so on. Despite of the high degree of model closeness to the plant, there is a need for
corrections and this is achieved by using feedbacks from plant output to the controller

optimizer. In other words, feedback is used to minimize the error with the help of optimizer.
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Figure 3.24 MPC working principle

The above figure is a summary of how a model predictive controller works. The left side of
the figure shown with arrow below the title ‘past’ is the measurement step. That is, this part
uses the measured inputs and outputs which are shown with blue and orange colors
respectively. The right side of the figure shown with arrow below the title ‘future’ is used to
reveal the estimation for outputs and planned movement of the inputs which are shown with
ochard (mustard yellow) and green lines respectively. The red line shows the reference
trajectory to be followed. The terms mentioned on the left side of the figure can be explained

as follows:

ymax maximum value for the predicted output

ymin minimum value for the predicted output

umax maximum value for the predicted input

umin minimum value for the predicted input

r steady state set point for the reference trajectory

Sample time determines the frequency of the output control. Measured values are controlled
for a limited time called as control horizon by taking the prediction time or prediction
horizon into account. As time goes, the prediction horizon goes forward; that is why,

receding horizon controller is the other name of MPC in some literature [12].
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3.3.2 Controller Horizon

There are two basic horizon concepts as prediction and control. As their name implies,
prediction horizon is used for the purpose of future anticipation. Although plant model
enable the controller to anticipate the future, controller not necessarily use the full range of
predicted horizon to be in safe zone. Thus, control horizon concept, control action horizon,
Is arised. There are two basic criteria for the determination of the horizons. The initial criteria
for horizon selection should be the objective of the controller according to the plant behavior.
The general idea is that as the need for reaction time from controller is desired to be small,
control horizon should be shortened. Another criteria is related to computation steps and
time. Increasing the horizons give a chance for further anticipation but yields increase in the
number of computed variables; therefore, increase in computation time. All in all, horizons
should be chosen according to both the specific control purpose of each plant and the idea

which tells to escape from the unnecessary computation.

3.3.3 Cost Function

Model Predictive Control is a closed loop control system. It is a closed loop because it uses
the feedbacks coming from the plant output. These feedbacks are used to get the predicted
values from the internal model of the controller. Then, differences between the reference
values and the predicted outputs are minimized for the predicted horizon by penalizing
control increments. A cost function is used for this penalizing procedure [13]. The degree of
controller performance is measured with cost values. Smaller cost values means better
performance. Although cost has a great effect on the optimization algorithm selection, its
effect on closed- loop performance is little [12]. Thus, simpler cost functions are preferred
mostly in optimization procedure. MATLAB offers a standard cost function as follows:

1@z)=]y(z) + Ju(z) + Jau(zi) + Jq(2k) (22)

where the output reference tracking term, manipulated variable tracking, manipulated

variable move suppression, constraint violation terms can be expressed as follows:

Jy@) =372, ¥, {W—y’ [y (ke + ilk) —; (k + i k)]} (23)
Ju) = Xt B2 2 [ O 180 e G + € 1] (24)
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A 2

[y Ch + 1K) —uy (ke + i — 1 o]} (25)

w,

oz = S, X0

]q(zk) = peelzc (26)
The control input can zx can be expressed as
zZF =uk )T utk + 1) .. u(k +p —11k) €] (27)

Meaning of the each symbols mentioned in the above formulas can be expressed as

follows:

Iy (zi) output reference tracking term

Ju(z) manipulated variable tracking term

Jau (k) manipulated variable move suppression term
Jq () constraint violation term

kis current control interval

p prediction horizon

Ny number of plant output variables

yj(k +i| k) predicted value of jth plant output at ith prediction horizon step

ri(k + i| k) reference value for jth plant output at ith prediction horizon step

sjy scale factor for jth plant output

le] tuning weight for jth plant output at ith prediction horizon step

Ny number of manipulated variables

s/t scale factor for jth manipulated variable

Wi tuning weight for jth manipulated variable at ith prediction horizon step
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Au

ij tuning weight for jth manipulated variable movement at ith prediction

horizon step
€x slack variable at control interval k
Pe constraint violation penalty weight

As can be seen from the above formula, there are 4 terms with weights for balance. All of
the terms are using control input as function variable. Output reference tracking term is used
to evaluate the closeness of the result to the desired value; i.e. reference value. If the number
of control input or manipulated variable is more than the outputs of the plant, it is necessary
to control inputs such that they are either at the target values or near these values. This time
Manipulated Variable Tracking term is used for input control. Manipulated variable move
suppression is also used for controlling the inputs but for small changes in the input. The last

term is Constraint violation term which is used as a performance value to be inside the limits.

3.3.4 Optimizer

The main purpose of the optimizer is to ensure the convergence or closeness of the cost
value near zero. In order to achieve this idea, a quadratic program(QP) is used for solution
at each control interval in this study.

Figure 3.26 shows how the quadratic program in the model predictive control environment
works. It takes differences between the predicted outputs coming from the internal model
and reference values and by using this difference it decide what a future input should be
according to the constraints and the cost function. The first elements of the future inputs go
to the plant as control inputs and the plant outputs are sent to the model which also uses past

data and future inputs. The cycle is repeated as soon as simulation continues.
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CHAPTER 4: METHODOLOGY

The methods used to control the belt drive system is introduced in this chapter. This chapter
includes six main steps. Initially, multibody dynamic system for the drive system considered
in this thesis is built and control system parameters are given with communicator parameters.
Then co-simulation steps come and plant block is introduced to simulink. By using the data
gathered from co-simulation, an arificial neural network is used for system identification and
MPC is designed according to this network. After that, co-simulation is repeated with the
designed MPC to control the belt drive system. The block diagram shown in figure 4.2
explains this procedure.

4.1 Belt Drive System with MBD

The simulation system composed of the all fundamentals parts of a serpentine belt system.
It includes a driver pulley, a driven pulley (accessory pulley), a tensioner and the belt. The
idler pulley is not the fundamental part of the serpentine belt system. Thus, it does not exists
in the prototype model. In addition to this reason, the increase in number of pulley means
increase in the length of the belt and calculation procedure which result in great cpu

consumption and longer simulation time for this study.

Figure 4.1 The belt-pulley system used as prototype in the thesis
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Figure 4.2. The Procedure Followed in the Thesis Methodology



The biggest pulley is the driven pulley, the pulley in the middle is tensioner pulley and the
other one is the driver pulley in Figure 4.1.

The properties of materials and boundaries between the parts are established in this section

of chapter 4.

The most critical part of the belt drive system is the belt design. The belt used in this study
shown in the below figure.

Figure 4.3. The belt system used in the simulation
As mentioned in the theory, belt composed of several beam elements and there can be a
measure for the number of elements used. There are two measures for the system in this
thesis. The first one is visual inspection from the results. The results here refers to the mid-
point deflections of the upper span of the prototype. The results are plotted for number of
cases with a step input 2000*STEP (time, 0, 0, 0.5, 1) and -1000 N pre-force for 20 seconds
in Figure 4.5. The result are shown for the cases from 50 element to 300 element. For 25
elements not shown in the figure the results are not reasonable. As the number of elements
increases, the results converge to the ideal value. However, after a certain value,
improvement amount decrease. This situation can be understood if the differences between
the results of 50 and 75 elements are compared with the differences between the results of

75 and 90 beam element cases.

Angular Velocity (rad/s) vs Time (s}

0.00
500.00 \
-1000.00
-1500.00 \
-2000.00

0.00 2.00 4.00 6.00 .00 10.00 12.00 14.00 16.00 18.00 20.0
Time (s)

Angular Velocity (rad/s)

Figure 4.4 Step input used for the determination of beam element numbe
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The second measure of stopping criteria is error evaluation. Although the ideal value for the
number of beam element is + infinity, 300 element is used as the stopped point for the
maximum value. The errors are calculated according to this assumed maximum number. The

term error refers to the mean square error (MSE) in this point.

-6 Mean Square Error (MSE) vs Number of Beam Elements
x10

KN e g
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Figure 4.6. Convergence analysis for belt segment

Similar to the Figure 4.5, the improvement decreases with the increase in the number of
elements in Figure 4.6. As shown in the above figure, after 100 beam elements the
improvement is not at the level of the improvement before 100 elements. Thus, 100 beam
elements can be considered as the threshold value for convergence. The change in the inputs
can change the deflection amount but the same threshold value is acceptable for the other
inputs. In order to be in safe zone 120 beam elements will be used for the belt drive system

introduced in this study.
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Figure 4.7. The belt-pulley system used in the intermediate level case study

The geometric and material properties of the components of the belt drive system is given
in the following tables.

Table 4.1 Beam belt properties

Type/ The cross section Flat/Rectangular
Lower Thickness: Defines the lower thickness of belt (m) 0.002
Upper Thickness: Defines the upper thickness of belt (m) 0.002
Width: Defines the width of belt (m) 0.050

Number of Elements: Defines the number of force elements to 120.0
connect nodes(m)

Element Length: Defines the length of element (m) 0.016
Initial Velocity: Is the initial velocity in the longitudinal direction 0

of belt (m)
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Table 4.1 and Table 4.2 reveals the belt properties. Whereas material Properties like density,
Young’ s modulus are given in Figure 4.2 , beam properties such as thickness, width are

given in Table 4.1

Table 4.2 Material properties of the belt

Property Value
Density (kg/m?) 1317
Damping Ratio: 0.003e-1
Young's Modulus: Defines the young's modulus of belt (Pa) 1000e+04
Shear Modulus: Defines the shear modulus of belt (Pa) 4000e5
Moment of area (Ixx) (m*) 4.580e-09
Moment of area (lyy) (m*) 6.670e-09
Moment of area (I1zz) (m*) 1.670e-09
Cross section area (m?) 2.000e-04

Table 4.3 Geometric and material properties of pulleys

Property Driver Pulley Driven Pulley Tensioner Pulley

Radius (m) 2.697e-002 8.890e-002 4.520e-002
Width (m) 5.100e-002 5.100e-002 5.100e-002
Density(kg/m3) 7850 7850 7850
Volume(m3) 1.165e-004 1.266e-003 3.273e-004
Mass(kg) 0.914 9.940 2.569
Young's Modulus(Pa) 2000e+8 2000e+8 2000e+8
Poisson" s Ratio 0.285 0.285 0.285
Ixx(m4) 3.646e-004 2.179e-002 1.869e-003
lyy(m4) 3.646e-004 2.179e-002 1.869e-003
1zz(m?) 3.327e-004 3.927¢-002 2.624¢-003
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Table 4.4 Geometric and material properties of flanges

Geometric and Material Properties of Flanges

Radius (m)

Width (m)

Angle (degree)

Density(kg/m?3)

Volume(m?)

