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YAYIMLAMA VE FİKRİ MÜLKİYET HAKLARI BEYANI 

Enstitü tarafından onaylanan lisansüstü tezimin tamamını veya herhangi bir kısmını, basılı (kağıt) 
ve elektronik formatta arşivleme ve aşağıda verilen koşullarla kullanıma açma iznini Hacettepe 
Üniversitesine verdiğimi bildiririm. Bu izinle Üniversiteye verilen kullanım hakları dışındaki tüm 
fikri mülkiyet haklarım bende kalacak, tezimin tamamının ya da bir bölümünün gelecekteki 
çalışmalarda (makale, kitap, lisans ve patent vb.) kullanım hakları bana ait olacaktır. 

Tezin kendi orijinal çalışmam olduğunu, başkalarının haklarını ihlal etmediğimi ve tezimin tek 
yetkili sahibi olduğumu beyan ve taahhüt ederim. Tezimde yer alan telif hakkı bulunan ve 
sahiplerinden yazılı izin alınarak kullanılması zorunlu metinleri yazılı izin alınarak kullandığımı ve 
istenildiğinde suretlerini Üniversiteye teslim etmeyi taahhüt ederim. 

Yükseköğretim Kurulu tarafından yayınlanan “Lisansüstü Tezlerin Elektronik Ortamda 
Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge” kapsamında tezim 
aşağıda belirtilen koşullar haricince YÖK Ulusal Tez Merkezi / H.Ü. Kütüphaneleri Açık Erişim 
Sisteminde erişime açılır. 

o Enstitü / Fakülte yönetim kurulu kararı ile tezimin erişime açılması mezuniyet 
tarihimden itibaren 2 yıl ertelenmiştir. (1) 

o Enstitü / Fakülte yönetim kurulunun gerekçeli kararı ile tezimin erişime açılması 
mezuniyet tarihimden itibaren  ….. ay ertelenmiştir. (2) 

o Tezimle ilgili gizlilik kararı verilmiştir. (3) 

    ……/………/……  

                                                                                                              Bilal ÇAYIR 

 

1“Lisansüstü Tezlerin Elektronik Ortamda Toplanması, Düzenlenmesi ve Erişime Açılmasına İlişkin Yönerge”  

(1) Madde 6. 1. Lisansüstü tezle ilgili patent başvurusu yapılması veya patent alma sürecinin devam etmesi 
durumunda, tez danışmanının önerisi ve enstitü anabilim dalının uygun görüşü üzerine enstitü veya fakülte 
yönetim kurulu iki yıl süre ile tezin erişime açılmasının ertelenmesine karar verebilir.   
 

(2) Madde 6. 2. Yeni teknik, materyal ve metotların kullanıldığı, henüz makaleye dönüşmemiş veya patent gibi 
yöntemlerle korunmamış ve internetten paylaşılması durumunda 3. şahıslara veya kurumlara haksız kazanç 
imkanı oluşturabilecek bilgi ve bulguları içeren tezler hakkında tez danışmanının önerisi ve enstitü anabilim 
dalının uygun görüşü üzerine enstitü veya fakülte yönetim kurulunun gerekçeli kararı ile altı ayı aşmamak 
üzere tezin erişime açılması engellenebilir. 
 
 

(3) Madde 7. 1. Ulusal çıkarları veya güvenliği ilgilendiren, emniyet, istihbarat, savunma ve güvenlik, sağlık vb. 
konulara ilişkin lisansüstü tezlerle ilgili gizlilik kararı, tezin yapıldığı kurum tarafından verilir *. Kurum ve 
kuruluşlarla yapılan işbirliği protokolü çerçevesinde hazırlanan lisansüstü tezlere ilişkin gizlilik kararı ise, ilgili 
kurum ve kuruluşun önerisi ile enstitü veya fakültenin uygun görüşü üzerine üniversite yönetim kurulu 
tarafından verilir. Gizlilik kararı verilen tezler Yükseköğretim Kuruluna bildirilir.  
Madde 7.2. Gizlilik kararı verilen tezler gizlilik süresince enstitü veya fakülte tarafından gizlilik kuralları 
çerçevesinde muhafaza edilir, gizlilik kararının kaldırılması halinde Tez Otomasyon Sistemine yüklenir.  
 

* Tez danışmanının önerisi ve enstitü anabilim dalının uygun görüşü üzerine enstitü veya fakülte 
yönetim kurulu tarafından karar verilir. 
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ABSTRACT 

 

 

ÇAYIR, Bilal. Essays on Technological Change and Environmental Policy, Ph.D 
Dissertation, Ankara, 2024. 

 

In this thesis, we provide three essays that explore technological change and environmental policy 

based on the directed technical change model. We integrate theoretical and empirical analyses 
to examine how fossil energy cost, cross-industry technology spillovers and environmental policy 

shape innovation dynamics in clean and dirty technologies. The first chapter provides a detailed 

review of the directed technical change model, emphasizing its application to environmental 

economics. It highlights the importance of technology spillovers in influencing innovation 

dynamics, thus setting the theoretical foundation for the subsequent analyses. The second 

chapter develops a model of directed technical change that incorporates endogenous energy use, 

exogenous energy costs, and cross-industry spillovers. The model identifies conditions under 

which clean technologies can overcome the dominance of dirty technologies, offering insights into 
the role of substitutability and exogenous fossil energy costs in driving this transition. The third 

chapter investigates the factors that influence the distribution of innovations between clean and 

dirty energy technologies in 16 European countries. Our findings indicate that rising energy prices 

and research subsidies for clean technologies significantly support the development of clean 

energy innovation in European countries. Some of our findings suggest that tax policy contributes 

to dirty energy innovation. Given the challenges of transitioning directly to clean technologies, 

firms in fossil-based industries likely focus on downstream innovations to offset costs from 

environmental policies like energy taxes. 

Keywords 

Technological Change, Environmental Policy, Technology Spillovers, Energy, Innovation 
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ÖZET 

ÇAYIR, Bilal. Teknolojik Değişme ve Çevre Politikası Üzerine Makaleler, Doktora Tezi, 
Ankara, 2024. 

 

Bu tezde, yönlendirilmiş teknolojik değişme modeli temel alınarak teknolojik değişme ve çevre 

politikalarını inceleyen üç makale sunulmaktadır. Fosil enerji maliyetleri, endüstriler arası teknoloji 

yayılımları ve çevre politikasının temiz ve kirli teknolojilerdeki inovasyon dinamiklerini nasıl 

şekillendirdiğini teorik ve ampirik analizlerle ele almaktayız. Birinci bölüm, yönlendirilmiş teknolojik 

değişme modelinin ayrıntılı bir incelemesini sunarak bu modelin çevre ekonomisindeki 
uygulamasına odaklanmaktadır. Bu bölüm, teknoloji yayılımlarının inovasyon dinamiklerini 

etkilemedeki önemini vurgulayarak sonraki analizler için teorik bir temel oluşturmaktadır. İkinci 

bölüm, yönlendirilmiş teknolojik değişme modelini içsel enerji kullanımı, dışsal enerji maliyetleri 

ve endüstriler arası yayılımları içerecek şekilde geliştirmektedir. Bu model, temiz teknolojilerin kirli 

teknolojilere olan hakimiyetini nasıl aşabileceğine dair koşulları belirleyerek, bu geçişte ikame 

edilebilirlik ve dışsal fosil enerji maliyetlerinin rolüne ilişkin içsel bir çözüm sunmaktadır. Üçüncü 

bölüm, 16 Avrupa ülkesinde temiz ve kirli enerji teknolojileri arasındaki yeniliklerin dağılımını 

etkileyen faktörleri araştırmaktadır. Bulgularımız, artan enerji fiyatlarının ve temiz teknolojilere 
yönelik araştırma teşviklerinin Avrupa ülkelerinde temiz enerji inovasyonunu önemli ölçüde 

desteklediğini göstermektedir. Bazı bulgularımız, vergi politikalarının kirli enerji inovasyonuna 

katkıda bulunduğuna işaret etmektedir. Temiz teknolojilere doğrudan geçişin zorlukları göz önüne 

alındığında, fosil bazlı endüstrilerdeki firmalar muhtemelen enerji vergileri gibi çevre 

politikalarından kaynaklanan maliyetleri dengelemek için aşağı akış üretim işlemlerine yönelik 

inovasyonlara odaklanmaktadır. 

Anahtar Sözcükler  

Teknolojik Değişme, Çevre Politikası, Teknoloji Yayılımları, Enerji, İnovasyon 
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INTRODUCTION 

The effects of climate change are becoming increasingly severe, presenting huge 

challenges in preventing further global warming. Over recent decades, 

international initiatives have gained momentum, with significant milestones such 

as the 1992 Rio de Janeiro Summit and the subsequent Kyoto Protocol in 1997. 

These agreements signified the start of coordinated global efforts to curb 

emissions, evolving into comprehensive targets under the Paris Agreement of 

2015. However, despite these efforts, projections by the Intergovernmental Panel 

on Climate Change (IPCC) indicate that surpassing critical warming thresholds 

of 1.5°C and 2°C is likely without more aggressive measures. 

 
 
The dual challenge of mitigating greenhouse gas emissions while adapting to 

inevitable changes necessitates a deeper understanding of how technological 

progress can support these goals. In this regard, economic research increasingly 

highlights the pivotal role of innovation-driven transitions in energy systems. 

 
 
Over the years, various policy proposals have been developed to combat climate 

change. Notable among these are the carbon tax, which places a price on 

greenhouse gas emissions, increased reliance on renewable and eco-friendly 

energy sources, and the emission trading system (ETS). Recent economic 

research has emphasized that technological development can play a crucial role 

in environmental policy and the fight against climate change. Often grounded in 

general equilibrium models, these studies focus on directed technical change in 

economies with multiple sectors. Directed technical change allows for a detailed 

analysis of how different factors influence the allocation of scientific research 

across sectors, especially in models where innovation has an endogenous 

dynamic. Such models are vital for understanding how innovation can drive the 
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transition to a low-carbon economy. This approach is grounded in endogenous 

growth theory, with a focus on the concept of induced technical change dated 

back to Hicks (1932). The foundational works of Romer (1986) and Lucas (1988) 

highlight knowledge accumulation as a key driver of long-term economic growth. 

A central idea of endogenous growth theory is that production processes 

experience increasing returns to scale, in contrast to exogenous models like 

Solow's. In endogenous growth models, technological change is the result of 

efforts by individuals and firms to accumulate knowledge and maximize profits. 

This makes technological progress an endogenous outcome of economic activity, 

driven by innovation and investment in human capital (Romer, 1986; Lucas, 

1988). 

 
 
The concept of directed technical change in relation to climate change was 

pioneered by Acemoglu et al. (2012). They introduced a growth model 

incorporating environmental constraints and intertemporal endogenous directed 

technological change. The model features two sectors: dirty and clean. While the 

dirty sector generates negative environmental externalities through dirty 

machinery, the clean sector has no such negative impact. The final good is 

produced by combining inputs from both the dirty and clean sectors. The study 

aims to answer how technologies in these sectors will respond to environmental 

policies. 

 
 
Their findings suggest that urgent measures like those proposed by Nordhaus 

and Stern (2006) are necessary to prevent environmental catastrophe. This is 

due to the initial productivity advantage and market size effect in the dirty sector. 

However, Acemoglu et al. (2012) argue that carbon taxes and research subsidies 

can optimally drive technological development and help avoid environmental 

disaster. Furthermore, once clean technologies are sufficiently advanced, 

research will naturally shift towards the clean sector, reducing the need for 
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ongoing policy interventions. However, this conclusion is contingent upon 

sufficient substitutability between the dirty and clean sectors. Without this, long-

term intervention becomes inevitable. A key contribution of their work is the idea 

that environmental disaster is more likely when the dirty sector relies on non-

exhaustible resources. If exhaustible resources are used, rising extraction costs 

and decreasing resource availability could incentivize innovation in the clean 

sector, thereby mitigating the risk of environmental disaster without intervention.  

 
 
The transition from fossil-based to clean energy systems is at the heart of the 

climate change discourse. While environmental policies such as carbon tax and 

research subsidy have been explored extensively, the role of cross-sector 

technological spillovers between clean and dirty technologies remains 

underexplored. Technology spillovers, particularly those based on knowledge, 

occur when knowledge is viewed as a public good and spread to individuals, 

firms, and sectors. This term, known as knowledge spillovers, is crucial in 

technological change. In the development of clean technologies, knowledge 

externalities from dirty sectors are often leveraged, allowing clean technologies 

to evolve without having to start entirely from scratch. Studies on energy 

technology spillovers typically analyze patent citation data, as the number of 

citations a patent receives reflects the extent of its technology diffusion. The more 

citations, the wider the spread of the technology. Research shows that spillovers 

between clean and dirty technologies accelerate the advancement of clean 

technologies, with clean technologies benefiting more significantly from these 

spillovers compared to their dirty counterparts (Dechezlepretre et al., 2013; 

Ocampo-Corrales et al., 2020). 

 
 
Building on this emerging concept, the contributions of this dissertation to the 

existing literature are outlined as follows: First, this thesis advances the literature 

by emphasizing the role of cross-industry technology spillovers between clean 
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and dirty technologies. Unlike many prior studies that largely overlook this 

dimension, the dissertation integrates spillovers into directed technical change 

models, providing a nuanced understanding of their impact on innovation 

dynamics. Second, building upon the foundational model by Acemoglu et al. 

(2012), the dissertation introduces a directed technical change model that 

accounts for endogenous energy use, exogenous energy costs, and spillovers 

between industries. Third, through applying panel count data techniques on 

patent data from 16 European countries, the dissertation empirically investigates 

how environmental policies, history of innovation, and energy costs affect 

innovation in clean and dirty technologies. This focus is a departure from much 

of the existing literature, which prioritizes clean innovations while mostly 

neglecting dirty technologies. Overall, our research incorporates a detailed 

examination of how technology spillovers, fossil energy costs and environmental 

policy influence the innovation landscape, offering fresh perspectives on their role 

in directing technical change.  

 
 
The main objective of this thesis is to develop approaches highlighting how 

environmental policy tools and innovation spillovers between fossil-based and 

clean technologies can drive innovations toward clean technologies. To this end, 

the first chapter of this thesis provides a comprehensive review of the literature 

on the relationship between directed technical change and the environment, with 

a particular focus on the role of cross-sector technology spillovers between clean 

and dirty technologies. We identify a need for a thorough assessment of the 

literature on directed technical change models. This chapter begins by reviewing 

Acemoglu's (2002) foundational work on directed technical change, followed by 

the environmental and climate context introduced by Acemoglu et al. (2012). It 

then examines this literature's relatively underexplored role of cross-sector 

technology spillovers. The chapter’s findings show that research on directed 

technical change has primarily centered on the energy sector, with models 

focusing on factors such as energy cost and efficiency measures. Additionally, 
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the limited theoretical and empirical evidence suggests that spillovers from dirty 

to clean technologies do occur and could play a role in advancing sustainable 

environmental goals. 

 
 
In the second chapter, building on the insights from the first, we develop a 

directed technical change model featuring two industries: clean and dirty. Unlike 

previous studies, this model assumes endogenous energy use, exogenous 

energy costs, and cross-industry technology spillovers, focusing on the factors 

that drive innovations from fossil-based technologies toward renewable energy 

technologies. The chapter's key findings reveal that the shift to clean technologies 

is driven by the level of substitution rate, technology spillovers, and fossil energy 

costs. High substitution rates and strong spillovers promote clean innovation, 

while low substitution rates favor dirty technologies. High energy costs encourage 

clean innovation when conditions are favorable but otherwise focus on improving 

dirty technologies. 

 
 
In the third chapter, we aim to empirically analyze the factors that influence the 

distribution of innovations between clean and dirty energy technologies in 16 

European countries. To achieve this, we employ a Poisson regression model to 

assess the impact of environmental policy, history of innovation, and energy costs 

on the direction of innovation in both clean and dirty technologies. Given that we 

use patent counts as a measure of innovation, widely used in the literature, we 

apply panel count data techniques. While most existing studies focus primarily on 

clean innovations, this chapter contributes to the literature by exploring the 

determinants of both clean and dirty innovations, as well as the effects of various 

environmental policy instruments. Our findings indicate that rising energy prices 

and research subsidies for the clean sector significantly support the development 

of clean energy technologies in European countries. 
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The remainder of this dissertation is structured as follows: Chapter 1 reviews 

foundational and contemporary studies on directed technical change. Chapter 2 

introduces a formal model to analyze the direction of technical change between 

clean and dirty technologies. Chapter 3 presents an empirical investigation into 

innovation trends, followed by a discussion of policy implications. 
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CHAPTER 1 

TRANSITION TO CLEAN ECONOMY THROUGH INNOVATIONS 

AND TECHNOLOGY SPILLOVERS: A REVIEW OF DIRECTED 

TECHNICAL CHANGE MODELS 

 

1.1. INTRODUCTION 

High-skilled labor in the job market has consistently increased over many years. 

The skilled labor growth has resulted in a concentration of technological 

advancements within industries that heavily rely on such expertise. It is well-

established that the distribution of technological change is not uniform across 

production factors and does not progress neutrally. In some countries, despite 

the growing number of skilled labor, there is a noticeable upward trend in their 

wage levels. This trend suggests a shift in technological change towards sectors 

demanding skilled labor with specific skills and abilities, commonly known as skill-

biased technical change. This perspective is supported by Acemoglu’s research, 

where he discusses how market forces in labor markets influence the direction of 

technological change within a comprehensive framework (Acemoglu 1998, 

2002). As discussed in Section 2, the impact of price and market size determines 

the relative profitability of new technology across production factors. 

Furthermore, the balance between these effects is influenced by the elasticity of 

substitution and the extent of state dependence on the cost of various types of 

innovation, shaping what is termed the innovation possibilities frontier (IPF).  
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Following Acemoglu’s pioneering studies, the directed technical change model is 

widely used in different areas of economic research, such as fiscal and monetary 

policies, international trade and investment, labor markets and environmental 

economics (Acemoglu 2012; Shangao et al. 2016; Fried 2018; Haas and Kempa 

2018; Kim 2019; Afonso and Forte 2023; Hemous and Olsen 2021). However, 

how the direction of technical change responds to environmental policy has 

received more attention in recent years, particularly with the baseline paper titled 

“The Environment and Directed Technical Change” by Acemoglu, Aghion, 

Bursztyn and Hemous in 2012. The paper characterizes equilibrium conditions 

under a laissez-faire economy and optimal environmental policy to allocate 

innovation efforts between clean and dirty technologies to avoid environmental 

disaster by referring to the price, market and direct productivity effects. Following 

this paper, a growing body of literature continues to develop divergent and 

marginally modified versions of the environmental model of directed technical 

change. 

 
 
In this paper, we aim to review the literature on the environment and directed 

technical change, encompassing both theoretical and empirical perspectives, 

with a particular focus on cross-sector technology spillovers. The role of cross-

technology spillovers is pivotal in the shift towards clean energy and the global 

effort to combat climate change, impacting both fossil and clean energy 

production and consumption. Research on technology spillovers assumes 

significance within the directed technical change models due to its supportive role 

in advancing clean energy technologies and implementing environmental 

policies. However, it is noticeable that these spillovers are not adequately 

addressed in studies pertaining to the environment and directed technical 

change. Therefore, this review seeks to highlight the crucial interaction among 

cross-sector technology spillovers, environmental policies, and the direction of 

innovation. 

 



9 

 

 

 

 

 

 

 
The remainder of the paper is organized as follows: Section 1.2 presents the main 

aspects of the basic directed technical change model based on Acemoglu (1998, 

2002). Section 1.3 explores the dynamics of the environmental model of directed 

technical change. Section 1.4 reviews the alternative models and extensions of 

the environmental model of directed technical change. Empirical evidence from 

related literature is discussed in section 1.5.  Then, in section 1.6, we give special 

attention to cross-sector technology spillovers between clean and dirty 

technologies.  

1.2. BASIC DIRECTED TECHNICAL CHANGE MODEL 

Technological change does not diffuse uniformly across all factors of production. 

Some factors or industries may be more biased toward efforts in developing new 

technologies than others. As Acemoglu (1998, 2002) emphasized, the 

developments in the US labor market during the 1970s provided noteworthy 

insights. Data on the skilled labor market in the U.S. during these years indicate 

an increase in the quantity of skilled labor measured by the number of college 

graduates despite supply and demand dynamics in the labor market. Contrary to 

expectations, the wage level of skilled labor also increased during this period. 

This outcome supports the notion of skill-biased technological change, indicating 

a complementary relationship between the development of new technology and 

skilled labor. Acemoglu (1998, 2002) comprehensively explains why such a 

relationship exists. Accordingly, the increase in highly skilled workers has made 

it more profitable for innovators to develop high-tech solutions, enhancing their 

productivity. This highlights the interdependence between the growth of highly 

skilled workers and the profitability of developing innovative technologies.1 

 
1 See “Why do new technologies complement skills? Directed technical change and wage 
inequality” by Acemoglu (1998) for more details about skill-biased technical change. 
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Acemoglu explains this relationship within the Directed Technical Change model 

framework, which allows the endogenization of the direction and bias of new 

technologies. For instance, one may assume an economy with two factors of 

production: skilled and unskilled labor, and thus, two types of technologies. 

Suppose the profitability of technologies based on skilled labor is higher than that 

of unskilled labor. In that case, profit-maximizing firms will be inclined to develop 

technologies based on skilled labor. In the paper titled “Why do new technologies 

complement skills? Directed technical change and wage inequality,” Acemoglu 

argues that when there is an increase in the supply of skilled labor, the market for 

skill-complementary technologies will expand, leading to the invention of more 

technologies. Therefore, he suggested that the market size effect is the 

determining factor in the direction of technological change.2 Acemoglu’s 

observations in 1998 indicate that an endogenous increase in the ratio of skilled 

labor or a decrease in the cost of skills would result in wage inequality in favor of 

skilled labor, highlighting the influence of market forces on the direction of 

technological progress. 

