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Haziran 2017, 141 sayfa 
 

 

Serpantin kayış sistemi günümüz otomotiv endüstrisinde oldukça yaygın bir 

şekilde kullanılmaktadır. Motorda daha az yer kaplama, kayış kaymasını 

azaltma ve benzeri avantajları sebebiyle diğer sürüş sistemlerine nazaran 

daha fazla tecih edilmesi, serpantin kayışların titreşimlerinin kontrol 

edilmesini önemli kılmaktadır. Söz konusu titreşimin control altına 

alınabilmesi adına şimdiye kadar çok sayıda gergi mekanizması 

kullanılmıştır. Bu çalışmada, Model Öngörülü Kontrol ile bir gergi kontrolü 

yapılmış ve sistemin performansı bahsi geçen control sistemi kullanılmadığı 

haliyle karşılaştırılmak suretiyle bir çok örnek olay çalışmalarıyla 

değerlendirilmiştir. Bu çalışmada, bir çoklu yapı dinamik programı 

kullanılarak kayış-kasnak sistemi oluşturulmuştur. Sonraki adım ise; söz 

konusu dinamik modelin kullanılması suretiyle gerginin model öngörülü 

kontrolcü ile kontrolüdür. Söz konusu kayış kasnak sisteminin kontrolü için 

kullanılan model öngörülü kontrolcünin iç modelci kurulumunda ise yapay 

sinir ağlarından yararlanılmıştır. En son olarak, çoklu yapı dinamiği model 

sonuçlarının MPC’li, PID’li olarak karşılaştırılmasıyla çalışma 

tamamlanmıştır. 
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The serpentine belt systems are widely used in today’s automotive industry. 

The preference of serpentine belts in the market over the traditional belts 

due to the advantages such as consuming less space in the engine 

compartment, reduced slips etc. makes the vibration control of this type of 

belt crucial.  In order to control the vibration of the belt, number of tensioner 

types are used.  In this study, a tensioner which is controlled by model 

predictive algorithm is introduced to a belt system and system performance 

is compared to the belt system which is not controlled for various case 

studies. The belt and pulley system is designed with multibody dynamic 

simulation program in this study. The internal model of MPC, which is used 

to control the belt drive model, is established with the help of artificial 

neural networks.  Finally, the study is completed by making comparisons 

on the results of the multi body dynamic model with MPC and the model 

controlled by PID.  

 

 
Keywords: Accessory Belt, Serpentine Belt, Model Predictive Control, 

Neural Network, Tensioner, Multi Body Dynamic, PID 
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CHAPTER 1: INTRODUCTION 

 

1.1 Background 

 

The means of power transmission in automotive industry are the belt drive systems.  As the 

most popular belt drive system, the serpentine belt drive system requires a well design for 

the control of the belt transverse vibration due to the undesired consequences such as 

decrease in the performance of the accessories and the early failure of the drive system parts. 

These consequences has motivated automotive industry to consider tensioners in their 

design. 

 There are two main classifications of automotive belt drive tensioners, namely, 

passive and active belt tensioners. If the belt tension is adjusted with the help of purely 

mechanical power, it is called as passive one. However, if electronic actuations are used, it 

is called as active one or automatic tensioners. 

1.2 Motivation 

 

Although there are variety of belt tensioner models, the tendency to automatic tensioners are 

increasing. Nevertheless, the development of the automatic belt tensioners are restricted to 

the specific regions due to the mass production of the belt tensioner makers. It is possible to 

find a better solutions from pre-existing ones to decrease the transverse vibration of the belt 

spans. In addition to the producer’s behaviour, studies in belt drive system area are mainly 

around understanding of the belt behaviour rather than control of the vibration. Although 

there are small amount of studies related to vibration control of the belt drive system for 

which main interest is on longitudinal vibration rather than transverse vibration, no control 

system includes model prediction. This idea is the motivation to use Model Predictive 

Control (MPC) in this study.  

 

1.3 Thesis Objectives and Scope of Research 

 

The objective of this study is to control the transverse vibration of a serpentine belt 

system which includes the fundamental parts of a belt system. The fundamental parts 

mentioned here are one driven, one driver, one tensioner pulleys and belt. In order to use 

MPC, either a linear mathematical model should be found or a model should be constructed 
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with the help of training data and this model should be linearized later. The second approach 

is preferred in this study. Then, results with and without MPC control are compared. 

 

1.4 Organization and Content of Thesis 

 

Transverse vibration control of a belt drive pulley system in this study is explained in six 

chapters. General idea about the thesis structure is given in introduction. A brief literature 

review is presented in chapter 2. The basic theories regarding the MBD used in this study, 

neural networks, and MPC are explained in chapter 3. The most important part of this study, 

methods used for this thesis, are described in chapter 4. This chapter includes description of 

the system components, building an MBDS, controlled parameters and inputs decision, data 

collection, building neural network for plant model, MPC design with NN approximation, 

use of MPC with MBD. Chapter 5 includes results and related discussions. Finally, the work 

presented in this study is summarized and future works are discussed in chapter 6. 
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CHAPTER 2: LITERATURE REVIEW 
 

There are several study concepts regarding the belt such as axially moving materials, steady 

state belt- pulley mechanics, serpentine belt drive studies which deals with rotational 

vibration of pulleys by assuming belt as linking springs or transverse vibration of individual 

spans without considering the pulley effect or coupled vibration for limited range and 

situations [1]. The method used in this study is to employ a multi-body dynamic simulations 

to model the belt drive and design a predictive controller for this model. Thus, the literature 

reviews related to abovementioned concepts are not given and the classification of this 

chapter is made according to the general market information.  

2.1  Introduction  

 

Power is transmitted from a driver shaft to one or more driven shaft by means of mechanical 

elements such as belts, ropes, chains and gears. Although gears are good for small distances, 

they cannot be used for long distances because it makes the drive system bulky which yields 

increase in weight and cost. From the perspective of the strength and slippage, the rope 

cannot be used to transmit torque in driving the accessory pulleys on the engine. 

Furthermore, since the cost and the comfort are as important factors as the performance for 

today’s consumers, the chain is not preferred as much as belt. The chain is expensive as 

although there is almost no need for replacement cost, it is costly in terms of its production 

and the material used for it. The chain is not comfortable as belts because it works more 

loudly and it does not transmit the torque as smooth as belt. Although there are advantages 

of the belt drive system, the excessive transverse vibration of this system is an open question. 

To solve this issue, transverse vibration of a commonly used belt driving system, serpentine 

belt system, is considered in this thesis and the literature review depends on this belt system.  

 

2.2 Serpentine Belt System 

 

The advantages of using belt over the other power transmission systems are mentioned in 

the introduction. However, the main focus of this thesis is on serpentine type belts. The 

reasons why it is considered relies on the priority of this type belt system over the 

conventional multiple belt systems in terms of consuming less space in the engine, reduced 

slip, easier replacement and maintenance, increase in power transmission and decrease in 

cost due to the previous advantages. The serpentine type belt systems consist of four main 
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parts which are driver pulley, driven pulley, tensioner and belt. The number of driven pulleys 

depend on the number of the accessories. The idler pulley term may be used as fixed 

tensioner or the assistive pulley for tensioning other than active tensioner in the literature. 

Several advantages of this belt system is mentioned up to this point; however, it has a 

lifespan like. Since this type of belt is used commonly in the market, increase in life of its 

system is crucial. There are many reasons for the failure. The reasons may be misalignment, 

belt pulley contact, belt slip and so on. One of the most important challenge to increase the 

life of the system is controlling the transverse vibration of the belt which also cause the noise. 

In order to eliminate this problem, many tensioner types have been proposed and they are 

explained in this section.  

 

2.2.1 Tensioner Types 

 

Belt tension is the key to proper functioning of the accessory belt drive system. The tensioner 

ensures the sufficient tension to power the accessories. If the tension is less than the desired 

level, this situation causes belt slip which results in noise. Furthermore, excessive slip cause 

excessive heat for accessories, especially on accessory bearings. Thus, accessory 

performance reduces. Moreover, excessive heat reduces the performance and the life of the 

belt. On the other hand, if the level of the tension is more than enough, the bearings starts to 

bend which results in the early failure of both bearings and their corresponding accessories. 

In some cases, the result can reach dangerous level at which belt becomes free of contact 

with the pulleys. In this case, the functions of the accessories are lost. The loss of contact 

between the belt and the accessories like the water pump, power steering pump, and 

alternator not only cease their functioning but also the entire system because the vehicle 

becomes quickly unusable due to loss of engine cooling[2].    

 

In order to solve the tension adjustment problem, several tensioner types are proposed. The 

tensioners can be classified into three main categories which are manual, semi-automatic 

and automatic tensioners. 

 

2.2.1.1  Manual Tensioners 

Manual tensioners can be thought as a primitive version of the tensioners. A typical manual 

tensioner can be seen from Figure 1.  
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Figure 2.1 An example for manual tensioners [3] 

 

As it can be seen from the figure, there is a slot inside the tensioner block. After adjusting 

the position of the tensioner arm by moving it in slot manually, the tensioner position can be 

fixed by means of mechanical joints like bolts.  

 

The advantage of using manual tensioner is its compact design, its being cheap and easily 

producible. However, since belt motion does not follow a simple way and fluctuation is not 

that much simple using manual tensioner does not seem to be a good idea. In addition to this, 

belt tension should be adjusted manually.  

 

2.2.1.2  Semi- Automatic Tensioners  

 

In this type of tensioners, springs are used to compensate for belt elongation. This is achieved 

by predefined spring force adjusted at ambient temperature. 
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Figure 2.2 A semi- automatic belt tensioner with double eccentric [4] 

 

Although temperature fluctuations, load changes and belt elongation are somewhat 

compensated, it is compulsory to adjust tension manually. 

2.2.1.3  Automatic Tensioners  

 

Automatic tensioners have a set of springs and due this set, it provides an additional integral 

mechanical damping function. It is similar to semi- automatic tensioners but it does not need 

manual adjustment. This set provides almost constant belt tension by self-adjusting to load 

and temperature changes.  

 

Figure 2.3 Basic auto tensioner parts [5] 
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CHAPTER 3: THEORY  
 

The theory of the thesis is divided into three main categories. Firstly, the general information 

related to the MBD used in this study is given. Secondly, artificial neural networks are 

introduced and a fundamental summary of MPC is mentioned finally. 

 

3.1 Multibody Dynamic  

If the area of the study in the system analysis is to know the position, velocity and 

acceleration of a part in a mechanical design, it is the case for dynamic analysis. Dynamic 

analysis enable users to evaluate the abovementioned kinematic properties of a mechanical 

system under the effect of dynamic loads such as translational forces. The dynamic analysis 

can be done by rigid and flexible elements.  Rigidity is an assumption which says the rigid 

bodies cannot be deformed. If the interest of the analysis is to see the static analysis effects 

like deformation, buckling effect, fatigue, bending, twisting, flexibility in the dynamic 

analysis; flexible or deformable elements can be used [6]. 

As the flexible elements increase in a dynamic analyses, there can be several consequences 

such as increase in CPU consumptions, extra memory usage and long run times due to the 

need for extra calculations for each time step. As the complexity of the system increases, the 

consequences will be more significant. In addition to the complexity, if the system works in 

a transient region, simulation’s being slow will be at the top limits. In order to overcome this 

issue, there are two methods. The first method says that faster computers, more processors 

and parallel solvers should be preferred; however, this method cannot be the solution for 

every time.  The second method suggests that if the main focus is not to get the values 

gathered as a result of deformation like stress- strain, it is better to assume the bodies as rigid 

bodies [6].  

The common method used in the industry is to use a hybrid model which is combination of 

both rigid and flexible elements. The belt drive system used in this study composed of 

pulleys, flanges and belt. Whereas belt is modeled with flexible beam elements, the other 

components are modeled as rigid. The beam element used in the simulation program is 

named as Beam2 Element under the title of flexible finite elements. 
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3.1.1 Belt Drive Model 

The simulation system composed of the all fundamentals parts of a serpentine belt system. 

It includes a driver pulley, a driven pulley (accessory pulley), a tensioner and the belt. The 

idler pulley is not the fundamental part of the serpentine belt system. Thus, it does not exists 

in our simulation system. The increase in the number of pulley means an increase in the 

length of the belt and calculation procedure which result in longer simulation time and 

nonessential cpu consumption for this thesis.  

 

3.1.1.1 Belt 

The belt is composed of number of beam elements which are connected with a beam force. 

The advantage of using beam element is its 6 degree of freedom which represents a belt 

movement better than truss. 

 

Figure 3.1 Coordinate system of the belt body 

 

Belt is composed of several belt bodies and these bodies are connected at the nodes. As can 

be seen from the figure, the orientation of center marker of node depends on the direction 

used. The positive initial velocity triggers the belt in positive x- direction for the given figure 

above. 
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Figure 3.2 Nodal mass and moment of inertia 

The terms related to nodal masses and moments of inertia are explained below. 

The mass formula can be wriiten as follows 

LAm                         (1) 

and moment of inertia formula is as given below  

zzyyxx III             (2) 

12

WT
I

3

yy             (3) 

12

WT
I

3

zz             (4) 

where, 

  is density 

L  is belt element length 

A  is cross sectional area 

xxI   is the area moment of inertia 

W   is belt width 

T   is belt thickness 
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3.1.1.2 Pulleys and Flanges 

All the pulleys whether it is a driver, driven, or tensioner pulley are represented by a roller. 

Simply, it is a cylinder which is contacted to the bottom contact nodes or the top contact 

nodes of the belt depending upon whether it is located the inside or the outside of belt 

assembly loop.  

 

 

Figure 3.3 Dimension of a pulley [7] 

Flanges can be thought as a kind of lid for the rollers. They restrict the motion of the belt so 

that in case of belt movement over a roller, belt do not lose the contact with pulley. This is 

achieved by contact between the sloped surface of flange and belt contact nodes. Depending 

on the configuration, flange can be in contact with lower side contact nodes or upper side 

contact nodes of the belt. 

 

 

Figure 3.4 Dimension of a flange [7] 
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3.1.2  Contact Forces 

In order to understand how the contact between the belt segment and pulleys are established, 

the contact force and the formula has to be adressed.  

Owing to the interaction between belt system and solid bodies (pulleys, flanges), there are 

large contact forces. These forces are calculated with the contact parameters. The 

explanations of the parameters used in RecurDyn are given below [7]. 