Mass(kg)

Young's Modulus(Pa)

Poisson’ s Ratio

Ixx(m*)

lyy(m®)

1zz(m*)

Ixy(m?*)

lyz(m?)

Izx(m”4)

Driver’ s Flanges Driven’ s Flanges Tensioner’s Flanges

2.697e-002 8.89e-002 4.52e-002
0.007 0.007 0.007
70.00 70.00 70.00
7850 7850 7850
3.011e-005 2.140e-004 6.675e-005
0.236 1.680 0.523
2000e+8 2000e+8 2000e+8
0.285 0.285 0.285
8.889e-005 4.145e-003 4.153e-004
8.905e-005 4.153e-003 4.161e-004
1.761e-004 8.284e-003 8.273e-004
2.757e-008 1.886e-006 1.951e-007
-4.791e-011 -1.552e-010 3.249e-011
1.614e-010 -.246e-009 -.784e-010
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Table 4.5 Position of pulleys and flanges for prototype model

Components X (m) y (m) z(m)
Driver Pulley 0 0 0
Driver’ s Flange Front 0 0 0.026
Driver’ s Flange Back 0 0 -0.026
Driven Pulley 0.552 -6.043e-002 0
Driven’ s Flange Front 0.552 -6.043e-002 0.026
Driven’ s Flange Back 0.552 -6.043e-002 -0.026
Tensioner Pulley 0.328 -0.124 0
Tensioner’s Flange Front  0.328 -0.124 0.026
Tensioner’s Flange Back  0.328 -0.124 -0.026

Table 4.6 Position of pulleys and flanges for four pulley system

Center of Bodies

Driver Pulley

Driver’ s Flange Front
Driver’ s Flange Back
Driven Pulleys 1
Driven Pulleys 2
Driven’ s Flange Front
Driven’ s Flange Back
Tensioner Pulley

Tensioner’ s Flange Front

Tensioner’ s Flange Back

X (m)
0
0
0
0.552
0.200
0.552
0.552
0.328

0.328
0.328

y (m)
0

0

0
-0.060
-0.100
-0.060
-0.060
-0.324

-0.324
-0.324

z(m)
0
0.026

-0.026

0.026

-0.026

0.026
-0.026
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Table 4.7 Contact properties of pulleys and flanges

Property Pulleys Flanges
Spring Coefficient (N/m) 1000000. 1000.
Damping Coefficient 1000 1
Dynamic Friction Coefficient 0.6 0.6
Stiffness Exponent 1.3 1.3
Damping Exponent 1 1
Indentation Exponent 2 2

Table 4.8 Properties of connecting force

Property Values
Translational Stiffness (N/m) 100000000.
Translational Damping Ratio 1.e-002
Rotational Stiffness(N/m) 10000000000.
Rotational Damping Ratio 1.e-002

4.2 Plant Variables

The most important step of the system estimation is to decide what to control and on which
system elements will be used to trigger the system. They are strongly related to the purpose
of the control. Since the interest of this study is related to control of the transverse vibration

of the serpentine belt system, control variables are chosen accordingly. The system variables

will be detailed in this section.
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Figure 4.8 Serpentine belt system components
The study in this thesis depends on the fundamental prototype model shown above. This
system begins its movement with the motion of the driver pulley. In order to guarantee the
contact between the pulleys and belt, pre-tension is applied. This pre-tension value is decided
after several trial and error. Its value is adjusted such that it both satisfy the minimum
requirement for the contact and allow the belt to oscillate to some extent. If this pre-tension
is applied so much, then it will bring about undesired consequences as mentioned in the
literature survey. That is why tensioner pulley is controlled with predictive control in this
study. Another input to the system is the displacement of the tensioner pulley in the
transverse direction. By putting these inputs into the system, the transverse displacement of
the belt will be tried to control. The deflection are gathered as the value at the middle of the
span which is between the driver and driven pulleys. By controlling of this specific point not
only the inspected point deflection will be under control but also the whole belt motion will
be controlled since each point on the belt affects other points as well. Once deciding on the
working region, the inputs can be given to the system. The rest is collecting the data,
estimating the system behavior and implementation of the controller designed according to

the identified system behavior.
To sum up, there are three inputs for belt drive plant totally
- Pre-Tension

- Driver Velocity
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- Tensioner Force

The only manipulated input to control the oscillation in transverse direction is the tensioner

force.

4.2.1 Pre-Tension

As mentioned in the previous section, there are three inputs for the belt drive system. The
pre-tension is a fixed value and decided according to the trial and error method so that it both
satisfy the minimum requirement for the contact and allow the belt to oscillate. It is achieved
by adjusting the force according to the minimum value which satisfies the contact between
the belt and pulleys.

Pre- Tension value is chosen as -580 N for the prototype model. However, it does not mean
that the minimum value for the contact satisfaction is -580N. Although the minimum value
is below -580 N, this value is chosen to be in a safe zone. How pre-tension is adjusted is
shown in the following figure. Below figures shows the plant input to determine pre-tension

for illustration. Driver velocity is given as will be mentioned in the next section.

Figure 4.9 shows the results of the belt drive prototype for the inputs given in the previous
figure. This figure consists of two parts. Whereas the lower portion shows the deflection
amount of the belt drive for whole simulation time, the upper portion shows the position of
the belt drive system at 3" second for illustritation purpose. As can be seen from the figure,
the belt contact is not lost for -500 N, yet the position of the driver pulley is not desired level
in terms of contact satisfaction. That is why pre-tension is adjusted somehow bigger than the
minimum value. One another important inference is that the deflection amount is directly
affected from the velocity profile. Since there is no tensioner force and pre- tension value is

constant, the effect of driver pulley velocity profile on the deflection is reasonable.
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Figure 4.9 A screenshot from the simulation used for pre- tension determination
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4.2.2 Driver Velocity

Instead of given random values for the driver pulley velocity, a full car model is used in
Simulink environment which will be detailed in this section. However, before gathering the
inputs from full car model; step, ramp, sinusoidal and impulse inputs are used as will be

mentioned in chapter 5. The details can be found both in section 4.4.2 and chapter 5.

4.2.3 Tensioner Force

The only manipulated input, force applied from the tensioner to the belt, is selected so that
the overall system behavior under the effect of different forces can be analyzed. In order to

better understand how the system behavior can be learned, the below explanations are given.

Frequency response of the system reveals the characteristics of the system and estimation of

the frequency response is done by either sinestream or chirp input signals.

The swept-frequency sine (chirp) excites the system at a range of frequencies which changes

instantaneously as shown on the below figure.

Amplitude (m)
' o
o w

o
(3
T

0 5 10 15
Time (sec)

Figure 4.10. A chirp wave

Even though chirp wave can be a good way for nearly linear models if it is desired to quickly
obtain a response for many frequency points, it is not suitable for the systems with strong
nonlinearities because there is a need for time to estimate the system behavior in case of
nonlinear models. Therefore, many adjacent sine waves of varying frequencies which excites

the system for a period of time will be the solution. This is called as sine- stream signal.
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Figure 4.11 A sine- stream wave

As may be seen in chapter 5, sinusoidal functions at varying frequencies are used for system

identification of the plant which will be controlled with a predictive algorithm.

4.3 Co- Simulation

In this section, multi- body dynamic simulation program and Simulink are tried to be worked
together. Initially, input and outputs are defined in MBD program. Then, how MBD program
will work with Simulink is defined in MBD program by giving information related to host
program, control time step (sampling period or time), Plant Block M-File, Simulink run M-
file. After preparing the program for co-simulation, plant block is established with proper
queries. The next step is just designing the blocks in Simulink environment and using the

data obtained from this co-simulation.

Figure 4.12 gives a general idea of the co-simulation. As can be seen from this figure, there
is a shared memory between co-simulated programs and with the help of data transfer from
one to another co-simulation is accomplished. The following figures summarize the all steps

covered in this section.
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Figure 4.12 Co-simulation fundamentals
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Figure 4.13 Co-simulation steps
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4.4 Case Studies and Velocity Profies

Up to this section the plant, plant inputs, co-simulation procedure are introduced. This

section is the last section before plant identification. Therefore, the multi-body dynamic

plant models and the plant-inputs used for this study are summarized conceptually. Collected

data for both input and the output will be given in the fifth chapter together. This section is

divided into three main categories. Data collection for different geometric constructions are

introduced in the first part. The second part includes scenarios for several velocity profiles.

The third par explains the situations for different forces.

4.4.1 Case Studies

This category is divided into two depending on the components’ geometric configuration

of the belt drive system.

4.4.1.1 Elementary Level Cases

The elementary level case configuration is simply the prototype used in the belt drive

system design.

Belt with Beam Elements

Driver Pulle
y — Driven Pulley

Tensioner Pulley

/

Figure 4.14 Elementary level configuration

4.4.1.2 Intermediate Level Cases

In addition to the belt drive system introduced in elementary level case, an extra pulley is

added to the system in order to increase the system complexity.
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Figure 4.15 The belt-pulley system used in the intermediate level case study

4.4.1.3 Advanced Level Cases

In order to control a more complicated case, the rotation center is transferred to 3 mm

above the geometric center for driver pulley.