 
 
In his 2002 paper “Directed Technical Change”, Acemoglu systematically 

formalized this approach and investigated its effects on income inequality 

between rich and poor countries. This framework assumes that there are two 

inputs: labor, L, and Z for capital, skilled labor, or land. Technological progress is 

denoted by A. The production function, illustrating the production of the final good, 

is structured in a constant elasticity of substitution (CES) form and can be 

expressed as follows: 

 

 
2 The market size effect refers to the expansion of the market for skill-complementary technologies 
due to an increase in the number of skilled workers. 
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In equation (1.1), 𝑌! and 𝑌" denote the two inputs that are used in the production 

of the final good. One may consider that 𝑌! refers to unskilled labor-intensive 

input, and 𝑌" is a skilled labor-intensive input. γ ∈ (0,1) determines the share of 

two factors in final production, and ε ∈ (0,∞) is the elasticity of substitution 

between the two factors and implies that two factors are gross substitutes when 

ε > 1 and gross complements when ε < 1. The elasticity of substitution between 

the two inputs determines whether technological change is L-biased or Z-biased. 

The efficiency of labor-biased and Z-biased technologies is endogenously 

determined by the type and quality of machines produced by technology 

monopolists. The profitability of each type of technology also dictates the type of 

innovations that will be pursued. The production functions for inputs using these 

two types of technologies are as follows: 
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where β ∈ (0,1) and total quantities of the two factors, L and Z, are supplied 

inelastically. 𝑥! and 𝑥" denote the unskilled labor-complementary and skilled 

labor-complementary machines, respectively. The range of machines either used 

with unskilled or skilled labor is denoted by 𝑁! or 𝑁", respectively. Clearly, there 

are two different machine varieties used in the production of two different inputs 

and 𝑁"/𝑁! represents the relative productivity of skilled labor complementary 

factor.  
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The primary objective is to identify the determinants of the direction of 

technological change. The motivation for profit-maximizing firms to engage in 

more innovation is the desire to achieve greater profits. When examining the profit 

of technology monopolists, it is essential to consider the net present discounted 

value of profits rather than instantaneous profits. The net present discounted 

value of profits in labor and Z factors is expressed as follows: 

 

 𝑉! =
%)$

#/'!
*

	 and	 𝑉" =
%)%

#/'"
*

   (1.4) 

 

where 𝑃! and 𝑃" are the product prices, and r is the time-varying interest rate. 

The larger 𝑉" compared to 𝑉!, the more technologies based on the Z factor will 

be developed compared to those based on labor. The equation above reveals the 

factors determining the profitability of both technologies. Accordingly, 𝑉" and 𝑉!  

are increasing in 𝑃" and 𝑃!, implying a price effect and encouraging the 

development of technologies that use the input with a higher price. On the other 

hand, 𝑉" and 𝑉! are increasing in Z and L, indicating that innovation favors the 

more abundant factor, expressed as the market size effect. Under the steady-

state assumption and defining that σ ≡ ε − (ε − 1)(1 − β), the paper expresses 

the profitability ratio of Z-complementary new machine production to L-

complementary machine production: 
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The price and market size effects determine the relative profitability of new 

technology in both production factors. When the elasticity of substitution between 
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the two factors is greater than one, an increase in the relative factor supply 𝑍/𝐿 

will increase 𝑉"/𝑉!, allowing the market size effect to dominate the price effect. 

On the other hand, when the elasticity of substitution is less than one 

(complementary case), an increase in 𝑍/𝐿 will lead to a decrease in 𝑉"/𝑉!, 

allowing the price effect to dominate. Consequently, the substitution ratio 

between the two factors determines which effect will dominate. If the price effect 

dominates, developing new technologies that enhance the efficiency of the 

scarce factor will be more profitable. Conversely, if the market size effect 

dominates, developing technologies that enhance the efficiency of the abundant 

factor will become more profitable. 

 
 
In addition to the determining role of the elasticity of substitution, the degree of 

state dependence on the cost of different types of innovation (termed the IPF) 

can significantly shape the direction of technological change. The concept of the 

degree of state dependence essentially suggests that the future costs of 

innovations can be influenced by the current level of technology (or the current 

state of research and development). Taking into account the potential state 

dependence of the IPF, Acemoglu (2002) assumes that directing innovations 

towards the Z factor in the current period will result in a reduction in the relative 

costs of future Z-complementary innovations. 

 
 
The results presented by Acemoglu (2002) provide crucial insights into the 

income gap between developed and less developed countries. In the developed 

countries, referred to as the North, directed technical change tends to make newly 

developed technologies more skill-biased than in less developed countries. This 

disparity contributes to a larger income gap between rich and poor nations. Since 

less developed countries generally have fewer skilled workers than advanced 

Northern countries, skill-biased technologies are not expected to have a 
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significant role in less developed countries. Therefore, directed technical change 

is a factor that deepens income inequality.3 

1.3. ENVIRONMENTAL MODEL OF DIRECTED TECHNICAL CHANGE 

In 2012, Acemoglu et al. show the significance of price and market size effects in 

their Basic Directed Technical Change model, highlighting their impact on the 

response of diverse technologies to environmental policies in a two-sector model. 

Their study discusses intertemporal endogenous and directed technological 

change within the framework of a growth model that considers environmental 

constraints. 

 
 
Acemoglu et al. (2012) focus on a comprehensive economic model comprising 

both dirty and clean sectors. While the dirty sector introduces a negative 

environmental externality through dirty machines, the clean sector is devoid of 

such adverse effects. The combination of inputs from these two sectors results in 

the production of the unique final good. Building on this foundation, the study 

explores how technologies directed in different sectors respond to environmental 

policies. 

 
 
Analytical findings suggest that immediate definitive measures, compared to 

those proposed by Nordhaus and Stern, are imperative to avoid environmental 

catastrophe due to the advantages of the market size and initial productivity in 

the dirty sector (Nordhaus 2010; Stern 2009). However, Acemoglu et al. (2012) 

contend that using carbon taxes and research subsidies can serve as optimal 

environmental response tools, adequately steering technological development 

 
3 For more detailed discussion and findings on the debates regarding directed technical change 
and income inequality, readers are referred to Antonelli and Scellato (2019), Chu et al. (2014) and 
Jerzmanowski and Tamura (2019). 
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and preventing environmental disasters. Furthermore, with the sufficient 

advancement of clean technologies, further intervention becomes unnecessary 

as research naturally shifts towards the clean sector. This proposition is based 

on the assumption of a sufficient substitution rate between the clean and dirty 

sectors; otherwise, permanent intervention becomes inevitable. 

 
 
An important contribution of Acemoglu et al. (2012) lies in highlighting that the 

likelihood of an environmental disaster increases when the dirty sector utilizes 

non-exhaustible resources. In the case of exhaustible resources, extraction costs 

and diminishing stocks can incentivize innovation to transition to the clean sector, 

avoiding environmental disasters without intervention. However, this possibility 

diminishes when non-exhaustible resources are employed, as there are no 

associated costs. 

 
 
The CES aggregate production function of a uniquely produced final good (𝑌.) 

under competitive conditions is expressed as follows: 

 

 𝑌. = 3𝑌/.
(1$#)/1 + 𝑌3.

(1$#)/18
1/(1$#)

   (1.6) 

 
where ε denotes the elasticity of substitution between clean and dirty 

intermediates. The final good is produced by two inputs from the clean (𝑌/.) and 

dirty intermediate sectors. Intermediate production functions are as follows: 
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where α, α#, α6 ∈ (0,1), α# + α6 = 	α  and 𝐴75. denotes the quality of i-type machine 

in sector denoted by 𝑗 ∈ (𝑐, 𝑑) and 𝑅. shows the consumption level of an 

exhaustible resource.4 The innovation side of the economy is as follows:   

 

 𝐴7. = H1 + γη7𝑠7.K𝐴7.$#   (1.9) 

 

In this framework, scientists face a choice each period to focus their research on 

either clean or dirty technology. They are then randomly assigned to a machine, 

with a chance of successful innovation determined by a probability parameter η7 

in sector j (clean or dirty). Successful innovation improves machine quality by a 

factor of 1 + γ. A scientist who successfully innovates becomes the entrepreneur 

for that period in producing the improved machine. If innovation fails, monopoly 

rights go to a randomly selected entrepreneur using the old technology. The IPF 

allows scientists to target a sector rather than a specific machine, ensuring 

allocation across machines in a sector. The IPF also normalizes the measure of 

scientists and denotes the scientist mass working on machines in each sector at 

a given time by 𝑠7.. Finally, Acemoglu et al. (2012) define the environmental 

quality 𝑆. as follows: 

 

 𝑆.8# = −ξ𝑌3. + (1 + δ)𝑆.   (1.10) 

 

The equation (1.10) introduces the evolution of environmental quality over time. 

The right-hand side of the equation determines the change in environmental 

quality, subject to certain conditions. Specifically, when the right-hand side is 

 
4 Acemoglu et al. (2012) define the evolution of the exhaustible resource as 𝑄*+, = 𝑄* − 𝑅*. Qt 
reflects the resource stock and c(Qt) is defined as per unit extraction cost. 
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within the interval (0, 𝑆̅), environmental quality adjusts accordingly. If the right-

hand side is negative, environmental quality remains at zero (𝑆.̅8# = 0), and if it 

exceeds 𝑆̅, environmental quality stabilizes at its maximum level. The parameter 

ξ signifies the environmental pollution rate due to the dirty input production, while 

δ represents the environmental regeneration rate. 

 
 
The equation (1.10) captures the key aspects of environmental change, including 

the idea that greater degradation tends to lower the regeneration capacity. The 

upper bound �̅� reflects the maximum environmental quality, acknowledging that 

pollution cannot be negative. This equation also discusses the concept of a point 

of no return, where if environmental quality reaches zero, it remains at zero 

indefinitely. This notion aligns with the concern among climate scientists that 

irreversible environmental disasters may occur. 

1.3.1. Non-Exhaustible Resource 

The factors determining the relative profitability of conducting research in the 

clean and dirty sectors are outlined as follows: 

 

 9-.
9/.

= :-
:/
× 3)-.
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8
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   (1.11) 

 

According to this equation, the factors determining innovation efforts in either the 

clean or dirty sectors are influenced by the price, market size, and direct 

productivity effects. As mentioned earlier, the price effect directs innovations 

towards the sector with higher prices, while the market size effect encourages 

innovations to occur in the sector with higher employment. On the other hand, 
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the direct productivity effect indicates that innovations occur in the sector where 

the average productivity is relatively high.5 

1.3.1.1. Substitution Case 

When there is a substitution relationship between the two inputs, the assumption 

that the clean sector is relatively backward compared to the dirty sector implies 

that innovations must begin in the more advanced sector, the dirty sector.6 In this 

case, while the average productivity of the sector producing dirty input continues 

to increase steadily, the productivity level of the clean sector remains constant. 

Additionally, when the substitution coefficient is greater than one, it leads to the 

unlimited growth of dirty input production. As a result, in the non-intervention 

scenario, equilibrium allocations drive the economy towards an environmental 

disaster. However, Acemoglu et al. (2012) argue that some degree of economic 

intervention may inhibit an environmental disaster. For instance, the government 

can allocate a proportional research subsidy through a lump-sum tax collected 

from households to encourage scientists to contribute to the clean sector. 

Accordingly, when there is a substitution relationship between inputs, temporary 

incentives applied for a certain period may be sufficient to redirect all research 

efforts to the clean sector. When the average efficiency ratio sufficiently increases 

in favor of the clean sector, directing research to the clean sector for scientists 

may become more profitable even without implementing research incentives. 

Consequently, having a sufficient level of substitution will ensure that temporary 

incentives lead to innovations towards clean technologies. 

 
5 The argument on innovation shifting towards more productive sectors reflects the notion of 
building on the shoulders of giants which implies a state dependence on the IPF. 

6 That is, the Assumption 1 is 0!"
0#"

< 𝑚𝑖𝑛 )(1 + γη1)
$%&
$ 02!

2#
1
&
$ , (1 + γη3)

$%&
$ 02!

2#
1
&
$3 reflects that 

innovation starts with dirty technologies when there is no policy intervention. 
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1.3.1.2. Complementary Case 

When there is a weak substitution relationship between clean and dirty inputs, in 

other words, a complementary relationship, Acemoglu et al. (2012) suggest that 

implementing impermanent intervention may not be enough to avoid an 

environmental disaster. In a complementary case, temporary intervention 

facilitates the redirection of research towards the clean sector. However, the 

production quantity of dirty input will continue to increase.7 

1.3.1.3 Optimal Policy 

The environmental form of the directed technical change model emphasizes the 

importance of research subsidy and carbon tax when shaping the optimal 

environmental policy. The laissez-faire equilibrium in the economy leads to three 

types of externalities. First, there is the environmental externality generated by 

dirty input producers. Second, there are knowledge externalities arising from 

research and development activities. Last, there is the standard static monopoly 

distortion in the price of machines subject to monopolistic competition. To 

eliminate externalities in the form of non-exhaustible resources used in the dirty 

input production, the socially optimal allocation is characterized, recommending 

lump-sum taxes and transfers. Therefore, Acemoglu et al. (2012) define the 

combination of (i) carbon tax on dirty input, (ii) research subsidy for clean 

innovations, and (iii) subsidy for the use of all machines as the first-best policy for 

socially optimal allocation. Consequently, market failures arising from inefficient 

use of machines due to monopolistic pricing are addressed with a subsidy for 

machines, environmental damages from dirty input production are mitigated with 

a carbon tax, and market failures by knowledge externalities on the IPF are 

 
7 For more details about complementary inputs and environmental policy, readers are referred 
to Appendix I in Acemoglu et al. (2012). 
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addressed with a research subsidy (directing innovation toward the clean sector 

to deal with future environmental externalities). 

 
 
Acemoglu et al. (2012) describe a scenario where only carbon tax is used as the 

intervention tool for socially optimal allocation as a second-best policy. However, 

relying solely on a carbon tax to combat both current and future environmental 

externalities would necessitate higher tax rates, resulting in the distortion of 

current production and a significant reduction in consumption. At this point, an 

important question is whether the optimal environmental policy will be 

implemented permanently or temporarily. Accordingly, if there is sufficient 

substitution between clean and dirty inputs and the discount rate is low enough, 

temporarily applying research subsidy and carbon tax will be sufficient for the 

transition to clean innovation. However, the allocations required to correct 

monopoly distortions are beyond this scope. When the discount rate is sufficiently 

low, the positive long-term growth resulting from technological advancement in 

clean input (given the substitution relationship, there will be no increase in dirty 

input production) will be optimal. In this mechanism, research subsidies, properly 

determined at the right level, will work to surpass the productivity level of the clean 

sector over the dirty sector, making innovation in the clean sector more profitable. 

Subsequently, even without subsidies, innovation will continue in the clean sector. 

1.3.2. Exhaustible Resource 

Acemoglu et al. (2012) have also characterized the environmental model of 

directed technical change for the case where exhaustible resources are used in 

the dirty sector. In this specification, even without intervention, preventing an 

environmental disaster is possible because using exhaustible resources in the 

dirty sector leads to continuously increasing usage costs due to extraction costs 

and resource scarcity. However, it is initially assumed that there are no privately 

held property rights for exhaustible resources, and the usage cost is determined 
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solely by the extraction cost. Later, it is assumed that property rights are vested 

in infinite-lived firms or consumers, and thus, the Hotelling Rule determines the 

price. Since exhaustible resources are used to produce dirty input, the stock of 

exhaustible resources now affects the price and market size. Accordingly, as the 

resource stock decreases, the efficiency of dirty input also decreases, and its 

price increases. In the final state, the ratio of expected profits in the two sectors 

becomes: 

 

Π/.
Π3.

= κ
η/𝑐(𝑄.)4)(1$#)

η3
(1 + γη/𝑠/.)<$#

(1 + γη3𝑠3.)<#$#
𝐴/.$#
$<

𝐴3.$#
$<# 								 (1.12) 

  

where κ denotes the time-invariant parameters, Qt is the resource stock at time t, 

and the per unit extraction cost for the exhaustible resource is c(Qt) and is 

decreasing in Qt. Accordingly, innovating in the clean sector will become more 

profitable with a substitution relationship between the two inputs as the resource 

stock depletes. In other words, decreasing resource stock will increase the 

relative cost of dirty input, narrow market size, and encourage innovation in the 

clean sector. A substitution elasticity greater than one will reduce the weight of 

dirty input in the final good, preserving environmental quality and enabling 

positive long-term growth without policy intervention. As a result, increasing 

resource prices and extraction costs naturally create an incentive towards clean 

technologies, demonstrating the possibility of economic growth that is less 

harmful to the environment compared to the baseline model. 

1.3.2.1. Optimal Policy 

In the case where non-exhaustible resources are used, the optimal regulation 

includes a subsidy that corrects monopoly distortions, a carbon tax on dirty input 

production, and research subsidy for the clean sector. Here, since the private 

extraction cost does not account for the value derived from the limited availability 
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of exhaustible resources, the optimal allocation of resources also suggests the 

continuous implementation of a resource tax. On the other hand, the case where 

price-taking and profit-maximizing firms hold well-defined property rights over 

exhaustible resources has also been considered. In this case, the price of 

exhaustible resources is determined by the Hotelling rule. Accordingly, under the 

assumption that the cost of extraction is fixed and equal to 𝑐 > 0, The pricing of 

exhaustible resources should be established in a manner where the marginal 

value of extracting one more unit today equals the discounted value of extracting 

an additional unit in the future.  

 
 
The Hotelling rule implies that the resource price asymptotically increases at the 

same rate as the interest rate derived from the consumption Euler. Under these 

conditions, if the discount rate and the elasticity of substitution between the two 

sectors are sufficiently high, innovation occurs only in the clean sector. Under 

laissez-faire, the prevention of environmental disaster is possible. However, if the 

discount rate and elasticity of substitution are sufficiently low, avoiding 

environmental disaster without intervention is impossible. In other words, when 

the discount rate is low enough, the resource price increases more slowly than 

the average productivity of the dirty sector, and innovations eventually turn 

towards dirty technologies. When the discount rate is sufficiently high, the 

resource price increases rapidly enough to allow innovations to turn towards 

clean technologies within a limited period, ultimately avoiding disaster with 

temporary research subsidies. However, a prerequisite for this is a strong 

substitution relationship between the two sectors. 

1.4. ALTERNATIVE MODELS AND EXTENSIONS 

Following the pioneering study of Acemoglu et al. (2012), a growing body of 

literature continues to develop divergent and marginally modified models of the 

environmental model of directed technical change. Table 1 presents the reviewed 



23 

 

 

 

 

 

 

literature regarding the extensions of the environmental models of directed 

technical change. First, Acemoglu et al. (2012) proposed some modeling 

alternatives to the model explained in the previous section. These modeling 

alternatives that are briefly explained below are specified as the direct impact of 

environmental degradation on productivity, alternative technologies, and 

substitution between productivity improvements and green technologies. 
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Table 1 Extensions of the Directed Technical Change Models 

Year Author(s) Title Modification 

2012 Acemoglu D., Aghion 
P., Bursztyn L., 

Hemous D. 

“The Environment and Directed 
Technical Change” 

Direct impact 
of 

environmental 
degradation on 

productivity 

2012 Acemoglu D., Aghion 
P., Bursztyn L., 

Hemous D. 

“The Environment and Directed 
Technical Change” 

Alternative 
technologies 

2012 Acemoglu D., Aghion 
P., Bursztyn L., 

Hemous D. 

“The Environment and Directed 
Technical Change” 

Substitution 
between 

productivity 
improvements 

and green 
technologies. 

2012 Hemous, D. “Environmental Policy and 
Directed Technical Change in a 
Global Economy: The Dynamic 

Impact of Unilateral 
Environmental Policies.” 

Trade, 
unilateral 

policy 

2014 Andre FJ., Smulders S. “Fueling growth when oil peaks: 
Directed technological change 

and the limits to efficiency 

Energy 
efficiency 

2016 Acemoglu D., Akcigit 
U., Hanley D., Kerr W. 

Transition to Clean Technology” Energy 
Technology 

2017 Lennox JA., 
Witajewski-Baltvilks J. 

“Directed technical change with 
capital-embodied technologies: 
Implications for climate policy” 

Capital 
embodiment, 
Obsolescence 

2017 Van den Bijgaart I. “The unilateral implementation 
of a sustainable growth path 

with directed technical change” 

Trade, 
unilateral 

policy 

2017 Witajewski-Baltvilksa J., 
Verdolinia E., Tavonia 

M. 

“Induced technological change 
and energy efficiency 

improvements” 

Energy 
efficiency 
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2018 Fried S. “Climate Policy and Innovation: 
A Quantitative Macroeconomic 

Analysis” 

Technology 
Spillovers 

2018 Greaker M., Heggedal 
TR., Rosendahl KE. 

 

“Environmental Policy and the 
Direction of Technical Change” 

Innovation 
policy 

2018 Haas C., Kempa K. “Directed Technical Change and 
Energy Intensity Dynamics: 

Structural Change vs. Energy 
Efficiency” 

Energy 
intensity, 
Energy 

efficiency 

2019 Durmaz T., Schroyen F. “Evaluating Carbon Capture and 
Storage in a Climate Model with 
Endogenous Technical Change” 

Carbon 
capture and 

storage 

2024 Casey G. Energy Efficiency and Directed 
Technical Change: Implications 
for Climate Change Mitigation 

Energy 
efficiency 

2023 Kruse-Andersen PK. “Directed technical change, 
environmental sustainability, and 

population growth” 

Population 
growth 

2023 Acemoglu D., Aghion 
P., Barrage L., Hemous 

D. 