The contact normal force can be written as 

3m

m

m

nn

2

1 ckf 






.

.

.


        (5) 

where  

k  is the spring coefficients  

c  is the damping coefficients 

  is the penetration 

.

 is time differentiation of the penetration 

1m  is the non-linear contact force exponent for stiffness 

2m  is the non-linear contact force exponent for damping 

3m  indentation damping effect exponent 

In order to overcome the unrealistic case (negative contact force) which occurs in case of 

small penetration, m3 is greater than 1. 
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Figure 3.5 Normal and friction force of contact [7] 

Since contact normal force is known, the friction force can be written as follows 

  nf ff             (6) 

                 (7)

   

where 

fn is the contact normal force 

μ is the friction coefficient 

- μs is the static friction coefficient 

- μd is the dynamic friction coefficient 

νs is the static threshold velocity 

νd is the dynamic threshold velocity 

The relationsship between tangential velocity of ν and the friction coefficient of μ is revealed 

in figure 3.6 
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Figure 3.6 Relationship between μ and ν [7] 

 

3.1.3  Distance Measurement 

In order to control a belt system actively, it is a must to collect the data from the system in 

order to know the state of the system. Generally, ultrasonic or laser sensors are used to collect 

data from the belt spans in real life. To simulate sensor behavior and collect the data needed, 

sensor tab is available in Recurdyn. 

The center position, direction and the range of the sensor are given. Since the transverse 

vibration of the belt is interested in this thesis, the position of the sensor is adjusted so that 

its position in x-direction is at the middle of the longest span and the direction. 

 

 

Figure 3.7 Sensing point of distance sensor 
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How a distance sensor works for a sheet body is explained in Recurdyn Help as mentioned 

below: 

- The closest point in the range is found  

- The minimum distance from sensor center to mid plane is calculated 

ps rrd min                       (8) 

where  

rs is the position of sensor center 

rp is the position of the closest point of body on the direction and in the range of the 

sensor 

- The angle,θ, between the direction of dmin and the direction of the output desired is 

determined as 

 


















 

ps

ps

s

1

rr

rr
gcosθ         (9) 

 

- Finally, the output of the sensor is found as follows 

θcos

d
d min

0                      (10) 

3.2. Introduction to Artificial Neural Networks 

The name Neural Network comes from the inspiration of brain cells which are called as 

neurons. Basically, dendrites, a cell body and the axon are the elements of a neuron. 

Electrical signals comes to dendrites and these elements carry the signals to the cell body. 

After signal processing in the cell body, the signal is sent to the other neuron’s dendrites 

with the help of axon. Neuron arrangement (interconnections) and synapses, contact points 

between neurons, determines the networks’ function. Similar to the natural or biological 

neural networks, artificial neural networks use parallel structure arrangement and transfer 

functions to understand the relations between inputs and outputs. 

 

3.2.1 Network Architecture 

There are two main concepts in Artificial Neural Networks which is base for the other 

concepts. These two basic concepts are cells (neurons) and architecture. The main idea of 
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Neural Networks is weight adjustment in the network by comparing the output of the 

network for the collected input and the target. This can be understood better from the below 

figure. 

 

INPUT 
DATA

NEURAL 
NETWORK

WEIGHT ADJUSTMENT

COMPARISON
WITH TARGET

NN 
OUTPUT

COMPARE
D DATA

WEIGHTED 
DATA

 

Figure 3.8 Schematic of neural network training process  

 

3.2.1.1 Single Neuron 

Though a Neural Network system  may consist of several interconnections amoung the 

number of cells, their theory can be understood with the help of a simple neuron. The best 

way to address the neuron concept is to use figures. Below figure shows simple neurons 

without and with an offset. Generally, the offset is called as bias in Neural Networks. The 

input to the bias part is given as 1 for the simplicity. Using bias depends on the system 

behavior; that is, it is not a must for Neural Networks.  
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Figure 3.9 Schematic of  simple neurons [9] 

Explanations of the symbols of the above figure are as follows: 

p scalar input 

w scalar weight 

b bias or offset 

n output of sum or pw simply 

f transfer or activation function 

a scalar neuron output 

As can be seen from the figure, there are two parameters to change. These parameters, 

weight and bias, are used to get desired value from the network. 

 

3.2.1.2 Transfer Functions 

The relation between sum of inputs n and network output a is defined with the help of transfer 

functions. There are several transfer functions used in neural networks. Linear Transfer 

Function (purelin) and Logarithmic sigmoid transfer function (logsig) are the most 

commonly used ones among the others. Thus, they will be explained briefly. 
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Figure 3.10 Linear and Log-sigmoid transfer functions [9] 

Purelin is used for linear approximations. Log-sigmoid transfer function gives output 

between 0 and 1. It is generally used for backpropogation due to its being differentiable. 

The boxes near each functions are the representations only. 

 

3.2.1.3 Neuron with Vector Input 

The inputs given to the neurons are not necessarily a single scalar input. In case of multiple 

inputs vectors are used for the neuron. 

                

Figure 3.11 Neuron with vector input [9] 

The symbols different from the previous symbols are 

R   number of individual inputs 

pi (i=1,2,…R)  individual inputs 

w1,I   weights 
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As a result, the net input n can be described as 

n = ( w1,1p1 +w1,2p2 +...+w1,RpR) +b               (11) 

Another schematic demonstration of the above figure is done with abbreviated notation 

where matrix and vector representation is used and corresponding dimensions are given 

below the symbols and boxes. 

 

Figure 3.12 Neuron with vector input in abbreviated notation [9] 

This demonstration ease the understanding of the architecture.  

3.2.1.4 Single Layer 

The part except for the inputs in the above figures can be considered as layer. A layer can 

have more than one neurons. This situation can be shown with the below figure. 

 

Figure 3.13 Single layer [9] 
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The terms used for the neural network is as follows: 

R   number of elements in input vector 

S   number of neurons in layer 

pi (i=1,2,…R)  individual inputs 

p   input vector 

wji (j=1,2,…S)  individual weights 

W   weight matrix 

bj (j=1,2,…S)  bias for each neuron 

b   bias vector 

nj (j=1,2,…S)  net input for each neuron  

aj (j=1,2,…S)  network outputs for each neuron 

a   network output column vector 

f   transfer function 

The weight function in matrix form can be shown as 

 

       (12) 

 

 

It should be noted that it is not necessary to put neither same number of neurons with 

inputs nor the same transfer functions for each neuron output. 
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Figure 3.14 Single layer in abbreviated notation [9] 

The above figure shows the same layer with abbreviated notation. Given matrix 

dimensions makes the drawing more clear. 

3.2.1.5 Multiple Layers 

As the name implies, more than one layer is used for this structure. Due to the existence of 

multiple layers, there is a need for weights between layers in addition to the weight 

between input and first layer sum. 

 

 

Figure 3.15 Multiple layer [9] 
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The abbreviated notation of the above structure can be shown as in below figure. 

 

 

Figure 3.16 Multiple layer in abbreviated notation [9] 

Net inputs, biases, weghts and network outputs are shown with superscripts. Each number 

refers to the layers in order. As mentioned previously, the weights can be divided into two 

categories. They can be shown as 

IW i,j    input weights 

LW i,j   layer weights 

where i shows the layer number and j refers to i-1 and j becomes i in case of i is equal to 1. 

That is the case for the first layer. 

The crucial properties of the multiple layers are summarized below. 

- Each layer may have different number of neurons.  

- Output of a layer is an input for the next layer 

- The first layer is called as Input Layer 

- The last layer is called as Output Layer 

- Layers other than the Input and Output Layer is called as Hidden Layer ( Input 

Layer can be count as a Hidden layer in the literature) 

- Any fuction can be approximated with finite number of discontinuities [10] 
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It should be also noted that the output of the last layer is the result of the network and it can 

be also shown with y. If the above multiple layer is considered, y=a3. 

3.2.2 Structures of Neural Network Data 

There are 2 main type of networks,namely static and dynamic. In perspective of input data, 

there are two class of structure for the networks. The distinction between input data 

structures are done according to the importance of time sequence. Whereas the order is 

unimportant for concurrent inputs, it is crucial for sequential inputs. 

3.2.2.1 Concurrent Inputs in a Static Network 

If there is no feedback or delay in network which is called as static network, being 

sequential will be unimportant. That is why sequential inputs are not considered in this 

chapter. In other words, inputs can be thought as concurrent for this case. In fact, in case of 

sequential inputs for static network response will not alter but the way for training will 

change. 

 

 

Figure 3.17 Static network [9] 

As can be seen from the above figure, there is no interactions between the inputs and the 

output is also concurrent. 

3.2.2.2 Sequential Inputs in a Dynamic Network 

If there is a feedforward connection or a feedback, the network is called as dynamic network. 

This definition also classify the dynamic network as feedforward and recurrent dynamic 

network.  Here, the term recurrent is used instead of feedback. If delay exist in the network, 

the case is a sequence of input usually. 
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Figure 3.18 Dynamic network with a delay input [9] 

An example to this case is given in the above figure in which there is only one delay for 

the sake of simplicity.  

The inputs given to the network from the multibody dynamic simulation is divided into 

three categories as training, validation and test. The training data is used to teach the 

network how the system behave. Validation data is used to reach the peak of the 

generalization up to when training continues. Finally, how much the network works for 

different data sets is evaluated according to the test data.  

3.2.2.3 Concurrent Inputs in a Dynamic Network  

In some special cases, concurrent inputs can be used instead of sequence inputs for 

dynamic networks. If it is desired to see results for number of different sequences, 

concurrent sequences set can be used. These sequences behaves as individual sequences 

and does not affect the others. 

 3.2.3 Training  

The simplest definition of the training is the adjustment of the network independent 

variables, weights and biases, so that network output is close enough to the target values. 

The measurement of closeness is determined by the difference between the target values and 

network outputs. That is, as the differences (errors) are small enough according to the 

algorithm used the convergence is accepted. Generally, mean square error is used for the 

neural networks and the formula of this error criteria is given below. 

   

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N
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mseF                  (13) 
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where 

F   mean square error 

N   number of target values  

ti (i=1,2,…,N)  target values or outputs 

ai (i=1,2,…,N)  network output 

ei (i=1,2,…,N)  corresponding errors for each network output and target values 

Although error information gives us the convergence for the system behavior, it is only a 

tool for training method which defines how to make updates for the independent network 

parameters and when to stop. There are several training algorithms; however, it is possible 

group them into two main branch which are incremental and batch mode. As their name 

implies, whereas all inputs send to the network before any update in batch training mode, 

computation of gradient and updates are done incrementally; that is, after each input in 

incremental training mode. Since making calculations after all inputs both shorten the 

processing time and gives a chance to evaluate the system behaviors from all inputs, batch 

mode does not only give faster results but also smaller errors [9]. 

The error can be calculated with the help of mean square error concept easily. However, in 

order to evaluate the performance depending on this error there are two ways of 

optimizations which are gradient and Jacobian method. There are many algorithms using 

gradient or Jacobian optimization methods like Levenberg-Marquardt, Bayesian 

Regularization, BFGS Quasi-Newton, Resilient Backpropagation, Scaled Conjugate 

Gradient, Conjugate Gradient with Powell/Beale Restarts, Fletcher-Powell Conjugate 

Gradient, Polak-Ribiére Conjugate Gradient, One Step Secant, Variable Learning Rate 

Gradient Descent, Gradient Descent with Momentum and Gradient Descent. Since 

Levenberg-Marquardt algorithm is the fastest one among the mentioned ones, it is used for 

the belt drive system defined in this thesis.  

3.2.3.1 Levenberg-Marquardt 

Owing to the need for speed in the training algorithms, gradient descent methods are put a 

side and new methods developed such as Quasi-Newton, Levenberg-Marquardt and 

Conjugate gradient. Levenberg-Marquardt is chosen from the fast algorithms in this study 
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since it gives responses faster and its accuracy is better compared to the other methods for 

the belt drive model described.  

The update in Levenberg-Marquardt is done by using both gradient and Hessian Matrix as 

follows 

xk+1=xk-[H + μI]-1 g                  (14) 

where  

x  terms in algorithm 

H  Hessian matrix 

μ  scalar 

g  gradient 

I  identity matrix 

Since Hessian Matrix is a second order partial derivatives of the errors, it is easier to use 

matrix of the first derivatives of error, Jacobian matrix, which can be calculated with the 

help of backpropogation. The matrix of second order partial derivatives, Hessian matrix is 

H=JTJ                    (15) 

In addition to Hessian matrix, gradient can also be written in terms of Jacobian as follows 

g= JTe                    (16) 

where  

J  Jacobian matrix  

e  error vector 

Finally, the update for the terms will become 

xk+1=xk-[JTJ + μI]-1 JTe                 (17) 
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The performance function is reduced with decrease in scalar, μ. This is because if μ is large, 

the situation will be gradient descent with a small step size; on the other hand, if μ is zero 

the situation will be as in Newton’s method which is faster and more accurate near an error 

minimum [9] 

3.2.4 Dynamic Neural Network Concept and NARX 

Since the belt drive model parameters are time-dependent, the network with memory, 

dynamic neural networks, should be used for this study. These networks are demonstrated 

in the form of Layered Digital Dynamic Network (LDDN) which consists of weights, bias, 

netprod or summing junction for net input and transfer function. The Nonlinear Auto 

Regressive with Exogenous Inputs (NARX) model is a kind of dynamic network with 

feedback. Here, the term “exogenous” refers to the independent inputs and these inputs are 

gathered from multibody dynamic simulation program for this study. The explanation of this 

model can be made step by step from linear models to the nonlinear models for inputs with 

time-series. 

STEP 1:Linear Model for SISO (Single Input- Single Output) 

The output y(t) is calculated by using past inputs and outputs values as 

y(t)+a1y(t−1)+a2y(t−2)+...+anay(t−na)= b1u(t)+b2u(t−1)+...+bnbu(t−nb+1)+e(t)    (18) 

or by leaving the output alone 

y(t) = b1u(t)+b2u(t−1)+...+bnbu(t−nb+1)+e(t) - a1y(t−1)-a2y(t−2)-...-anay(t−na)        (19) 

Now, it is possible to write the equation in the vectoral form so that weights can be seen 

separately. 

y(t)=[−a1,−a2,...,−ana,b1,b2,..,bnb] [y(t−1),y(t−2),...,y(t−na),u(t),u(t−1),..., 

u(t−nb−1)]T                   (20) 
 

The first vector is a weight vector in the form of row vector and the second vector is the 

regressor which includes delayed inputs and outputs. 