Center of
Rotation

Geometric
Center of the
Pulley

Figure 4.16 Driver pulley for advanced case
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4.4.2 Velocity Profiles

Oscillation of the belt span will be observed for the transient states where there can be
considerable amount of belt deflection compared to the steady state belt deflection. The
velocity profiles gathered from Simulink car model are collected according to the four

different situations as follows:

Sudden Increase in Vehicle Speed

Sudden Decrease in Vehicle Speed

Combination of Case 1 and Case 2.

Repetition of Case3 for Narrower Brake- Throttle Range

The behavior of the belt drive system will be tested for the above- mentioned situations,
tried to be identified and controlled accordingly.
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Figure 4.17 Driver velocity for case 1
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Figure 4.18 Driver velocity for case 2
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Figure 4.19 Driver velocity for case 3
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Figure 4.20 Driver velocity for case 4

The sudden increase in the driver velocity can be seen from all of the figures. Although the
second case is named as sudden decrease in vehicle speed, the velocity is increased suddenly
to have a velocity whose velocity will be decreased. The increase in the velocity is done
suddenly because it is not only shorten the simulation time but also transient behavior belt

span motion is achieved which is the necessity of this study.
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Figure 4.21 Full-car model block diagram in simulink

Above figure demonstrates the typical full car model supported by MATLAB for automotive
related simulations. The next figure is the detailed view of the full car model. It can be
beneficial to note that the torque converter and transmission ratio are both sub-classes of
transmission part shown in Figure 3.27. In addition to the inputs gathered from the full car
model, random step, impulse, sinusoidal and ramp inputs are employed as can be seen in

chapter 5.
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4.5 Building Artificial Neural Network for Plant Model

The only knowledge about the system is the inputs and outputs; that is, the system is a black
box. In order to make a proper identification for the belt drive system, artificial neural

networks are preferred.
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In order to build a neural network, several criteria should be in consideration. After several

trial and error the network is shaped as demonstrated in the tables below. The same properties

used for the all configurations used in this thesis.

Table 4.9 Properties of artificial neural network used for the belt drive system

identification

Network Type NARX
Training Function trainlm
Hidden Layer Transfer Function tansig
Output Layer Transfer Function purelin
Input Delays 4
Feedback Delays 4
Number of Hidden Neurons 20
Data Preparation Function preparets
Data Division Function dividerand
Training Ratio 70
Validation Ratio 15
Testing Ratio 15
Performance Function mse

The explanations of the above properties can be summarized as follows:

NARX
trainlm
tansig
purelin

preparets

nonlinear autoregressive network with exogenous inputs

Levenberg-Marquardt backpropagation

hyperbolic tangent sigmoid transfer function

linear transfer function

a function used for preparetion of input and target time series data to train

the network
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dividerand  used to divide the data into training, validation and test sets
mse mean square error

The transfer functions mentioned in the table are drawn in the following figures.The input

values here refers to the net input in the neuron structure and the output is the network output.
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Figure 4.24 Hidden layer transfer function
5 T T T T T T T T T
:
>
n y=purelin(x)
o
=)
Sor > x b
5
[oX
5
o
_5 1 1 1 1 1 1 1 1 1
-5 -4 -3 -2 -1 0 1 2 3 4 5

input values (x)

Figure 4.25 Output layer transfer function
The following figure covers the all critical features of the artificial neural network

introduced in this section.

ur 4.49 Co-Simulain Blocks with MPC
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Figure 4.26 Aritificial neural network used in this thesis
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4.6 MPC Design with NN Approximation

As mentioned in the literature review part, there are two kinds of model predictive controller
to be used. Due to the limitations such as horizons, restriction on the number of input and
output variable to be supplied and so forth, the response of the neural network predictive
controller is not at desired level. Thus, a model predictive with linearized model is designed
for this study. A model predictive controller is established based on the model obtained with

the neural network plant model. The summary of the neural network is shown by below

graph.
x(t) Hidden Layer with Delays
Output Layer
e W y(
>EOR ® /
b
1
b

20

Figure 4.27 Graphical diagram representation of neural network
After obtaining the identified system for the model, the model is linearized. Linearization
depends on the tangent linearization of nonlinear black-box model by which a first-order
Taylor series approximation is obtained. The codes written to use the model predictive

controller with the neural network is in Appendix.

Simulink blocks of the model predictive controller with neural network is demonstrated in
Figure 4.22. There are three parts in the block diagram. The upper part is used for the model
predictive controller design, the left bottom part is used for data supply and the right bottom

part is the neural network with two layers.

The next step after MPC design is to use this MPC in simulink model of co-simulation plant.

Figure 4.23 shows the co-simulation block diagram.
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CHAPTER 5: RESULTS and DISCUSSION

This chapter is the last chapter before the conclusion chapter and divided into four main

categories.

5.1 Belt Drive System Behavior under Different Driver Velocity Inputs

A prototype belt drive system model is tested for impulse, ramp, sinusoidal and step inputs
in this section. System is modeled with NARX neural networks initially, and then this
model is used for an MPC. The aim of this section is to show the power of NARX

networks rather than real life approximation.

5.1.1 Impulse Input

The first input used to test the artificial neural network is the impulse input. It is crucial to
note that sinusoidal training tensioner force input is used in order to teach the system
behavior to NARX artificial neural network in all driver velocity inputs. Sinusoidal waves’
scanning the all predefined points of tensioner force range enable easy system identification

of belt drive system.
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Figure 5.1 The training 1nputs for impulse driver velocity
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Figure 5.3. Narx performance for the impulse training inputs
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Figure 5.2, Figure 5.3 and Figure 5.4 show the NARX related results for the impulse driver
velocity.70% percent of the data is used for training, 15% of data is used for test and 15%
of data is used for validation data. As can be seen from Figure 5.2, NARX results are close
enough to the system response to make a model. Figure 5.2 and 5.3 supports this idea with
small mean square error which is about 108 and data’ s being around the fitting line

respectively. Figure 5.5 shows the success of the NARX neural network for different inputs.

Training: R=0.99734

O Dala
Fit

0.06 0065 0.07 0075
Target
Test: R=0.99369

O Dala
Fit

0.06 0065 0.07 0075
Target

1*Target + -0.0011

0.99*Target + 0.00057 Output ~

Output ~

0.075

0.07

5
L4

5

0.075

0.07

B
n

&

Validation: R=0.99711

0.06 0.065 0.07 0075

Target
All: R=0.99683
O  Data
Fit
---------- Y=T

0.06 0065 0.07 0075

Target

Figure 5.4. Narx regression for the impulse training inputs

Two layers are used with 20 neurons and 4 delay for this artificial neural network.
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Figure 5.5 Narx confirmation for the extended training mputs

The above Figure is used to test the system behaviour in case of extended impulse driver

velocity and tensioner force. The closeness of the NARX result is good enough for system

approximation satisfaction.The above result is used to show the success of artificial neural

network for extended training input. However, the system will be controlled in case of zero
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tensioner force and the tensioner force will be applied according to the plant model. In other
words, it is expected that the artificial neural network should works well enough in case of
no tensioner force is applied because it can be desired to get a response such that no tensioner
force is required. That is why the established NARX model is tested for the same but without
tensioner force data in Figure 5.6.
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Figure 5.6 Narx model confirmation trained with impulse mput 1n case of no tensioner
force is applied
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Impulse inputs different from the previous data set is used to test how the NARX model
approximate the different impulse inputs in the same range.
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Figure 5.7 Narx model confirmation trained with impulse mput for different driver velocity
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5.1.2 Ramp Input

The second input type is ramp input. Figure 5.6 demonstrates the training inputs. The same
procedure is applied to this type of input.
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Figure 5.8 The training inputs for ramp driver velocity

Figure 5.7 shows the NARX responses for the above training data set. The same percentages
mentioned in the impulse driver velocity is used for this and the remaining inputs. In

addition, NARX delay, number of neurons and the transfer functions are same.
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Figure 5.10 Narx performance results for the ramp training inputs
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The NARX model results are for training, test and validation data are shown in Figure 5.9.
Obtaining a perfect fit is not possible; therefore, the error shown below the responses are
accepted to model satisfaction. The mean square errors for training, validation and test data
are as shown in Figure 5.10. The best validation performance value decreases to 1.6534 x
108, The convergence of the error just a little above y=10"2 line is a good indication for the
belt drive system model fit.
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Figure 5.11. Narx regression results for the ramp training inputs

The above figure shows the regression plots for training, validation, test data and
combination of all. The closeness of R value to zero and data to fit line are the two critical
indicators for the success of regression and it is obvious that the NARX model is a good

approximation for the ramp input.
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Figure 5.12 Narx confirmation for the extended training inputs
The above figure shows how this NARX model behaves under extended training data. The
same data except for the tensioner training force tested and as can be from the Figure 5.13

the results of MBD and NARX are close. A different driver velocity data is tested for the
same purpose in the below figure.
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5.1.3 Sinusoidal Input

The third input data type is sinusoidal input. Sinusoidal input is tested for different
frequencies as can be seen from the below figure.

80 T T T T 1 T T T

60 .

40 .

20 .

Sinusoidal Input for Driver Velocity
(rad/sec)

T

-1000

Training Force (N)

_1 500 | | | | | 1 1 L
0 10 20 30 40 50 60 70 80 90

Time (sec)

Figure 5.15 The training inputs for sinusoidal driver velocity

The dominance of the tensioner force over the driver velocity inpus is seen from the figure
below. However, the effect of the driver velocity on the system response is more clear in
this figure compared to the ramp input. This effect is smaller compared to the impulse input.
The reason behind this behaviour is that whereas the sudden changes in the driver velocity
has strong effect on the belt behavious due to its strong tensioning effect, the soft transitions
in the driver velocity has not that much effect. Although it is possible to obtain better results
by changing the parameters used in this artificial neural network, the closeness of NARX
model to MBD model in Figure 5.16 is accepted as satifactory.
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Figure 5.17 Narx performance for the sinusoidal training inputs
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The performance values of the NARX model is plotted in Figure 5.17. Training,

validationand test data mean square errors converges near to y=107 line.