“Climate Change, Directed 
Innovation, and Energy 

Transition: The Long-run 
Consequences of the Shale Gas 

Revolution” 

Energy 
transition 

 

Direct Impact of Environmental Degradation on Productivity: This approach 

suggests that in the absence of any economic intervention, there will be an 

environmental disaster in a limited time, or consumption will converge to zero 

over time. In this approach, the decline in environmental quality negatively affects 

labor productivity in both sectors. In the absence of intervention, the productivity 

loss caused by environmental degradation due to the increasing average 

productivity of the dirty sector will lead to the convergence of total output and 

consumption to zero. Alternatively, the decrease in productivity may not be 

sufficient to counterbalance the rising productivity in the dirty sector, resulting in 
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an environmental disaster within a limited time. The temporary research subsidies 

policy proposed by Acemoglu et al. (2012) in the basic model for the clean sector 

will prevent environmental disasters and convergence of consumption with lower 

short-term intervention costs in this case. 

 
 
Alternative Technologies: In this modeling, Acemoglu et al. (2012) practically 

have the potential to reduce the environmental damage caused by dirty 

technologies through clean innovations. This approach suggests a framework 

where the average sectoral efficiencies of dirty and clean inputs correspond to a 

task fraction between clean and dirty technologies. Accordingly, clean innovations 

both increase the average efficiency of the clean sector and the quantity, reducing 

the pollution intensity of the aggregate production process. Therefore, this 

approach suggests that there could be a single type of Technical Change that 

reduces pollution in the existing production process. 

 
 
Substitution Between Productivity Improvements and Green Technologies: 

Acemoglu et al. (2012) suggest eliminating the distinction between clean and dirty 

technologies and instead propose categorizing them as technologies that 

increase efficiency and reduce pollution. In this case, research can be directed 

towards improving the efficiency of dirty machines or reducing pollution levels. 

Without intervention, output may continue to grow indefinitely, leading to an 

environmental disaster. However, innovations that reduce pollution can guide 

technological development and help avoid disaster. In such a setting, intervention 

cannot be temporary, as in Acemoglu et al. (2012) baseline model, and must 

occur in the form of pollution reduction instead of productivity increase. This could 

potentially constrain long-term growth. Increasing pollution-reducing innovations 

on existing technologies here diminishes the relative importance of green 

innovation by overshadowing research on clean technologies. The conclusion is 
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that there is a complementary relationship between clean technologies and 

pollution-reducing innovations rather than a substitution relationship. 

 
 
Acemoglu et al. (2012) establish the foundation for models of directed technical 

change (DTC) by introducing a framework that explores the direct effects of 

environmental degradation on productivity, the availability of alternative 

technologies, and the substitution dynamics between dirty and clean 

technologies. This influential study served as a milestone for the following 

research, inspiring the development of diverse modeling approaches. However, 

these approaches are often studied in isolation, with limited attention to their 

interconnections. In this section, we critically review the various models in the 

literature, highlighting their relationships and offering a comprehensive 

perspective. 

 
 
Acemoglu et al. (2012) suggest that temporary subsidies could be sufficient to 

prevent environmental disasters. However, this perspective overlooks the 

broader insights from open-economy models, such as those proposed by 

Hemous (2012) and Van den Bijgaart (2017). These models highlight the 

importance of technology spillovers and trade, revealing that temporary 

measures may fail to ensure long-term environmental sustainability. Hemous 

(2012) integrates the directed technical change framework into an open economy, 

examining whether a number of countries can achieve sustainable growth by 

implementing unilateral environmental policies. The model includes two countries 

(North and South) and two traded goods, one of which is defined as a polluting 

good produced using clean and dirty inputs, leading to global externalities. 

Additionally, Hemous (2012) introduces an extension that accounts for 

technology spillovers across countries. The model's findings indicate that carbon 

tax alone does not ensure sustainable growth or environmental quality 

preservation. However, temporary clean research subsidies and tariffs 
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implemented in one country can lead to sustainable growth with high levels of 

environmental quality. These findings hold true even in cases where there are 

technology spillovers between countries. Van den Bijgaart (2017), employs a 

similar approach and analyzes the effects of unilateral policies on production and 

innovation using a two-country (local and foreign) model. The findings show that 

when foreign countries increase dirty goods production in response to local 

reductions, this also stimulates innovation in the dirty sector of those foreign 

countries. This indirect effect of unilateral policies on innovation can have 

significant implications for the type of unilateral policies implemented to achieve 

sustainable growth. 

 
 
Andre and Smulders (2014) explore the relationship between energy use, 

productivity growth, and resource scarcity. They illustrate how the allocation of 

resources to the energy sector can drive technological change, offering valuable 

insights into this dynamic. The research deals with the influence of extraction 

costs and technological advancements on long-term economic dynamics and 

sustainability. The findings suggest that technological change responds to 

resource scarcity, with resource allocation to the energy sector adapting 

according to its production significance. Additionally, the paper reveals how 

energy scarcity shapes the bias of technological change and outlines its 

implications for overall innovation (Andre and Smulders 2014). This model 

parallels the work of Witajewski-Baltvilksa et al. (2017), which explores how 

productivity improvements in energy-intensive sectors can reduce energy 

demand. Unlike the baseline model of Acemoglu et al. (2012), this study 

incorporates energy-intensive and non-energy-intensive inputs into the 

production process instead of clean and dirty inputs. The theoretical findings of 

the model indicate that if there is a complementary relationship between the two 

types of inputs, innovations in the energy-intensive sector have a reducing effect 

on energy demand. The model explains this result with the market size effect, 

similar to the baseline model of Acemoglu et al. (2012). The level of these 
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innovation efforts in the long term (in balanced growth path) depends on the 

growth rate of energy costs. 

 
 
Both Andre and Smulders (2014) and Witajewski-Baltvilksa et al. (2017) 

emphasize the relationship between energy efficiency and technological change. 

However, Haas and Kempa (2018) offer an innovative contribution by 

distinguishing between the structural and efficiency effects of dynamics in energy 

intensity. Haas and Kempa (2018) marginally modify the environmental model of 

directed technical change by considering heterogeneous energy intensity 

dynamics in the presence of exhaustible resources. The paper decomposes 

aggregate energy intensity into structural effect and efficiency effect. While the 

structural effect defines structural adjustments in the sectors with low energy 

intensities, the efficiency effect defines the improvements in energy efficiency 

within sectors. The paper explains energy price growth and sectoral productivity 

as determinants of the relative importance of these two effects and drivers of the 

directed technical change. Accordingly, while the structural effect dominates the 

energy intensity dynamics if research is directed to the labor-intensive sector, the 

efficiency effect dominates when research is directed to the energy-intensive 

sector. The paper concludes that energy price shocks can redistribute innovation 

activities across sectors.  

 
 
Durmaz and Schroyen (2019) examine the role of carbon capture and storage 

(CCS) technologies in resource allocation, emphasizing the critical need for a 

balance between clean and dirty technologies. The paper investigates whether 

carbon capture and storage and research and development efforts in this sector 

contribute to the socially efficient solution to the climate change problem. Durmaz 

and Schroyen (2019) address the Pareto-efficient policy allocation of resources 

across dirty, clean and carbon capture and storage sectors. The main findings 

highlight a critical level for the marginal cost of carbon capture and storage, at 
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which marginal cost is above the critical level innovation first allocated in dirty and 

then clean energy. However, when the marginal cost of carbon capture and 

storage is below this critical level, innovations are allocated both in dirty energy 

and carbon capture and storage technology.  

 
 
Fried (2018) modifies the Directed Technical Change framework, which assumes 

that innovation occurs in multiple types of energy by considering the assumption 

of technology spillovers between sectors, as the realization of innovation in only 

one energy type is inconsistent with real data. The final product is produced by 

the model using three inputs: fossil, green, and non-energy. Accordingly, limited 

innovation is allocated among fossil, green, and non-energy intermediate inputs. 

The study also externally accounts for the price of oil imports to model oil shocks. 

Fried (2018) employs a constant carbon tax implication to study the dynamic 

effects of climate policy with endogenous innovation. According to the findings, 

after 20 years, the tax causes the level of green innovation to be 50% higher than 

without the tax and fossil innovation to be 60% lower. In the model with the tax, 

the relative price of green energy to fossil energy is 7% lower after 20 years 

compared to the price in the without tax model, and it is 17% lower in the new 

balanced growth path. 

 
 
Kruse-Andersen (2023) examines the impact of population growth on pollution, 

suggesting that more people could mean either more emissions or greater 

research capacity. Population growth can have two potentially opposing effects 

on pollution emissions. Accordingly, more people may imply more production and 

thus more emissions, or more people may imply an increase in research capacity, 

which depending on the direction of research, can reduce the emission intensity 

of production. Kruse-Andersen (2023) questions how to achieve a specific 

climate target in the presence of these two effects. Under the assumption of 

simultaneous research in both dirty and clean technologies, both analytical and 
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numerical results have shown that population growth remains a burden on the 

environment, even if all innovation efforts are directed towards clean 

technologies. Kruse-Andersen (2023) provides a more detailed analysis of the 

impact of population dynamics on environmental sustainability compared to the 

works of Acemoglu et al. (2012) and Greaker et al. (2018) on innovation direction. 

However, further quantitative analysis may be needed to better predict the long-

term effects of population growth on sustainability. 

 
 
Acemoglu et al. (2023) assess the short- and long-term effects of the shale gas 

revolution, highlighting the potential of fossil fuels to slow innovation. This study 

addresses the indirect effects of fossil fuel dependence on clean energy 

innovation, emphasizing the need for a combined approach of carbon taxes and 

clean incentives. However, this suggestion may overlook forces such as trade 

and technology diffusion, which other literature discusses. 

 
 
The literature on environmentally directed technical change (DTC) offers various 

modeling approaches for achieving sustainable growth and environmental 

sustainability goals. However, the findings from these studies need to be 

integrated into a more consistent and actionable framework for policy design. The 

reviewed models address key issues such as energy efficiency, carbon capture, 

technology spillover, and population dynamics. However, these studies are often 

analyzed in isolation. For instance, Andre and Smulders (2014)'s work on energy 

scarcity and efficiency could enhance a broader energy policy framework when 

considered alongside Haas and Kempa (2018)'s research on how energy price 

shocks affect innovation. Similarly, Acemoglu et al. (2023)'s paper on the indirect 

effects of the shale gas revolution could be integrated with Fried (2018)'s 

exploration of the connection between carbon taxes and innovation spillovers. 

Despite these insights, the findings underscore the complexity of policy design. 

For example, while temporary subsidies (Acemoglu et al., 2012) may be effective 
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in the short term, they could fail to be sustainable in the long term if international 

cooperation and technology diffusion are not taken into account (Hemous, 2012; 

Van den Bijgaart, 2017). The effectiveness of carbon capture technologies is 

constrained by economic feasibility and cost-effectiveness (Durmaz and 

Schroyen, 2019), pointing to the need for a combined approach to carbon pricing 

and technological incentives. Socioeconomic factors like population growth also 

play a crucial role in both directing innovation and ensuring sustainable resource 

management (Kruse-Andersen, 2023). 

 
 

Overall, this section highlights that achieving environmental sustainability 

requires an integrated approach to technological innovation and energy policies. 

Future research can develop more comprehensive policy recommendations by 

linking models more effectively and combining different approaches. 

 
 
The models reviewed in this literature survey address topics such as directing 

innovation, energy efficiency, carbon capture technologies, and capital dynamics 

within the framework of environmentally directed technical change. However, 

several key limitations are apparent. Specifically, the mechanisms driving the 

speed and effectiveness of technology spillovers, as well as the long-term 

economic and environmental impacts of fossil energy costs (e.g., environmental 

and social costs) have not been thoroughly examined. Future studies should 

focus on bridging these gaps by developing strategies to accelerate technology 

spillovers and creating policy frameworks that endogenize exogenous costs. 

Such approaches could offer more comprehensive and effective solutions for 

achieving environmental sustainability. 
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1.5. EMPIRICAL LITERATURE 

After analyzing the foundation in 1998 and 2002 within the framework of directed 

technical change, along with environmental policies in 2012, the dynamics of 

environmental policy and climate change mitigation continue to be examined 

through theoretical and empirical applications. In this context, Acemoglu et al. 

(2012) initially analyzed the environmental model of directed technical change 

with a basic application. Subsequently, these analyses have continued with 

different sector preferences and specifications. This section discusses the 

findings of the numeric and econometric literature on directed technical change 

and the environment. 

 
 
Acemoglu et al. (2012) presented the findings of a quantitative study for the 

theoretical model in the context of a non-exhaustible resource setup. In the 

analysis, they tested the effects of different discount rate values and the elasticity 

of substitution on optimal environmental policy and the transition to clean 

technology. The analysis considered a period of 5 years, and it was assumed that 

the carbon tax was zero before the implementation of the optimal policy. Based 

on the substitutability assumption between clean and dirty energy types, the 

elasticity of substitution was tested for two different values, 3 and 10. These two 

values, were chosen to emphasize the significant role of the elasticity of 

substitution. Similarly, two different values were also anticipated for the discount 

rate, determined as 0.001 per annum, suggested by Stern, and 0.015 per annum, 

suggested by Nordhaus. Accordingly, when the elasticity of substitution is 10 and 

3, and the discount rate is 0.001, an optimal policy emerges that requires all 

innovation efforts to be urgently directed towards clean technologies. With the 

elasticity of substitution 3 and a discount rate of 0.015, the transition to clean 

technologies takes place approximately within 50 years. When the elasticity of 

substitution is 10, it was observed that research subsidies are implemented at a 

lower level and in a shorter period. With the elasticity of substitution 10, the 
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implementation of a carbon tax in a small amount and for a short period is 

considered sufficient for the transition to clean technology. However, when the 

elasticity of substitution is 3, and the discount rate is 0.015, the transition to clean 

technology and production is delayed, necessitating the application of a carbon 

tax at a higher level and for a longer period (over 185 years). On the other hand, 

when the elasticity of substitution is 10, the temperature increase initially occurs 

at a small level, then decreases, reaching pre-industrial levels after 90 years. 

With the elasticity of substitution 3 and a discount rate of 0.015, the temperature 

increases over 300 years, almost reaching catastrophic levels. The findings of 

Acemoglu et al. (2012) essentially demonstrated that if the substitution 

relationship between dirty and clean technologies is sufficiently high, the discount 

rates of Stern and Nordhaus have a limited impact on the optimal environmental 

policy. Besides, using only a carbon tax as a policy intervention requires a higher 

tax level. Lanzi and Wing (2011) empirically examine the impact of energy prices 

on innovation in the fossil fuel and renewable energy sectors within a two-sector 

framework, offering a contrast to the theoretical model of Acemoglu et al. (2012). 

By using real data from OECD countries, their study fills an empirical gap in the 

literature, measuring the elasticity value and determining how changes in energy 

prices influence innovation levels between the two sectors. This framework 

establishes and estimates the relationship between relative energy prices and 

relative innovation levels between the two sectors. The findings, based on data 

from 23 OECD countries during the period 1978-2006, indicate that changes in 

relative energy prices lead to changes in relative innovation levels between fossil 

and renewable technologies. Additionally, the elasticity of substitution between 

fossil and renewable sectors is determined to be 1.64. The results suggest an 

increase in innovation in renewable technologies, while in fossil technologies, 

innovation initially rises but starts decreasing after reaching a threshold level of 

relative prices.  
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Unlike the previous studies, Fried (2018) compares the effects of both 

endogenous and exogenous innovations on reducing carbon emissions and 

optimizes the carbon tax level based on these dynamics. Moreover, by 

considering interactions such as technology spillovers between the green and 

fossil energy sectors, the paper addresses a gap in the literature by analyzing 

how these interactions influence the carbon tax. The paper analyzes energy price 

increases triggered by historical oil shocks, identifying oil shocks as a proxy for 

climate policy-induced energy price increases, with the early 1970s oil shocks 

considered historical examples. The analysis sets the elasticity of substitution at 

1.5 between green energy, fossil energy, and oil imports. Fried (2018) follows a 

two-stage approach. First, innovations are treated endogenously, while in the 

second stage, they are included in the exogenous model. A fixed carbon tax is 

included between 2015 and 2019. The level of the carbon tax is determined to 

reduce carbon emissions by 30% relative to the balanced growth value within 20 

years (2030-2034). The level of the tax depends on whether innovations are 

determined as endogenous or exogenous. In the endogenous innovation model, 

machines, researchers, and workers are part of a dynamic process influenced by 

the carbon tax. In the exogenous innovation model, the number of researchers 

remains constant at the baseline balanced growth value while machines and 

workers respond to the tax. The findings indicate that the carbon tax has a 

significant impact on reducing emissions in the endogenous model, and the level 

of the tax required to achieve a 30% reduction in emissions within 20 years would 

decrease by 19.2%. Fried (2018) also contributes to the relevant literature by 

accounting for technology spillovers between the green and fossil sectors. The 

paper assumes that the spillover rate can be between 0.3 and 0.9. The results 

show that strong spillover rates decrease the changes in relative technologies, 

thus reducing the impact of endogenous innovations on the size of the carbon 

tax. However, even at the highest spillover rate of 0.9, endogenous innovations 

are found to reduce the size of the carbon tax by over 15%. 
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Haas and Kempa (2018) focus on the effects of energy prices and technological 

changes on energy intensity, emphasizing sectoral structural changes and within-

sector energy efficiency improvements. This study analyzes cross-country energy 

intensity dynamics by addressing the differences between energy-intensive and 

labor-intensive sectors. Haas and Kempa (2018) aggregate 32 sectors in 26 

Organization for Economic Co-operation and Development (OECD) countries 

into energy-intensive and labor-intensive sectors, covering the period between 

1995 and 2007. The model is calibrated based on 1995 data, and energy intensity 

and determinant changes are simulated until 2007. Haas and Kempa (2018) 

calculate the average energy intensity, categorizing sectors with intensity above 

the average as energy-intensive and those below as labor-intensive. The 

elasticity of substitution between the two sectors is set at 2. The findings indicate 

that the larger the increase in energy prices, the more pronounced the decrease 

in energy intensity. The overall decrease in energy intensity is more significant in 

countries where technical change is directed towards labor-intensive sectors. In 

11 out of the 26 countries, innovation efforts are oriented towards energy-

intensive sectors, and therefore, the dynamics of energy intensity are dominated 

by the efficiency effect. 

 
 
Hou, Roseta-Palma, and Ramalho (2020) take a different approach from Haas 

and Kempa by analyzing the factor bias of technological change across countries. 

Their study shows that technological change typically shifts towards energy use, 

increasing energy consumption rather than labor. This highlights how 

technological change affects production factors, focusing more on the broader 

impact than on direct sectoral dynamics aimed at reducing energy intensity. They 

conduct an analysis of directed technical change in production activities for 16 

developed and developing countries between 1991 and 2014. In the study, a 

stochastic frontier model was estimated using three inputs: capital, labor, and 
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energy within the production function. The results obtained by calculating the 

factor bias index show that technological change is mostly directed towards 

energy. Countries exhibit different bias orders regarding technological change, 

but overall, technological change tends to be directed towards energy rather than 

labor.  

 
 
Hou and Song (2022) focus on optimizing the energy structure, particularly within 

the context of China. Their study examines the transition from fossil fuels to 

electricity and from thermal energy to clean energy through the lens of 

technological change. It explores how technological advancements impact the 

transformation of the energy structure. The study also highlights that 

technological change could potentially reverse the desired energy transition, 

underscoring the need for policies like carbon taxes to counterbalance these 

effects.  Hou and Song (2022) explore the role of directed technical change in 

improving the energy structure in China. The study suggests that optimizing the 

energy structure would support the decarbonization process. In this analysis, 

using a translog production function, three different inputs are considered: 

thermal power, clean energy, and traditional fossil energy. The study investigates 

the path of improving the energy structure, specifically substituting fossil energy 

with electricity and substituting thermal power with clean energy, and then 

examines whether directed technical change optimizes the energy structure in 

China. Findings suggest a substitution relationship between thermal power and 

clean energy during the internal transition process. In the external transition 

process, technical change is directed towards fossil energy instead of thermal 

power and clean energy, indicating a substitution relationship among these three 

inputs. This implies that the effect of technical change operates contrary to the 

transition of the energy structure from fossil energy to electricity. Therefore, the 

study suggests that the Chinese government should implement measures such 

as carbon taxes to eliminate the impact of directed technical change and optimize 

the energy structure. 
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The main difference between these three studies lies in their focus and analytical 

approach to reducing energy intensity: Haas and Kempa concentrate on sectoral 

structure and efficiency improvements, Hou and Roseta-Palma analyze 

technological changes in production factors, while Hou and Song focus on 

policies aimed at transforming the energy structure. 

 
 
Other approaches explore how directed technological change can contribute to 

environmental sustainability from various perspectives beyond the energy sector. 