STEP 2:Nonlinear Model Extension 
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If weight vector is deleted and  regressor are used in a non-linear function f, the nonlinear 

extension will be completed. This time output will be 

y(t)=f(y(t−1),y(t−2),y(t−3),...,u(t),u(t−1),u(t−2),.. u(t–nu))             (21) 

In fact, it is not a must to use the delayed inputs and outputs. For instance, y(t-1)2, u(t-1) y(t-

2), tan(u(t-1)), and u(t-1) y(t-3) can be used in regressor [9]. 

u(t),u(t-1),y(t-1),...

u
y

NONLINEAR 
FUNCTION

LINEAR 
FUNCTION

REGRESSOR

NONLINEARITY 
ESTIMATOR

 

Figure 3.20 Block diagram of NARX  

As can be seen from the figure NARX structure composed of two blocks which are regrssors 

and Nonlinearity Estimator. Neural Network will be used as Nonlinearity Estimator for this 

study. In other words, the nonlinear function f will be represented by neural network. 

 

Figure 3.21 NARX architecture with two layer [9] 
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The above figure shows an example to NARX network structure. The only figure reference 

not mentioned up to now is Tapped Delay Line (TDL) which is used for the networks with 

time series.
 

 

Figure 3.22 Tapped delay line diagram [9] 

The tapped delay line with three time zone is given in the above diagram for illustration. As 

can be seen from the figure the input values are given for 3 different time which are shown 

with the numbers 0,1 and 2 and these numbers reveals the current signal, the previous signal 

the signal delayed before that respectively. Since it is required to know the previous terms 

of input and outputs for NARX formula mentioned previously, delays are used as system’s 

memory which enables to use previous input and output values. 

3.3 Model Predictive Control, MPC 
 

Model Predictive Control Theory is divided into five categories as introduction, controller 

horizons, cost function, constraints and optimizer. 

3.3.1 MPC Introduction 

Model Predictive Control approach is similar to the human prediction. The steps of a 

prediction depends on a model which is learned with experience or from the description of 

an external source. Since how system behaves, the model output, for a limited horizon can 

be guessed, the control of the system become easier.  With the help of future anticipation, 

the precautions can be taken to be in the safe zone or to be near the desired values.  
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Figure 3.23 MPC block diagram  

As can be seen from the above figure, MPC is a closed loop controller like PID; nevertheless, 

it uses a Plant Model for prediction with an optimizer. Depending on model’s being either 

linear or non-linear, MPC is named as Linear Model Predictive Controller (LMPC) or Non- 

Linear Model Predictive Controller (NMPC) in some sources of the literature. The 

distinction between these two classes of MPC is done by the consideration of whether cost 

functions and constraints are linear or non-linear in some other sources [11]. According to 

the second definition, MPC is a linear one if only if there is no non-linearity in either cost 

functions or constraints. Since control input strongly depends on the prediction from the 

plant model, the model should be as close as possible to the original plant. There are several 

ways to represents a model such as state-space, transfer function, Hammerstein-Wiener and 

so on. Despite of the high degree of model closeness to the plant, there is a need for 

corrections and this is achieved by using feedbacks from plant output to the controller 

optimizer. In other words, feedback is used to minimize the error with the help of optimizer. 
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Figure 3.24 MPC working principle 

The above figure is a summary of how a model predictive controller works. The left side of 

the figure shown with arrow below the title ‘past’ is the measurement step. That is, this part 

uses the measured inputs and outputs which are shown with blue and orange colors 

respectively. The right side of the figure shown with arrow below the title ‘future’ is used to 

reveal the estimation for outputs and planned movement of the inputs which are shown with 

ochard (mustard yellow) and green lines respectively. The red line shows the reference 

trajectory to be followed. The terms mentioned on the left side of the figure can be explained 

as follows: 

ymax    maximum value for the predicted output 

ymin    minimum value for the predicted output 

umax    maximum value for the predicted input 

umin    minimum value for the predicted input 

r    steady state set point for the reference trajectory 

Sample time determines the frequency of the output control. Measured values are controlled 

for a limited time called as control horizon by taking the prediction time or prediction 

horizon into account. As time goes, the prediction horizon goes forward; that is why, 

receding horizon controller is the other name of MPC in some literature [12]. 
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3.3.2 Controller Horizon 

There are two basic horizon concepts as prediction and control. As their name implies, 

prediction horizon is used for the purpose of future anticipation. Although plant model 

enable the controller to anticipate the future, controller not necessarily use the full range of 

predicted horizon to be in safe zone. Thus, control horizon concept, control action horizon, 

is arised. There are two basic criteria for the determination of the horizons. The initial criteria 

for horizon selection should be the objective of the controller according to the plant behavior. 

The general idea is that as the need for reaction time from controller is desired to be small, 

control horizon should be shortened. Another criteria is related to computation steps and 

time. Increasing the horizons give a chance for further anticipation but yields increase in the 

number of computed variables; therefore, increase in computation time. All in all, horizons 

should be chosen according to both the specific control purpose of each plant and the idea 

which tells to escape from the unnecessary computation. 

3.3.3 Cost Function 

Model Predictive Control is a closed loop control system. It is a closed loop because it uses 

the feedbacks coming from the plant output. These feedbacks are used to get the predicted 

values from the internal model of the controller. Then, differences between the reference 

values and the predicted outputs are minimized for the predicted horizon by penalizing 

control increments. A cost function is used for this penalizing procedure [13]. The degree of 

controller performance is measured with cost values. Smaller cost values means better 

performance. Although cost has a great effect on the optimization algorithm selection, its 

effect on closed- loop performance is little [12]. Thus, simpler cost functions are preferred 

mostly in optimization procedure. MATLAB offers a standard cost function as follows: 

𝐽(𝑧𝑘)= 𝐽𝑦(𝑧𝑘) +  𝐽𝑢(𝑧𝑘) + 𝐽∆𝑢(𝑧𝑘) + 𝐽𝑞(𝑧𝑘)                  (22) 

where the output reference tracking term, manipulated variable tracking, manipulated 

variable move suppression,  constraint violation terms can be expressed as follows: 

𝐽𝑦(𝑧𝑘) = ∑  
𝑛𝑦

𝑗=1
∑  

𝑝
𝑖=1 {

𝑤𝑖,𝑗
𝑦

𝑠
𝑗
𝑦 [𝑟𝑗(𝑘 + 𝑖|𝑘) −𝑦𝑗(𝑘 + 𝑖|  𝑘)]}

2

                 (23) 

𝐽𝑢(𝑧𝑘) = ∑  
𝑛𝑢
𝑗=1 ∑  

𝑝−1
𝑖=0 {

𝑤𝑖,𝑗
𝑢

𝑠𝑗
𝑢 [𝑢𝑗(𝑘 + 𝑖|𝑘) −𝑢𝑗,𝑡𝑎𝑟𝑔𝑒𝑡(𝑘 + 𝑖  |𝑘)]}

2

                 (24) 
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𝐽∆𝑢(𝑧𝑘) = ∑  
𝑛𝑢
𝑗=1 ∑  

𝑝−1
𝑖=0 {

𝑤𝑖,𝑗
𝛥𝑢

𝑠𝑗
𝑢 [𝑢𝑗(𝑘 + 𝑖|𝑘) −𝑢𝑗(𝑘 + 𝑖 − 1 |𝑘)]}

2

                          (25) 

𝐽𝑞(𝑧𝑘) =  𝜌єє𝑘   
2                               (26) 

The control input can zk can be expressed as  

𝑧𝑘
𝑇 = [𝑢(𝑘 |𝑘)𝑇 𝑢(𝑘 + 1 |𝑘)𝑇 … 𝑢(𝑘 + 𝑝 − 1 |𝑘)𝑇є𝑘]                (27) 

Meaning of the each symbols mentioned in the above formulas can be expressed as 

follows: 

𝐽𝑦(𝑧𝑘)  output reference tracking term 

𝐽𝑢(𝑧𝑘)  manipulated variable tracking term 

J∆u (zk)  manipulated variable move suppression term 

Jq (zk)    constraint violation term 

k is   current control interval 

p    prediction horizon  

ny   number of plant output variables 

𝑦𝑗(𝑘 + 𝑖|  𝑘) predicted value of jth plant output at ith prediction horizon step  

𝑟𝑗(𝑘 + 𝑖|  𝑘) reference value for jth plant output at ith prediction horizon step 

𝑠𝑗
𝑦

  scale factor for jth plant output 

𝑤𝑖,𝑗
𝑦

  tuning weight for jth plant output at ith prediction horizon step 

nu  number of manipulated variables 

𝑠𝑗
𝑢  scale factor for jth manipulated variable 

𝑤𝑖,𝑗
𝑢   tuning weight for jth manipulated variable at ith prediction horizon step 
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𝑤𝑖,𝑗
𝛥𝑢 tuning weight for jth manipulated variable movement at ith prediction 

horizon step  

є𝑘  slack variable at control interval k  

𝜌є  constraint violation penalty weight  

As can be seen from the above formula, there are 4 terms with weights for balance. All of 

the terms are using control input as function variable. Output reference tracking term is used 

to evaluate the closeness of the result to the desired value; i.e. reference value. If the number 

of control input or manipulated variable is more than the outputs of the plant, it is necessary 

to control inputs such that they are either at the target values or near these values. This time 

Manipulated Variable Tracking term is used for input control. Manipulated variable move 

suppression is also used for controlling the inputs but for small changes in the input. The last 

term is Constraint violation term which is used as a performance value to be inside the limits.  

3.3.4 Optimizer 

The main purpose of the optimizer is to ensure the convergence or closeness of the cost 

value near zero. In order to achieve this idea, a quadratic program(QP) is used for solution 

at each control interval in this study. 

Figure 3.26 shows how the quadratic program in the model predictive control environment 

works. It takes differences between the predicted outputs coming from the internal model 

and reference values and by using this difference it decide what a future input should be 

according to the constraints and the cost function. The first elements of the future inputs go 

to the plant as control inputs and the plant outputs are sent to the model which also uses past 

data and future inputs. The cycle is repeated as soon as simulation continues. 
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Figure 3.25 MPC block diagram [8]  
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CHAPTER 4: METHODOLOGY  

The methods used to control the belt drive system is introduced in this chapter. This chapter 

includes six main steps. Initially, multibody dynamic system for the drive system considered 

in this thesis is built and control system parameters are given with communicator parameters. 

Then co-simulation steps come and plant block is introduced to simulink. By using the data 

gathered from co-simulation, an arificial neural network is used for system identification and 

MPC is designed according to this network. After that, co-simulation is repeated with the 

designed MPC to control the belt drive system. The block diagram shown in figure 4.2 

explains this procedure. 

 

4.1 Belt Drive System with MBD  

 

The simulation system composed of the all fundamentals parts of a serpentine belt system. 

It includes a driver pulley, a driven pulley (accessory pulley), a tensioner and the belt. The 

idler pulley is not the fundamental part of the serpentine belt system. Thus, it does not exists 

in the prototype model. In addition to this reason, the increase in number of pulley means 

increase in the length of the belt and calculation procedure which result in great cpu 

consumption and longer simulation time for this study.  

 

Figure 4.1 The belt-pulley system used as prototype in the thesis 
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Figure 4.2. The Procedure Followed in the Thesis Methodology 
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The biggest pulley is the driven pulley, the pulley in the middle is tensioner pulley and the 

other one is the driver pulley in Figure 4.1. 

The properties of materials and boundaries between the parts are established in this section 

of chapter 4. 

The most critical part of the belt drive system is the belt design. The belt used in this study 

shown in the below figure.  

 

Figure 4.3. The belt system used in the simulation 

As mentioned in the theory, belt composed of several beam elements and there can be a 

measure for the number of elements used. There are two measures for the system in this 

thesis. The first one is visual inspection from the results. The results here refers to the mid-

point deflections of the upper span of the prototype. The results are plotted for number of 

cases with a step input 2000*STEP (time, 0, 0, 0.5, 1) and -1000 N pre-force for 20 seconds 

in Figure 4.5. The result are shown for the cases from 50 element to 300 element. For 25 

elements not shown in the figure the results are not reasonable. As the number of elements 

increases, the results converge to the ideal value. However, after a certain value, 

improvement amount decrease. This situation can be understood if the differences between 

the results of 50 and 75 elements are compared with the differences between the results of 

75 and 90 beam element cases. 

 

Figure 4.4 Step input used for the determination of beam element numbe 
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The second measure of stopping criteria is error evaluation. Although the ideal value for the 

number of beam element is + infinity, 300 element is used as the stopped point for the 

maximum value. The errors are calculated according to this assumed maximum number. The 

term error refers to the mean square error (MSE) in this point.  

 

 

Figure 4.6. Convergence analysis for belt segment 

 

Similar to the Figure 4.5, the improvement decreases with the increase in the number of 

elements in Figure 4.6. As shown in the above figure, after 100 beam elements the 

improvement is not at the level of the improvement before 100 elements. Thus, 100 beam 

elements can be considered as the threshold value for convergence. The change in the inputs 

can change the deflection amount but the same threshold value is acceptable for the other 

inputs. In order to be in safe zone 120 beam elements will be used for the belt drive system 

introduced in this study.  
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Figure 4.7. The belt-pulley system used in the intermediate level case study 

The geometric and material properties of the components of the belt drive system is given 

in the following tables. 