Moreover, regression plots in Figure 5.18 supports this idea as fit line pass from almost all
of the data circles centers. The R value for all data sets; i.e., training, validation, test and

combination sets, are all bigger than 0.999 value.
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Figure 5.18 Narx regression for the sinusoidal training inputs
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Figure 5.19 Narx confirmation for the extended training inputs

Above figure reveals how the NARX model approximate the MBD result in case of extended

training inputs are used. Since the training tensioner force has three different frequencies,

80



the results are changing accordingly. The effect of driver velocity becomes more obvious
when the tensioner force reaches its peak values especially. The weaker effect of the driver

velocity compared to the tensioner force is expected because the tensioner force will be the
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Figure 5.20 Narx model confirmation trained with sinusoidal input 1n case of no tensioner

force is applied
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Figure 5.20 and 5.21 are used to observe whether the similar effects occur at different

sinusoidal driver velocities when system is free of tensioner force.
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Figure 5.21 Narx model confirmation trained with sinusoidal input for different driver

velocity 1n case of no tensioner force is applied
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5.1.4 Step Input

The training inputs used for the step input velocity profile are given in the below figure.
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Figure 5.22 The training inputs for step driver velocity

Figure 5.23 shows the outputs of NARX model for the data plotted in the above figure. The
performance value of the artificial neural network decrease to 1.422 x 10 mean squre error

for validation. The training and the test errors are also close to 10 value.
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Figure 5.25 Narx regression for the step training inputs

Another verification for the model, is using the regression plots. According to Figure 5.25 ,
data circles are either on or close to the fitting line. Moreover, R value for training,

validation, test sets and combination for all of the sets are bigger than 0.9995 value.
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Figure 5.26 Narx confirmation for the extended training inputs

The extended training set is used for the step input as in impulse, ramp, sinusoidal inputs.
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Figure 5.27 Narx model confirmation trained with step mput 1n case of no tensioner force

is applied

The tensioner force does not exist in Figure 5.27 and 5.28.That is, the only input affecting
the belt span behaviour is the driver velocity. Thus, it is expected that the driver velocity

affects the system directly. As driver velocity increases, the tension on the belt span
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increases. As a result, the slack side go upward and sensor reads this as decrease in the value
given by position sensor.
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Figure 5.28 Narx model confirmation trained with step mnput for different driver velocity in

case of no tensioner force is applied
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Sensor Readings for Mid- Point Positions {m)
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Figure 5.29 Mpc results for impulse, ramp, sinusoidal and step inputs
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After design of the prototype serpentine belt drive system with multi body dynamic
simulation program, the model predictive controllers are used for the data shown in Figure
5.6,5.13, 5.20, 5.27 which are used for the impulse, ramp, sinusoidal and step driver velocity

types respectively.

5.2 Effect of Sensor Numbers on the Belt Drive System Control

Although decrease in the oscillation of the middle point of the upper belt span reveals that
transverse vibration is throughout the span, more than one sensors will be used to decrease
the transverse vibration of the span. This case can be thought as a result of a theoretical
approach rather than being a feasible one because using more than one sensor makes the

system more complex and increase the cost.

The critical point here is to decide the weight of the selected points so that their effects on
overall system is established well. Although there can be other methods about how to give
weights correctly, two main approaches are described here. Whereas the first approach based
on making a reasonable guess and making a correction according to the results, the second
one relies on giving a weight decision according to the observations or calculations. The
second approach is used for the prototype belt drive system in this study.

In order to apply the approach mentioned above, displacement amounts are considered
initially. Using displacements instead of distance value is the key point if the oscillation
amount is the concern since the position of the points in the direction of gravity can be
somehow closer to the origin due to the geometry of the system. That is, values from the
sensors should not be used directly. After displacement amounts are found, points are
ordered and evaluated according to the difference between the maximum and minimum

values of each point.

Figure 5.31 is shown to present the weights in a more understandable way. K represents the
difference between the maximum and minimum distance of observed points and Kmin is the

minimum value among the K values.
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Figure 5.30 Points measured by the equally distributed seven sensors

The sharp edge of the arrows in Figure 5.30 indicates the points measured by position
sensors. As can be seen from this figure, seven sensors are employed for the purpose
mentioned in the introduction of this section. The sensors are numbered from left to right

order according to the reader’s perspective. For instance, if sensor one is mentioned, it means

the leftmost one according to reader.
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Figure 5.31 Unitless comparison of measured points
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The above figure is only used to make comparison among the results for equally distributed
seven sensors. The weights are given so that sum of the all coefficients is equal to 1 in the
co-simulation. The weight values of each point are given as 0.145258978670547,
0.161354587336083, 0.163886711791279, 0.157228329935026, 0.142780042824176,
0.142780042824176 and 0.0867113066187129 in order.

The results can be summarized as follows:

Maximum displacement occurs at the 3" point

- Maximum displacement occurs at the 7" point

- The displacement amounts are greater on the left side (from the reader’s
perspective) of the span mid point

- Displacement decrease on the right end is great compared to the left end

The results seem reasonable. In order to make clarification on this point, another belt and
pulley system can be considered with driver and driven pulleys which have same radius. For
this situation, it is expected to see the maximum displacement on the midpoint and close
displacement values for the left and the right sections of midpoint. However, the radius of
driven pulley of the belt and pulley system considered is bigger which restricts the motion
of the belt more compared to driver pulley with smaller radius. Briefly, the displacement

amount is strictly related to the restriction of the belt motion.

The below figure shows the co-simulation blocks used to control the tensioner when both

one sensor and seven sensor are used.
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Figure 5.33 Comparison between multiple and single sensor cases
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Figure 5.33 consists of four sub-plots. The two plots at the top are used to demonstrate the
driver velocity and tensioner force comes from the model predictive controller. The results
related to two different control approaches, reference line and uncontrolled plant output are
given in the plot placed at the middle of the figure.. Except for the start phase, reference line
is followed with -0.7 and +0.7 mm tolerance. In order to make a better comparison between

the approaches Figure 5.34 is given below.
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Figure 5.34 Figure 5.34 Detailed view of comparison for different number of sensor use
As can be seen from the above figure the results are compatible with each other except for

the small difference which can be ignored.
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5.3 Controller Comparison

Section 5.3 composed of three main branches. MPC (Model Predictive Controller) design,
PID (Proportional-Integral-Derivative) Controller Design and comparison of these

controllers are the branches in this section.

5.3.1 Parametric Study on MPC

Since there are number of parameters to be changed in order to reach the best MPC
parameters, it is better to start with a reference MPC and make a parametric study on this
reference design. The common approach is to decide sampling time, Ts, in the initial time,
then change it if the first choose was poor after several trials tried for the other parameters.
Generally, decrease in Ts results in increase in the reduced disturbances but this increase has
negative consequence in terms of computation effort. The balance between these two criteria
is the key for MPC design. Whereas it is preferred that Ts >> 1 in process control design
studies, Ts < 1 is the preference in the area of automotive related studies. In case of belt
drive system in this study, the sampling time is chosen as 0.01s to respond the sudden
changes in transient state despite of the increased computation steps. Similar to the sampling
time, prediction horizon is chosen initially. Since the aim of using MPC is the future
anticipation, the prediction horizon is increased as soon as the impact of the change is
relatively small as a rule of thumb. The control horizon is used for minimization of errors
over the prediction horizon and satisfying the conditions defined with constraints. Thus,
control horizon is chosen as a smaller value than the predicted horizon.

Table 5.1 reveals the first parametric study for model predictive controller design. As they
can be seen from the table, prediction and control horizons are fixed at 10 second and 3
second respectively up to the 20" MPC design to see the effect of weights. The prediction
horizon and the control horizon are changed together at 20" design; i.e, the transitions are
not done step by step by changing the control parameters individually and evaluate the
results one by one because the aim of this table is to show the effect of weights rather than
horizons. The controllers after 19" design is used to reveals that similar weight effects can

be observed in different horizon combinations.
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Table 5.1 Parametric study for mpc design

((chl)lr;trr Prediction | Control | We|.ghts

Horizon Horizon | Manipulated Manipulated | Controlled
Name Variable Variable Rate | Variable
MPC 1 10 3 1000 10000 1000
MPC 2 10 3 500 10000 1000
MPC 3 10 3 250 10000 1000
MPC 4 10 3 0,01 10000 1000
MPC 5 10 3 0,01 0,01 1000
MPC 6 10 3 0,01 0,1 1000
MPC 7 10 3 0,01 0,01 0,01
MPC 8 10 3 0,01 0,01 10
MPC 9 10 3 0,01 0,01 1000
MPC 10 10 3 0,01 0,01 100000
MPC 11 10 3 0 0,01 100000
MPC 12 10 3 0,01 0 100000
MPC 13 10 3 0 0 100000
MPC 14 10 3 0 0,0001 100000
MPC 15 10 3 0 0,00001 100000
MPC 16 10 3 0 0,01 100000
MPC 17 10 3 0 0,001 1
MPC 18 10 3 0 0,0001 1
MPC 19 5 2 0 0,001 1
MPC 20 5 2 0 0,01 0
MPC 21 5 2 0 0,01 0,001
MPC 22 5 2 0 0,01 0,01
MPC 23 5 2 0 0,01 10
MPC 24 5 2 0 0,001 2
MPC 25 5 2 0 0,001 0.50
MPC 26 5 2 0 0,0001 100000
MPC 26 5 2 0 0,0001 100000
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The controllers of which parameters are given in Table 5.1 are plotted in Figure 5.37 based
on the driver velocity shown in Figure 5.35 and -580 N constant pre-tension force. The
results without controller for these inputs are given in Figure 5.36 seperately. Since the
change in each parameters can have different effects when other parameters are varied,
severeal MPC designs are demonstrated in this table. The summary of this parametric study
is that if the controlled variable is raised, the manipulated variable rate is made closer to the
zero value and the manipulated variable is fixed at zero at the same time, the controller
follow the reference line better. Time to reach the desired value decreases. Although several
reference trajectory is tested, the effect of weights are the same; hence, only step input

reference trajectory is shown.
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Figure 5.35 Driver Velocity Input with Respect to Time Used For Controller Comparison
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In order to see how control horizon affects the controller; prediction horizon is fixed at 10,
control horizon is changed for the value of 3. In addition, weights are fixed at the 26"

controller parameters of previous parametric study.
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Figure 5.38 Mpc controller’ s reference line tracking performance for different control
horizons
The control horizons are are 3,7,1,2,10,15,11 for MPCont1, MPCont2, MPCont3, MPCont4,
MPCont5, MPCont6, MPCont7 respectively.
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The summary of the above figure is given in the table below. It can be easily inferred from
the table that as control horizon decreases, time to reach reference line in case of sudden

change decrease.