As a novel approach, Yang et al. (2020) contribute to the directed technical 

change literature with a distinct application. Their study explores the impact of a 

directed technical change associated with big data on environmental quality. The 

findings indicate that as the relative benefits of R&D in clean technology increase, 

the utilization of big data further enhances environmental quality. Moreover, while 

the application of big data may diminish incentives for R&D in clean technology 

to avert environmental disasters, its influence on environmental taxes varies 

depending on the advancement of clean technology levels. Zhou et al. (2020) 

investigate the impact of industrial structural rationalization, upgrading, and eco-

industrialization processes on energy and environmentally focused technological 

progress. During the process of industrial structural change, inter-sectoral 

technical efficiency improvements cause the flow of production factors from low-

efficiency sectors to high-efficiency sectors, leading to changes in the economy's 

composition. To achieve this, a spatial autoregression model is constructed using 

panel data covering the years 2000-2016 for the 30 provinces of China. The 

empirical results demonstrate that directed technical change is based on 

multidimensional industrial structural changes. Particularly at the national level, 

industrial structural rationalization can incentivize all forms of directed technical 

change. 
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Recent research on environmental policies and climate change has been 

enriched through both theoretical and empirical analyses within the framework of 

directed technical change models. These studies cover various topics, including 

the transition to clean technologies, the interplay between energy prices and 

technological change, sectoral differences, the dynamics of energy intensity, and 

the environmental impacts of innovations. Starting with Acemoglu et al.'s (2012) 

foundational model, studies like those by Fried (2018) and Lanzi and Wing (2011) 

have examined the roles of carbon taxes and innovations. Research by Haas and 

Kempa (2018) and Hou et al. (2020) has focused on changes in energy intensity 

and optimizing energy structures, while Yang et al. (2020) have highlighted the 

environmental impacts of big data usage. Overall, this body of literature provides 

valuable insights for policymakers by assessing the multifaceted effects of 

directed technical change on energy transition and sustainability. 

 
 
To conclude, the environmental model of directed technical change literature, 

generally links the model to environmental policies based on energy type, price, 

and efficiency measures. However, we notice that the relevant literature has not 

adequately explored technology spillovers between clean and dirty technologies 

or their effects on relative productivity levels and the costs of environmental 

policies.	 Therefore, the next section takes an in-depth examination of the 

relationship between technology spillovers and directed technical change. 

1.6. CROSS-INDUSTRY TECHNOLOGY SPILLOVERS 

Directed technical change models effectively cover topics like the direction of 

innovations, energy efficiency, carbon capture technologies, and capital 

dynamics. However, some key areas remain underexplored, particularly the 

effects of technology spillovers on sustainability. 
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Technology spillovers can play a significant role in the transition to clean energy 

and the fight against climate change in fossil and clean energy production and 

consumption. Looking at technology spillovers on a knowledge basis, knowledge 

characterized by the public good property can spread to other individuals, firms, 

and sectors to some extent, known as knowledge spillovers. Earlier studies 

addressed technology spillovers and their implications for economic growth 

(Arrow 1972; Caballero and Jaffe 1993; Jaffe 1986; Romer 1986; Romer 1990). 

Then, some of the papers investigate the theoretical and empirical foundations of 

technology spillovers, exploring various aspects such as trade, international 

investment, competition and productivity growth within the framework of 

endogenous technological change (Acemoglu 2002; Acemoglu and Akcigit 2012; 

Aghion and Howitt 1990; Keller 2004; Keller and Yeaple 2009). A large body of 

literature examines intra-industry and inter-industry technology spillovers from 

various perspectives and analyzes the dynamics determining them. However, 

given that this review focuses on directed technical change from an 

environmental perspective, we limit our coverage in this section to technology 

spillovers emerging between clean and dirty technologies. 

 
 
Often, when inventing and developing clean technologies, the knowledge 

externalities emerging from dirty sectors and technologies are utilized to bring 

about clean technologies instead of starting from scratch. For instance, as 

highlighted by Donald (2023), during the development of the first Tesla prototype, 

engineers redesigned the internal combustion engine by filling it with batteries 

rather than starting from scratch. As Fried (2018) cited from Perlin (2000), another 

example of spillovers between clean and dirty technologies is the mass 

commercialization of solar cells, driven by oil companies demanding energy to 

power lights on their offshore rigs. On the other hand, clean technologies also 

potentially provide a form that can facilitate the spread of innovations to different 

technologies. Dechezlepretre et al. (2013) have demonstrated that innovations 
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emerging in clean energy exhibit a much higher spillover effect and generality 

compared to dirty energy. 

 
 
Technology spillovers are often overlooked in research related to environmental 

policies for transitioning to a low-carbon economy. However, technology 

spillovers that may arise in clean and dirty energy technologies can significantly 

combat climate change. Considering spillovers between clean and dirty energy 

technologies within the directed technical change framework mostly does not 

draw attention in the existing literature. A rare example of this framework by Fried 

(2018) considers within and cross-sector innovation spillovers in green and fossil 

energy types. Fried (2018) differs from Acemoglu et al. (2012) by suggesting that 

innovations can occur not only within one type of technology or industry but in 

both sectors involving clean and dirty production. This is made possible through 

cross-sector technology spillovers. In a setup where the spillover rate ranges 

between 0.3 and 0.9, Fried (2018) shows that with a strong spillover rate, the 

differences in relative technology levels between clean and dirty sectors are 

expected to decrease over time.  

 
 
As another example, Hemous (2012) offers an extension that considers the 

possibility of cross-country technology spillovers in a model economy where 

unilateral environmental policies are implemented in two countries, North and 

South. The theoretical and numerical findings indicate that in the presence of 

knowledge spillovers or international innovative firms, a transition to clean 

innovation in the South can be achieved with policies in the North, thereby 

preventing a disaster without the South needing to specialize in the non-polluting 

sector. 
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Studies examining the spillover of different types of energy technologies are often 

analyzed through data related to patents (citations) developed on these 

technologies rather than relying on numerical analyses. Because the more 

citations a patent receives, the more the technology is diffused. From this 

perspective, Dechezlepretre et al. (2013) employ patent citation data to show the 

relative intensity of knowledge spillovers in clean and dirty technologies 

considering energy production, automobiles, fuel and lighting. The paper strongly 

implies the relative advantage of clean patents in all four technologies and 

explains this superiority by the two properties of clean technologies, namely, 

generalizability and being a new area for innovation compared to dirty 

technologies. Similarly, in the analysis conducted by Ocampo-Corrales et al. 

(2020) based on patent data for European regions, it has been found that clean 

energy technologies have a greater scientific foundation compared to other 

technologies. Additionally, the study highlights that they significantly benefit from 

scientific and technological knowledge flows from distant places. The research 

emphasizes that this case is specific to clean technologies and distinguishes 

them from other cutting-edge technologies and technologies related to energy 

generation from traditional energy sectors. 

 
 
In the analysis conducted by Jee and Srivastav (2022) using patent citation data, 

it is suggested that the majority of clean technologies do not receive direct 

knowledge flow from dirty technologies but are indirectly connected. It has been 

proposed that, although to a lesser extent, areas such as geothermal energy, 

clean metals, and carbon capture and storage are more susceptible to 

technological spillovers than dirty technologies. Fernandez et al. (2022) 

conducted a regression analysis to examine the determining factors of patented 

knowledge diffusion between renewable energy technologies and other energy 

patents (such as fossil and nuclear patents) carried out by firms. Firstly, the 

findings indicate that patents making more references to the literature and 

previous patents achieve greater diffusion. On the other hand, joint patents with 
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other firms or universities have a negligible impact on renewable energy 

technology. Another notable finding of the study is that the collaboration between 

firms and universities in patents related to other forms of energy hinders the 

diffusion of innovations. 

 
 
The overall literature suggests that technology spillovers between clean and dirty 

technologies support the progress of clean technologies and that clean 

technologies benefit more from spillovers compared to dirty ones. 

1.7. CHAPTER SUMMARY 

In this paper, we review the growing literature on the environment and directed 

technical change, placing particular emphasis on cross-sector technology 

spillovers. The foundational theory of directed technical change asserts that 

technological advancements are not neutral and are likely to be directed toward 

specific production factors due to the effects of price and market size. The 

environmental implications of this theory provide practical insights into 

addressing challenges such as climate change. 

 
 
Acemoglu et al. (2012) extend the earlier directed technical change framework 

by incorporating environmental policy and innovations, presenting several 

noteworthy implications. These include (i) the possibility of achieving sustainable 

growth through the implementation of temporary policies (a combination of a 

carbon tax and research subsidy) with a sufficient substitution rate between clean 

and dirty technologies, (ii) the facilitation of a shift to clean innovation when using 

exhaustible resources in dirty input production, and (iii) in contrast to models with 

exogenous technology, a more optimistic scenario is portrayed, but with a call for 

immediate and decisive action. 
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In this review, we ask two pivotal questions concerning the environmental model 

of directed technical change. First, does empirical literature align with the 

theoretical conclusions of the model? Second, how do cross-sector technology 

spillovers, which are not considered in the baseline environmental model of 

directed technical change, impact the direction of innovations during the transition 

to a low-carbon economy? The overall sense from the empirical literature 

suggests that directed innovations in clean technologies respond to 

environmental policy and generally link the directed technical change model to 

environmental policy based on energy type, energy price, and energy efficiency 

measures. Relevant literature on technology spillovers emphasizes the crucial 

role of technology spillovers in advancing clean energy and combating climate 

change. It discusses instances where knowledge from dirty sectors contributes 

to clean technology development and vice versa. Overall, technology spillovers 

between clean and dirty technologies support the progress of clean technologies 

and those clean technologies benefit more from spillovers compared to dirty 

ones. However, we observe that the impact of technology spillovers on the 

productivity levels of clean and dirty technologies, and their sensitivity to changes 

in fossil energy costs, have not been sufficiently addressed in the existing 

literature on directed technical change. 

 
 
There are several points that need to be considered by future research. For 

instance, there is a need for further quantitative and empirical analyses to develop 

an understanding of the environmental effects that may arise from integrating 

cross-sector and cross-country technology spillovers with directed technical 

change. Furthermore, since there is no consensus on whether there is a 

substitution or complementary relationship between clean and dirty technologies, 

obtaining more empirical evidence on this matter could be beneficial. 
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CHAPTER 2 

GREENING THE ECONOMY WITH FOSSIL ENERGY COSTS AND 

INNOVATION SPILLOVERS: INSIGHTS FROM A DIRECTED 

TECHNICAL CHANGE MODEL 

 

2.1. INTRODUCTION 

The costs associated with fossil energy usage hold an essential role in economic 

activities, simultaneously emerging as one of the paramount issues in recent 

times due to their pivotal connection with climate change. The dependence on 

fossil energy resources deepens the devastating effects of climate change, and 

thus, preventing global warming has become quite a challenging issue. Despite 

numerous joint actions and efforts, the share of renewable energy in the total final 

energy consumption remains at significantly low levels (19.1% in 2020) (UNSD, 

2023). The dimensions of climate change and the predictions about the near 

future have started to be perceived as catastrophic beyond a serious warning.  

 
 
Different policy proposals have been developed for many years to prevent climate 

change. In particular, the environmental policy and climate change literature 

widely discusses policy tools such as taxing greenhouse gas emissions under the 

carbon tax, switching to renewable and environmentally friendly energy sources, 

and the ETS. In recent years, economic research has drawn attention to that, 

arguing technological change can contribute to the fight against climate change 

in terms of environmental policy. These studies predominantly employ general 
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equilibrium models, grounded in the framework of directed technological change 

within economies that include multiple intermediate inputs. This approach is 

based on endogenous growth theory, particularly the concept of induced technical 

change. In the seminal papers of Romer (1986) and Lucas (1988), knowledge 

accumulation is identified as a key driver of economic growth, with increasing 

returns to scale in production processes serving as a core assumption of 

endogenous growth theory. Unlike Solow models with exogenous technological 

change, this framework defines technological change as endogenous, driven by 

agents' efforts to accumulate knowledge and maximize profits (Romer, 1986; 

Lucas, 1988). Additionally, the concept of induced technical change suggests that 

technological progress responds to economic conditions and market signals. 

Based on this foundation, directed technological change allows us to examine 

which factors will allocate scientific research between industries producing 

intermediate inputs with different characteristics in the modelling where 

innovation has an endogenous dynamic. Therefore, such models help us 

understand the role of innovation in the transition to a low-carbon economy.  

 
 
Modelling directed technology toward climate change dating back to pioneering 

study of Acemoglu et al. (2012) titled “The Environment and Directed Technical 

Change”. Based on the seminal papers on directed technical change in 1998 and 

2002, Acemoglu et al. (2012) presented the environmental model of directed 

technological change. The model considers endogenous innovation and 

examines how innovations can be distributed among intermediate industries with 

different characteristics (Acemoglu, 1998; Acemoglu, 2002, Acemoglu et al., 

2012). The paper focuses on a general equilibrium model with intermediate 

inputs: dirty and clean. While dirty input production causes a negative 

environmental externality by using dirty machines, clean input production has no 

negative effect. The unique final good is produced by combining these two inputs. 

Acemoglu et al. (2012) suggest that using carbon tax and research subsidies can 

be optimal environmental response tools to drive technological development and 
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avoid environmental disasters. Moreover, when clean technologies are 

sufficiently developed, there will be no need for further intervention as research 

will be directed toward this intermediate industry. The study seeks to answer how 

innovations directed at different inputs will respond to environmental policies. 

Findings show that urgent definitive measures such as Nordhaus (2002) and 

Stern (2009) are necessary to avoid environmental catastrophe because of the 

advantage of the market size effect and initial productivity in the dirty technologies 

(Nordhaus, 2010; Stern, 2009).  

 
 
An extension of the environmental model of directed technical change by Haas 

and Kempa (2018) explores heterogeneous energy intensity dynamics. They 

consider energy-intensive and labor-intensive intermediate inputs instead of dirty 

and clean ones (Haas and Kempa, 2018). Acemoglu et al. (2012) model the 

energy price as a function of the resource stock since they analyze how the 

depletion of an exhaustible resource might induce a redirection of technical 

change towards a clean input production due to continuously increasing prices. 

Haas and Kempa (2016) use an exogenous price for energy and endogenous 

energy use, as their focus is the analysis of energy intensity dynamics in 

alternative (historical) scenarios with different energy price growth rates. Then, 

they analytically decompose energy intensity into a sector and an efficiency 

effect. The relative importance of these effects is determined by energy price 

growth and relative sector productivity, which drive the direction of research.  

 
 
Considering both endogenous innovation and following the seminal paper of 

Acemoglu et al. (2012), various modelling approaches have been employed in 

the literature. Previously, Gerlagh (2008) demonstrates that induced 

technological change resulted in a shift from knowledge accumulation in energy 

production to energy savings. Acemoglu et al. (2016) revisit the approach used 

in their earlier research, applying it to firm-level data in the US energy sector. 
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While they emphasize the theoretical foundation of combining carbon taxes with 

research subsidies, their findings suggest that the optimal policy relies more 

heavily on research subsidies. Fried (2018) constructed a general equilibrium 

model incorporating endogenous innovation in fossil, green, and non-energy 

inputs. By considering cross-sector technology spillovers and historical oil shock 

data, the author illustrates that a carbon tax stimulates innovation in green 

technologies. Durmaz and Schroyen (2020) expand the environmental model of 

directed technical change by introducing a third intermediate sector, Carbon 

Capture and Storage. The study addresses the Pareto-efficient policy allocation 

of resources and suggests that, based on the estimates of the marginal cost of 

carbon capture and storage, the renewable energy regime dominates the fossil 

energy regime. Another extension of the environmental model of directed 

technical change, developed by Pesenti (2022), introduces a third intermediate 

good responsible for adaptation. The author investigates the existence of 

innovation in all three input technologies, but the model does not yield an interior 

balanced growth path where innovation occurs in all three technologies.  

 
 
In this paper, we aim to examine how (relative) past productivity and fossil energy 

costs interact with allocating research across dirty and clean intermediate 

industries in the presence of cross-industry technological spillovers. Moreover, 

we question whether fossil energy costs could shift innovation efforts by limiting 

the relative past productivity. Our theoretical approach is in the spirit of Acemoglu 

et al. (2012) and Haas and Kempa (2016), but we contribute to the directed 

technical change literature differently. Building on Acemoglu et al. (2012), the 

model features a production function with two inputs: a clean input, which relies 

on renewable resources and causes no environmental pollution, and a dirty input, 

which uses fossil fuels and generates pollution. However, following Haas and 

Kempa (2016), this study uses exogenous energy price and endogenous energy 

use since we focus on the effect of relative productivity levels and technology 

spillovers on the direction of technical change in energy technologies. Our model 
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features clean and dirty input production, with fossil energy use in the dirty 

intermediate good production.  

 
 
The common feature of the models presented by Acemoglu et al. (2012) and 

Haas and Kempa (2018) is the oversight of technological spillovers between 

intermediate industries, assuming that technological spillovers are equal to zero. 

However, as highlighted by Fried (2018), empirical findings, especially those 

derived from the US, indicate that clean and dirty innovations have co-occurred 

positively since 1970. Indeed, Fried's (2018) simulated model demonstrates that 

a stronger cross-sector spillover rate reduces the productivity gap between clean 

and dirty technologies. Therefore, following Fried (2018), this study considers the 

potential existence of technological spillovers among intermediate industries 

producing clean and dirty inputs. Through technological spillovers, innovation 

emerging in one input technology can enhance the productivity level of another.  

 
 
The rest of the paper is organized as follows: Section 2.2 defines the model 

economy. In this section, we define the environment, preferences, technologies, 

market structures, decision problems and market clearing conditions. Section 2.3 

characterizes the decentralized equilibrium and presents the main results of the 

model. Section 2.4 concludes.  

2.2. MODEL ECONOMY 

This section builds a general equilibrium model with endogenous technological 

change. The following subsections introduce the model environment, production 

technologies and define the market structures. Then we write the decision 

problems and market clearing conditions. 
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2.2.1. Environment 

We consider an infinite-horizon discrete time economy denoted by 𝑡 ∈ {0,1, … }. 

 

2.2.1.1. Demographic Structure 

The model economy is inhabited by a continuum of households, including 

workers, scientists, final good producer, intermediate input producers and 

machine producers. There is a fixed mass of workers (𝐿 > 0) employed in the 

intermediate input production and a fixed mass of scientists (𝑆 > 0) hired by 

machine producers. Technological change emerges through the productivity-

enhancing innovations created by scientists who decide in which intermediate 

industry they will conduct research.8 

 

2.2.1.2. Endowments 

Workers 

Workers supply labor to the intermediate input industries. Intermediate industries 

employ workers to operate their clean and dirty input production. Workers in this 

context are assumed to be homogeneous and mobile across industries, ensuring 

competitive wages. 

Scientists 

Scientists are responsible for innovation, focusing on enhancing the productivity 

of industry-specific machines. The allocation of scientists between the clean and 

 
8 We use “industry” term instead of formerly used “sector”. Intermediate input produced using 
machines powered by clean energy is produced in the clean industry, while one relying on fossil 
energy is produced in the dirty industry. 
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dirty industries is endogenous and influenced by factors such as relative wages, 

productivity levels, and spillover effects. The total mass of scientists can move 

freely between industries. 

Energy 

The model includes two types of energy resources, each associated with a 

specific intermediate input industry: 

Fossil Energy 

Fossil energy resources are used explicitly in the production of the dirty 

intermediate input. This resource is treated a costly input, with their utilization 

contributing to negative environmental externality. The cost of fossil energy is 

exogenous and plays a role in determining the direction of innovation and the 

relative productivity of industries. 

 Renewable Energy 

Renewable resources, such as solar and wind, are used in the production of the 

clean intermediate input. These resources are freely available and do not incur 

any explicit cost. Unlike fossil energy, renewable resources are characterized by 

their environmental neutrality, making them a critical component of the clean 

industry’s production process. 

2.2.2. Preferences 

A representative household maximizes utility by consuming the final good; the 

utility function is: 

 

𝑈(𝐶.) = 	
𝐶.#$=

(1 − 𝜎)
(2.1) 
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where 𝐶. is the household’s consumption at time t, and 1/𝜎 denotes the inter-

temporal elasticity of substitution. The budget constraint is: 

 

𝐶. = 𝑤.!𝐿3. +𝑤.!𝐿/. +𝑤.>𝑆3. +𝑤.>𝑆/. +^ (π35. + π/5.)𝑑𝑖
#

'
(2.2) 

 

where 𝑤.! denotes the wages of workers, and, 𝑤.> denotes the wages of scientists 

in dirty and clean intermediate input industries, while (π35. + π/5.) represents the 

total profits of machine producers in both intermediate input industries. The 

representative household does not save, so it consumes all its income and earns 

from the wages of workers and scientists and the profits of machine producers. 

2.2.3. Technologies 

Our model is a modified version of the environmental model of directed technical 

change proposed by Acemoglu et al. (2012). But we incorporate numerous 

features from Acemoglu et al. (2012), Haas and Kempa (2018), and Fried (2018) 

during the modelling process. However, the most distinctive characteristics that 

make this paper unique involve investigating how productivity-enhancing 

research will be distributed across intermediate industries when considering 

endogenously determined energy usage, an exogenous fossil energy cost, and 

the possibility of technology spillovers between the two intermediate input 

technologies. Figure 1 displays the nested tree structure for the production side 

of the economy. 
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FTgure 1 Nested Production Structure 

 

 

2.2.3.1. Final Good Production 

The final good 𝑌, is produced competitively using dirty, 𝑌3 and clean, 𝑌/, 

intermediate inputs. The production of dirty input, derived from fossil energy 

resources, leads to negative externalities. In contrast, clean input sourced from 

renewable resources is characterized by the absence of adverse environmental 

effects. According to the CES production function: 

 

𝑌. = H𝑌/.
1$#/1 + 𝑌3.

1$#/1K
1/1$#

(2.3) 
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where 𝜀 is the elasticity of substitution between dirty and clean inputs. 

Accordingly, 𝜀 > 1 when the two inputs are (gross) substitutes, 𝜀 < 1 means 

two inputs are (gross) complements and 𝜀 = 1 refers the Cobb-Douglas case. 