Table 4.1 Beam belt properties 

Type/ The cross section Flat/Rectangular 

Lower Thickness: Defines the lower thickness of belt (m)  0.002 

Upper Thickness: Defines the upper thickness of belt (m)  0.002  

Width: Defines the width of belt (m)  0.050  

Number of Elements: Defines the number of force elements to 

connect nodes(m) 

 120.0 

Element Length: Defines the length of element (m)  0.016  

Initial Velocity: Is the initial velocity in the longitudinal direction 

of belt (m) 

 0 
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Table 4.1 and Table 4.2 reveals the belt properties. Whereas material Properties like density, 

Young’ s modulus are given in Figure 4.2 , beam  properties such as thickness, width are 

given in Table 4.1 

Table 4.2 Material properties of the belt 

Property Value 

Density (kg/m3) 1317 

Damping Ratio: 0.003e-1 

Young's Modulus: Defines the young's modulus of belt (Pa) 1000e+04 

Shear Modulus: Defines the shear modulus of belt (Pa) 

Moment of area (Ixx) (m4) 

Moment of area (Iyy) (m4) 

Moment of area (Izz) (m4) 

Cross section area (m2) 

4000e5  

4.580e-09  

6.670e-09  

1.670e-09  

2.000e-04  

  

Table 4.3 Geometric and material properties of pulleys 

Property Driver Pulley Driven Pulley Tensioner Pulley 

Radius (m) 2.697e-002 8.890e-002 4.520e-002 

Width (m)  5.100e-002 5.100e-002 5.100e-002 

Density(kg/m3) 7850 7850 7850 

Volume(m3) 1.165e-004 1.266e-003 3.273e-004 

Mass(kg) 0.914 9.940 2.569 

Young's Modulus(Pa) 2000e+8 2000e+8 2000e+8 

Poisson' s Ratio 0.285 0.285 0.285 

Ixx(m4) 3.646e-004 2.179e-002 1.869e-003 

Iyy(m4) 3.646e-004 2.179e-002 1.869e-003 

Izz(m4)  3.327e-004 3.927e-002 2.624e-003 
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Table 4.4 Geometric and material properties of flanges 

Geometric and Material Properties of Flanges 

 Driver’ s Flanges Driven’ s Flanges Tensioner’s Flanges 

Radius  (m) 2.697e-002 8.89e-002 4.52e-002 

Width (m) 0.007 0.007 0.007 

Angle (degree) 70.00 70.00 70.00 

Density(kg/m3) 7850 7850 7850 

Volume(m3) 3.011e-005 2.140e-004 6.675e-005 

Mass(kg) 0.236 1.680 0.523 

Young's Modulus(Pa) 2000e+8 2000e+8 2000e+8 

Poisson' s Ratio 0.285 0.285 0.285 

Ixx(m4) 8.889e-005 4.145e-003 4.153e-004 

Iyy(m4) 8.905e-005 4.153e-003 4.161e-004 

Izz(m4) 1.761e-004 8.284e-003 8.273e-004 

Ixy(m4) 2.757e-008 1.886e-006 1.951e-007 

Iyz(m4) -4.791e-011 -1.552e-010 3.249e-011 

Izx(m^4) 1.614e-010 -.246e-009 -.784e-010 
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Table 4.5 Position of pulleys and flanges for prototype model 

 

Table 4.6 Position of pulleys and flanges for four pulley system 

Center of Bodies 

 x (m) y (m) z(m) 

Driver Pulley  0 0 0 

Driver’ s Flange Front  0 0 0.026 

Driver’ s Flange Back 0 0 -0.026 

Driven Pulleys 1  0.552 -0.060 0 

Driven Pulleys 2 0.200 -0.100 0 

Driven’ s Flange Front  0.552 -0.060 0.026 

Driven’ s Flange Back 0.552 -0.060 -0.026 

Tensioner Pulley  0.328 -0.324 0 

Tensioner’ s Flange Front  0.328 -0.324 0.026 

Tensioner’ s Flange Back 0.328 -0.324 -0.026 

 

Components x (m) y (m) z(m) 

Driver Pulley  0 0 0 

Driver’ s Flange Front  0 0 0.026 

Driver’ s Flange Back 0 0 -0.026 

Driven Pulley  0.552 -6.043e-002 0 

Driven’ s Flange Front  0.552 -6.043e-002 0.026 

Driven’ s Flange Back 0.552 -6.043e-002 -0.026 

Tensioner Pulley  0.328 -0.124 0 

Tensioner’s Flange Front  0.328 -0.124 0.026 

Tensioner’s Flange Back 0.328 -0.124 -0.026 
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Table 4.7 Contact properties of pulleys and flanges 

Property Pulleys Flanges 

Spring Coefficient (N/m) 1000000. 1000. 

Damping Coefficient 1000 1 

Dynamic Friction Coefficient 0.6 0.6 

Stiffness Exponent  1.3  1.3 

Damping Exponent 1 1 

Indentation Exponent 2 2 

 

Table 4.8 Properties of connecting force 

Property Values 

Translational Stiffness (N/m) 100000000. 

Translational Damping Ratio 1.e-002 

Rotational Stiffness(N/m) 10000000000. 

Rotational Damping Ratio 1.e-002 

 

 

4.2 Plant Variables  

 

The most important step of the system estimation is to decide what to control and on which 

system elements will be used to trigger the system. They are strongly related to the purpose 

of the control. Since the interest of this study is related to control of the transverse vibration 

of the serpentine belt system, control variables are chosen accordingly. The system variables 

will be detailed in this section. 
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Figure 4.8 Serpentine belt system components 

The study in this thesis depends on the fundamental prototype model shown above. This 

system begins its movement with the motion of the driver pulley. In order to guarantee the 

contact between the pulleys and belt, pre-tension is applied. This pre-tension value is decided 

after several trial and error. Its value is adjusted such that it both satisfy the minimum 

requirement for the contact and allow the belt to oscillate to some extent. If this pre-tension 

is applied so much, then it will bring about undesired consequences as mentioned in the 

literature survey. That is why tensioner pulley is controlled with predictive control in this 

study. Another input to the system is the displacement of the tensioner pulley in the 

transverse direction. By putting these inputs into the system, the transverse displacement of 

the belt will be tried to control. The deflection are gathered as the value at the middle of the 

span which is between the driver and driven pulleys. By controlling of this specific point not 

only the inspected point deflection will be under control but also the whole belt motion will 

be controlled since each point on the belt affects other points as well. Once deciding on the 

working region, the inputs can be given to the system. The rest is collecting the data, 

estimating the system behavior and implementation of the controller designed according to 

the identified system behavior. 

To sum up, there are three inputs for belt drive plant totally 

- Pre-Tension 

- Driver Velocity  
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- Tensioner Force  

The only manipulated input to control the oscillation in transverse direction is the tensioner 

force. 

4.2.1 Pre-Tension 

As mentioned in the previous section, there are three inputs for the belt drive system. The 

pre-tension is a fixed value and decided according to the trial and error method so that it both 

satisfy the minimum requirement for the contact and allow the belt to oscillate. It is achieved 

by adjusting the force according to the minimum value which satisfies the contact between 

the belt and pulleys. 

Pre- Tension value is chosen as -580 N for the prototype model. However, it does not mean 

that the minimum value for the contact satisfaction is -580N. Although the minimum value 

is below -580 N, this value is chosen to be in a safe zone. How pre-tension is adjusted is 

shown in the following figure. Below figures shows the plant input to determine pre-tension 

for illustration. Driver velocity is given as will be mentioned in the next section.  

Figure 4.9 shows the results of the belt drive prototype for the inputs given in the previous 

figure. This figure consists of two parts. Whereas the lower portion shows the deflection 

amount of the belt drive for whole simulation time, the upper portion shows the position of 

the belt drive system at 3rd second for illustritation purpose. As can be seen from the figure, 

the belt contact is not lost for -500 N, yet the position of the driver pulley is not desired level 

in terms of contact satisfaction. That is why pre-tension is adjusted somehow bigger than the 

minimum value. One another important inference is that the deflection amount is directly 

affected from the velocity profile. Since there is no tensioner force and pre- tension value is 

constant, the effect of driver pulley velocity profile on the deflection is reasonable. 
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4.2.2 Driver Velocity  

Instead of given random values for the driver pulley velocity, a full car model is used in 

Simulink environment which will be detailed in this section. However, before gathering the 

inputs from full car model; step, ramp, sinusoidal and impulse inputs are used as will be 

mentioned in chapter 5. The details can be found both in section 4.4.2 and chapter 5.  

4.2.3 Tensioner Force 

The only manipulated input, force applied from the tensioner to the belt, is selected so that 

the overall system behavior under the effect of different forces can be analyzed. In order to 

better understand how the system behavior can be learned, the below explanations are given.   

Frequency response of the system reveals the characteristics of the system and estimation of 

the frequency response is done by either sinestream or chirp input signals.  

The swept-frequency sine (chirp) excites the system at a range of frequencies which changes 

instantaneously as shown on the below figure. 

 

Figure 4.10. A chirp wave  

Even though chirp wave can be a good way for nearly linear models if it is desired to quickly 

obtain a response for many frequency points, it is not suitable for the systems with strong 

nonlinearities because there is a need for time to estimate the system behavior in case of 

nonlinear models. Therefore, many adjacent sine waves of varying frequencies which excites 

the system for a period of time will be the solution. This is called as sine- stream signal. 
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Figure 4.11 A sine- stream wave  

As may be seen in chapter 5, sinusoidal functions at varying frequencies are used for system 

identification of the plant which will be controlled with a predictive algorithm. 

4.3 Co- Simulation 

In this section, multi- body dynamic simulation program and Simulink are tried to be worked 

together. Initially, input and outputs are defined in MBD program. Then, how MBD program 

will work with Simulink is defined in MBD program by giving information related to host 

program, control time step (sampling period or time), Plant Block M-File, Simulink run M-

file. After preparing the program for co-simulation, plant block is established with proper 

queries. The next step is just designing the blocks in Simulink environment and using the 

data obtained from this co-simulation.  

Figure 4.12 gives a general idea of the co-simulation. As can be seen from this figure, there 

is a shared memory between co-simulated programs and with the help of data transfer from 

one to another co-simulation is accomplished. The following figures summarize the all steps 

covered in this section. 
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Figure 4.12 Co-simulation fundamentals 
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Figure 4.13 Co-simulation steps 
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4.4 Case Studies and Velocity Profies 

 

Up to this section the plant, plant inputs, co-simulation procedure are introduced. This 

section is the last section before plant identification. Therefore, the multi-body dynamic 

plant models and the plant-inputs used for this study are summarized conceptually. Collected 

data for both input and the output will be given in the fifth chapter together. This section is 

divided into three main categories. Data collection for different geometric constructions are 

introduced in the first part. The second part includes scenarios for several velocity profiles. 

The third par explains the situations for different forces. 

4.4.1 Case Studies 

This category is divided into two depending on the components’ geometric configuration 

of the belt drive system. 

4.4.1.1 Elementary Level Cases  

The elementary level case configuration is simply the prototype used in the belt drive 

system design. 

 

Figure 4.14 Elementary level configuration 

 

4.4.1.2 Intermediate Level Cases 

In addition to the belt drive system introduced in elementary level case, an extra pulley is 

added to the system in order to increase the system complexity. 

 



53 
 

 

Figure 4.15 The belt-pulley system used in the intermediate level case study 

 

4.4.1.3 Advanced Level Cases 

 

In order to control a more complicated case, the rotation center is transferred to 3 mm 

above the geometric center for driver pulley. 

 

Figure 4.16 Driver pulley for advanced case 
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4.4.2 Velocity Profiles 

Oscillation of the belt span will be observed for the transient states where there can be 

considerable amount of belt deflection compared to the steady state belt deflection. The 

velocity profiles gathered from Simulink car model are collected according to the four 

different situations as follows: 

-  Sudden Increase in Vehicle Speed 

-  Sudden Decrease in Vehicle Speed 

-  Combination of Case 1 and Case 2. 

-  Repetition of Case3 for Narrower Brake- Throttle Range 

The behavior of the belt drive system will be tested for the above- mentioned situations, 

tried to be identified and controlled accordingly. 

 

Figure 4.17 Driver velocity for case 1 

 

Figure 4.18 Driver velocity for case 2 
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Figure 4.19 Driver velocity for case 3 

 

 

Figure 4.20 Driver velocity for case 4 

 

The sudden increase in the driver velocity can be seen from all of the figures. Although the 

second case is named as sudden decrease in vehicle speed, the velocity is increased suddenly 

to have a velocity whose velocity will be decreased. The increase in the velocity is done 

suddenly because it is not only shorten the simulation time but also transient behavior belt 

span motion is achieved which is the necessity of this study. 
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Figure 4.21 Full-car model block diagram in simulink 

Above figure demonstrates the typical full car model supported by MATLAB for automotive 

related simulations. The next figure is the detailed view of the full car model. It can be 

beneficial to note that the torque converter and transmission ratio are both sub-classes of 

transmission part shown in Figure 3.27. In addition to the inputs gathered from the full car 

model, random step, impulse, sinusoidal and ramp inputs are employed as can be seen in 

chapter 5.  
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4.5 Building Artificial Neural Network for Plant Model  

 

The only knowledge about the system is the inputs and outputs; that is, the system is a black 

box. In order to make a proper identification for the belt drive system, artificial neural 

networks are preferred. 
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In order to build a neural network, several criteria should be in consideration. After several 

trial and error the network is shaped as demonstrated in the tables below. The same properties 

used for the all configurations used in this thesis.  

Table 4.9 Properties of artificial neural network used for the belt drive system 

identification 

Network Type NARX 

Training Function trainlm 

Hidden Layer Transfer Function tansig 

Output Layer Transfer Function purelin 

Input Delays 4 

Feedback Delays 4 

Number of Hidden Neurons 20 

Data Preparation Function preparets 

Data Division Function dividerand 

Training Ratio 70 

Validation Ratio 15 

Testing Ratio 15 

Performance Function mse 
 

 

The explanations of the above properties can be summarized as follows: 

 

NARX  nonlinear autoregressive network with exogenous inputs 

trainlm Levenberg-Marquardt backpropagation 

tansig  hyperbolic tangent sigmoid transfer function 

purelin  linear transfer function 

preparets a function used for preparetion of input and target time series data to train 

the network 
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dividerand used to divide the data into training, validation and test sets 

mse  mean square error 

The transfer functions mentioned in the table are drawn in the following figures.The input 

values here refers to the net input in the neuron structure and the output is the network output. 

 

Figure 4.24 Hidden layer transfer function 

 

                 

Figure 4.25 Output layer transfer function 

The following figure covers the all critical features of the artificial neural network 

introduced in this section.  

ur 4.49 Co-Simulain Blocks with MPC 
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Figure 4.26 Aritificial neural network used in this thesis 
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4.6 MPC Design with NN Approximation 

 

As mentioned in the literature review part, there are two kinds of model predictive controller 

to be used. Due to the limitations such as horizons, restriction on the number of input and 

output variable to be supplied and so forth, the response of the neural network predictive 

controller is not at desired level. Thus, a model predictive with linearized model is designed 

for this study. A model predictive controller is established based on the model obtained with 

the neural network plant model. The summary of the neural network is shown by below 

graph. 