Table 5.2 Effects of control horizon on mpc reference line tracking

Controller Order of Success for
Prediction Horizon | Control Horizon| Reaching the Desired
Name
Value
MPC ontl 10 3 3
MPC ont2 10 7 4
MPC ont3 10 1 1
MPC ont4 10 2 5
MPC ontb5 10 10 5
MPC ont6 10 15 v
MPC ont7 10 11 6

Then, control horizon is fixed at the best value for the same weights and prediction horizon

is increased for the reference time, 10 sec. The result are given in the below table.

Table 5.3 Effects of prediction horizon on mpc reference line tracking

Controller Order of Success for
Prediction Horizon | Control Horizon| Reaching the Desired
Name
Value
MPCont3 10 1 4
MPCont 9 25 1 2
MPCont 10 40 1 1
MPCont 11 15 1 3

The increase in the prediction horizon for the belt drive system model decreases time to
reach the followed trajectory. In order to support this idea, prediction horizon is decreased
for the reference value and the comparison is made with the controller given in the above

table. The controller named with MPC Controller is better than the others in terms of
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reaching the desired level in the quickest way. However, it is hard to say that increasing the
prediction horizon and decreasing control horizon at the same time gives better result without
trying the other combinations. Although it is possible to give the limits and steps for horizons
and weights and then test the combinations of all in a single function, it takes great amount
of time for simulation. In order to escape from this huge amount of time consuming job, trial
and error procedure is followed as the most practical engineering way. In this procedure it
is realized that though the effect of weights on the tried horizons are almost the same,
choosing different horizon combinations can provide distinguishable positive benefits from
different perspectives. In order to demonstrate this phenomena, MPCont 10 in table 5.3 is
compared with the controller whose prediction horizon is 5 sec and control horizon is 1 sec.

This new controller is named as MPC_P5H2 and the previous one is named as MPC_P40H1.
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Figure 5.39 Comparison of Mpc for step reference trajectory
As it can be seen from the above figure, MPC-P40H1 enable the drive system to show
reactions more. Thus, it reaches the reference line faster; nevertheless, it should be noted

that this achievement does mean that it continues to follow the reference line. Even though

MPC-P5H2 reaches the reference line slower it keeps to follow the reference line for 0.08m.
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Briefly, whereas MPC-P5H2 is better in the initial state, MPC-P40HL1 is better after 21
seconds. Both of the controller will be used when they are compared with PID controllers.

5.3.2 Parametric Study on PID

Even though the main focus of this study is to model and control the belt and pulley system
with model predictive controller, its performance is compared to the most commonly used
controller, PID. For this conventional and commonly used controller approach several

automatic tuning algorithms are used and they are shown in the table below.

Table 5.4 Tuned parameters for pid controller design

Automatic Tuned Parameters for PID
PID Parameters PID Parameters/ output limit
IDEAL IDEAL
Parameters Values Parameters Values
p 2283 p -7
| 286 | 100000
D 0 D 0
PARALLEL PARALLEL
Parameters Values Parameters Values
P 0 P 0
| -653620 | -653620
D 0 D 0

Best P,l and D Gains

Parameters Corresponding Values
P 10000
| -6536
D 100
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Despite of the success of the reference tracking of the controllers whose parameters are
gathered from the automatic Matlab tuning listed in the above table, a more successful PID
controller is established by changing the parameters manually which are shown under the
title of best P,I and D gains in the above table. Since automatic tuning gives different results
for ideal and parallel cases for which PID controllers will give different results, both results
are shown in the table in spite of the fact that they can be equated only by changing Kp value.

Compensator formula for ideal and parallel cases are given in order below:

P<1+11+D N1> and P+114p N (28)
s 1+N s 1+N 5
where
P proportipnal
I integral
D derivative
N filter coefficient
or the formulas can be rewritten in terms of gains and time constants as follows
1 T4S Ki K s
Kp<1 tis +T1‘\1,—S+1) and  Kp+— +m (29)

where

Kp  proportional gain

Ki integrator gain

Kd  derivative gain

Tf derivative filter time
Ti integrator time

Td derivative time

N derivative filter constant

The name ‘best’ in the table refers to the best among the PID controllers used for parallel
representation in this study. In order to have this controller parameters, several trial and
errors are made. Firstly, all the gains are changed by isolating the effect of others by giving
zero as the value to the others. The purpose is reaching the desired value as soon as possible

and tracking the reference value in case of input changes. K is used in the initial step. It is
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observed that the increase in the magnitude of K, has positive effect on the purpose
mentioned above around the values gathered by trial and error. Changing K gains by putting
zero value to the others, do not have a considerable effect. In addition, using Kq gain only
will not be a good idea owing to the significant amount of oscillation. Secondly, values other
than zero is assigned to the gains by changing them in the order mentioned above after
fixation of the others to use all the gains for the improvement of controller performance. As
mentioned above, the increase in the magnitude of proportional, about the value 10000, ease
to reach the reference line; however, negative K, values restrict the benefits from Ki and Kd
gains. Thus, positive value for this gain is used. After fixing the value for K, Ki is changed.
Opposite to the case in Kp, the positive effect on reaching and following the desired value
can be adjusted for negative values of Ki. Despite the reduced oscillation effect of further
decrease in the value of K;, following the reference trajectory is affected negatively from this
change. Thus, it is fixed about the value such that the positive effect is maximized. Then, Kgq
gain is adjusted with Filter Coefficient. Filter coefficient is fixed at 100 because further
increase results in great amount of change in the amplitude of oscillations and decrease of N

value from the fixed value, eliminate the effect of Kg.
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Figure 5.40 shows the positive contribution of Kq in the initial step. With the given Kg
value, oscillation amount is reduced for the first second. Other the initial step, there is
almost no effect of Kq for the system considered. Simulink block diagram of PID controller

used in this study is shown below.
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Figure 5.41 PID block used for comparison

Finally, the abovementioned procedure for attaining a value for the constants P,I,D are
repeated by changing one and fixing the others over the last design to improve the controller

for the design objective.

5.3.3 MPC and PID Comparison

The MPC and PID controller comparison is done in this section. The parameters of these
two types of controller are given in figure below for the prototype belt drive model with -
580N pre-force. The driver velocity for the comparison is same with the velocity profile

shown in Figure 5.33.

Since automatically designed PID controllers gives not satisfactory results in terms of in
terms of reference tracking and oscillation amplitude, they are not used in the following

figure to make a more clear comparison.
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Figure 5.42 MPC vs PID controller
. The oscillation amount with PID controller reaches unacceptable level for the reference
line of 0.07m. The table 5.5 is provided to make a comparison from the perspective of mean
value and speed of reaching the desired values. The mean values are calculated for the overall
time range. It is used to show that all the controllers tries to be near the reference lines.
However, the maximum and minimum values are changing; therefore, this data cannot be
used alone. When we look at the time to reach the desired level, MPC-P40H1 is the fastest

one followed by MPC-P5H2.
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Table 5.5 Comparison of controllers

MPC- MPC-
Reference PA0HL | P5H?2 PID
Mean Values (m) 0,07542 | 0,07561 | 0,07582 0,07451

Absolute Values of Mean Differences ) 0,00019 | 0,0004 0,00001

(m)
Time To Reach Reference Line with ) (1,02)/ 489 i
0.080 m (sec) 23,17 ’

Time To Reach Reference Line with
0.075 m (sec)

Time To Reach Reference Line with
0.070 m (sec)

- 38,06 48,07 51,62

- 56,86 60,03 61,1

Time To Reach Reference Line with

0.077 m (sec) - 89,91 94,97 98,82

In addition to the above comparison, model predictive controllers are compared in terms of
cost values in Figure 5. 42. The closeness of the cost values to zero reveals the degree of

controller performance.
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Figure 5.43 The comparison of the controllers

108



5.4 Case Studies

Since number of case studies introduced in this study, below table is supported to better
understand the different situations in the cases.

Table 5.6 Case studies

Elementary Level Case Studies
Cases Velocity Profile
la Sudden Increase in Vehicle Speed
Il.a Sudden Decrease in Vehicle Speed
Il.a Combination of Casel and 2
IV.a Case3 for Narrower Brake- Throttle Range
Intermediate Level Case Studies
Cases Velocity Profile
I.b Sudden Increase in Vehicle Speed
I.b Sudden Decrease in Vehicle Speed
b Combination of Casel and 2
IV.b Case3 for Narrower Brake- Throttle Range
Advanced Level Case Studies
Cases Velocity Profile
l.c Sudden Increase in Vehicle Speed
Il.c Sudden Decrease in Vehicle Speed
Il.c Combination of Casel and 2
IV.c Case3 for Narrower Brake- Throttle Range

109



The main categorization depends on the construction of the system components and sub-
categorizations are according to the input values. Input related cases for the elementary,
intermediate and advanced level case studies are common. In order to escape from the
unnecessary repetation of these common data, they are demonstrated in this section.
MPC_P5H?2 is preferred for the case studies.