Throughout the paper, we assume that the two inputs are (gross) substitutes 

(ε > 1). 

2.2.3.2. Intermediate Input Production 

The two intermediate industries under consideration are the dirty, which utilizes 

fossil energy resources and produces environmentally harmful input with high 

emissions, and the clean, which represents the industry producing inputs using 

renewable energy sources with negligible emissions. 

 
 
The two intermediate inputs, 𝑌/ and 𝑌3 which are indexed by 𝑗 ∈ (𝑐, 𝑑) are 

produced competitively and purchased by a final good producer at market prices. 

Each intermediate production function includes labor, 𝐿7., and a continuum of 

industry-specific machines, 𝑥75., where 𝑖 indicates industry-specific machine type. 

The intermediate production functions are as follows:  

 

𝑌/. = 𝐿/.#$4^ 𝐴/5.#$4
#

'
𝑥/5.4 𝑑𝑖 (2.4) 

 

𝑌3. = 𝐸3.
4)𝐿3.#$4^ 𝐴35.

#$4#
#

'
𝑥35.
4# 𝑑𝑖 (2.5) 

 

where α = α# + α6, and α, α#, α6 ∈ (0,1), 𝐴75. is the quality of machine of type 𝑖 at 

time 𝑡, and 𝑥75. is the quantity of this machine. A profit-maximizing intermediate 

input producer chooses labor and machines by taking prices as given. In this 
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production technology, dirty input uses fossil energy resource, 𝐸3.. However, we 

assume that clean input does not include a clean energy resource in production 

explicitly since renewable resources such as solar and wind are freely available 

for human use.9  

2.2.3.3. Machines  

Each intermediate industry has a uniform group of machine producers, each 

manufacturing specific machines at a constant cost of 𝜓/ and 𝜓3 unit of the final 

good in clean and dirty industries, respectively. In other words, supplying one unit 

of clean type of machine costs 𝜓/ units of the final good and dirty type of 

machines costs 𝜓3 units of the final good. These machines are subsequently sold 

to producers of intermediate goods.  

 
 
In every period, machine producers enlist the services of scientists to enhance 

the productivity of machines within their industry, reflected as 𝐴75. growth through 

innovation. This endogenous innovation leads to progressive technology 

enhancement, primarily focusing on the technology infused within the machines 

employed for intermediate input production. We assume that machine producers 

within an industry act symmetrically. 

 
9 An example is photovoltaic solar panels, which directly convert sunlight into electricity. Recent 

research on solar energy, has introduced new solutions for achieving high temperatures above 

1000°C using solar power. It is emphasized that semi-transparent materials (e.g., quartz) 

effectively capture infrared (IR) radiation by absorbing solar radiation. Consequently, higher 
temperatures can be achieved inside the material than on its surface (Thermal trapping effect). 

This type of technology is considered to make decarbonization possible in industrial processes 

requiring high temperatures, such as cement production and metallurgical extraction (Casati et 

al., 2024). 
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2.2.3.4. Innovation  

In our model, innovation arises from the efforts of scientists working on industry-

specific machines. Successful innovations lead to improvements in machine 

quality and productivity enhancements. Consequently, endogenous innovation 

drives a productivity-enhancing process of creative accumulation. We define the 

average productivity in intermediate industry j;  

 

𝐴7. = ^ 𝐴75.
#

'
𝑑𝑖 (2.6) 

 

The technological progression for machine producers for machine type 𝑖 within 

every industry j evolves according to the following law of motion:  

 

𝐴75. = 𝐴7.$# g1 + λ𝑆75.
: #

𝐴.$#
𝐴7.$#

+
?

i (2.7) 

 

The parameter 𝜆 signifies the success of scientists in generating innovation and 

remains consistently positive. Here, 𝑆75. is the mass of scientists working on 

machines in industry 𝑗 at time 𝑡. We assume that innovation effort is active in all 

industries implying that 𝑆/5. > 0 and 𝑆35. > 0 for all 𝑖 and all 𝑡.  Then, 𝜂 

characterizes the transformation of research yields as the scientist count rises. A 

value of 𝜂 between 0 and 1 implies diminishing returns for scientific research 

within a single period, reflecting the concept termed the “stepping on toes effect” 

in endogenous innovation literature (Greaker et al., 2018). This effect highlights 

that having more scientists in the same industry increases the likelihood of 

replicating a discovery, with innovation being productive only when it unveils 

something novel. If 𝜂 equals one, constant returns to research are present, and 
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if it surpasses one, increasing returns occur. In this analysis, we will assume 

diminishing returns to research, hence 𝜂 lies within the range of 0 and 1. 𝐴7.$#  

and 𝐴.$# represent the average quality of machines in industry j and the overall 

productivity level at time 𝑡 − 1 respectively.  

 
 
The parameter 𝜙 quantifies the degree of innovation spillovers between 

intermediate industries.  The range of 𝜙 spans from zero to one, where 𝜙 = 0 

signifies the absence of spillovers. The ratio n ;."#
;4."#

o
@

 is termed the total factor 

productivity (TFP) catch-up ratio, characterizing the influence of cross-industry 

spillovers on an industry's productivity. This ratio reflects the intuitive notion that 

intermediate industries that lag behind others tend to gain more from spillovers. 

In other words, the higher the ratio, the less productive an industry has been 

historically compared to the average, implying greater potential for benefiting 

from spillovers. 

2.2.4. Market Structures 

This economy is characterized by several forms of trade. First, households 

consume/buy the final good sold by the final good producer and this final good is 

the numeraire of this economy. Second, intermediate input producers sell clean 

and dirty inputs 𝑌7. at the price 𝑃7. in a competitive market and the final good 

producer is the buyer here. Third, machine producers sell industry-specific 

machines, 𝑥75., at the price 𝑃75. in a monopolistically competitive market and 

intermediate input producers are the buyers now. Last, workers and scientists sell 

their labor at the wages 𝑤.! and	 𝑤.> in competitive markets, respectively. 

Intermediate input producers and machine producers are the buyers in the worker 

and scientist markets, respectively. 
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The market for the final good is perfectly competitive. The final good producer 

purchases intermediate clean (𝒀𝒄) and dirty (𝒀𝒅)  inputs at market prices. The two 

intermediate inputs, 𝒀𝒄 and 𝒀𝒅 are also produced competitively in clean and dirty 

industries, respectively.  
 
 
Clean and dirty machines are produced by industry-specific machine producers 

and sold to the intermediate input producers. Machine producers operate under 

a monopolistically competitive market and hold the power to set prices, resulting 

in profits from machine sales, following Acemoglu et al. (2012). The technology 

of industry-specific machines at any given time depends on the past knowledge 

level within the industry and the innovation efforts of employed scientists. As 

described in Fried (2018), innovations in industry-specific machines grant the 

machine producer an exclusive one-period patent. After this patent expires, other 

machine producers can access and incorporate the technological advancements 

that were previously protected. 

 
 
The job market for scientists is competitive, requiring market wage payment, 𝑤.>. 

The market for workers is also competitive. Scientists and workers freely move 

across clean and dirty industries. 

2.2.5. Decision Problems 

This section introduces the decision problems of the agents in the economy. 

These are the problems of the household, the representative final good producer, 

intermediate input producer, industry-specific machine producer, and scientists. 

2.2.5.1. Final Good Producer’s Problem 

The cost minimization problem of the representative final good producer is: 



59 

 

 

 

 

 

 

 
min
C-.,C/.

	 𝑃/.𝑌/. + 𝑃3.𝑌3. (2.8)	 

 

subject to the final good production technology in (2.3). Solving for the 

competitively produced final good producer’s maximization problem and using 

(A.2.2) and (A.2.3), the relative production and price of the two inputs are as 

follows: 

 

𝑌/.
𝑌3.

= n
𝑃3.
𝑃/.
o
E

					,				
𝑃/.
𝑃3.

= n
𝑌/.
𝑌3.
o
$#1
. (2.9) 

 

This equation shows that there is an inverse relationship between the relative 

prices and relative supplies. Defining that 𝑃/.𝑌/. + 𝑃3.𝑌3. = 𝑃.𝑌., where 𝑃. is the 

price index, we normalize the final good as numeraire for all t and the price index 

is as follows: 

 

(𝑃/.#$1 + 𝑃3.#$1)
#
#$1 = 1 (2.10) 

2.2.5.2. Intermediate Input Producers’ Problem 

Intermediate input producers maximize their profits by deciding the quantity of 

labor, industry-specific machines, and fossil energy demand (in dirty industry). 

Since clean input production does not use fossil energy resources in the 

production process, we have to solve the maximization problems in each industry 

separately. 

 
 

Clean Industry 
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The maximization problem of a representative input producer in clean input 

production can be written as follows: 

 

max
!-.,F-5.

ΠC- = 𝑃/.𝐿/.#$4^ 𝐴/5.#$4
#

'
𝑥/5.4 𝑑𝑖 − 𝑤.!𝐿/. −^ 𝑃/5.

#

'
𝑥/5.𝑑𝑖. (2.11) 

 

Using the first order conditions with respect to the quantity of labor demand, labor 

demand in the clean industry can be expressed as: (see (A.2.5) and (A.2.6)). 

 

𝐿/. = x
(1 − α)𝑃/.

𝑤.!
^ 𝐴/5.#$4
#

'
𝑥/5.4 𝑑𝑖y

#
4
. (2.12) 

 

Then solving for machine demand in clean industry according to (A.2.7) yields: 

 

𝑥/5. = n
α𝑃/.
𝑃/5.

o
#

#$4
𝐿/.𝐴/5. . (2.13) 

Dirty Industry 

The maximization problem of a representative input producer in dirty industry can 

be written as follows: 

 

max
!/.,F/5.,G.

ΠC/ = 𝑃3.𝐸.
4)𝐿3.#$4^ 𝐴35.

#$4#𝑥35.
4#

#

'
𝑑𝑖 − 𝑤.!𝐿3. −^ 𝑃35.

#

'
𝑥35.𝑑𝑖 − 𝑐G.𝐸3. . (2.14) 
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The user cost of fossil energy is given by 𝑐G.. Using the first order condition with 

respect to the quantity of machines in dirty industry (A.2.11), the machine demand 

in dirty industry can be written as: 

 

𝑥35. = #
α#𝑃3.𝐸3.

4)𝐿3.#$4

𝑃35.
+

#
#$4#

𝐴35. . (2.15) 

 

Then first order conditions for quantity of labor demand (A.2.9) and (A.2.12) gives 

the labor demand: 

 

𝐿3. = #
𝑤.!

(1 − α)𝑃3.𝐸3.
4)𝐴35.

#$4#𝑥35.
4#
+
$#4
. (2.16) 

 

From the first order condition (A.2.13), the fossil energy demand can be written 

as: 

 

𝐸3. = #
𝑐G.

α6𝑃3.𝐿3.#$4𝐴35.
#$4#𝑥35.

4# +

#
4)$#

. (2.17) 

 

2.2.5.3. Machine Producers’ Problem 

The machine market operates under monopolistic competition, granting 

producers some market power to determine both the quantity and price of the 

machines they offer for sale. Now, we solve the maximization problem of a 

representative machine producer problem for both intermediate inputs. 

 



62 

 

 

 

 

 

 

 
Clean Industry 

The monopolist producer of machine 𝑖 in industry c chooses first 𝑥/5. and then 

𝑆/5. to maximize profits  Π/5. = 𝑃/5.𝑥/5. − 𝜓/𝑥/5., subject to inverse demand curve 

and then the evolution of technology, respectively. 

The maximization problem of a representative machine producer in clean industry 

can be written as: 

	

max
F-5.

𝑃/.𝐿/.#$H𝛼𝐴/5.#$H𝑥/5.H − ψI𝑥/5. 	 (2.18) 

 

subject to the demand for machines in clean industry. The first order condition for 

clean machine quantity implies that profit maximizing machine price 𝑃/5. is a 

constant mark up over marginal cost, thus 𝑃/5. =
J-
H

. Then assuming that  𝜓/ = 𝛼6 

as in Acemoglu et al. (2012), which leads to 𝑃/5. = 𝛼, then the equilibrium 

machine demand in clean industry in (2.13) will be: 

 

𝑥/5. = 𝑃/.
#

#$4𝐿/.𝐴/5. (2.19) 

 

Using the definition of demand for machines 𝑥/5., equilibrium price for machines 

𝑃/5. and technological change 𝐴/5., the maximization problem of the machines 

producer problem in clean industry subject to the choice of the number of 

scientists can be expressed as: 

 

max
>-5.

#Π/5. = α(1 − α)𝑃/.
#

#$4𝐿/.𝐴/.$# #1 + λ𝑆/5.
: n

𝐴.$#
𝐴/.$#

o
?

+ − 𝑤.>𝑆/5.+ (2.20) 



63 

 

 

 

 

 

 

 

The first order conditions of the maximization problem relative to choice of the 

number of scientists is given in (A.2.14). Finally, we remove the machine index in 

the last equation of (A.2.14) yields: 

 

𝑤.> =
α(1 − α)ηλ(𝐴/.$#)#$?(𝐴.$#)?𝑥/.

𝑆/.
#$:𝐴/.

(2.21) 

Dirty Industry 

The monopolist producer of machine 𝑖 in industry d chooses first 𝑥35. and then 

𝑆35. to maximize profits  Π35. = 𝑃35.𝑥35. − 𝜓3𝑥35., subject to inverse demand curve 

and then the evolution of technology. The maximization problem of a 

representative machine producer in dirty industry can be written as: 

	

max
F/5.

𝑃3.𝐿3.#$H𝐸3.
H)𝛼#𝐴35.

#$H# 	𝑥35.
H# − ψ3𝑥35. (2.22) 

 

subject to the demand for machines in dirty industry. The first order condition for 

dirty machine quantity implies that profit maximizing machine price 𝑃35. is a 

constant mark up over marginal cost, thus 𝑃35. =
J/
H#

. Assuming that  𝜓3 = 𝛼#6 as 

in Acemoglu et al. (2012), which leads to 𝑃35. = 𝛼#, then the equilibrium machine 

demand in dirty industry in (2.15) will be: 

 

𝑥35. = H𝑃3.𝐸3.
4)𝐿3.#$4K

#
#$4#𝐴35. (2.23) 
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Using the definition of demand for machines 𝑥35., equilibrium price for machines 

𝑃35. and technological change 𝐴35., the maximization problem of the machines 

producer problem in dirty industry subject to the choice of the number of scientists 

can be expressed as: 

  

max
>/5.

#Π35. = α#(1 − α#)H𝑃3.𝐸3.
4)𝐿3.#$4K

#
#$4#𝐴3.$# #1 + λ𝑆35.

: n
𝐴.$#
𝐴3.$#

o
?

+ − 𝑤.>𝑆35.+ (2.24) 

 

The first order conditions of the maximization problem relative to choice of the 

number of scientists is given in (A.2.15). Finally, we remove the machine index in 

the last equation of (A.2.15) yields: 

 

𝑤.> =
𝛼#(1 − 𝛼#)𝜂𝜆(𝐴3.$#)#$@(𝐴.$#)@𝑥3.

𝑆3.
#$K𝐴3.

(2.25) 

 

2.2.5.4. Scientist’s Problem 

Scientists are typically faced with an optimization problem in a market where free 

mobility is possible, choosing the industry that offers them the highest wage. In 

this scenario, the industry offering the highest wage will continuously attract 

innovations to itself. However, as observed in Acemoglu et al. (2012), this case 

is valid when there is no innovation spillover (𝜙 = 0). In this paper, assuming 

innovation spillovers between intermediate industries, we consider that 

innovation can occur in both forms of input, resulting in scientists naturally 

receiving equal wages in both industries. However, this case is closely related to 

the extent of innovation spillovers. In cases where the spillover is sufficiently high, 

the past productivity advantage will weaken, allowing innovations to emerge in 
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both industries. In the absence of a sufficient level of innovation spillover, the past 

productivity effect will guide innovations in favor of the advanced industry in terms 

of industrial productivity. 

2.2.6. Market Clearing Conditions 

In this section, we define the market clearing conditions for the model economy. 

First, market clearing for the unique final good is: 

 

𝑌. = 𝐶. + #ψI^ 𝑥/5.𝑑𝑖
#

'
+ ψ3^ 𝑥35.

#

'
𝑑𝑖+ + 𝑐G.𝐸3. . (2.26) 

 

Second, market clearing for labor requires:  

 

𝐿3. + 𝐿/. ≤ 𝐿 (2.27) 

where the L.H.S. denotes the total demand of workers and the R.H.S. denotes 

the fixed exogenous supply of workers. 

Last, market clearing for scientists requires: 

 

𝑆3. + 𝑆/. ≤ 𝑆 (2.28) 

where the L.H.S. is the total demand of scientists and the R.H.S. is the fixed 

exogenous supply of scientists. 
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2.3. EQUILIBRIUM 

This section derives the equilibrium conditions for all the variables. In this 

economy, there is no policy intervention, so that will characterize the laissez-faire 

equilibrium. 

 
 
 We define the equilibrium as a sequence of wages 𝑤.! , 	𝑤.>, prices for 

intermediate inputs (𝑃7.) and machines (𝑃75.), intermediate output (𝑌7.), demands 

for machines (𝑥75.), labor (𝐿7.), scientists (𝑆7.), the exogenous energy price ( 𝑐G.),  

and fossil  energy demand (𝐸3.) such that in each period:  

 

• 𝑆75., 𝑃75. and 𝑥75. maximizes profits of 𝑖-type machine producer in industry 

𝑗 ∈ (𝑐, 𝑑). 

• 𝑌7. maximizes profits of final good producers. 

• 𝐿3., 𝐸3.  maximizes profits of the dirty input producers and 𝐿/. maximizes 

profits of clean input producers. 

• Prices for intermediate inputs (𝑃7.), prices of machines (𝑃75.), and wages 

(wL
! , wL

M) clear the markets for intermediate inputs, machines and the two 

types of labor respectively. 

2.3.1. Equilibrium Allocations 

In this section, we present the equilibrium allocation of fossil energy demand, 

labor and scientist by considering the solved maximization problems. To make 

this possible, we rewrite the equations regarding intermediate production 

functions and fossil energy demand. 

 
 
Substituting equilibrium demand (2.19) in the clean input production (2.4) yields 
that: 
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𝑌/. = 𝐿/.𝐴/.𝑃/.
H

#$H (2.29) 

 
 

Substituting equilibrium demand (2.23) in the dirty input production (2.5) yields 

that: 

 

𝑌3. = 𝐸3.
4)

#$4#𝐿3.
#$4
#$4#𝐴35.𝑃3.

4#
#$4# (2.30) 

 

Then, solving for equilibrium energy input demand by substituting machine 

demand (2.23) in (2.17) yields: 

 

𝐸3. = n
α6𝐴3.
𝑐G.

o
#$4#
#$4

𝐿3.𝑃3.
#

#$4 (2.31) 

 

Then, plugging (2.31) into (2.30) gives the equilibrium dirty input production as 

follows: 

 

𝑌3. = n
α6𝐴3.
𝑐G.

o
4)
#$4

𝑃3.
4

#$4𝐿3.𝐴3. (2.32) 

 

The equation suggests an inverse relationship between the production of dirty 

inputs and the cost of fossil energy. In other words, rising fossil energy costs could 

discourage the production of these inputs. However, the equation also indicates 
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that when industrial productivity reaches a sufficiently high level, the impact of 

fossil energy costs may become negligible for producers of intermediate inputs.  

 
 
We also substitute the energy input demand (2.31) in machine demand in the 

dirty industry (2.23) to get a simpler form: 

  

𝑥35. = #
α6
H)𝑃3.
𝑐G.H

) +

#
#$H

𝐴35.𝐿3. (2.33) 

 

Now turning to the wage for labor, substituting equilibrium machine demand in 

clean industry into the (A.2.6) yields: 

 

𝑤.! = (1 − α)𝑃/.
#

#$4𝐴/. (2.34) 

 

Substituting equilibrium machine demand in dirty industry (2.23) into the (A.2.9) 

yields: 

 

𝑤.! = (1 − α)𝑃3.
#

#$4#𝐸3.
4)

#$4#𝐿3.
$ 4)
#$4#𝐴3. (2.35) 

 

Labor market is perfectly competitive and we assume that there is a free 

movement between the two industries. Thus, clean and dirty industries have 

identical wages in equilibrium. Then, setting the labor wages ratio and combining 

with (2.31) gives the relative prices and productivities as follows: 
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𝑃/.
𝑃3.

=
α6
4)

𝑐G
4)
𝐴3.
#$4#

𝐴/.#$4
(2.36) 

 

Setting the relative supply of dirty input (2.32), and clean input (2.29) gives the 

ratio: 

 

𝑌/.
𝑌3.

= n
𝑐G

α6𝐴3.
o
4)
#$4 𝐿/.

𝐿3.
𝐴/.
𝐴3.

n
𝑃/.
𝑃3.

o
4

#$4
(2.37) 

 

Substituting equation (2.9) and (2.36) in the above equation and defining that  

𝜑 ≡ (1 − 𝛼)(1 − 𝜀), 𝜑# ≡ (1 − 𝛼#)(1 − 𝜀),  the relative labor allocation can be 

expressed as: 

 

𝐿/.
𝐿3.

= #
𝑐G
H)

𝛼6
H)+

(E$#) 𝐴/.
$N

𝐴3.
$N# (2.38) 

 

Now, turning to the innovation side and the choice of scientist, we can rewrite 

(2.21) and (2.25) using 𝑥75. = 𝑌7.𝑃7.  as follows: 

 

𝑤.> =
𝛼(1 − 𝛼)𝜂𝜆(𝐴/.$#)#$@(𝐴.$#)@𝑌/.𝑃/.