 

Figure 4.27 Graphical diagram representation of neural network 

After obtaining the identified system for the model, the model is linearized. Linearization 

depends on the tangent linearization of nonlinear black-box model by which a first-order 

Taylor series approximation is obtained. The codes written to use the model predictive 

controller with the neural network is in Appendix.  

Simulink blocks of the model predictive controller with neural network is demonstrated in 

Figure 4.22. There are three parts in the block diagram. The upper part is used for the model 

predictive controller design, the left bottom part is used for data supply and the right bottom 

part is the neural network with two layers.  

The next step after MPC design is to use this MPC in simulink model of co-simulation plant. 

Figure 4.23 shows the co-simulation block diagram. 
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Figure 4.28 Simulink block for MPC design   
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CHAPTER 5: RESULTS and DISCUSSION 
 

This chapter is the last chapter before the conclusion chapter and divided into four main 

categories. 

5.1 Belt Drive System Behavior under Different Driver Velocity Inputs 

 

A prototype belt drive system model is tested for impulse, ramp, sinusoidal and step inputs 

in this section. System is modeled with NARX neural networks initially, and then this 

model is used for an MPC. The aim of this section is to show the power of NARX 

networks rather than real life approximation.  

5.1.1 Impulse Input 

 

The first input used to test the artificial neural network is the impulse input. It is crucial to 

note that sinusoidal training tensioner force input is used in order to teach the system 

behavior to NARX artificial neural network in all driver velocity inputs. Sinusoidal waves’ 

scanning the all predefined points of tensioner force range enable easy system identification 

of belt drive system.  

 

Figure 5.1 The training ınputs for ımpulse driver velocity 
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Figure 5.2. Narx responses for the impulse training inputs 

 

 

Figure 5.3. Narx performance for the impulse training inputs 
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Figure 5.4. Narx regression for the impulse training inputs 

 

Figure 5.2, Figure 5.3 and Figure 5.4 show the NARX related results for the impulse driver 

velocity.70% percent of the data is used for training, 15% of data is used for test and 15% 

of data is used for validation data. As can be seen from Figure 5.2, NARX results are close 

enough to the system response to make a model. Figure 5.2 and 5.3 supports this idea with 

small mean square error which is about 10-8 and data’ s being around the fitting line 

respectively. Figure 5.5 shows the success of the NARX neural network for different inputs. 

Two layers are used with 20 neurons and 4 delay for this artificial neural network. 
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Figure 5.5 Narx confirmation for the extended training ınputs 

 

The above Figure is used to test the system behaviour in case of extended impulse driver 

velocity and tensioner force. The closeness of the NARX result is good enough for system 

approximation satisfaction.The above result is used to show the success of artificial neural 

network for extended training input. However, the system will be controlled in case of zero 
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tensioner force and the tensioner force will be applied according to the plant model. In other 

words, it is expected that the artificial neural network  should works well enough in case of 

no tensioner force is applied because it can be desired to get a response such that no tensioner 

force is required. That is why the established NARX model is tested for the same but without 

tensioner force data in Figure 5.6.  

 

 

Figure 5.6 Narx model confirmation trained with ımpulse ınput  ın case of no tensioner 

force is applied 
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Impulse inputs different from the previous data set is used to test how the NARX model 

approximate the different impulse inputs in the same range. 

 

 

 

 

Figure 5.7 Narx model confirmation trained with ımpulse ınput for different driver velocity 

ın case of no tensioner force is applied 
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5.1.2 Ramp Input 

The second input type is ramp input. Figure 5.6 demonstrates the training inputs. The same 

procedure is applied to this type of input. 

 

 Figure 5.8 The training inputs for ramp driver velocity 

 

Figure 5.7 shows the NARX responses for the above training data set. The same percentages 

mentioned in the impulse driver velocity is used for this and the remaining inputs. In 

addition, NARX delay, number of neurons and the transfer functions are same.  
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Figure 5.9 Narx responses for the ramp training inputs 

 

           

Figure 5.10 Narx performance results for the ramp training inputs 



73 
 

The NARX model results are for training, test and validation data are shown in Figure 5.9. 

Obtaining a perfect fit is not possible; therefore, the error shown below the responses are 

accepted to model satisfaction. The mean square errors for training, validation and test data 

are as shown in Figure 5.10. The best validation performance value decreases to 1.6534 x 

10-8. The convergence of the error just a little above y=10-8 line is a good indication for the 

belt drive system model fit.  

 

Figure 5.11. Narx regression results for the ramp training inputs 

 

The above figure shows the regression plots for training, validation, test data and 

combination of all. The closeness of R value to zero and data to fit line are the two critical 

indicators for the success of regression and it is obvious that the NARX model is a good 

approximation for the ramp input. 
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Figure 5.12 Narx confirmation for the extended training ınputs 

The above figure shows how this NARX model behaves under extended training data. The 

same data except for  the tensioner training force tested and as can be from the Figure 5.13 

the results of MBD and NARX are close. A different driver velocity data is tested for the 

same purpose in the below figure.  
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Figure 5.13 Narx model confirmation trained with ramp ınput  ın case of no tensioner force 

is applied 

 



76 
 

 

 

Figure 5.14 Narx model confirmation trained with ramp ınput for different driver velocity 

ın case of no tensioner force is applied 
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5.1.3 Sinusoidal Input 

The third input data type is sinusoidal input. Sinusoidal input is tested for different 

frequencies as can be seen from the below figure.  

Figure 5.15 The training inputs for sinusoidal driver velocity  

The dominance of the tensioner force over the driver velocity inpus is seen from the figure 

below.  However, the effect of the driver velocity on the system response is more clear in 

this figure compared to the ramp input. This effect is smaller compared to the impulse input. 

The reason behind this behaviour is that whereas the sudden changes in the driver velocity 

has strong effect on the belt behavious due to its strong tensioning effect, the soft transitions 

in the driver velocity has not that much effect. Although it is possible to obtain better results 

by changing the parameters used in this artificial neural network, the closeness of NARX 

model to MBD model in Figure 5.16 is accepted as satifactory.  
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Figure 5.16 Narx responses for the sinusoidal training inputs 

 

 

Figure 5.17 Narx performance for the sinusoidal training inputs  
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The performance values of the NARX model is plotted in Figure 5.17. Training, 

validationand test data mean square errors converges near to y=10-8 line.  

Moreover, regression plots in Figure 5.18 supports this idea as fit line pass from almost all 

of the data circles centers. The R value for all data sets; i.e., training, validation, test and 

combination sets, are all bigger than 0.999 value. 

 

 

Figure 5.18 Narx regression for the sinusoidal training inputs 
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Figure 5.19 Narx confirmation for the extended training ınputs 

.  

Above figure reveals how the NARX model approximate the MBD result in case of extended 

training inputs are used. Since the training tensioner force has three different frequencies, 
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the results are changing accordingly. The effect of driver velocity becomes more obvious 

when the tensioner force reaches its peak values especially. The weaker effect of the driver 

velocity compared to the tensioner force is expected because the tensioner force will be the 

control input.   

 

 

 

Figure 5.20 Narx model confirmation trained with sinusoidal ınput  ın case of no tensioner 

force is applied 
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Figure 5.20 and 5.21 are used to observe whether the similar effects occur at different 

sinusoidal driver velocities when system is free of tensioner force.  

 

 

 

Figure 5.21 Narx model confirmation trained with sinusoidal ınput for different driver 

velocity ın case of no tensioner force is applied 
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5.1.4 Step Input 

 

The training inputs used for the step input velocity profile are given in the below figure.  

Figure 5.22 The training ınputs for step driver velocity 

 

Figure 5.23 shows the outputs of NARX model for the data plotted in the above figure. The 

performance value of the artificial neural network decrease to 1.422 x 10-8 mean squre error 

for validation. The training and the  test errors are also close to 10-8 value. 



84 
 

 

Figure 5.23 Narx responses for the step training inputs 

 

 

 

Figure 5.24 Narx performance for the step training inputs 
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Figure 5.25 Narx regression for the step training inputs 

 

Another verification for the model, is using the regression plots. According to Figure 5.25 , 

data circles are either on or close to the fitting line. Moreover, R value for training, 

validation, test sets and combination for all of the sets are bigger than 0.9995 value. 
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Figure 5.26 Narx confirmation for the extended training ınputs 

 

The extended training set is used for the step input as in impulse, ramp, sinusoidal inputs.           
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Figure 5.27 Narx model confirmation trained with step ınput  ın case of no tensioner force 

is applied 

 

The tensioner force does not exist in Figure 5.27 and 5.28.That is, the only input affecting 

the belt span behaviour is the driver velocity. Thus, it is expected that the driver velocity 

affects the system directly. As driver velocity increases, the tension on the belt span 
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increases. As a result, the slack side go upward and sensor reads this as decrease in the value 

given by position sensor.  

   

 

Figure 5.28 Narx model confirmation trained with step ınput for different driver velocity ın 

case of no tensioner force is applied 
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           Figure 5.29 Mpc results for impulse, ramp, sinusoidal and step inputs 
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After design of the prototype serpentine belt drive system with multi body dynamic 

simulation program, the model predictive controllers are used for the data shown in Figure 

5.6, 5.13, 5.20, 5.27 which are used for the impulse, ramp, sinusoidal and step driver velocity 

types respectively.  

5.2 Effect of Sensor Numbers on the Belt Drive System Control 

Although decrease in the oscillation of the middle point of the upper belt span reveals that 

transverse vibration is throughout the span, more than one sensors will be used to decrease 

the transverse vibration of the span. This case can be thought as a result of a theoretical 

approach rather than being a feasible one because using more than one sensor makes the 

system more complex and increase the cost. 

The critical point here is to decide the weight of the selected points so that their effects on 

overall system is established well. Although there can be other methods about how to give 

weights correctly, two main approaches are described here. Whereas the first approach based 

on making a reasonable guess and making a correction according to the results, the second 

one relies on giving a weight decision according to the observations or calculations. The 

second approach is used for the prototype belt drive system in this study.  

In order to apply the approach mentioned above, displacement amounts are considered 

initially. Using displacements instead of distance value is the key point if the oscillation 

amount is the concern since the position of the points in the direction of gravity can be 

somehow closer to the origin due to the geometry of the system. That is, values from the 

sensors should not be used directly. After displacement amounts are found, points are 

ordered and evaluated according to the difference between the maximum and minimum 

values of each point. 

Figure 5.31 is shown to present the weights in a more understandable way. K represents the 

difference between the maximum and minimum distance of observed points and Kmin is the 

minimum value among the K values. 
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The Detected Positions for Equally Distributed Sensors

X

Y (-g)

Figure 5.30 Points measured by the equally distributed seven sensors 

The sharp edge of the arrows in Figure 5.30 indicates the points measured by position 

sensors. As can be seen from this figure, seven sensors are employed for the purpose 

mentioned in the introduction of this section. The sensors are numbered from left to right 

order according to the reader’s perspective. For instance, if sensor one is mentioned, it means 

the leftmost one according to reader. 

 

Figure 5.31 Unitless comparison of measured points 
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The above figure is only used to make comparison among the results for equally distributed 

seven sensors. The weights are given so that sum of the all coefficients is equal to 1 in the 

co-simulation. The weight values of each point are given as 0.145258978670547, 

0.161354587336083, 0.163886711791279, 0.157228329935026, 0.142780042824176, 

0.142780042824176 and 0.0867113066187129 in order. 

The results can be summarized as follows: 

- Maximum displacement occurs at the 3rd point 

- Maximum displacement occurs at the 7th point 

- The displacement amounts are greater on the left side (from the reader’s 

perspective) of the span mid point 

- Displacement decrease on the right end is great compared to the left end 

The results seem reasonable. In order to make clarification on this point, another belt and 

pulley system can be considered with driver and driven pulleys which have same radius. For 

this situation, it is expected to see the maximum displacement on the midpoint and close 

displacement values for the left and the right sections of midpoint. However, the radius of 

driven pulley of the belt and pulley system considered is bigger which restricts the motion 

of the belt more compared to driver pulley with smaller radius. Briefly, the displacement 

amount is strictly related to the restriction of the belt motion.  

The below figure shows the co-simulation blocks used to control the tensioner when both 

one sensor and seven sensor are used. 
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Figure 5.33 Comparison between multiple and single sensor cases 
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Figure 5.33 consists of four sub-plots. The two plots at the top are used to demonstrate the 

driver velocity and tensioner force comes from the model predictive controller. The results 

related to two different control approaches, reference line and uncontrolled plant output are 

given in the plot placed at the middle of the figure.. Except for the start phase, reference line 

is followed with -0.7 and +0.7 mm tolerance. In order to make a better comparison between 

the approaches Figure 5.34 is given below. 

 

Figure 5.34 Figure 5.34 Detailed view of comparison for different number of sensor use 

As can be seen from the above figure the results are compatible with each other except for 

the small difference which can be ignored. 
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5.3 Controller Comparison 

 

Section 5.3 composed of three main branches. MPC (Model Predictive Controller) design, 

PID (Proportional-Integral-Derivative) Controller Design and comparison of these 

controllers are the branches in this section. 

5.3.1 Parametric Study on MPC 

 

Since there are number of parameters to be changed in order to reach the best MPC 

parameters, it is better to start with a reference MPC and make a parametric study on this 

reference design. The common approach is to decide sampling time, Ts, in the initial time, 

then change it if the first choose was poor after several trials tried for the other parameters. 

Generally, decrease in Ts results in increase in the reduced disturbances but this increase has 

negative consequence in terms of computation effort. The balance between these two criteria 

is the key for MPC design. Whereas it is preferred that Ts >> 1 in process control design 

studies,  Ts < 1 is the preference in the area of automotive related studies. In case of belt 

drive system in this study, the sampling time is chosen as 0.01s to respond the sudden 

changes in transient state despite of the increased computation steps. Similar to the sampling 

time, prediction horizon is chosen initially. Since the aim of using MPC is the future 

anticipation, the prediction horizon is increased as soon as the impact of the change is 

relatively small as a rule of thumb. The control horizon is used for minimization of errors 

over the prediction horizon and satisfying the conditions defined with constraints. Thus, 

control horizon is chosen as a smaller value than the predicted horizon.  