5.1.1 Elementary Level Case Studies

Elementary level case study is considered as a prototype model for the belt drive system.
Figure 5.43 shows the response of the deflection for NARX type neural network whose

details are given in Chapter 4.
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Figure 5.44 Neural network responses for elementary level case studies
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Although above figure gives an idea about the success of the neural network for system
identification, regression plots and performance graph are also demonstrated in the following
figures. Regression plots are drawn for training, validation and test one by one. Then, over
all regression plots are combined in a single one. In other words, regression plot for all
supplied data are drawn as a fourth one. Data’s being on or near the fitting line indicates that

neural network model seems good enough for system identification.
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Figure 5.45 Regression Plot of the System for Elementary Level Case Studies




The next figure shows the same success in terms of system’s performance values according
to the mean square error. There are three solid and two dotted lines in Figure 5.45. Two
dotted lines are used to show the best validation performance value. Blue, green and red
solid lines are used for training, validation and test data respectively. Mean square error
values for all of the solid lines reaches values smaller than 10.e-007. In addition,
convergence of the solid lines on the same line shows the consistency for training, validation

and test.

Best Validation Performance is 4.0583e-08 at epoch 35
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Figure 5.46 Performance values of the system for elementary level case studies

According to the neural network model, model predictive controller is designed. This

controller is tested for four different cases and the results are demonstrated in the below.
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Figure 5.47 Test data 1 for elementary level case studies
The above figure can be summarized as follows:

- There is a sudden increase in the driver velocity in the initial step

- Relatively small step changes in the driver velocity profile exhibits the change in
the gears.

- Sudden change in the driver velocity is compensated with relatively big change in
the control input; i. e., tensioner force.

- The oscillation in the initial step is decreased as time goes

- Reaching a reference value of 0.08 takes about three seconds.
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Figure 5.48 Test data 2 for elementary level case studies
The summary of Figure 5.47 is given as follows:

- After sudden increase in the driver velocity profile, there is a sudden decrease after
five seconds.

- Due to the decrease in the driver velocity profile, belt moves in a more relaxed
manner. In other words, tightening effect of driver velocity is decreased. As a
result, belt span moves in a lower value as can be seen from the result without
MPC. The decrease in the belt tension can be also understood from the decrease in

the small oscillations in the same line.
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- After 5 seconds, there is a tendency of exceeding the reference line for the result with
MPC. Although maintained tensioner force do not enable so much overshoot in the
initial step, the slope for overshoot increase after 7.5 seconds due to the internal
model. Fortunately, overshoot value is fixed at about 8.6 seconds with the help of
feedbacks.
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Figure 5.49 Test data 3 for elementary level case studies
The critical part for test data 3 are given as:

- Sudden increase and decrease in the velocity profile is extended.
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- The opposite relationship between the driver velocity and the sensor reading for the
system without MPC can be seen more obviously in this case.

- The effect of the same opposite relation is less for the system with MPC.

- Although control input seems as if it is constant after three seconds, it is not. The
reasons why the control input line loos like this is due to the limits and size of the

figure. The following figure demonstrates this reality.
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Figure 5.50 Detailed view of test data 3 for elementary level case studies
The important points of the detailed view of test data 3 is shown below:

- Itis detailed version for case three.

- As velocity profile increases, the tension in the belt span increases which results in
difficulty in the belt movement in the vertical direction. As a consequence, the
magnitude of the control input increases.

- Although there is an increase in the applied tensioner force when there is an

increase in the velocity profile, the general tendency is in the direction of decrease.
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One reason for this situation is the differences between the rate of increase and

decrease in the velocity profile; nevertheless, the main reason is the amount of

constant velocity time.
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Figure 5.51 Test data 4 for elementary level case studies

The comments on test data 4 is revealed as below:

- The increase in the change rate of the velocity profile is modeled in case 4.

- Reaching the desired value is close to the other cases.

- Similar to the other figures, compensation in case of slackness as in the time range

between 2-2.5 seconds and 5.8-6.3 seconds takes time.
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In this point it can beneficial to note that in case of real life applications, there are number

of linear actuators who can satisfy the required properties for tensioner reactions preferred

in this study. In addition, special designs can be offered by some producers.

5.1.2 Intermediate Level Case Studies

Since each level case studies depends on the diffrerent structural components, it is expected

to model them seperately. However, the same artificial neural networks established for each

case study level can be used for different velocity profiles.
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Figure 5.52 Neural network response for intermediate level case studies

The neural network response for the intermediate level case studies is given in Figure 5.51.

Similar to the intermediate level case studies, regression plots and performance plots are
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shown in the following figures. Closeness of the drive system outputs which are represented

by black circles and neural network are compared based on the fitting lines for training,

validation and test sets in regression figure. The decrease in the mean square error below e-

006 shows the degree of model closeness to the belt drive system in the next figure.
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Figure 5.53 Regression plot of the system for intermediate level case studies
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Figure 5.55 Test data 1 for intermediate level case studies
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The important results related to the Figure 5. 54 is in below:

Pre- Tension Driver Velocity

Tensioner Force

Sensor Reading for Position

Since the length of the belt is increased in this case, it is expected to increase the belt

tension by inspection. This idea was compatible with the trial and error procedure

described in the previous chapter. The magnitude of the pre- tension is increased to
the 1180 N by trial and error.

As can be seen from the last graph in the figure, five seconds is not enough time to

reach the desired value. However, convergence to the reference line exhibits the

success of the MPC.
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Figure 5.56 Test data 2 for intermediate level case studies
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The important consequences of test data 2 for intermediate level case study is summarized
as follows :

- Reaching a desired value for the four pulley system takes about eight seconds.

- Owing to the increase in the length and high pre-tension, the tension on the belt is at
higher levels compared to the elementary level case studies. Thus, oscillation in the
transverse direction is increased. In addition, the effect of increase and decrease of
velocity takes time.

- Due to the gear change in the transmission, there are sudden changes in the profile
which affects the belt motion characteristic as can be seen from the result without
MPC in Figure 5.55 After the last driver velocity drop due to the gear change when
car velocity is tried to increase, the belt span vibration goes into a deflection increase
trend and it reaches a maximum value after a step change due to the decrease in the
car velocity. Although driver velocity is decreasing after five second, the slope of
velocity decreases. In other words, the slackness level of the span increases which
results in a decrease trend in the oscillation but this oscillation is higher than the
initial driver velocity increase trend. The control input cannot reach a fixed value due
to this complex oscillation trends but it is increased continuously during the case

time.

The crucial points related to the test data 3 plot is as in below:

- It is the extended version of the previous ones. Hence, the effect of driver velocity
on the transverse oscillation is more obvious.

- The high pre-tension effect is observed as peg-top like shapes in the transverse belt
span movement. The high level of velocity between 8 and 14 seconds results in the
small deflection. Although there is a velocity decrease in the range mentioned, the
transverse span deflection does not affected due to the high tension in the belt in this
range. However, three seconds of low driver velocity profile trigger the increase of

belt span deflection up to sudden increase in the velocity profile.
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Figure 5.57 Test data 3 for intermediate level case studies

The detailed view results of test data 3 for intermediate level case study is shown below:

In order to better understand the control input behavior for the case considered in

Figure 5.57, the above figure is demonstrated. In order to observe the change in the

control input better, both figure is extended and time limit start from five second

before which there is a sudden increase in the magnitude of tensioner force which

dominate the figure.

Though there is an increase in the magnitude of the control input through the

considered time in the case, there are several decrease in the magnitude to balance

the increased tension in the belt span to follow the reference trajectory or line.
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Figure 5.57 Detailed View of Test Data 3 for Intermediate Level Case
Studies

- In case of narrower throttle and brake range as shown in Figure 5.58, peg-top like
shapes appear earlier and the result with MPC is not as stable as the previous ones
because reaction from the controller to the belt drive system follow a pattern which

mainly depend on the internal model.

5.1.3 Advanced Level Case Studies

In addition to the complexity in the intermediate level case studies, three milimeter revolute
joint axes dislocation is put intentionally to test the neural networks and model predictive
controller in a more complex situation. As can be seen from the time series figure of NARX,

the response of the system is maximum in terms of span deflection.
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Figure 5.58 Test data 4 for intermediate level case studies

Regression plots and performance plot of the NARX for advanced level case study are
demonstrated in the following figures. All of these figures are used to support the neural
network model consistence with multi body dynamic results.

125



0.075 | '
e T4 + Training Targets
+ Training Outputs

0.07F Validation Targets
+ Validation Outputs
£ 0.065 Test Targets
o + Test Qutputs
e Errors
E 0.06 —Response
5
g
8 0.055
0.05 k<
I¥ 1l
H ] L |
0.045 i HF
0.04 - ]
0.02 T T
Targets - Outputs
0.01- .
=
S
w
_001 | | | | | |
2000 4000 6000 8000 10000 12000
Time Step

Figure 5.59 Time series response of Narx for advanced level case studies

The critical points of Figure 5. 62 are as follows:
- Pre-Tension applied to the belt is increased about 34% according to the intermediate
level case studies in order to maintain the contact between the belt and the pulleys.
- Itis expected that as driver velocity increases, the transverse vibration of the belt

span is restricted due to the increased tension in the span and whenever enough
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Figure 5.60 Regression plot of the system for advanced level case studies

Best Validation Performance is 6.5511e-07 at epoch 28
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Figure 5.61 Figure 5.61 Performance values of the system for advanced level case studies
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Figure 5.62 Test data 1 for advanced level case studies

amount of decrease in the driver velocity occurs, span tries to move in a more flexible
environment due to the decreased belt tension. However, this time there is a 3 mm
revolution axis dislocation for the driver pulley. It means that as velocity increases
the effect of the dislocation will be felt more. In other words, a more complex belt
motion is expected.