𝑆/.
#$K𝐴/.

(2.39) 

 

𝑤.> =
𝛼#(1 − 𝛼#)𝜂𝜆(𝐴3.$#)#$@(𝐴.$#)@𝑌3.𝑃3.

𝑆3.
#$K𝐴3.

(2.40) 
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Equations (2.39) and (2.40) show that the production of clean (𝑌/.𝑃/.) and dirty 

(𝑌3.𝑃3.)	inputs is directly proportional to the wages of scientists working in these 

industries. Since the market for scientists is perfectly competitive, the wage of a 

scientist in any industry is expected to equal the marginal return to innovation in 

that industry. This implies that input production in an industry is directly linked to 

the marginal return of innovation within that industry. 

 
 
Then, we substitute 𝑥/5. and 𝑥35. in (2.39) and (2.40) respectively: 

 

𝑤.> =
𝛼(1 − 𝛼)𝜂𝜆(𝐴/.$#)#$@(𝐴.$#)@𝑃/.

#
#$H𝐿/.𝐴/.

𝑆/.
#$K𝐴/.

(2.41) 

 

𝑤.> =
𝛼#(1 − 𝛼#)𝜂𝜆(𝐴3.$#)#$@(𝐴.$#)@H𝑃3.𝐸3.

H)𝐿3.#$HK
#

#$H#𝐴3.
𝑆3.
#$K𝐴3.

(2.42) 

 

The relative wage for scientists is as follows: 

 

1 =
𝛼(1 − 𝛼)(𝐴/.$#)#$@𝑃/.

#
#$H𝐿/.𝑆/.

$(#$K)

𝛼#(1 − 𝛼#)(𝐴3.$#)#$@𝑃3.
#

#$H#𝐿3.
#$H
#$H#𝑆3.

$(#$K)𝐸3.
H)

#$H#

(2.43) 

 

 

The wage for scientists must be identical in equilibrium since the market for 

scientists is perfectly competitive. Then, the relative allocation of scientists must 

be:  
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𝑆/.
𝑆3.

= �
𝛼(1 − 𝛼)
𝛼#(1 − 𝛼#)

n
𝐴/.$#
𝐴3.$#

o
#$@

�
𝑃/.

#
#$H

𝑃3.
#

#$H#

��
𝐿/.

𝐸3.
H)

#$H#𝐿3.
#$H
#$H#

��

#
#$K

(2.44) 

 

Exploiting equilibrium fossil energy demand 𝐸3. (2.31) in (2.44) yields that: 

 

𝑆/.
𝑆3.

= �
𝛼(1 − 𝛼)
𝛼#(1 − 𝛼#)

n
𝑐G.
𝛼6𝐴3.

o
H)
#$H

n
𝑃/.
𝑃3.

o
#

#$H 𝐿/.
𝐿3.

n
𝐴/.$#
𝐴3.$#

o
#$@

�

#
#$K

(2.45) 

 

Equation (2.45) allows to examine the factors that determine the relative 

allocation of research in equilibrium. 

1. Past Productivity Effect: Defined by the ratio of past productivities to the 

power of 1 − 𝜙. 

2. Price Effect: Represented as 3O67
O87
8

#
#"9, it steers innovation towards 

industries with higher prices. 

3. Market Size Effect: This is captured by the labor ratio and leads scientists 

to industries with greater employment and, correspondingly, more 

machinery. 

 

The past productivity effect can be further divided into two components: 

• A "Direct Productivity Effect" as described by the ratio of past 

productivities 3P67"#
P87"#

8. This draws scientists to more advanced industries, 
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illustrating the path dependence in research and cross-period spillovers 

within the same industry. 

• "Spillover Effect" expressed as 3P67"#
P87"#

8
$?

. This effect encourages 

scientists to move towards the less developed industry, with its intensity 

increasing as the spillover parameter 𝜙 becomes larger. This reflects the 

idea that less advanced industries benefit more from spillovers coming 

from other industries. Due to the range of 𝜙 lying between zero and one, 

the value of 𝜙 is invariably positive. Consequently, the direct productivity 

effect usually dominates, although its impact decreases as the spillover 

parameter 𝜙 increases. This illustrates how cross-industry technology 

spillovers can reduce the influence of past productivity in scientific 

research. 

Now, combining (2.36) and (2.38) with (2.45) and defining 𝜔 =

H(#$H)
H#(#$H#)

n #
H)
:)o

E$#
 yields: 

 

𝑆/.
𝑆3.

= x𝜔(𝑐GH6)(E$#)
𝐴/.
$N$#

𝐴3.
$N#$# n

𝐴/.$#
𝐴3.$#

o
#$@

y

#
#$K

(2.46) 

 

Since productivity growths are constant in balanced growth path, the relative 

productivity level will be fixed in time. Thus, we define that	
;-.
";"#

;/.
";#"# = 3;-."#

;/."#
8. Therefore, the equation (2.46) evolves as follows: 

 

n
𝑆/.
𝑆3.
o = 𝜔

#
#$K 	(𝑐G.H6)

E$#
#$K 	n

𝐴/.$#
𝐴3.$#

o
6$@
#$K

			 (2.47) 
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The relative allocation of scientists is determined by cross-industry spillovers, 

time-invariant parameters, fossil energy prices, the level of past productivities, 

and returns to scientific research. Now, a strong spillover rate and weak return to 

scientific research limits the past productivity effect. Then increasing exogenous 

fossil energy cost (increasing in 𝑆/.) motivates technical change toward clean 

energy if 𝜀 > 1. However, if 𝜀 < 1, then increasing exogenous fossil energy cost 

motivates technical change toward dirty energy (increasing in 𝑆3.).  

 
 
Following (2.47), we can discuss the factors determining the relative number of 

scientists working in the clean industry. 

 

Substitution Rate 
 

The substitution rate (𝜀)  between the clean and dirty industries is a key factor 

influencing scientists' choices about where to focus their innovation efforts. Its 

impact can be analyzed as follows: 

 

Substitution Case (𝜀 > 1)  

 

A high substitution rate between the two industries allows clean technologies to 

quickly gain market share as their productivity improves, making the clean sector 

more appealing to scientists (market size effect). With greater substitutability, 

clean and dirty technologies can replace each other more easily. Consequently, 

rising fossil energy costs further enhance the competitive edge of clean 

technologies, accelerating the shift of scientists toward the clean industry 

(transition dynamics). Although not explicitly discussed here, high substitution 

rate is likely to increase the effectiveness of policies like carbon taxes and 

research subsidies, ensuring faster returns on investments in clean technologies. 
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 Complementary Case (𝜀 < 1): 

 

When the clean and dirty technologies are complementary (a lower substitution 

rate), the productivity advantage of dirty industries becomes persistent, leading 

scientists to continue focusing on this industry. This makes the shift to clean 

technologies more challenging. If clean and dirty technologies are 

complementary, scientists may find it less attractive to move to the clean industry, 

as clean technologies depend on the productivity of dirty ones. A low substitution 

rate hinders the market's natural transition to clean technologies, necessitating 

long-term and ongoing policy interventions. 

 

Technology Spillovers 
 

Technology spillovers enable knowledge transfer between clean and dirty 

technologies, shaping the focus of scientists. Strong spillovers can either narrow 

or widen the productivity gap between these industries. When spillovers are 

robust, clean technologies can advance faster by drawing on insights from dirty 

technologies, attracting more scientists to the clean industry. This process helps 

reduce the initial disadvantage (assumed by Acemoglu et al., 2012) of clean 

technologies and levels the playing field between the two industries. Combined 

with a high substitution rate, strong spillovers further accelerate the shift of 

scientists toward clean technologies. Moreover, they can lessen the need for 

prolonged and intensive policy interventions. 

 

The Role of Fossil Energy Cost 
 
Fossil energy costs are a significant exogenous factor here that influences how 

scientists allocate their efforts between clean and dirty industries. An increase in 

fossil energy costs makes clean technologies more appealing. However, the 
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extent of this effect depends on the substitution rate and spillover effects. With a 

high substitution rate (𝜀 > 1) and a strong spillover rate, increasing fossil energy 

costs can quickly drive scientists toward the clean industry. On the other hand, 

when fossil energy costs are low, innovation in dirty technologies becomes more 

profitable, leading scientists to be less inclined to focus on clean technologies. 

 
 
With a low substitution rate (𝜀 < 1), the impact of increasing fossil energy costs 

on clean and dirty technologies becomes more complex and limited. A low 

substitution rate means that clean and dirty technologies are complementary, 

rather than directly interchangeable, so they are used together rather than one 

replacing the other. In this context, higher fossil energy costs may encourage 

innovation that improves the efficiency of dirty technologies, such as efforts to 

reduce energy intensity or develop new carbon capture and storage (CCS) 

technologies. Since dirty technologies cannot easily be replaced by clean ones, 

the economy may remain reliant on them even as fossil energy costs increase. 

As a result, increasing fossil energy costs could prompt scientists to focus on 

developing cost-reducing, efficiency-enhancing, and low-emission innovations 

within the dirty industry, increasing investment in technologies that optimize fossil 

energy use. 

2.4. CHAPTER SUMMARY 

In this paper, we establish a model economy to examine how industrial relative 

productivity levels and fossil energy costs in the presence of positive technology 

spillovers influence the allocation of innovations across dirty and clean 

intermediate industries. Using a directed technical change model, this chapter 

explores the factors determining the distribution of endogenous innovations 

shaped by the research efforts of scientists between industries producing dirty 

and clean inputs under laissez-faire conditions.  
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Our theoretical findings suggest that the substitution rate between clean and dirty 

technologies, along with technology spillovers and fossil energy costs, are crucial 

in shaping scientist allocation and guiding innovation efforts. When the 

substitution rate is high (𝜀 > 1), clean technologies can more easily replace dirty 

ones, making the clean industry more attractive and driving faster transitions. In 

contrast, a low substitution rate (𝜀 < 1) means clean and dirty technologies 

complement each other, maintaining the productivity advantage of dirty 

technologies and keeping scientists focused on dirty innovation. Technology 

spillovers further influence this balance by transferring knowledge between the 

industries; strong spillovers help close the productivity gap, particularly when the 

substitution rate is high, accelerating the shift to clean technologies. Exogenous 

fossil energy costs also play a significant role: higher costs tend to encourage 

clean innovation when substitution and spillovers are strong, while low 

substitution rates direct efforts toward improving efficiency and reducing the 

emissions of dirty technologies. These forces collectively underline the market-

driven processes that govern the transition to clean technologies.  
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CHAPTER 3 

ENERGY COSTS, ENVIRONMENTAL POLICY AND DIRECTED 

TECHNICAL CHANGE: EVIDENCE FROM EUROPE 

 

3.1. INTRODUCTION 

There is growing evidence that environmental policies can effectively direct 

innovation toward clean technologies, enhancing environmental standards. By 

reducing reliance on fossil fuels and encouraging the adoption of renewable 

energy sources, these policies contribute to lowering carbon emissions. However, 

achieving a sharp transformation in energy use appears challenging due to both 

economic and social constraints. While innovation is increasingly viewed as a key 

driver of this shift, it has not yet fully assumed its role as a central focus in the 

fight against climate change. 

 
 
Innovation or technological development more broadly, is heavily influenced by 

historical habits and existing structures, making it inherently path-dependent. 

This makes the transition from a fossil fuel-based economy to a clean energy 

economy more complex than it may seem. The directed technical change 

literature provides important policy insights to help overcome the productivity 

advantage of dirty technologies and accelerate the shift to clean technologies. 

Drawing on seminal works by Acemoglu et al. (2012) and Acemoglu et al. (2016), 

the literature generally advocates for a combination of policy instruments, such 

as carbon taxes and research subsidies for clean technologies.  It is particularly 

emphasized that solely implementing a carbon tax would excessively distort initial 
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production, whereas research subsidies can significantly facilitate the transition 

to clean technologies. Moreover, delays in implementing these policies would 

result in higher economic and environmental costs, given the productivity 

advantage of fossil-based energy systems. 

 
 
Policy instruments like carbon taxes or trading, renewable energy incentives, and 

research subsidies play a critical role in fostering the development and diffusion 

of clean technologies. These instruments have attracted significant attention in 

both theoretical and practical domains in related literature. However, much of the 

existing research focuses on specific countries or regions, where the impact of 

such policies can differ considerably. This geographic limitation complicates the 

generalizability of findings, making it challenging to assess the broader 

effectiveness of policy recommendations in countries and regions with varying 

economic, political, and social structures.  

 
 
This chapter aims to contribute to directed technical change literature by 

empirically investigating how energy costs and environmental policies drive 

technological innovation towards clean or dirty innovations. We examine the 

potential roles of energy costs, stringent environmental policies, and research 

subsidies. This study examines not only tax-based policies but also the impact of 

energy prices, a primary determinant of energy consumption, on the direction of 

innovation. The analysis is based on annual data from 16 European countries, 

covering 2000-2020 period. The study utilizes various datasets, including patent 

counts for clean and fossil energy technologies, energy prices, and policy 

measures such as carbon taxes and emissions trading systems. By exploring the 

dynamics between these factors, we aim to understand the motivations behind 

clean and dirty innovations on the direction of technological change. 
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The remaining sections of the paper are organized as follows: Section 3.2. 

presents the existing literature. Section 3.3. introduces data, methodology and 

results. We discussed our findings and policy recommendations in Section 3.4. 

The main results and limitations are evaluated in the conclusion. 

3.2. LITERATURE REVIEW 

Directed technical change has emerged as a central concept for addressing 

environmental and climate change challenges. The influential research by 

Acemoglu et al. (2012) has significantly contributed to this field, showing how 

technological change can be intentionally guided to achieve economic growth 

and environmental sustainability. This body of work emphasizes the potential of 

technological advancements to promote economic development and lessen 

environmental harm simultaneously.  

 
 
Despite their recognized importance, comprehensive empirical evidence at the 

regional or country level remains limited, particularly within diverse entities like 

the European Union. Existing studies often focus on individual nations, hindering 

the generalizability of findings and the formulation of broadly applicable policy 

recommendations. Lanzi and Wing (2010) find that in a panel of 23 OECD 

countries, an increase in relative energy prices shifts innovation toward clean 

energy technologies. Similarly, Ley et al. (2016) observe a positive relationship 

between industry-specific energy prices and clean innovations within an OECD 

panel. Kruse and Wetzel (2016) note that this positive relationship between 

energy prices and clean innovations among OECD countries becomes more 

pronounced, especially after the Kyoto Protocol agreement in 1997. Amin et al. 

(2021) suggest that in a panel of 46 countries, net fossil energy-importing nations 

are more inclined to invest in renewable energy technologies when oil prices rise. 

In the context of China, Liu et al. (2020) find that while energy prices support 

clean energy innovations in central and western China, they do not have the 
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same effect in the eastern region. Lin and Chen (2018) indicate that in China, 

electricity prices positively influence long-term innovation in renewable energy 

technologies. Sector-specific findings by Aghion et al. (2016) reveal that tax-

inclusive energy prices in the automotive industry support clean innovations while 

suppressing dirty ones.  

 
 
Policy instruments like carbon taxes, renewable energy incentives, and 

emissions trading systems (ETS) are also essential for promoting clean 

technologies and reducing dependence on fossil fuels. Acemoglu et al. (2012) 

suggest that if clean and dirty technologies are sufficiently substitutable, 

temporary tax and subsidy policies can redirect innovation toward clean 

technologies, leading to sustainable growth. Calel and Dechezleprêtre (2016) find 

that among firms regulated by the EU ETS, low-carbon innovation increases by 

up to 10% without displacing innovation in other technologies. Oppelt (2024), 

using the synthetic control method in a study on Sweden, finds that carbon taxes 

significantly and strongly support clean innovations. In a similar study on China, 

Wang et al. (2020) divide the country into six regions and find that the China’s 

Carbon ETS has regionally varying effects on clean innovations. Cheng and Yu 

(2024) suggest that the China’s Carbon ETS promotes clean innovations. Naqvi 

and Stockhammer (2018), drawing on a post-Keynesian macroeconomic model, 

argue that continuous resource tax growth is necessary to direct technological 

change toward a cleaner economy. However, they recommend combining this 

policy with a planned government spending program to boost demand and 

encourage investment. 

 
 
Furthermore, alongside policy tools like taxes and carbon trading systems, public 

and private research subsidies for clean technologies is a crucial component of 

environmental policy. Empirical evidence highlights the relationship between 

R&D budgets and clean innovation. Johnstone et al. (2010) demonstrate that 
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public policies play a significant role in supporting clean technologies, particularly 

emphasizing the need for subsidies in high-cost energy technologies like solar. 

Dong et al. (2019) show that in China’s automotive industry, clean R&D subsidies 

are more effective in improving environmental quality over the long term. Gugler 

et al. (2024) find that in European countries, clean innovations respond more 

effectively to clean R&D subsidies than to environmental taxes and regulations. 

 
 
Finally, we observe the relative importance of the past knowledge effect as a 

factor determining the direction of technological change or innovation. Acemoglu 

(2002, 2007) discusses the concept of the IPF, noting that path dependency may 

occur, meaning that innovations are built on existing technologies. This idea, 

often referred to as "Building on the shoulders of giants" implies that progress in 

a particular technology makes future advancements in that technology more 

effective. Aghion et al. (2016) provide evidence from the automotive industry, 

showing that the sector exhibits path dependency, driven by spillovers and firms' 

own histories of innovation. 

 
 
The existing literature provides both theoretical and empirical evidence that 

energy costs and environmental policies direct innovations toward clean 

technologies. However, the literature reveals two key gaps. First, there is a need 

for a comprehensive analysis that considers energy costs and environmental 

policy instruments alongside their past knowledge stocks. Second, while current 

research often focuses on whether energy costs and environmental policies 

direct innovations toward clean technologies, there is a notable lack of findings 

regarding their impact on innovations in dirty technologies. 

 



82 

 

 

 

 

 

 

3.3 COUNT DATA ANALYSIS 

3.3.1. Data 

The study utilizes annual data for 16 European countries from 2000 to 2020. The 

analysis includes some European countries due to substantial data gaps in 

countries outside the selected 16. The period starting in 2000 was chosen 

because the dataset for clean energy and fossil energy patents begins in that 

year. Table 2 provides definitions of the variables used and the dataset's sources. 
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Table 2 Definition and Sources of Selected Variables 

Name Definition Source 

CLEANPAT IEA: extracted from the OECD STI Micro-data Lab: 
Intellectual Property Database, http://oe.cd/ipstats. 

(patent counts) 

IEA 

DIRTYPAT IEA: extracted from the OECD STI Micro-data Lab: 
Intellectual Property Database, http://oe.cd/ipstats. 

(patent counts) 

IEA 

ENRP real index (base 2010) of economy-wide energy 
prices 

Liddle, B. (2022) 

ENRTAX Energy Taxes: Percentage of GDP EUROSTAT 

CLEANSUB IEA Energy Technology RD&D Budgets: USD 
(2023 prices and exchange rates) 

IEA 

DIRTYSUB IEA Energy Technology RD&D Budgets: USD 
(2023 prices and exchange rates) 

IEA 

EFSUB IEA Energy Technology RD&D Budgets: USD 
(2023 prices and exchange rates) 

IEA 

GDP GDP per capita (constant 2015 US$) World Bank 
national 

accounts data.  
TERTIARY Gross enrollment ratio World Bank 

Databank 

CTIMP 1: carbon tax implemented / 0: carbon tax is not 
implemented 

Dolphin, G., 
Xiahou, Q. 

(2022).   
ETSIMP 1: ETS implemented / 0: ETS is not implemented Dolphin, G., 

Xiahou, Q. 
(2022).  
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The data on clean and dirty energy patents are sourced from the International 

Energy Agency, which extracts them from the OECD’s Intellectual Property 

Database. These data are based on patent counts, covering the number of 

published applications for patents of invention. Table 3 provides a detailed 

breakdown of clean and dirty energy patents by technology. According to 

International Energy Agency (IEA) (2024) data, the top technologies generating 

the most patents in the global clean energy sector in recent years are: Storage 

(excluding e-mobility), industry energy efficiency or substitution, building energy 

efficiency, solar, and e-Mobility. In contrast, the dirty energy sector shows the 

most patent activity in downstream processing technologies, followed by 

upstream technologies and transmission distribution. 
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Table 3 Clean and Dirty Energy Patents by Technology 

Patents by 
Sector 

 Patents by Technology 

Clean Energy 
Patents 

 Agriculture energy efficiency 
Air - rail – marine 
Bioenergy 
Building energy efficiency 
Carbon capture and storage 
Energy efficiency 
Grid, 
Hydrogen and fuel cells 
Industry energy efficiency or substitution 
Nuclear 
Other renewables 
Renewable energy integration in buildings 
Renewables 
Solar 
Storage (not e-mobility) 
Vehicle fuel efficiency 
Wind 
e-Mobility 

Dirty Energy 
Patents 

Upstream 

Coal and solid fuels exploration and mining 
Conventional oil and gas exploration and 
extraction 
Unconventional oil and gas exploration and 
extraction 
 

Processing 
Downstream 

Coal-to-gas 
Coal-to-liquids and gas-to-liquids 
Gas conditioning 
Hydrogen fuel production 
Oil refining 
Solid fuel conditioning 
 

Transmission 
distribution 

Compressed gaseous fuel shipping 
Gas fuel pipelines 
Gaseous fuel distribution 
Liquid fuel distribution (gas stations) 
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Liquid fuel pipelines 
Liquid fuel tanker shipping 
Rail tanker liquid fuels transport 
Road tanker gaseous fuels transport 
Road tanker liquid fuels transport 
Solid fuel shipping 
Stationary tank storage for gases 
Stationary tank storage for liquids 
Underground gaseous fuel storage 
Underground liquid fuels storage 

IEA (2024), Energy Technology Patents Data Explorer, IEA, Paris 

 

Data on energy prices are sourced from the real index of economy-wide energy 

prices developed by Liddle (2022) and extended via the CPI-all items series from 

OECDStat. The energy tax data, expressed as a percentage of (Gross Domestic 

Product) GDP, are collected from the EUROSTAT database. This tax 

encompasses a broad definition based on fossil energy sources, including 

components such as energy products for transport purposes (unleaded petrol, 

leaded petrol, diesel, other energy products like LPG, natural gas, kerosene, or 

fuel oil), energy products for stationary purposes (light fuel oil, heavy fuel oil, 

natural gas, coal, coke, biofuels, electricity consumption and production, district 

heat consumption and production, other energy products for stationary use), and 

greenhouse gases (carbon content of fuels, emissions of greenhouse gases). 