Table 5.1 reveals the first parametric study for model predictive controller design. As they 

can be seen from the table, prediction and control horizons are fixed at 10 second and 3 

second respectively up to the 20th MPC design to see the effect of weights. The prediction 

horizon and the control horizon are changed together at 20th design; i.e, the transitions are 

not done step by step by changing the control parameters individually and evaluate the 

results one by one because the aim of this table is to show the effect of weights rather than 

horizons. The controllers after 19th design is used to reveals that similar weight effects can 

be observed in different horizon combinations. 
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Table 5.1 Parametric study for mpc design 

Contr

oller 

Name 

Prediction 

Horizon 

Control 

Horizon 

Weights 

Manipulated 

Variable 

Manipulated 

Variable Rate 

Controlled 

Variable 

MPC 1 10 3 1000 10000 1000 

MPC 2 10 3 500 10000 1000 

MPC 3 10 3 250 10000 1000 

MPC 4 10 3 0,01 10000 1000 

MPC 5 10 3 0,01 0,01 1000 

MPC 6 10 3 0,01 0,1 1000 

MPC 7 10 3 0,01 0,01 0,01 

MPC 8 10 3 0,01 0,01 10 

MPC 9 10 3 0,01 0,01 1000 

MPC 10 10 3 0,01 0,01 100000 

MPC 11 10 3 0 0,01 100000 

MPC 12 10 3 0,01 0 100000 

MPC 13 10 3 0 0 100000 

MPC 14 10 3 0 0,0001 100000 

MPC 15 10 3 0 0,00001 100000 

MPC 16 10 3 0 0,01 100000 

MPC 17 10 3 0 0,001 1 

MPC 18 10 3 0 0,0001 1 

MPC 19 5 2 0 0,001 1 

MPC 20 5 2 0 0,01 0 

MPC 21 5 2 0 0,01 0,001 

MPC 22 5 2 0 0,01 0,01 

MPC 23 5 2 0 0,01 10 

MPC 24 5 2 0 0,001 2 

MPC 25 5 2 0 0,001 0.50 

MPC 26 5 2 0 0,0001 100000 

MPC 26 5 2 0 0,0001 100000 
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The controllers of which parameters are given in Table 5.1 are plotted in Figure 5.37 based 

on the driver velocity shown in Figure 5.35 and -580 N constant pre-tension force. The 

results without controller for these inputs are given in Figure 5.36 seperately. Since the 

change in each parameters can have different effects when other parameters are varied, 

severeal MPC designs are demonstrated in this table. The summary of this parametric study 

is that if the controlled variable is raised, the manipulated variable rate is made closer to the 

zero value and the manipulated variable is fixed at zero at the same time, the controller 

follow the reference line better. Time to reach the desired value decreases. Although several 

reference trajectory is tested, the effect of weights are the same; hence, only step input 

reference trajectory is shown. 

 

Figure 5.35 Driver Velocity Input with Respect to Time Used For Controller Comparison 

 

 

Figure 5.36 Sensor reading in case of no tensioner force 
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In order to see how control horizon affects the controller; prediction horizon is fixed at 10, 

control horizon is changed for the value of 3. In addition, weights are fixed at the 26th 

controller parameters of previous parametric study. 

 

Figure 5.38 Mpc controller’ s reference line tracking performance for different control 

horizons 

The control horizons are are 3,7,1,2,10,15,11 for MPCont1, MPCont2, MPCont3, MPCont4, 

MPCont5, MPCont6, MPCont7 respectively.  
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The summary of the above figure is given in the table below. It can be easily inferred from 

the table that as control horizon decreases, time to reach reference line in case of sudden 

change decrease. 

Table 5.2 Effects of control horizon on mpc reference line tracking 

Controller 

Name 
Prediction Horizon Control Horizon 

Order of Success for 

Reaching the Desired 

Value   

MPC ont1 10 3 3 

MPC ont2 10 7 4 

MPC ont3 10 1 1 

MPC ont4 10 2 2 

MPC ont5 10 10 5 

MPC ont6 10 15 7 

MPC ont7 10 11 6 

 

Then, control horizon is fixed at the best value for the same weights and prediction horizon 

is increased for the reference time, 10 sec. The result are given in the below table. 

Table 5.3 Effects of prediction horizon on mpc reference line tracking 

Controller 

Name 
Prediction Horizon Control Horizon 

Order of Success for 

Reaching the Desired 

Value   

MPCont3 10 1 4 

MPCont 9 25 1 2 

MPCont 10 40 1 1 

MPCont 11 15 1 3 

 

The increase in the prediction horizon for the belt drive system model decreases time to 

reach the followed trajectory. In order to support this idea, prediction horizon is decreased 

for the reference value and the comparison is made with the controller given in the above 

table. The controller named with MPC Controller is better than the others in terms of 
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reaching the desired level in the quickest way. However, it is hard to say that increasing the 

prediction horizon and decreasing control horizon at the same time gives better result without 

trying the other combinations. Although it is possible to give the limits and steps for horizons 

and weights and then test the combinations of all in a single function, it takes great amount 

of time for simulation. In order to escape from this huge amount of time consuming job, trial 

and error procedure is followed as the most practical engineering way.  In this procedure it 

is realized that though the effect of weights on the tried horizons are almost the same, 

choosing different horizon combinations can provide distinguishable positive benefits from 

different perspectives. In order to demonstrate this phenomena, MPCont 10 in table 5.3 is 

compared with the controller whose prediction horizon is 5 sec and control horizon is 1 sec. 

This new controller is named as MPC_P5H2 and the previous one is named as MPC_P40H1. 

            

Figure 5.39 Comparison of Mpc for step reference trajectory 

As it can be seen from the above figure, MPC-P40H1 enable the drive system to show 

reactions more. Thus, it reaches the reference line faster; nevertheless, it should be noted 

that this achievement does mean that it continues to follow the reference line. Even though 

MPC-P5H2 reaches the reference line slower it keeps to follow the reference line for 0.08m. 
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Briefly, whereas MPC-P5H2 is better in the initial state, MPC-P40H1 is better after 21 

seconds. Both of the controller will be used when they are compared with PID controllers. 

 5.3.2 Parametric Study on PID 

Even though the main focus of this study is to model and control the belt and pulley system 

with model predictive controller, its performance is compared to the most commonly used 

controller, PID. For this conventional and commonly used controller approach several 

automatic tuning algorithms are used and they are shown in the table below. 

 

Table 5.4 Tuned parameters for pid controller design 

Automatic Tuned Parameters for PID 

PID Parameters PID Parameters/ output limit 

IDEAL IDEAL 

Parameters Values Parameters Values 

P 2283 P -7 

I 286 I 100000 

D 0 D 0 

PARALLEL PARALLEL 

Parameters Values Parameters Values 

P 0 P 0 

I -653620 I -653620 

D 0 D 
0 

        

Best P,I and D Gains 

Parameters Corresponding Values 

P 10000 

I -6536 

D 
100 
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Despite of the success of the reference tracking of the controllers whose parameters are 

gathered from the automatic Matlab tuning listed in the above table, a more successful PID 

controller is established by changing the parameters manually which are shown under the 

title of best P,I and D gains in the above table. Since automatic tuning gives different results 

for ideal and parallel cases for which PID controllers will give different results, both results 

are shown in the table in spite of the fact that they can be equated only by changing Kp value. 

Compensator formula for ideal and parallel cases are given in order below: 

 

P (1 + 𝐼 
1
𝑠

 +  𝐷 𝑁

1+𝑁 1𝑠
) and       P + 𝐼 

1
𝑠

 +  𝐷 𝑁

1+𝑁 1𝑠
                   (28) 

where  

P proportipnal 

I  integral 

D derivative 

N filter coefficient 

 

or the formulas can be rewritten in terms of gains and time constants as follows 

 

Kp(1 +
1

𝜏𝑖𝑠
 + 𝜏𝑑𝑠

𝜏𝑑𝑠

𝑁
+1

)   and     𝐾𝑝 +
𝐾𝑖
𝑠  + 𝐾𝑑𝑠

𝑇𝑓𝑠+1                    (29) 

where 

Kp  proportional gain 

Ki   integrator gain 

Kd  derivative gain 

Tf   derivative filter time 

Ti  integrator time 

Td  derivative time 

N derivative filter constant 

 

 The name ‘best’ in the table refers to the best among the PID controllers used for parallel 

representation in this study. In order to have this controller parameters, several trial and 

errors are made. Firstly, all the gains are changed by isolating the effect of others by giving 

zero as the value to the others. The purpose is reaching the desired value as soon as possible 

and tracking the reference value in case of input changes. Kp is used in the initial step. It is 
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observed that the increase in the magnitude of Kp has positive effect on the purpose 

mentioned above around the values gathered by trial and error. Changing Ki gains by putting 

zero value to the others, do not have a considerable effect. In addition, using Kd gain only 

will not be a good idea owing to the significant amount of oscillation. Secondly, values other 

than zero is assigned to the gains by changing them in the order mentioned above after 

fixation of the others to use all the gains for the improvement of controller performance. As 

mentioned above, the increase in the magnitude of proportional, about the value 10000, ease 

to reach the reference line; however, negative Kp values restrict the benefits from Ki and Kd 

gains. Thus, positive value for this gain is used. After fixing the value for Kp, Ki is changed. 

Opposite to the case in Kp, the positive effect on reaching and following the desired value 

can be adjusted for negative values of Ki. Despite the reduced oscillation effect of further 

decrease in the value of Ki, following the reference trajectory is affected negatively from this 

change. Thus, it is fixed about the value such that the positive effect is maximized. Then, Kd 

gain is adjusted with Filter Coefficient. Filter coefficient is fixed at 100 because further 

increase results in great amount of change in the amplitude of oscillations and decrease of N 

value from the fixed value, eliminate the effect of Kd.  

 

Figure 5.40 Html report screen prepared for kd effect  
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Figure 5.40 shows the positive contribution of Kd in the initial step. With the given  Kd 

value, oscillation amount is reduced for the first second. Other the initial step, there is 

almost no effect of Kd for the system considered. Simulink block diagram of PID controller 

used in this study is shown below. 

 

Figure 5.41 PID block used for comparison 

 

Finally, the abovementioned procedure for attaining a value for the constants P,I,D are 

repeated by changing one and fixing the others over the last design to improve the controller 

for the design objective. 

5.3.3 MPC and PID Comparison 

The MPC and PID controller comparison is done in this section. The parameters of these 

two types of controller are given in figure below for the prototype belt drive model with -

580N pre-force. The driver velocity for the comparison is same with the velocity profile 

shown in Figure 5.33.  

Since automatically designed PID controllers gives not satisfactory results in terms of in 

terms of reference tracking and oscillation amplitude, they are not used in the following 

figure to make a more clear comparison. 
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Figure 5.42 MPC vs PID controller 

. The oscillation amount with PID controller reaches unacceptable level for the reference 

line of 0.07m. The table 5.5 is provided to make a comparison from the perspective of mean 

value and speed of reaching the desired values. The mean values are calculated for the overall 

time range. It is used to show that all the controllers tries to be near the reference lines. 

However, the maximum and minimum values are changing; therefore, this data cannot be 

used alone. When we look at the time to reach the desired level, MPC-P40H1 is the fastest 

one followed by MPC-P5H2.  
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Table 5.5 Comparison of controllers 

 
Reference 

MPC-

P40H1 

MPC-

P5H2 
PID 

Mean Values (m) 0,07542 0,07561 0,07582 0,07451 

Absolute Values of Mean Differences 

(m) 
 - 0,00019 0,0004 0,00091 

Time To Reach Reference Line with 

0.080 m (sec) 
 - 

(1,02) / 

23,17 
4,89  - 

Time To Reach Reference Line with 

0.075 m (sec) 
 - 38,06 48,07 51,62 

Time To Reach Reference Line with 

0.070 m (sec) 
 - 56,86 60,03 61,1 

Time To Reach Reference Line with 

0.077 m (sec) 
 - 89,91 94,97 98,82 

 

In addition to the above comparison, model predictive controllers are compared in terms of 

cost values in Figure 5. 42. The closeness of the cost values to zero reveals the degree of 

controller performance. 

 

Figure 5.43 The comparison of the controllers 
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5.4 Case Studies 

 

Since number of case studies introduced in this study, below table is supported to better 

understand the different situations in the cases. 

 Table 5.6 Case studies 

 

Elementary Level Case Studies 

Cases Velocity Profile 

I.a Sudden Increase in Vehicle Speed 

II.a Sudden Decrease in Vehicle Speed 

III.a Combination of Case1 and 2 

IV.a Case3 for Narrower Brake- Throttle Range 

 

Intermediate Level Case Studies 

Cases Velocity Profile 

I.b Sudden Increase in Vehicle Speed 

II.b Sudden Decrease in Vehicle Speed 

III.b Combination of Case1 and 2 

IV.b Case3 for Narrower Brake- Throttle Range 

 

Advanced Level Case Studies 

Cases Velocity Profile 

I.c Sudden Increase in Vehicle Speed 

II.c Sudden Decrease in Vehicle Speed 

III.c Combination of Case1 and 2 

IV.c Case3 for Narrower Brake- Throttle Range 
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The main categorization depends on the construction of the system components and sub-

categorizations are according to the input values. Input related cases for the elementary, 

intermediate and advanced level case studies are common. In order to escape from the 

unnecessary repetation of these common data, they are demonstrated in this section. 

MPC_P5H2 is preferred for the case studies. 

 

5.1.1 Elementary Level Case Studies 

 

Elementary level case study is considered as a prototype model for the belt drive system. 

Figure 5.43 shows the response of the deflection for NARX type neural network whose 

details are given in Chapter 4. 

 

Figure 5.44 Neural network responses for elementary level case  studies 
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Although above figure gives an idea about the success of the neural network for system 

identification, regression plots and performance graph are also demonstrated in the following 

figures. Regression plots are drawn for training, validation and test one by one. Then, over 

all regression plots are combined in a single one. In other words, regression plot for all 

supplied data are drawn as a fourth one. Data’s being on or near the fitting line indicates that 

neural network model seems good enough for system identification.  