Increase in the driver velocity determines the degree of change in the span motion.
Gear change affects the velocity profile little as in Figure 5.62

Although driver velocity in the advanced level case is decreased to the one tenth of

the elementary and intermediate level case studies’ and reference line fixed only one
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centimeter above from the average position of the span, belt drive system response
is under the reference line due to the complex behavior of the span in this case.
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Figure 5.63 Test data 2 for advanced level case studies

Figure 5.63 can be summarized as:

- As car decelerate, the position of the span deflection decreases and the frequency of
the up and down motion reduces.
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Further decrease in the driver velocity gives the span more area to move. Thus,
comparatively great amount of position change around eight second is reasonable.
Upper span motion of the belt after the sudden up and down motion around eighth
second moves irregularly due to the freedom of reduced belt tension.

Although convergence to the reference line seems slow, it is the 2.1 second that result
with MPC is only 2 mm away from the reference. Reaching the reference line takes
5.8 seconds; however, the sudden decrease in the driver velocity makes the job of the
controller difficult as decrease in the driver velocity goes on. In this point, it should
be also put into account that after the start of the decrease in the driver velocity, the
slope of the result with MPC is improved which means that it is possible to think the
positive effect of the decrease in the driver velocity on closing to the desired value

in the initial decrease phase.

The summary of Figure 5.64 can be demonstrated with following comments as:

How the increase and the decrease in the driver velocity affects the span motion may
be understood better by using the extended graph shown in Figure 5.64

Since the pre-tension applied to the belt is at the higher limits which is 2.72 times of
the elementary level case and 1.34 times of the intermediate level case studies, the
tension on the belt restricts the motion of the belt to the upper side. That is why
decrease in the driver velocity causes increase in the upper belt span unlike the
elementary and intermediate level case studies. In other words, position reading from
the sensor goes a general decreasing trend.

However, seeking from the tensioning perspective, the logical response sequence
from the controller can be seen better because belt motion is directly affected from
the tension given to the system. There are two main reasons for the change in the
upper belt span tensioning in case of not using a controller and considering not to
change the pre-tension which is decided in the initial step in real life too.

Although they are both due to the velocity profile, considering them separately but
not independent of velocity ease the observation. One of the reason is tension due to
the stretching and releasing effect of velocity change and the other one is the change
in the contact position of the belt with pulley due to the crooked driver pulley center
of rotation. It is clear that up and down motion occurs in a larger scale in case of
increase in the driver velocity. Inaddition, sudden decrease and increase in the driver
velocity influence the belt tensioning strongly which makes reaching the desired

position of the mid-span harder because of the high tension on the upper belt span.
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In order to govern this difficulty, the controller gives a freedom to the belt span to
reduce the effect of high tension by decreasing the magnitude of the tensioner force.
This reasoning is valid on both the general behavior and the sudden changes in the

velocity profile as can be seen from the Figure 5.64.

It is not expected in advanced level case studies to reach and stay at the desired value
continuously since there is a driver pulley behaving as if it is a cam whose effect on
the upper belt span is hard to model perfectly. Yet even in case of narrower throttle

and brake range, it is possible to follow desired level as shown in Figure 5.66.
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Figure 5.64 Test data 3 for advanced level case studies

131



Control Input (N)

Sensor Reading
for Position (m)

Pre- Tension  Driver Velocity

Tensioner Force

Sensor Reading for Position

-200

T T T
-250 1
-300 -
-350 -
-400 |
Control Input ~ ===-=-= Driver Velocity
-450 1
fi "a"..--i '11..- ‘t..-i r."...-! I.‘.“.--! 150 =
= A P P g
Y o ! P L 7%y
AN H ' r'. 5, ff !\ 1'! \'\ o
\\'-'-'-'- 'l;f \.‘ ) ;: \‘\ H “\ i “‘n..T 20
T T T
ost T~ Result with MPC = = = Reference
P \ - P — [ e
06z ====~ T LR S L LT C e ey do
e omcr A - - - Aefremnmn®
04 1 1 1
500 1000 1500 2000 2500
Time Steps
Figure 5.65 Test data 4 for advanced level case studies
50 T T T T T T T
5 W
g oF 1
E 50 . . , Time Steps (0-800) ‘ ‘
0 100 200 300 400 500 600 700 800
-1579 T T
= -1580
1581 Time Steps (0-800)
100 200 300 400 500 600 700 800
0 T T T
-500 [ -
Z 1000 _ .
1500 ‘ ‘ Time Steps (0-800) ) )
0 100 200 300 400 500 600 700 800
0.08 T 7 T T o
0.07 B
. 006 ========= - == ol il Tl <
£ My
= |
r\lu n| \M \ﬂ [l
0.05 ﬂ \\J A \Wﬂ' \‘% M \ U \”\ww R il
|
Time Steps (0- 800)
0.04 - : : =
0 100 400 500 600 700 800
L | | | | | 1 1 |
0 1 2 3 4 5 6 7 8
Time (sec)

Figure 5.66 Test Data 4 for Advanced Level Case Studies
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CHAPTER 6: CONCLUSION

Transverse vibration of a serpentine belt system, whose numeric derivation is really hard
and time consuming, is modeled with the help of a multibody dynamic simulation program,
Recurdyn. The belt system studied in this work includes basic components of a serpentine
belt drive model which are driver pulley, driven pulley, tensioner and belt. After a multibody
dynamic system is constructed, inputs are chosen properly so that transient behavior of belt
in the drive system can be observed. The next step is to collect data and build a plant model
with the help of Neural Network (NN) toolbox after a modification on NN codes in Matlab.
Then, this plant is linearized to use in MPC. Finally, designed MPC is used in Recurdyn.
The comparison between the results with MPC and without MPC demonstrated the success
of this study. In addition to the parametric study done in MPC design procedure, another
parametric study is done for PID design. These two types of controller are compared and

results show that MPC is a better controller choice.

The critical contribution of this study can be summarized as follows:

Neural Networks are used to model the complex (transient state) belt behaviours,

Tensioner position is changed according to the desired input,

Transverse vibration of the belt span is decreased by using MPC,

Co-simulation with Model Predictive Controller challenge is solved

All in all, the tensioner of a belt-pulley system is controlled with a model predictive
controller by using artificial neural networks in this study. It is clear that the use of belt-
drive system in automotive industry will decrease as electric motors becomes commonly
used type of drive choice. However, it should be noted that although use of electric motors
are increasing day by day, the use of belt drive system continues due to the range limitation
for distance travelled, cost and so on. Moreover, the use of this study cannot be restricted to
the vehicle drive systems like vehicle accessory belt and trigger belt drives. The area of this
study is as wide as the field of belt drive concept. Therefore, this study can be beneficial for
both automotive industry and the other industries using belt-drive systems. Since this study

reveals the success of using MPC, working on real world set-up will be reasonable.
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APPENDIX:

Neural Network Code

% Solve an Autoregression Problem with Recurdyn Input with a NARX Neural

% Network for Recurdyn Belt Drive System Model

% This script assumes these variables are defined:

% (The below datas are gathered from Recurdyn)

% kk_RecurDyn_inputs_karma_forced - input time series./FREOM RECURDYN

% kk_RecurDyn_outputs_karma_forced_1 - feedback time series./FROM RECURDYN

X = tonndata(kk_RecurDyn_inputs_karma_forced,false,false);
T = tonndata(kk_RecurDyn_outputs_karma_forced_1,false,false);

% The training function is chosen by trial and error. ‘trainlm' is the best one in terms of both being fast and
more acuurate
trainFcn = 'trainlm’; % Levenberg-Marquardt backpropagation.

inputDelays = 1:4;

feedbackDelays = 1:4;

hiddenLayerSize = 20;

net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize, 'open',trainFcn);
net.sampleTime=0.01;% If neural network toolboxes with nnstart are used
%directly, the sample time cannot be changed at training;however, with this
%script timestep of NN and the simulation program is equated

% Choose Input and Feedback Pre/Post-Processing Functions

% Settings for feedback input are automatically applied to feedback output
% For a list of all processing functions type: help nnprocess

% Customize input parameters at: net.inputs{i}.processParam

% Customize output parameters at: net.outputs{i}.processParam
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'};
net.inputs{2}.processFcns = {'removeconstantrows','mapminmax'};

% Prepare the Data for Training and Simulation

% The function PREPARETS prepares timeseries data for a particular network,
% shifting time by the minimum amount to fill input states and layer

% states. Using PREPARETS allows you to keep your original time series data
% unchanged, while easily customizing it for networks with differing

% numbers of delays, with open loop or closed loop feedback modes.

[x,xi,ai,t] = preparets(net,X,{},T);

% Setup Division of Data for Training, Validation, Testing
% For a list of all data division functions type: help nndivide
net.divideFcn = 'dividerand'; % Divide data randomly
net.divideMode = 'time"; % Divide up every sample
net.divideParam.trainRatio = 70/100;
net.divideParam.valRatio = 15/100;
net.divideParam.testRatio = 15/100;

% Choose a Performance Function
% For a list of all performance functions type: help nnperformance
net.performFcn = 'mse’; % Mean Squared Error

% Choose Plot Functions
% For a list of all plot functions type: help nnplot
net.plotFcns = {'plotperform’,'plottrainstate’, ‘ploterrhist, ...
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‘plotregression’, 'plotresponse’, ‘ploterrcorr’, ‘plotinerrcorr'};

% Train the Network
[net,tr] = train(net,x,t,xi,ai);

% Test the Network

y = net(x,xi,ai);

e = gsubtract(t,y);

performance = perform(net,t,y)

% Recalculate Training, Validation and Test Performance
trainTargets = gmultiply(t,tr.trainMask);

valTargets = gmultiply(t,tr.valMask);

testTargets = gmultiply(t,tr.testMask);

trainPerformance = perform(net,trainTargets,y)
valPerformance = perform(net,valTargets,y)
testPerformance = perform(net,testTargets,y)

% View the Network
view(net);

% Plots

% Uncomment these lines to enable various plots.
%figure, plotperform(tr)

%figure, plottrainstate(tr)

%figure, ploterrhist(e)

%figure, plotregression(t,y)

%figure, plotresponse(t,y)

%figure, ploterrcorr(e)

%figure, plotinerrcorr(x,e)

% Closed Loop Network

% Use this network to do multi-step prediction.