 
 
Our analysis also considers various factors while testing the motivations behind 

clean and dirty innovations. We account for government spending on energy 

technology, including central or federal government budgets and state-owned 

companies' budgets on sectors such as clean energy, fossil fuels, and efficiency. 

Energy efficiency encompasses techniques, processes, equipment, and systems 

designed to deliver increased services with the same energy input or maintain 

service levels with reduced energy consumption. In the industrial sector, the 

focus is on developing energy-efficient processes, techniques, and 
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equipment.  R&D efforts concentrate on design, insulation materials, energy 

management systems, lighting, heating, cooling, and ventilation technologies for 

buildings. In transportation, the emphasis is on designing energy-efficient 

vehicles, utilizing new materials, enhancing powertrains, developing electric 

vehicle infrastructure, and exploring alternative fuels. Other areas of energy 

efficiency R&D include waste heat recovery, community-level 

solutions, agricultural and forestry applications, heat pumps, and measurement 

systems. 

 
 
We also consider the countries’ patent stocks as a proxy for countries’ past 

knowledge or history of innovation. This allows us to observe the effect of past 

knowledge on current innovation efforts. Following Aghion et al. (2016), we 

calculate the clean and dirty patent stocks using the perpetual inventory method.  

 

𝑃𝐴𝑇𝑠𝑡𝑜𝑐𝑘75. = 𝑃𝐴𝑇75. + (1 − 𝛿)𝑃𝐴𝑇75.$# 

  
where 𝑗 ∈ (𝐶𝑙𝑒𝑎𝑛, 𝐷𝑖𝑟𝑡𝑦), 𝑃𝐴𝑇𝑠𝑡𝑜𝑐𝑘75. is the patent stock and 𝑃𝐴𝑇75. is a 

nonnegative patent count for country i = 1, ..., N, at time t = 1, ..., T. We consider 

the depreciation of R&D capital, 𝛿, as 20% commonly assumed in the literature. 

Kruse and Wetzel (2016) emphasize that a country's overall patent activities can 

influence clean and dirty patent technologies. Moreover, we control GDP per 

capita and tertiary school enrollment. Figure 2 displays descriptive statistics for 

all variables. 
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Figure 2: Descriptive Statistics 

Variables Mean Std. Deviation Min Max 

Clean Patents 247.320 487.021 0.29 2846 

Dirty Patents 31.218 47.453 0.14 210.02 

Energy Price 4.541 0.126 4.186 4.796 

Energy Tax 0.540 0.261 0.301 1.078 

Clean Subsidy 66.638 75.321 0 362.297 

Dirty Subsidy 31.807 60.697 0 345.889 

Efficiency Subsidy 68.646 73.928 0 403.114 

Triadic Patents 848.446 1393.504 1.366 7641.34 

GDP 10.471 0.577 8.901 11.375 

Tertiary Enrollment 4.198 0.198 3.393 4.569 

Own Stock Clean Patents 6.299 1.840 1.098 10.561 

Own Stock Dirty Patents 4.583 1.631 0 8.035 

 

 
Figure 3 illustrates the number of patents for clean and dirty technologies in 16 

European countries from 2000 to 2020. Panel (a) shows that Germany leads in 

clean patent applications, followed by France. However, as we approach 2020, 

patent applications in Germany decline, converging with those in France. Thus, 

Germany and France are the leading European countries in clean patent 

applications. 

 
 
Panel (b) reveals that Germany and France also dominate in patent applications 

for dirty technologies, exhibiting parallel trends. Panel (c), which depicts the 

average patent applications for both clean and dirty technologies across the 16 

European countries, indicates that during the 2000-2020 period, the trend in 

patenting clean technologies consistently surpassed that of dirty technologies. 
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This suggests that the number of patent applications for clean technologies in 

Europe was significantly higher than those for dirty technologies. 
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Figure 3 Number of Patent Applications in 16 European Countries 

 

Panel (a): Clean Patent Counts of 16 

European Countries, 2000-2020 

 

Panel (b): Dirty Patent Counts of 16   

European Countries, 2000-2020 

 

 

Panel (c): Average Patent Counts, 2000-2020 
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Since around 2013, the decline in energy prices in Europe has played a key role 

in the reduction of clean energy patents. As fossil fuel prices became cheaper, 

investments in alternative technologies, such as renewable energy and energy 

efficiency, became less attractive, which likely contributed to the decrease in 

clean energy patents. Additionally, from around 2017, the falling share of energy 

taxes in GDP may have led to a decline in patents related to fossil fuel 

technologies, particularly in downstream processes. This suggests that as fossil 

fuels became more affordable, investments in high-carbon energy technologies 

weakened, resulting in a drop in patent activity in this sector. 

 
 
Figure 4 presents the economy-wide energy prices for 16 European countries 

from 2000 to 2020, indexed to the year 2010. Energy prices generally trended 

upward until around 2010, after which they exhibited a fluctuating pattern until 

2020. 
 

Figure 4 Energy Price (Index: 2010=100), 2000-2020 
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Figure 5 illustrates the energy taxes as a share of GDP for 16 European countries 

from 2000 to 2020. It shows that Italy has implemented the highest energy taxes 

in recent years. In contrast, Germany and France, which rank highly in patenting 

dirty technologies, have more moderate energy tax rates. 

 

Figure 5 Energy Taxes: Percentage of GDP, 2000-2020 

 

 

Figure 6 visualizes the average energy prices, energy taxes, and energy 

technology R&D budgets for 16 European countries from 2000 to 2020. In Panel 

(a), the economy-wide energy prices in the examined countries show a steady 

increase until around 2013, when they entered a declining trend. Panel (b) depicts 

the share of energy taxes in GDP, showing a decline until approximately 2009, 

followed by an increase (though not to previous levels), and then a sharp decline 

between 2016 and 2020. Panel (c) presents the R&D budgets allocated for 

energy technologies. It is observed that, from around 2003 onwards, the funding 

for clean and energy-efficient technologies surpasses that for dirty technologies. 

Except the last couple of years, the budgets for clean and energy-efficient 

technologies have been at similar levels. 
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Figure 6 Average Energy Price, Energy Taxes and IEA Energy Technology 
RD&D Budgets in 16 European Countries 

 

Panel (a) Economy-wide energy prices 

 

Panel (b): Energy Taxes 

 

Panel (c): Energy Technology RD&D Budgets 
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3.3.2. Methodology 

Using standard Ordinary Least Squares (OLS) regression to estimate count 

variables, such as patent counts, is challenging due to certain assumptions. 

Count variables often violate key OLS assumptions, such as conditional normality 

and homoscedasticity (constant variance). Count data techniques are 

recommended as an alternative since these variables typically exhibit non-normal 

conditional distributions and fail to meet the constant variance assumption. The 

Poisson distribution, which better accommodates integer values and is more 

appropriate for count data, is often seen as a better fit for such analyses 

compared to the normal distribution (Coxe et al. 2009).  

 
 
As our study aims to explain the determinants of clean and dirty innovations using 

patent counts, we utilize count data methods. To achieve this, we implement a 

Poisson regression model for our panel data, and the model in exponential form 

is as follows: 

 

𝑃𝐴𝑇75. = 𝑒𝑥𝑝(𝑥5.Q 𝜃 + 𝜔5) +	𝜀75.	 (3.1) 

 

where 𝑃𝐴𝑇75. is a nonnegative patent counts of energy type j (clean and dirty) for 

country i = 1, ..., N, at time t = 1, ..., T. Then, 𝑥5.Q  represents the vector of 

independent variables, 𝜔5 is the country-specific fixed effect and 𝜀75. is the error 

term.   

 
 
In our analysis, we focus on two dependent variables: clean energy patents 

(CLEANPAT) and dirty energy patents (DIRTYPAT). Thus, we test two separate 

models based on energy costs, environmental policies, and patent stocks to 

reveal the determinants of clean and dirty innovations.  
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We use economy-wide energy price (ENRP), energy tax (ENRTAX) and clean 

(Own stock clean) and dirty (Own stock dirty) patent stocks as explanatory 

variables. Furthermore, we employ R&D subsidies for clean (CLEANR&D), dirty 

(DIRTYR&D) and energy efficiency (EFR&D) separately as explanatory variables 

to observe the effect of research subsidies on the direction of technical change. 

While Aghion et al. (2016) also incorporated R&D subsidies for energy 

technologies into their analysis, their approach differed from ours in that they 

utilized the aggregate value of these subsidies, without distinguishing between 

the specific types of energy technologies. As a novel approach, we use 

decomposed data for R&D subsidies in energy technologies as clean, dirty and 

energy efficiency subsidies. In our model, we control for GDP per capita level and 

tertiary education enrollment ratio. Finally, we incorporate two dummy variables 

as environmental policy measures, indicating the implementation of a carbon tax 

(CTIMP) and emission trading system (ETSIMP). 

 
 
However, traditional fixed effect count data models assume strict exogeneity in 

all regressors, making it impossible to observe the impact of past observations 

on current outcomes. Blundell et al. (2002) proposed the pre-sample mean (PSM) 

estimator as a solution, using pre-sample information of the dependent count data 

variable within a linear feedback model. Following Blundell et al. (2002)’s 

approach we define the country-specific fixed effect as: 

 

𝜔5 = 𝜉𝑙𝑛𝑃𝐴𝑇������75 		 (3.2) 

 

where  𝑃𝐴𝑇������75 = (1/𝑇𝑃)∑ 𝑃𝐴𝑇75RS)
RT#  represents the PSM of our dependent 

variables, i.e. clean and dirty patent counts, in year n. TP is the number of 

observation and 𝜉 is the related parameter to be estimated. This estimator 
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provides reliable results, particularly in the presence of linear feedback and 

unobserved heterogeneity. According to Monte Carlo simulation findings from 

Blundell et al. (2002), the PSM estimator has shown significantly better 

performance than the quasi-differenced Generalized Method of Moments (GMM) 

estimator. 

 
 
Partially following the methodology of Aghion et al. (2016), we employ three 

distinct regression models: energy price-energy tax, energy price only, and 

energy tax only. This approach allows us to discern the individual and combined 

effects of energy prices and taxes on both clean and dirty innovation. To ensure 

the robustness of our results, we conduct sensitivity analyses by evaluating the 

regression across three different model specifications, each incorporating various 

combinations of control variables and environmental policy indicators. This 

comprehensive approach enables a more nuanced understanding of their impact 

on clean and dirty innovation. 

3.3.3. Regression Results 

Table 4 reports our regression results for the dependent variable clean patents in 

column (1) – (3) and we repeat the same procedure for the dependent variable 

dirty patents in column (4) – (6). 

 
 
A common result in columns (1) - (3) is that the coefficient of the economy-wide 

energy price is positive and statistically significant for clean energy patents. The 

elasticities between 1.773 and 1.980 indicate that a 10% increase in energy price 

is associated with about 17%-20% more clean energy patents, respectively, 

under different specifications. Aghion et al. (2016), in their analysis of the 

automotive industry across 80 countries, found that a 10% increase in fuel prices 

led to a 10% increase in clean energy patents. Similarly, Kruse and Wetzel (2016) 
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concluded that an increase in energy prices positively affects solar energy 

patents. However, there is no significant effect of energy tax on clean patents. 

 
 
Another common result in the first three columns is that countries with a history 

of clean innovation (own stock clean) proxied by lagged patent stocks exhibit a 

strong tendency to persist in developing clean technologies, characterized by a 

notable elasticity between 0.212 and 0.222. 

 
 
As a novel approach, we use decomposed data for the R&D subsidies includes 

spending from central or federal government budgets, as well as budgets of state-

owned companies on energy technologies, into clean, dirty and efficiency 

subsidies. Our findings in Table 4, strongly show that clean subsidies have a 

positive and significant effect on clean patents. The estimated coefficients 

between 0.242 and 0.263 indicate that a 10% increase in clean subsidies is 

associated with about 2.4%-2.6% increase in clean patents. In contrast to the 

effect of clean subsidies, dirty and energy efficiency subsidies are not statistically 

significant for clean patents. 
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Table 4 Regression with Energy Price and Energy Tax 

 Dependent Variable: Clean Patents Dependent Variable: Dirty Patents 

(1) (2) (3) (4) (5) (6) 

Own Stock 
Clean 

0.212*** 
(0.0416) 

0.220*** 
(0.0767) 

0.222*** 
(0.0701) 

   

Own Stock Dirty    0.308*** 
(0.105) 

0.410*** 
(0.111) 

0.406*** 
(0.100) 

Energy price 1.980*** 
(0.222) 

1.755*** 
(0.235) 

1.773*** 
(0.281) 

0.618 
(0.696) 

0.439 
(0.660) 

0.318 
(0.696) 

Energy tax -0.201 
(0.156) 

0.000926 
(0.161) 

-0.0175 
(0.186) 

0.230 
(0.257) 

0.382 
(0.246) 

0.249 
(0.254) 

Clean R&D 0.242*** 
(0.0643) 

0.263*** 
(0.0751) 

0.263*** 
(0.0795) 

-0.154*** 
(0.0393) 

-0.167*** 
(0.0494) 

-0.107 
(0.0737) 

Dirty R&D  
0.0219 

(0.0521) 

0.00769 
(0.0689) 

0.00806 
(0.0689) 

0.0237 
(0.0759) 

-0.0472 
(0.0724) 

-0.0429 
(0.0669) 

Efficiency R&D -0.00897 
(0.0492) 

0.0187 
(0.0566) 

0.0204 
(0.0592) 

-0.00990 
(0.0531) 

-0.0472 
(0.0724) 

0.0375 
(0.0724) 

GDP  1.487** 
(0.742) 

1.475** 
(0.734) 

 0.156 
(0.588) 

0.0502 
(0.508) 

Tertiary  -0.572 
(0.502) 

-0.591 
(0.524) 

 -1.428*** 
(0.430) 

-1.901*** 
(0.491) 

CTIMP 
(Dummy) 

  0.0221 
(0.0798) 

  0.390** 
(0.171) 

ETSIMP 
(Dummy) 

  0.0221 
(0.0798) 

  0.109 
(0.121) 

Constant -5.473*** 
(0.860) 

-18.08** 
(8.450) 

-17.93** 
(8.683) 

-1.323 
(2.457) 

3.080 
(5.820) 

7.218 
(6.251) 

Observations 298 298 298 298 298 298 

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively. 
Results of the dependent variable clean patent are in Column. (1) – (3) and the dependent 

variable dirty patent are in Column. (4) – (6). 
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Columns (4) and (6) report the estimation results using the same procedure in 

the first three columns, but this time, we use the dirty patents variable as the 

dependent variable. First, our findings for economy-wide energy price and tax do 

not produce a statistically significant impact on dirty patents. Interestingly, 

implementing a tax policy (CTIMP) positively affects dirty innovation efforts. 

 
 
Another common result in columns (4) - (6) is that countries with a history of dirty 

innovation (own stock dirty) exhibit a strong tendency to persist in developing 

clean technologies, characterized by a notable elasticity between 0.308 and 

0.410. 

 
 
Columns (1) - (3) in Table 5 show the results regarding the dependent variable 

clean patents using only energy price variable instead of energy tax. We find very 

similar coefficients for the countries’ history of innovation in clean technologies, 

energy prices, and clean R&D subsidies compared with our earlier estimates on 

clean patent activities. 
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Table 5 Regression with Energy Price instead of Energy tax 

 Dependent Variable: Clean Patents Dependent Variable: Dirty Patents 

(1) (2) (3) (4) (5) (6) 

Own Stock 
Clean 

0.218*** 
(0.0424) 

0.220*** 
(0.0766) 

0.222*** 
(0.0710) 

   

Own Stock 
Dirty 

   0.307*** 
(0.0994) 

0.416*** 
(0.0930) 

0.420*** 
(0.0947) 

Energy price 1.862*** 
(0.214) 

1.756*** 
(0.205) 

1.760*** 
(0.248) 

0.644 
(0.659) 

0.570 
(0.561) 

0.424 
(0.682) 

Clean R&D 0.224*** 
(0.0654) 

0.263*** 
(0.0763) 

0.262*** 
(0.0815) 

-0.170*** 
(0.0396) 

-0.167*** 
(0.0442) 

-0.108 
(0.0680) 

Dirty R&D 0.0434 
(0.0453) 

0.00763 
(0.0644) 

0.00884 
(0.0664) 

-0.00429 
(0.0492) 

-0.0692 
(0.0521) 

-0.0543 
(0.0520) 

Efficiency R&D 0.00243 
(0.0487) 

0.0187 
(0.0568) 

0.0212 
(0.0606) 

-0.0301 
(0.0453) 

-0.0358 
(0.0738) 

0.0287 
(0.0675) 

GDP  1.485** 
(0.740) 

1.505** 
(0.766) 

 -0.617 
(0.966) 

-0.401 
(0.805) 

Tertiary  -0.571 
(0.514) 

-0.596 
(0.531) 

 -1.130** 
(0.439) 

-1.780*** 
(0.503) 

CTIMP 
(Dummy) 

  0.0174 
(0.0583) 

  0.451*** 
(0.143) 

ETSIMP 
(Dummy) 

  -0.0123 
(0.0619) 

  0.0785 
(0.114) 

Constant -5.433*** 
(0.859) 

-18.06** 
(8.404) 

-18.21** 
(8.878) 

-0.874 
(1.968) 

10.26 
(8.753) 

11.52 
(8.586) 

Observations 298 298 298 298 298 298 

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively. 
Results of the dependent variable clean patent are in Column. (1) – (3) and the dependent 

variable dirty patent are in Column. (4) – (6). 

 

We also repeat the procedure for the dependent variable dirty patents in Table 5. 

We find similar effects for lagged dirty patent stock and carbon tax implementation 

(CTIMP) dummy compared with our earlier estimates on dirty patent activities.  
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Columns (1) - (3) in Table 6 show the results regarding the dependent variable 

clean patents using only energy tax variable instead of energy price. Accordingly, 

there is no significant effect of energy tax on clean innovation. We find similar 

signs for lagged clean patent stock and clean R&D subsidies compared with our 

earlier estimates on clean patent activities. In this specification, we observe that 

implementing an emission trading system (ETSIMP) in Europe significantly 

contributes to clean energy patenting. 

 
 
We also repeat the procedure for the dependent variable dirty patents in Table 6. 

In model (6), carbon tax policy positively influences dirty patent activity in Europe. 

While this finding is rare in the literature, some studies suggest that stringent 

environmental policies can support the development of fossil-based energy 

technologies alongside clean energy technologies. Lanzi et al. (2012) note that 

as fossil fuel prices rise in 11 OECD countries, patenting activity in clean 

technologies increases, and patenting in fossil technologies also continues to 

grow, though at a slower pace.  We find similar effects for lagged dirty patent 

stock compared with our earlier estimates on dirty patent activities. 
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Table 6 Regression with Energy Tax instead of Energy Price 

 Clean Patents Dirty Patents 

(1) (2) (3) (4) (5) (6) 

Own Stock 
Clean 

0.401*** 
(0.0318) 

0.420*** 
(0.0573) 

0.366*** 
(0.0768) 

   

Own Stock Dirty    0.370*** 
(0.0679) 

0.451*** 
(0.0683) 

0.420*** 
(0.0782) 

Energy tax -0.00803 
(0.178) 

0.246 
(0.210) 

0.282 
(0.268) 

0.243 
(0.245) 

0.423 
(0.263) 

0.287 
(0.269) 

Clean R&D 0.377*** 
(0.0816) 

0.368*** 
(0.0877) 

0.323*** 
(0.0952) 

-0.183*** 
(0.0697) 

-0.191** 
(0.0818) 

-0.113 
(0.0848) 

Dirty R&D 0.0433 
(0.0664) 

-.0025478 
(0.077) 

-0.000643 
(0.0750) 

0.0338 
(0.0825) 

-0.0438 
(0.0773) 

-0.0410 
(0.0674) 

Efficiency R&D -0.0242 
(0.0625) 

0.0235 
(0.0654) 

0.0309 
(0.0806) 

-0.0447 
(0.0443) 

-0.0282 
(0.0583) 

0.0230 
(0.0698) 

GDP  1.856* 
(1.085) 

1.787 
(1.150) 

 0.323 
(0.510) 

0.148 
(0.561) 

Tertiary  -1.216*** 
(0.389) 

-1.253*** 
(0.412) 

 -1.525*** 
(0.338) 

-1.987*** 
(0.485) 

CTIMP 
(Dummy) 

  0.0278 
(0.101) 

  0.387** 
(0.178) 

ETSIMP 
(Dummy) 

  0.186*** 
(0.0418) 

  0.151 
(0.112) 

 

Constant 1.218** 
(0.492) 

-13.38 
(11.53) 

-12.29 
(12.22) 

0.931 
(0.869) 

3.304 
(5.414) 

7.719 
(5.661) 

Observations 298 298 298 298 298 298 

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively. 