 

Figure 5.45 Regression Plot of the System for Elementary Level Case Studies 
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The next figure shows the same success in terms of system’s performance values according 

to the mean square error. There are three solid and two dotted lines in Figure 5.45. Two 

dotted lines are used to show the best validation performance value. Blue, green and red 

solid lines are used for training, validation and test data respectively. Mean square error 

values for all of the solid lines reaches values smaller than 10.e-007. In addition, 

convergence of the solid lines on the same line shows the consistency for training, validation 

and test. 

 

Figure 5.46 Performance values of the system for elementary level case studies  

According to the neural network model, model predictive controller is designed. This 

controller is tested for four different cases and the results are demonstrated in the below. 
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Figure 5.47 Test data 1 for elementary level case studies 

The above figure can be summarized as follows: 

- There is a sudden increase in the driver velocity in the initial step 

- Relatively small step changes in the driver velocity profile exhibits the change in 

the gears. 

- Sudden change in the driver velocity is compensated with relatively big change in 

the control input; i. e., tensioner force. 

- The oscillation in the initial step is decreased as time goes 

- Reaching a reference value of 0.08 takes about three seconds. 
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Figure 5.48 Test data 2 for elementary level case studies 

The summary of Figure 5.47 is given as follows: 

- After sudden increase in the driver velocity profile, there is a sudden decrease after 

five seconds. 

- Due to the decrease in the driver velocity profile, belt moves in a more relaxed 

manner. In other words, tightening effect of driver velocity is decreased. As a 

result, belt span moves in a lower value as can be seen from the result without 

MPC. The decrease in the belt tension can be also understood from the decrease in 

the small oscillations in the same line.  
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- After 5 seconds, there is a tendency of exceeding the reference line for the result with 

MPC. Although maintained tensioner force do not enable so much overshoot in the 

initial step, the slope for overshoot increase after 7.5 seconds due to the internal 

model. Fortunately, overshoot value is fixed at about 8.6 seconds with the help of 

feedbacks.  

 

 

Figure 5.49 Test data 3 for elementary level case studies 

The critical part for test data 3 are given as:  

- Sudden increase and decrease in the velocity profile is extended.  
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- The opposite relationship between the driver velocity and the sensor reading for the 

system without MPC can be seen more obviously in this case. 

- The effect of the same opposite relation is less for the system with MPC. 

- Although control input seems as if it is constant after three seconds, it is not. The 

reasons why the control input line loos like this is due to the limits and size of the 

figure. The following figure demonstrates this reality. 
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Figure 5.50 Detailed view of test data 3 for elementary level case studies 

The important points of the detailed view of test data 3 is shown below: 

- It is detailed version for case three. 

- As velocity profile increases, the tension in the belt span increases which results in 

difficulty in the belt movement in the vertical direction. As a consequence, the 

magnitude of the control input increases.  

- Although there is an increase in the applied tensioner force when there is an 

increase in the velocity profile, the general tendency is in the direction of decrease. 
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One reason for this situation is the differences between the rate of increase and 

decrease in the velocity profile; nevertheless,  the main reason is the amount of 

constant velocity time. 

 

Figure 5.51 Test data 4 for elementary level case studies 

The comments on test data 4 is revealed as below: 

- The increase in the change rate of the velocity profile is modeled in case 4. 

- Reaching the desired value is close to the other cases.  

- Similar to the other figures, compensation in case of slackness as in the time range 

between 2-2.5 seconds and 5.8-6.3 seconds takes time.  
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In this point it can beneficial to note that in case of real life applications, there are number 

of linear actuators who can satisfy the required properties for tensioner reactions preferred 

in this study. In addition, special designs can be offered by some producers. 

5.1.2 Intermediate Level Case Studies 

Since each level case studies depends on the diffrerent structural components, it is expected 

to model them seperately. However, the same artificial neural networks established for each 

case study level can be used for different velocity profiles. 

 

 

Figure 5.52 Neural network response for intermediate level case studies 

 

The neural network response for the intermediate level case studies is given in Figure 5.51. 

Similar to the intermediate level case studies, regression plots and performance plots are 
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shown in the following figures. Closeness of the drive system outputs which are represented 

by black circles and neural network are compared based on the fitting lines for training, 

validation and test sets in regression figure. The decrease in the mean square error below e-

006 shows the degree of model closeness to the belt drive system in the next figure.   

 

 

Figure 5.53 Regression plot of the system for intermediate level case studies 
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Figure 5.54 Performance values of the system for intermediate level case studies  

 

Figure 5.55 Test data 1 for intermediate level case studies 
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The important results related to the Figure 5. 54 is in below: 

 

- Since the length of the belt is increased in this case, it is expected to increase the belt 

tension by inspection. This idea was compatible with the trial and error procedure 

described in the previous chapter. The magnitude of the pre- tension is increased to 

the 1180 N by trial and error. 

- As can be seen from the last graph in the figure, five seconds is not enough time to 

reach the desired value. However, convergence to the reference line exhibits the 

success of the MPC.  

 

 

Figure 5.56 Test data 2 for intermediate level case studies 
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The important consequences of  test data 2 for intermediate level case study is summarized 

as follows : 

- Reaching a desired value for the four pulley system takes about eight seconds.  

- Owing to the increase in the length and high pre-tension, the tension on the belt is at 

higher levels compared to the elementary level case studies. Thus, oscillation in the 

transverse direction is increased. In addition, the effect of increase and decrease of 

velocity takes time. 

- Due to the gear change in the transmission, there are sudden changes in the profile 

which affects the belt motion characteristic as can be seen from the result without 

MPC in Figure 5.55 After the last driver velocity drop due to the gear change when 

car velocity is tried to increase, the belt span vibration goes into a deflection increase 

trend and it reaches a maximum value after a step change due to the decrease in the 

car velocity. Although driver velocity is decreasing after five second, the slope of 

velocity decreases. In other words, the slackness level of the span increases which 

results in a decrease trend in the oscillation but this oscillation is higher than the 

initial driver velocity increase trend. The control input cannot reach a fixed value due 

to this complex oscillation trends but it is increased continuously during the case 

time. 

 

The crucial points related to the test data 3 plot is as in below: 

 

- It is the extended version of the previous ones. Hence, the effect of driver velocity 

on the transverse oscillation is more obvious.  

- The high pre-tension effect is observed as peg-top like shapes in the transverse belt 

span movement. The high level of velocity between 8 and 14 seconds results in the 

small deflection. Although there is a velocity decrease in the range mentioned, the 

transverse span deflection does not affected due to the high tension in the belt in this 

range. However, three seconds of low driver velocity profile trigger the increase of 

belt span deflection up to sudden increase in the velocity profile. 
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Figure 5.57 Test data 3 for intermediate level case studies 

The detailed view results of test data 3 for intermediate level case study is shown below: 

- In order to better understand the control input behavior for the case considered in 

Figure 5.57, the above figure is demonstrated. In order to observe the change in the 

control input better, both figure is extended and time limit start from five second 

before which there is a sudden increase in the magnitude of tensioner force which 

dominate the figure.  

- Though there is an increase in the magnitude of the control input through the 

considered time in the case, there are several decrease in the magnitude to balance 

the increased tension in the belt span to follow the reference trajectory or line. 
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    Figure 5.57 Detailed View of Test Data 3 for Intermediate Level Case 

Studies 

 

- In case of narrower throttle and brake range as shown in Figure 5.58, peg-top like 

shapes appear earlier and the result with MPC is not as stable as the previous ones 

because reaction from the controller to the belt drive system follow a pattern which 

mainly depend on the internal model.  

 

5.1.3 Advanced Level Case Studies 

In addition to the complexity in the intermediate level case studies, three milimeter revolute 

joint axes dislocation is put intentionally to test the neural networks and model predictive 

controller in a more complex situation. As can be seen from the time series figure of NARX, 

the response of the system is maximum in terms of span deflection. 
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Figure 5.58 Test data 4 for intermediate level case studies 

Regression plots and performance plot of the NARX for advanced level case study are 

demonstrated in the following figures. All of these figures are used to support the neural 

network model consistence with multi body dynamic results. 
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Figure 5.59 Time series response of Narx for advanced level case studies 

The critical points of Figure 5. 62 are as follows:  

- Pre-Tension applied to the belt is increased about 34% according to the intermediate 

level case studies in order to maintain the contact between the belt and the pulleys. 

- It is expected that as driver velocity increases, the transverse vibration of the belt 

span is restricted due to the increased tension in the span and whenever enough 
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Figure 5.60 Regression plot of the system for advanced level case studies 

 

Figure 5.61 Figure 5.61 Performance values of the system for advanced level case studies  
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Figure 5.62 Test data 1 for advanced level case studies 

 

amount of decrease in the driver velocity occurs, span tries to move in a more flexible 

environment due to the decreased belt tension. However, this time there is a 3 mm 

revolution axis dislocation for the driver pulley. It means that as velocity increases 

the effect of the dislocation will be felt more. In other words, a more complex belt 

motion is expected.  

- Increase in the driver velocity determines the degree of change in the span motion. 

Gear change affects the velocity profile little as in Figure 5.62  

- Although driver velocity in the advanced level case is decreased to the one tenth of 

the elementary and intermediate level case studies’ and reference line fixed only one 
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centimeter above from the average position of the span, belt drive system response 

is under the reference line due to the complex behavior of the span in this case. 

 

 

Figure 5.63 Test data 2 for advanced level case studies 

 

Figure 5.63 can be summarized as: 

- As car decelerate, the position of the span deflection decreases and the frequency of 

the up and down motion reduces. 
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- Further decrease in the driver velocity gives the span more area to move. Thus, 

comparatively great amount of position change around eight second is reasonable. 

Upper span motion of the belt after the sudden up and down motion around eighth 

second moves irregularly due to the freedom of reduced belt tension. 

- Although convergence to the reference line seems slow, it is the 2.1 second that result 

with MPC is only 2 mm away from the reference. Reaching the reference line takes 

5.8 seconds; however, the sudden decrease in the driver velocity makes the job of the 

controller difficult as decrease in the driver velocity goes on. In this point, it should 

be also put into account that after the start of the decrease in the driver velocity, the 

slope of the result with MPC is improved which means that it is possible to think the 

positive effect of the decrease in the driver velocity on closing to the desired value 

in the initial decrease phase.  

The summary of Figure 5.64 can be demonstrated with following comments as: 

- How the increase and the decrease in the driver velocity affects the span motion may 

be understood better by using the extended graph shown in Figure 5.64  

- Since the pre-tension applied to the belt is at the higher limits which is 2.72 times of 

the elementary level case and 1.34 times of the intermediate level case studies, the 

tension on the belt restricts the motion of the belt to the upper side. That is why 

decrease in the driver velocity causes increase in the upper belt span unlike the 

elementary and intermediate level case studies. In other words, position reading from 

the sensor goes a general decreasing trend. 

- However, seeking from the tensioning perspective, the logical response sequence 

from the controller can be seen better because belt motion is directly affected from 

the tension given to the system. There are two main reasons for the change in the 

upper belt span tensioning in case of not using a controller and considering not to 

change the pre-tension which is decided in the initial step in real life too. 

Although they are both due to the velocity profile, considering them separately but 

not independent of velocity ease the observation. One of the reason is tension due to 

the stretching and releasing effect of velocity change and the other one is the change 

in the contact position of the belt with pulley due to the crooked driver pulley center 

of rotation. It is clear that up and down motion occurs in a larger scale in case of 

increase in the driver velocity.  In addition, sudden decrease and increase in the driver 

velocity influence the belt tensioning strongly which makes reaching the desired 

position of the mid-span harder because of the high tension on the upper belt span. 
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In order to govern this difficulty, the controller gives a freedom to the belt span to 

reduce the effect of high tension by decreasing the magnitude of the tensioner force. 

This reasoning is valid on both the general behavior and the sudden changes in the 

velocity profile as can be seen from the Figure 5.64. 

- It is not expected in advanced level case studies to reach and stay at the desired value 

continuously since there is a driver pulley behaving as if it is a cam whose effect on 

the upper belt span is hard to model perfectly. Yet even in case of narrower throttle 

and brake range, it is possible to follow desired level as shown in Figure 5.66.  

 

 

Figure 5.64 Test data 3 for advanced level case studies 
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Figure 5.65 Test data 4 for advanced level case studies 

 

Figure 5.66 Test Data 4 for Advanced Level Case Studies 
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CHAPTER 6: CONCLUSION 

 
Transverse vibration of a serpentine belt system, whose numeric derivation is really hard 

and time consuming, is modeled with the help of a multibody dynamic simulation program, 

Recurdyn. The belt system studied in this work includes basic components of a serpentine 

belt drive model which are driver pulley, driven pulley, tensioner and belt. After a multibody 

dynamic system is constructed, inputs are chosen properly so that transient behavior of belt 

in the drive system can be observed. The next step is to collect data and build a plant model 

with the help of Neural Network (NN) toolbox after a modification on NN codes in Matlab. 

Then, this plant is linearized to use in MPC. Finally, designed MPC is used in Recurdyn. 

The comparison between the results with MPC and without MPC demonstrated the success 

of this study. In addition to the parametric study done in MPC design procedure, another 

parametric study is done for PID design. These two types of controller are compared and 

results show that MPC is a better controller choice. 