% The function CLOSELOOP replaces the feedback input with a direct
% connection from the outout layer.

netc = closeloop(net);

netc.name = [net.name ' - Closed LoopT;

view(netc)

[xc,xic,aic,tc] = preparets(netc,X,{},T);

yc = netc(xc,xic,aic);

closedLoopPerformance = perform(net,tc,yc)

% Multi-step Prediction

% Sometimes it is useful to simulate a network in open-loop form for as
% long as there is known output data, and then switch to closed-loop form
% to perform multistep prediction while providing only the external input.
% Here all but 5 timesteps of the input series and target series are used

% to simulate the network in open-loop form, taking advantage of the higher
% accuracy that providing the target series produces:

numTimesteps = size(x,2);

knownOutputTimesteps = 1:(numTimesteps-5);

predictOutputTimesteps = (numTimesteps-4):numTimesteps;

X1 = X(:,knownOutputTimesteps);

T1 = T(:,knownOutputTimesteps);

[x1,xio,aio] = preparets(net,X1,{},T1);

[y1,xfo,afo] = net(x1,xio,aio);

% Next the the network and its final states will be converted to

% closed-loop form to make five predictions with only the five inputs

% provided.
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x2 = X(1,predictOutputTimesteps);

[netc,xic,aic] = closeloop(net,xfo,afo);

[y2,xfc,afc] = netc(x2,xic,aic);

multiStepPerformance = perform(net, T(1,predictOutputTimesteps),y2)

% Alternate predictions can be made for different values of x2, or further

% predictions can be made by continuing simulation with additional external
% inputs and the last closed-loop states xfc and afc.

% Step-Ahead Prediction Network

% For some applications it helps to get the prediction a timestep early.

% The original network returns predicted y(t+1) at the same time it is

% given y(t+1). For some applications such as decision making, it would
% help to have predicted y(t+1) once y(t) is available, but before the

% actual y(t+1) occurs. The network can be made to return its output a

% timestep early by removing one delay so that its minimal tap delay is nhow
% 0 instead of 1. The new network returns the same outputs as the original
% network, but outputs are shifted left one timestep.

nets = removedelay(net);

nets.name = [net.name ' - Predict One Step Ahead1;

view(nets)

[xs,xis,ais,ts] = preparets(nets,X,{},T);

ys = nets(xs,Xis,ais);

stepAheadPerformance = perform(nets,ts,ys)

% Deployment

% Change the (false) values to (true) to enable the following code blocks.

% See the help for each generation function for more information.

if (false)
% Generate MATLAB function for neural network for application
% deployment in MATLAB scripts or with MATLAB Compiler and Builder
% tools, or simply to examine the calculations your trained neural
% network performs.
genFunction(net,'myNeuralNetworkFunction');
y = myNeuralNetworkFunction(x,Xi,ai);

end

if (false)
% Generate a matrix-only MATLAB function for neural network code
% generation with MATLAB Coder tools.
genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes');
x1 = cell2mat(x(1,));
x2 = cell2Zmat(x(2,:));
xil = cell2zmat(xi(1,:));
xi2 = cell2zmat(xi(2,:));
y = myNeuralNetworkFunction(x1,x2,xi1,xi2);

end

if (false)
% Generate a Simulink diagram for simulation or deployment with.
% Simulink Coder tools.
gensim(net);

end

% to generate simulink block

gensim(net)

%to see the performance of NN in terms of MSE(mean square error)

plotperform(net)

%to see how much fit is good

plotregression(net)

%to see how much fit is good

plotresponse(net)
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Matlab Code for Co-Simulation

addpath('C:\Program Files\FunctionBay, Inc\RecurDyn V8R4\Toolkits\CoSim_Simulink’);
%addpath('C:\Program Files\FunctionBay, Inc\RecurDyn V8R4\Toolkits\Controls\Matlab");
RecurDyn='C:\Program Files\FunctionBay, Inc\RecurDyn V8R4\Bin\’;
RecurDyn_CoSim="C:\Program Files\FunctionBay, Inc\RecurDyn V8R4\Toolkits\CoSim_Simulink\’;
RecurDyn_model='"Model4 2"
r_temp__ =size(RecurDyn_model);
RecurDyn_model_n=r_temp__ (2);
Output_File="Model4_2";
r_temp__ =size(Output_File);
Output_file_n=r_temp__ (2);
if(exist([RecurDyn_model,".rdyn))
RecurDyn_inputs = 'PRE_force!Tensioner_force!Driver_Vel';
RecurDyn_outputs = 'Dist1!Dist2!Dist3!Dist4!Dist5!Dist6!Dist7! Tensionl';
RecurDyn_io_ ids=[ 12345678910 117];
RecurDyn_controltimestep = 1.e-002;
Plant_inputs = Rearrange_io( RecurDyn_inputs );
Plant_outputs = Rearrange_io( RecurDyn_outputs );
r_temp___ =size(Plant_inputs);
Plant_inputs_num=r_temp___ (1);
r_temp___ =size(Plant_outputs);
Plant_outputs_num=r_temp___ (1);
r_temp__ =version;
Matlab_version=str2double(r_temp___ (1));
disp(");

disp('%%% INFO : RecurDyn plant actuators names :");

disp([int2str([1:size(Plant_inputs,1)]),blanks(size(Plant_inputs,1))',Plant_inputs]);

disp('%%% INFO : RecurDyn plant sensors names :');
disp([int2str([1:size(Plant_outputs,1)]9,blanks(size(Plant_outputs,1))',Plant_outputs]);

()/SIdSIF;EJ( Thkkhkhkhhkhkhkhkkhkhhkhkhhhhkihhhkikx Reserved Varlables ***********;****k********* ' ) ’
% disp( ™ Plant_inputs,Plant_outputs,RecurDyn,RecurDyn_model,RecurDyn_static*') ;
% disp( "™ RecurDyn_inputs,RecurDyn_io_ids,RecurDyn_outputs *);
% disp( "™ RecurDyn_controltimestep,RecurDyn_show,RecurDyn_step *;
% disp( *F**r*FxEx*XEX Reserved variables can not be changed FrFIEIXEX)
disp("');
else
disp(");
disp('%%% ERROR : missing RecurDyn plant model file !1");
disp(");
end
clearr temp__ ;

Matlab Code for Sensor-Order

Al=RecurDyn_outputs(:,1);
B1l=zeros(110,1);
for i=1:109
fark=A1(i+1,1)-A1(i,1);
B1(i,1)=fark;
end
Max1= max(B1);
Minl= min(B1);
K1=Max1-Min1;
%%
A2=RecurDyn_outputs(;,2);
B2=zeros(110,1);
for i=1:109
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fark=A2(i+1,1)-A2(i,1);
B2(i,1)=fark;
end
Max2= max(B2);
Min2= min(B2);
K2=Max2-Min2;
%%
A3=RecurDyn_outputs(:,3);
B3=zeros(110,1);
for i=1:109
fark=A3(i+1,1)-A3(i,1);
B3(i,1)=fark;
end
Max3= max(B3);
Min3= min(B3);
K3=Max3-Min3;
%%
A4=RecurDyn_outputs(:,4);
B4=zeros(110,1);
for i=1:109
fark=A4(i+1,1)-A4(i,1);
B4(i,1)=fark;
end
Max4= max(B4);
Min4= min(B4);
K4=Max4-Min4;
%%
Ab=RecurDyn_outputs(:,5);
B5=zeros(110,1);
for i=1:109
fark=A5(i+1,1)-A5(i,1);
B5(i,1)=fark;
end
Max5= max(B5);
Min5= min(B5);
K5=Max5-Min5;
%%
A6=RecurDyn_outputs(:,6);
B6=zeros(110,1);
for i=1:109
fark=A6(i+1,1)-A6(i,1);
B6(i,1)=fark;
end
Max6= max(B6);
Min6= min(B6);
K6=Max6-Min6;
%%
A7=RecurDyn_outputs(:,7);
B7=zeros(110,1);
for i=1:109
fark=A7(i+1,1)-A7(i,1);
B7(i,1)=fark;
end
Max7= max(B7);
Min7= min(B7);
K7=Max7-Min7;
%%
K=[K1,K2,K3,K4,K5,K6,KT7];
Kmin=min(K);
Ksum=sum(K);
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K_order=K/Kmin;
sum_K_order=sum(K_order);
coefficient=K_order/sum_K_order;
%%%validation = = = = > sum(K_coeff)=1
validation=sum(coefficient);

(If sensors are given randomly in the simulation program, the above code will be good enough. Otherwise,
using 3-D matrix will be better)

Matlab Code for Parametric Study of MPC

%Input name is defined

plant.InputName = {'Force'};

%Output name is defined

plant.OutputName = {'Deflection'};

%Timestep is adjusted so that MPC reaction to the plant output is well enough
%Sampling period

Ts =0.01;

% prediction horizon

p=5;

% control horizon

m=2;

mpc_for_NN = mpc(plant, Ts,p,m);

% The parameters mentioned above is changed to get better results.

% Constraints are given as follows- they depends on the observation of the system behaviour
mpc_for_NN.MV = struct('Min',{0.055},'Max',{0.085},'RateMin',{-0.005});
% Weights on manipulated and controlled variables.

mpc_for_NN.Weights = struct('MV',[0], MV Rate',[.001 ],'OV",[1]);

% Increase in MV generally cause worse results whereas OV can compensate this
fo'neural_network_plant_defined_for_simulation’;

open_system(mdl) % Open Simulink Model

sim(mdl); % Start Simulation

% If constraints are not established well, it is better to in matlabsay nothing
mpc_for_ NN.MV =[];

mdl = neural_network_plant_defined_for_simulation_ss;

open_system(mdl) % Open Simulink(R) Model

sim(mdl); % Start Simulation
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