The critical contribution of this study can be summarized as follows: 

- Neural Networks are used to model the complex (transient state) belt behaviours, 

- Tensioner position is changed according to the desired input, 

- Transverse vibration of the belt span is decreased by using MPC, 

- Co-simulation with Model Predictive Controller challenge is solved  

All in all, the tensioner of a belt-pulley system is controlled with a model predictive 

controller by using artificial neural networks in this study. It is clear that the use of belt- 

drive system in automotive industry will decrease as electric motors becomes commonly 

used type of drive choice. However, it should be noted that although use of electric motors 

are increasing day by day, the use of belt drive system continues due to the range limitation 

for distance travelled, cost and so on. Moreover, the use of this study cannot be restricted to 

the vehicle drive systems like vehicle accessory belt and trigger belt drives. The area of this 

study is as wide as the field of belt drive concept. Therefore, this study can be beneficial for 

both automotive industry and the other industries using belt-drive systems. Since this study 

reveals the success of using MPC, working on real world set-up will be reasonable.  
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APPENDIX: 
 

Neural Network Code 

% Solve an Autoregression Problem with Recurdyn Input with a NARX Neural 
% Network for Recurdyn Belt Drive System Model 
% This script assumes these variables are defined: 
% (The below datas are gathered from Recurdyn) 
%   kk_RecurDyn_inputs_karma_forced - input time series./FREOM RECURDYN 
%   kk_RecurDyn_outputs_karma_forced_1 - feedback time series./FROM RECURDYN 
  
X = tonndata(kk_RecurDyn_inputs_karma_forced,false,false); 
T = tonndata(kk_RecurDyn_outputs_karma_forced_1,false,false); 
  

 
% The training function is chosen by trial and error. 'trainlm' is the best one in terms of both being fast and 

more acuurate 
trainFcn = 'trainlm';  % Levenberg-Marquardt backpropagation. 
  
inputDelays = 1:4; 
feedbackDelays = 1:4; 
hiddenLayerSize = 20; 
net = narxnet(inputDelays,feedbackDelays,hiddenLayerSize,'open',trainFcn); 
net.sampleTime=0.01;% If neural network toolboxes with nnstart are used  
%directly, the sample time cannot be changed at training;however, with this 
%script timestep of NN and the simulation program is equated 
% Choose Input and Feedback Pre/Post-Processing Functions 
% Settings for feedback input are automatically applied to feedback output 
% For a list of all processing functions type: help nnprocess 
% Customize input parameters at: net.inputs{i}.processParam 
% Customize output parameters at: net.outputs{i}.processParam 
net.inputs{1}.processFcns = {'removeconstantrows','mapminmax'}; 
net.inputs{2}.processFcns = {'removeconstantrows','mapminmax'}; 
  
% Prepare the Data for Training and Simulation 
% The function PREPARETS prepares timeseries data for a particular network, 
% shifting time by the minimum amount to fill input states and layer 
% states. Using PREPARETS allows you to keep your original time series data 
% unchanged, while easily customizing it for networks with differing 
% numbers of delays, with open loop or closed loop feedback modes. 
[x,xi,ai,t] = preparets(net,X,{},T); 
  
% Setup Division of Data for Training, Validation, Testing 
% For a list of all data division functions type: help nndivide 
net.divideFcn = 'dividerand';  % Divide data randomly 
net.divideMode = 'time';  % Divide up every sample 
net.divideParam.trainRatio = 70/100; 
net.divideParam.valRatio = 15/100; 
net.divideParam.testRatio = 15/100; 
  
% Choose a Performance Function 
% For a list of all performance functions type: help nnperformance 
net.performFcn = 'mse';  % Mean Squared Error 
  
% Choose Plot Functions 
% For a list of all plot functions type: help nnplot 
net.plotFcns = {'plotperform','plottrainstate', 'ploterrhist', ... 
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    'plotregression', 'plotresponse', 'ploterrcorr', 'plotinerrcorr'}; 
  
% Train the Network 
[net,tr] = train(net,x,t,xi,ai); 
  
% Test the Network 
y = net(x,xi,ai); 
e = gsubtract(t,y); 
performance = perform(net,t,y) 
  
% Recalculate Training, Validation and Test Performance 
trainTargets = gmultiply(t,tr.trainMask); 
valTargets = gmultiply(t,tr.valMask); 
testTargets = gmultiply(t,tr.testMask); 
trainPerformance = perform(net,trainTargets,y) 
valPerformance = perform(net,valTargets,y) 
testPerformance = perform(net,testTargets,y) 
  
% View the Network 
view(net); 
  
% Plots 
% Uncomment these lines to enable various plots. 
%figure, plotperform(tr) 
%figure, plottrainstate(tr) 
%figure, ploterrhist(e) 
%figure, plotregression(t,y) 
%figure, plotresponse(t,y) 
%figure, ploterrcorr(e) 
%figure, plotinerrcorr(x,e) 
  
% Closed Loop Network 
% Use this network to do multi-step prediction. 
% The function CLOSELOOP replaces the feedback input with a direct 
% connection from the outout layer. 
netc = closeloop(net); 
netc.name = [net.name ' - Closed Loop']; 
view(netc) 
[xc,xic,aic,tc] = preparets(netc,X,{},T); 
yc = netc(xc,xic,aic); 
closedLoopPerformance = perform(net,tc,yc) 
  
% Multi-step Prediction 
% Sometimes it is useful to simulate a network in open-loop form for as 
% long as there is known output data, and then switch to closed-loop form 
% to perform multistep prediction while providing only the external input. 
% Here all but 5 timesteps of the input series and target series are used 
% to simulate the network in open-loop form, taking advantage of the higher 
% accuracy that providing the target series produces: 
numTimesteps = size(x,2); 
knownOutputTimesteps = 1:(numTimesteps-5); 
predictOutputTimesteps = (numTimesteps-4):numTimesteps; 
X1 = X(:,knownOutputTimesteps); 
T1 = T(:,knownOutputTimesteps); 
[x1,xio,aio] = preparets(net,X1,{},T1); 
[y1,xfo,afo] = net(x1,xio,aio); 
% Next the the network and its final states will be converted to 
% closed-loop form to make five predictions with only the five inputs 
% provided. 
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x2 = X(1,predictOutputTimesteps); 
[netc,xic,aic] = closeloop(net,xfo,afo); 
[y2,xfc,afc] = netc(x2,xic,aic); 
multiStepPerformance = perform(net,T(1,predictOutputTimesteps),y2) 
% Alternate predictions can be made for different values of x2, or further 
% predictions can be made by continuing simulation with additional external 
% inputs and the last closed-loop states xfc and afc. 
  
% Step-Ahead Prediction Network 
% For some applications it helps to get the prediction a timestep early. 
% The original network returns predicted y(t+1) at the same time it is 
% given y(t+1). For some applications such as decision making, it would 
% help to have predicted y(t+1) once y(t) is available, but before the 
% actual y(t+1) occurs. The network can be made to return its output a 
% timestep early by removing one delay so that its minimal tap delay is now 
% 0 instead of 1. The new network returns the same outputs as the original 
% network, but outputs are shifted left one timestep. 
nets = removedelay(net); 
nets.name = [net.name ' - Predict One Step Ahead']; 
view(nets) 
[xs,xis,ais,ts] = preparets(nets,X,{},T); 
ys = nets(xs,xis,ais); 
stepAheadPerformance = perform(nets,ts,ys) 
  
% Deployment 
% Change the (false) values to (true) to enable the following code blocks. 
% See the help for each generation function for more information. 
if (false) 
    % Generate MATLAB function for neural network for application 
    % deployment in MATLAB scripts or with MATLAB Compiler and Builder 
    % tools, or simply to examine the calculations your trained neural 
    % network performs. 
    genFunction(net,'myNeuralNetworkFunction'); 
    y = myNeuralNetworkFunction(x,xi,ai); 
end 
if (false) 
    % Generate a matrix-only MATLAB function for neural network code 
    % generation with MATLAB Coder tools. 
    genFunction(net,'myNeuralNetworkFunction','MatrixOnly','yes'); 
    x1 = cell2mat(x(1,:)); 
    x2 = cell2mat(x(2,:)); 
    xi1 = cell2mat(xi(1,:)); 
    xi2 = cell2mat(xi(2,:)); 
    y = myNeuralNetworkFunction(x1,x2,xi1,xi2); 
end 
if (false) 
    % Generate a Simulink diagram for simulation or deployment with. 
    % Simulink Coder tools. 
    gensim(net); 
end 
% to generate simulink block 
gensim(net) 
%to see the performance of NN in terms of MSE(mean square error) 
plotperform(net) 
%to see how much fit is good 
plotregression(net) 
%to see how much fit is good 
plotresponse(net) 
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Matlab Code for Co-Simulation  

addpath('C:\Program Files\FunctionBay, Inc\RecurDyn V8R4\Toolkits\CoSim_Simulink'); 
%addpath('C:\Program Files\FunctionBay, Inc\RecurDyn V8R4\Toolkits\Controls\Matlab'); 
RecurDyn='C:\Program Files\FunctionBay, Inc\RecurDyn V8R4\Bin\'; 
RecurDyn_CoSim='C:\Program Files\FunctionBay, Inc\RecurDyn V8R4\Toolkits\CoSim_Simulink\'; 
RecurDyn_model='Model4_2'; 
r_temp___=size(RecurDyn_model); 
RecurDyn_model_n=r_temp___(2); 
Output_File='Model4_2'; 
r_temp___=size(Output_File); 
Output_file_n =r_temp___(2); 
if(exist([RecurDyn_model,'.rdyn'])) 
  RecurDyn_inputs = 'PRE_force!Tensioner_force!Driver_Vel'; 
  RecurDyn_outputs = 'Dist1!Dist2!Dist3!Dist4!Dist5!Dist6!Dist7!Tension1'; 
  RecurDyn_io_ids = [  1  2  3  4  5  6  7  8  9  10  11 ]; 
  RecurDyn_controltimestep = 1.e-002; 
  Plant_inputs = Rearrange_io( RecurDyn_inputs ); 
  Plant_outputs = Rearrange_io( RecurDyn_outputs ); 
  r_temp___=size(Plant_inputs); 
  Plant_inputs_num=r_temp___(1); 
  r_temp___=size(Plant_outputs); 
  Plant_outputs_num=r_temp___(1); 
  r_temp___=version; 
  Matlab_version=str2double(r_temp___(1)); 
  disp(''); 
  disp('===== RecurDyn & Matlab/SIMULINK =========='); 
  disp('%%% INFO : RecurDyn plant actuators names :'); 
  disp([int2str([1:size(Plant_inputs,1)]'),blanks(size(Plant_inputs,1))',Plant_inputs]); 
  disp('%%% INFO : RecurDyn plant sensors names :'); 

disp([int2str([1:size(Plant_outputs,1)]'),blanks(size(Plant_outputs,1))',Plant_outputs]); 
  disp( '=============================================' ) ; 
% disp( '************************ Reserved Variables ************************* ' ) ; 
% disp( '* Plant_inputs,Plant_outputs,RecurDyn,RecurDyn_model,RecurDyn_static*' ) ; 
% disp( '* RecurDyn_inputs,RecurDyn_io_ids,RecurDyn_outputs                  *' ) ; 
% disp( '* RecurDyn_controltimestep,RecurDyn_show,RecurDyn_step              *'); 
% disp( '************* Reserved variables can not be changed ***************** ' ) ; 
  disp( ' ' ) ; 
else 
  disp(''); 
  disp('%%% ERROR : missing RecurDyn plant model file !!!'); 
  disp(''); 
end 
  clear r_temp___; 

 

Matlab Code for Sensor-Order 
     

A1=RecurDyn_outputs(:,1); 
B1=zeros(110,1); 
for i=1:109 
    fark=A1(i+1,1)-A1(i,1); 
    B1(i,1)=fark; 
end 
   Max1= max(B1); 
   Min1= min(B1); 
   K1=Max1-Min1; 
   %% 
    A2=RecurDyn_outputs(:,2); 
B2=zeros(110,1); 
for i=1:109 
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    fark=A2(i+1,1)-A2(i,1); 
    B2(i,1)=fark; 
end 
   Max2= max(B2); 
   Min2= min(B2); 
   K2=Max2-Min2; 
   %% 
   A3=RecurDyn_outputs(:,3); 
B3=zeros(110,1); 
for i=1:109 
    fark=A3(i+1,1)-A3(i,1); 
    B3(i,1)=fark; 
end 
   Max3= max(B3); 
   Min3= min(B3); 
   K3=Max3-Min3; 
   %% 
   A4=RecurDyn_outputs(:,4); 
B4=zeros(110,1); 
for i=1:109 
    fark=A4(i+1,1)-A4(i,1); 
    B4(i,1)=fark; 
end 
   Max4= max(B4); 
   Min4= min(B4); 
   K4=Max4-Min4; 
   %% 
   A5=RecurDyn_outputs(:,5); 
B5=zeros(110,1); 
for i=1:109 
    fark=A5(i+1,1)-A5(i,1); 
    B5(i,1)=fark; 
end 
   Max5= max(B5); 
   Min5= min(B5); 
   K5=Max5-Min5; 
   %% 
   A6=RecurDyn_outputs(:,6); 
B6=zeros(110,1); 
for i=1:109 
    fark=A6(i+1,1)-A6(i,1); 
    B6(i,1)=fark; 
end 
   Max6= max(B6); 
   Min6= min(B6); 
   K6=Max6-Min6; 
   %% 
   A7=RecurDyn_outputs(:,7); 
B7=zeros(110,1); 
for i=1:109 
    fark=A7(i+1,1)-A7(i,1); 
    B7(i,1)=fark; 
end 
   Max7= max(B7); 
   Min7= min(B7); 
   K7=Max7-Min7; 
   %% 
   K=[K1,K2,K3,K4,K5,K6,K7]; 
   Kmin=min(K); 
   Ksum=sum(K); 
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   K_order=K/Kmin; 
   sum_K_order=sum(K_order); 
   coefficient=K_order/sum_K_order; 
   %%%validation = = = = > sum(K_coeff)=1 
 validation=sum(coefficient); 

 

(If sensors are given randomly in the simulation program, the above code will be good enough. Otherwise, 

using 3-D matrix will be better) 
    

Matlab Code for Parametric Study of MPC  

%Input name is defined 
plant.InputName = {'Force'}; 

%Output name is defined 
plant.OutputName = {'Deflection'}; 

%Timestep is adjusted so that MPC reaction to the plant output is well enough 

%Sampling period 
Ts = 0.01; 

% prediction horizon 
p = 5; 

% control horizon 
m = 2; 
mpc_for_NN = mpc(plant,Ts,p,m); 

% The parameters mentioned above is changed to get better results. 

% Constraints are given as follows- they depends on the observation of the system behaviour 
mpc_for_NN.MV = struct('Min',{0.055},'Max',{0.085},'RateMin',{-0.005}); 

% Weights on manipulated and controlled variables. 
mpc_for_NN.Weights = struct('MV',[0],'MVRate',[.001 ],'OV',[1]); 

% Increase in MV generally cause worse results whereas OV can compensate this 

fo'neural_network_plant_defined_for_simulation'; 
open_system(mdl)    % Open Simulink Model 
sim(mdl);           % Start Simulation 

% If constraints are not established well, it is better to in matlabsay nothing  

mpc_for_NN.MV = []; 
mdl = neural_network_plant_defined_for_simulation_ss; 
open_system(mdl)       % Open Simulink(R) Model 
sim(mdl);              % Start Simulation  
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