Results of the dependent variable clean patent are in Column. (1) – (3) and the dependent 

variable dirty patent are in Column. (4) – (6). 
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To address potential overdispersion, we also tested the models using negative 

binomial regression, the results of which are presented in Appendix 4. Our 

findings generally align with those from the Poisson regression. Finally, we also 

check the cross effects of past clean and dirty innovation stocks with our Poisson 

regression model and the results are reported in Table 7. 

 
 

Table 7 Cross Effects of Past Clean and Dirty Innovations 

 Dependent Variable: Clean Patents Dependent Variable: Dirty Patents 

(1) (2) (3) (4) (5) (6) 

Own Stock 
Clean 

0.155*** 
(0.020) 

0.142 
(0.114) 

0.318** 
(0.160) 

-0.145** 
(0.070) 

-0.104 
(0.067) 

-0.191*** 
(0.065) 

Own Stock Dirty 0.072*** 
(0.0229) 

0.097 
(0.145) 

0.104 
(0.207) 

0.676*** 
(0.081) 

0.640*** 
(0.080) 

0.681*** 
(0.081) 

Energy price 1.985*** 
(0.0594) 

1.871*** 
(0.225) 

 -0.624** 
(0.278) 

-0.603** 
(0.297) 

 

Energy tax -0.193*** 
(0.024) 

 0.00327 
(0.195) 

0.203** 
(0.093) 

 0.197** 
(0.092) 

Clean R&D 0.252*** 
(0.017) 

0.239*** 
(0.067) 

0.393*** 
(0.096) 

-0.106 
(0.072) 

-0.102 
(0.074) 

-0.111 
(0.073) 

Dirty R&D 0.020*** 
(0.006) 

0.040 
(0.044) 

0.041 
(0.067) 

0.067** 
(0.031) 

0.077** 
(0.030) 

0.064** 
(0.031) 

Efficiency R&D -0.015 
(0.011) 

-0.007 
(0.041) 

-0.033 
(0.046) 

-0.078* 
(0.047) 

-0.087* 
(0.046) 

-0.098** 
(0.045) 

Observations 298 298 298 298 298 298 

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively. 

Results of the dependent variable clean patent are in Column. (1) – (3) and the dependent 

variable dirty patent are in Column. (4) – (6). 

 

Columns (1) and (3) of Table 7 indicate that countries with a history of innovation 

in clean energy technologies are significantly more likely to continue innovating 

in clean technologies in the future, with elasticities ranging from 0.155 to 0.318. 
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In contrast, Columns (4) through (6) show that countries with a history of 

innovation in dirty energy technologies are much more likely to persist in 

innovating in dirty technologies, with elasticities of 0.640 and 0.681. These 

findings suggest that the impact of past dirty innovation on future dirty innovation 

is substantially greater than that of past clean innovation on future clean 

innovation. Moreover, a history of clean innovation is negatively associated with 

future dirty innovation, with elasticities of -0.104 and -0.191, implying that 

countries with a history of clean innovation are less likely to innovate in dirty 

technologies moving forward. 

 
 
As highlighted in the Data section and depicted in Figure 3, a notable observation 

is the sharp decline in the number of clean patents recorded in 2020. This decline 

is likely influenced by the disruptions caused by the COVID-19 pandemic. To 

account for the potential impact of the pandemic on our analysis, we re-estimated 

all models after excluding the year 2020 from the dataset. The revised results 

remained largely consistent with the original findings, confirming the reliability of 

our conclusions. As a piece of evidence, we report the results of the analysis for 

Table 7, using the dataset excluding the year 2020, in Appendix 4. 

3.4. DISCUSSION 

This study contributes to the literature on directed technical change and 

environment in the energy sector. The empirical results reveal several key 

insights into the dynamics of clean and dirty innovation activities across 16 

European countries from 2000 to 2020. 

 
 
First, the positive and statistically significant effect of energy prices on clean 

patenting highlights the critical role of energy costs as a driver of innovation in 

clean energy technologies. This finding aligns with the expectations of the 
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directed technical change model, which suggests that higher energy costs can 

incentivize the development of cleaner alternatives. This finding also aligns with 

the time series, panel data analysis, and firm-level results obtained by authors 

such as Lanzi and Wing (2010), Aghion et al. (2016), Ley et al. (2016), and Lin 

and Chen (2018).  

 
 
Aghion et al. (2016) suggest that rising energy costs suppress dirty patent 

activities, slowing down innovation in fossil technologies within the automotive 

industry. However, our findings do not show such a clear slowdown in the context 

of 16 European countries. In fact, some of our findings suggest that energy tax 

positively influences dirty innovation. Our dirty innovation indicator largely reflects 

patent counts from the downstream processing sector, along with contributions 

from upstream and transmission distribution technologies. This pattern may 

reflect a path dependency, where sectors specializing in dirty technologies focus 

on making existing fossil-based systems (specifically in downstream processing 

and transmission distribution) more efficient rather than transitioning sharply 

toward clean technologies. Policies like environmental or energy tax can increase 

the operational costs of firms working with fossil energy technologies, such as 

coal, oil, and gas. To manage these costs, companies may turn to developing 

more energy-efficient technologies. As Lanzi et al. (2012) argue, rising fossil 

energy prices or carbon taxes can drive innovation toward both clean and dirty 

technologies through an efficiency effect. Wang et al. (2021) suggest that 

advancements in coal-to-gas conversion under downstream processing improve 

air quality, aligning with environmental policy goals. 

 
 
Our indicator of dirty innovation mainly reflects activities within the downstream 

processing of fossil fuels, such as coal-to-gas transitions. This indicates a 

preference for using intermediates like gas during the shift from fossil fuels to 

clean energy. Given the challenges of transitioning directly to clean technologies, 
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it seems reasonable for firms in fossil-based industries to focus on downstream 

innovations to avoid the additional costs imposed by environmental policies like 

energy taxes. However, this approach could delay fully adopting fully renewable 

clean energy. Aghion et al. (2019) argue that if intermediates like gas are used to 

transition from fossil fuels to clean technologies, it should only be implemented 

within a limited timeframe. 

 
 
Brown et al. (2022) take a different view, suggesting that environmental taxes can 

support R&D in sectors where new inventions are hard to generate but knowledge 

transfer is relatively easy. Firms specializing in dirty technologies may invest in 

R&D to acquire technical expertise through technology transfer. Furthermore, the 

current tax rates in Europe might not be optimal. As Yang et al. (2019) noted in 

their study of China, the tax system does not fully support innovation in clean 

energy technologies. 

 
 
Our findings also highlight the importance of R&D subsidies in promoting clean 

energy innovations. The significant positive effect of clean R&D subsidies on 

clean patents supports the notion that targeted financial support can effectively 

direct technological advancements towards cleaner energy technologies. This 

result is consistent with previous studies, such as Acemoglu et al. (2012), 

Acemoglu et al. (2016), Johnstone et al. (2010), Dong et al. (2019) and Gugler et 

al. (2024), which emphasize the role of subsidies in guiding the direction of 

innovation. While clean R&D subsidies positively impact clean patent activities, 

dirty subsidies have a positive and significant effect on dirty patent activities, 

indicating that the specificity of subsidies is crucial in achieving desired outcomes. 

We also find weak evidence regarding the impact of energy efficiency subsidies 

on dirty patent activities.  
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Moreover, we also validate the positive contribution of history of innovation in both 

future clean and dirty patent activities. The coefficients of the lagged stock 

variables indicate that previous innovations in clean (dirty) energy contribute to 

technological developments in clean (dirty) innovation in the future. Aghion et al. 

(2016) also report a similar effect and magnitude on the auto industry for the path 

dependency hypothesis. This section of the analysis suggests another important 

finding. European countries with a history of clean innovation are likely to 

generate less dirty innovation in the future. 

 
 
In conclusion, this study offers strong empirical evidence on the key forces 

influencing technological innovation in Europe’s energy sector. The results 

highlight the critical roles of energy costs, targeted R&D subsidies, and history of 

innovation in guiding the direction of technological change. However, the 

inconsistent impact of environmental policy measures and the varying effects of 

economic and educational factors indicate that a more refined policy approach 

may be necessary to promote clean energy innovations effectively. Future 

research, especially studies encompassing a more comprehensive array of 

countries and exploring cross-sectoral spillovers, would enhance our 

understanding of these complex dynamics. 

3.5. CHAPTER SUMMARY 

This study presents empirical findings on how energy costs, environmental policy, 

and history of innovation influence the direction of technological change. By using 

panel count data techniques, we analyze the impacts of energy price, energy tax, 

R&D subsidies and countries’ history of innovation on clean and dirty innovation 

propensity. We also control the effect of GDP per capita and tertiary school 

enrollment ratio on innovation activities. 
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Our regression results align with several key findings in the directed technical 

change literature. First, we show that higher energy price is associated with a 

higher innovation effort in clean energy technologies but its effect on dirty 

innovation is ambiguous. Second, our findings highlight the essential role of 

research subsidies in the direction of technical change, as Acemoglu et al. (2012) 

emphasized, particularly given the higher elasticity of clean R&D subsidies 

compared to dirty ones. Last, we confirm the path dependency hypothesis, 

suggesting that countries with a higher propensity for innovation in clean (dirty) 

technologies are more likely to innovate in clean (dirty) technologies in the future. 

 
 
Several limitations should be acknowledged to contextualize the findings and 

guide future research. First, one significant limitation is the potential for cross-

sector technology spillovers, which the study does not fully address. 

Technological advancements in one sector can influence and drive innovations in 

other sectors. However, the current analysis does not capture these cross-sector 

interactions. Second, the study focuses on 16 European countries without 

comparing the results with those of other regions or countries. This limitation 

restricts the generalizability of the findings. Different regions may have varying 

levels of policy stringency, innovation capacities, and economic structures. A 

comparative analysis with non-European countries or other regions could provide 

a more comprehensive understanding of how contextual factors shape these 

dynamics. 
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CONCLUSION 

One of the key areas where technological change have the greatest impact is 

energy sector. Technological improvements have made it possible to use both 

renewable and non-renewable energy sources more efficiently and effectively. In 

this context, technological change is essential for either replacing unsustainable 

production methods based on fossil fuels with sustainable, renewable energy 

alternatives or improving the efficiency of current fossil fuel use. 

 
 
While engineering continues to drive technological progress, a key question for 

economists remains: How feasible is a full transition to clean technologies for 

economies still heavily reliant on fossil fuels, given the path dependency of these 

technologies? One of the most comprehensive answers to this question comes 

from Acemoglu et al. (2012). Their research shows that without government 

intervention through environmental policies, dirty technologies will retain a 

relative productivity advantage over clean technologies, making the fight against 

climate change unsuccessful. They propose that the optimal policy involves 

applying carbon taxes and research subsidies for clean technologies together for 

a certain period. Under the condition that the substitution rate between clean and 

dirty technology sectors is sufficiently high, this approach can permanently 

improve the productivity of clean technologies and support efforts to combat 

climate change. 

 
 
In this thesis, we explore the pivotal role of technological change in addressing 

the global challenge of transitioning from fossil-based to renewable energy 

systems. Our analysis highlights the importance of fossil energy costs, cross-

industry technology spillovers and environmental policy in directing innovation 

efforts towards clean energy technologies. 
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One of the central insights of this research is the critical role of substitution rates, 

spillovers, and energy costs in determining the direction of technological change. 

The theoretical model developed in this dissertation incorporates these factors, 

demonstrating their influence on the allocation of innovation efforts across clean 

and dirty sectors. Specifically, it shows that strong technology spillovers and high 

substitution rates can mitigate the productivity advantage of dirty technologies, 

thereby accelerating the transition to clean technologies. Empirical findings 

further validate and extend these theoretical insights. Using patent data from 16 

European countries, the analysis confirms that rising energy prices and targeted 

research subsidies significantly enhance clean technology innovation. However, 

the results also underline the persistence of path dependency in technological 

innovation: countries with a strong historical focus on dirty or clean technologies 

tend to continue along these trajectories. The theoretical result discussed in 

Chapter 2, where a low substitution rate between clean and dirty technologies 

leads to higher fossil energy costs driving dirty innovation, is partially observed in 

Chapter 3 for European countries. Our empirical findings suggest that, in certain 

specifications, energy taxes (especially as indicated by the carbon tax dummy) 

stimulate dirty innovation. We attribute this notable outcome to the fact that, within 

our sample, the dirty innovation indicator is primarily based on energy patents 

related to downstream processing technologies. 

 
 

The directed technical change model and empirical analysis in the last two 

chapters of this dissertation raise several important questions for future research 

beyond the scope of the questions addressed. First, the model developed in the 

second chapter could be further enhanced by incorporating an environmental 

constraint, which would provide a more comprehensive and holistic analysis. 

Second, in the third chapter’s country-level panel data analysis, the lack of access 

to country-level patent citation data restricts our ability to fully capture the effects 

of technology spillovers, which are typically proxied by patent citations in the 
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literature. By organizing patent citations by country using existing databases, a 

comprehensive citation dataset can be created. This would provide a valuable 

resource for conducting more detailed analyses of technological trends, 

innovation patterns, and cross-country technology spillovers. 
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APPENDIX 3 DECISION PROBLEMS 

Final Good Producer Problem 

ℒ = 𝑃/.𝑌/. − 𝑃3.𝑌3. + 𝜆 �𝑌. − H𝑌/.
E$#/E + 𝑌3.

E$#/EK
E/E$#

� (𝐴. 2.1) 

where 𝜆 is the Lagrange multiplier. 

FOCs imply that: 

 

𝑃/. = λYIL
$#1 	H𝑌/.
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𝑌. = H𝑌/.
1$#/1 + 𝑌3.

1$#/1K
1/1$#

(𝐴. 2.4) 

 

Intermediate Input Producers' Problem 

 

Clean Input 

 

Solving for Labor and wage in clean industry yields: 

FOCs: 
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𝐿/.: (1 − α)𝑃/.𝐿/.$4𝐴/5.#$4𝑥/5.4 −𝑤.! = 0 (𝐴. 2.5) 

 

 

𝑤.! = (1 − α)𝑃/.𝐿/.$4𝐴/5.#$4𝑥/5.4 (𝐴. 2.6) 

 

Solving for machine demand in clean industry: 

 

𝑥/5.: 𝑃/.𝐿/.#$4α𝐴/5.#$4𝑥/5.4$# − 𝑃/5. = 0 (𝐴. 2.7) 

 

 

Dirty Input 

 

Solving for machine demand, labor and energy demand in dirty industry: 

FOCs: 

 

𝑥35.: 𝑃3.𝐸3.
4)𝐿3.#$4𝐴35.

#$4#α#𝑥35.
4#$# − 𝑃35. = 0 (𝐴. 2.8) 

 

𝐿3.: (1 − α)𝑃3.𝐸3.
4)𝐿3.$4𝐴35.

#$4#𝑥35.
4# −𝑤.! = 0 (𝐴. 2.9) 

 

𝐸3.: α6𝑃3.𝐸.
4)$#𝐿3.#$4𝐴35.

#$4#𝑥35.
4# − 𝑐G = 0 (𝐴. 2.10) 
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Solving for (A.2.8) yields, 

 

𝑃3.𝐸3.
4)𝐿3.#$4𝐴35.

#$4#α#𝑥35.
4#$# = 𝑃35. (𝐴. 2.11) 

 

Solving for (A.2.9) yields, 

 

(1 − α)𝑃3.𝐸3.
4)𝐿3.$4𝐴35.

#$4#𝑥35.
4# = 𝑤.! (𝐴. 2.12) 

 

Finally, solving for (A.2.10) yields that, 

 

α6𝑃3.𝐸3.
4)$#𝐿3.#$4𝐴35.

#$4#𝑥35.
4# = 𝑐G (𝐴. 2.13) 

 

Machine Producer Problem 

 

Clean Industry 

 

The FOCs of the maximization problem relative to choice of the number of 

scientists: 

 

𝑆/5.: α(1 − α)𝑃/.
#

#$4𝐿/.𝐴/.$#λ n
𝐴.$#
𝐴/.$#

o
?

η𝑆/5.
:$# −𝑤.> = 0 
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𝑤.> = 𝛼(1 − 𝛼)𝑃/.
#

#$H𝐿/.𝐴/.$#𝜆 n
𝐴.$#
𝐴/.$#

o
@

𝜂𝑆/5.
K$# 

 

𝑤.> =
𝛼𝑥/5.𝜂𝜆𝐴/.$# 3

𝐴.$#
𝐴/.$#

8
@

3 1
1 − 𝛼8𝑆/5.

#$K𝐴/5.
(𝐴. 2.14) 

 

 

Dirty industry 

 

The FOCs of the maximization problem relative to choice of the number of 

scientists: 

 

𝑆35.:	𝛼#(1 − 𝛼#)H𝑃3.𝐸3.
H)𝐿3.#$HK

#
#$H#𝐴3.$#𝜆 n

𝐴.$#
𝐴3.$#

o
@

𝜂𝑆35.
K$# −𝑤.> = 0 

 

𝑤.> = 𝛼#(1 − 𝛼#)𝑥35.𝐴3.$#𝜆 n
𝐴.$#
𝐴3.$#

o
@

𝜂𝑆35.
K$# 

 

𝑤.> =
𝛼#𝑥35.𝜂𝜆𝐴3.$# 3

𝐴.$#
𝐴3.$#

8
@

3 1
1 − 𝛼#

8 𝑆35.
#$K𝐴35.

(𝐴. 2.15) 
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APPENDIX 4 ROBUSTNESS CHECK RESULTS 

NEGATIVE BINOMIAL REGRESSION RESULTS WITH ENERGY PRICE AND 
ENERGY TAX 

 Dependent Variable: Clean Patents Dependent Variable: Dirty Patents 

(1) (2) (3) (4) (5) (6) 

Own Stock 
Clean 

0.383*** 
(0.037) 

0.482*** 
(0.045) 

0.488*** 
(0.047) 

   

Own Stock Dirty    0.566*** 
(0.064) 

0.751*** 
(0.069) 

0.791*** 
(0.072) 

Energy price 1.649*** 
(0.230) 

1.415*** 
(0.228) 

1.372*** 
(0.245) 

0.062 
(0.270) 

0.103 
(0.261) 

0.055 
(0.291) 

Energy tax -0.214** 
(0.083) 

-0.144 
(0.089) 

-0.162* 
(0.092) 

-0.024 
(0.120) 

0.057 
(0.125) 

-0.008 
(0.129) 

Clean R&D 0.123** 
(0.053) 

0.121** 
(0.052) 

0.114** 
(0.053) 

0.049 
(0.063) 

0.055 
(0.062) 

0.038 
(0.062) 

Dirty R&D -0.005 
(0.023) 

-0.053** 
(0.024) 

-0.050** 
(0.024) 

-0.0179 
(0.032) 

-0.122*** 
(0.032) 

-0.110*** 
(0.033) 

Efficiency R&D -0.051 
(0.033) 

-0.021 
(0.033) 

-0.018 
(0.033) 

-0.039 
(0.045) 

-0.009 
(0.045) 

0.001 
(0.045) 

GDP  0.191 
(0.185) 

0.160 
(0.188) 

 -0.125 
(0.276) 

-0.236 
(0.296) 

Tertiary  -0.949*** 
(0.223) 

-1.093*** 
(0.245) 

 -1.869*** 
(0.274) 

-2.126*** 
(0.303) 

CTIMP 
(Dummy) 

  0.111 
(0.078) 

  0.270** 
(0.105) 

ETSIMP 
(Dummy) 

  0.011 
(0.075) 

  -0.025 
(0.093) 

Constant -7.182*** 
(0.932) 

-4.747** 
(2.196) 

-3.650 
(2.312) 

-0.349 
(1.121) 

8.116*** 
(2.821) 

10.52*** 
(3.074) 

Observations 298 298 298 298 298 298 

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively. 

Results of the dependent variable clean patent are in Column. (1) – (3) and the dependent 

variable dirty patent are in Column. (4) – (6). 
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NEGATIVE BINOMIAL REGRESSION RESULTS WITH ENERGY PRICE 
INSTEAD OF ENERGY TAX 

 Dependent Variable: Clean Patents Dependent Variable: Dirty Patents 

(1) (2) (3) (4) (5) (6) 

Own Stock 
Clean 

0.388*** 
(0.037) 

0.484*** 
(0.045) 

0.485*** 
(0.047) 

   

Own Stock 
Dirty 

   0.568*** 
(0.064) 

0.748*** 
(0.069) 

0.791*** 
(0.072) 

Energy price 1.565*** 
(0.228) 

1.346*** 
(0.223) 

1.274*** 
(0.239) 

0.054 
(0.267) 

0.135 
(0.253) 

0.049 
(0.277) 

Clean R&D 0.106* 
(0.053) 

0.111** 
(0.052) 

0.101* 
(0.053) 

0.048 
(0.062) 

0.055 
(0.062) 

0.038 
(0.062) 

Dirty R&D -0.006 
(0.023) 

-0.055** 
(0.024) 

-0.053** 
(0.024) 

-0.017 
(0.032) 

-0.123*** 
(0.032) 

-0.110*** 
(0.033) 

Efficiency R&D -0.037 
(0.032) 

-0.013 
(0.033) 

-0.010 
(0.033) 

-0.038 
(0.045) 

-0.012 
(0.045) 

0.002 
(0.044) 

GDP  0.336** 
(0.165) 

0.329** 
(0.166) 

 -0.182 
(0.248) 

-0.227 
(0.256) 

Tertiary  -1.020*** 
(0.221) 

-1.154*** 
(0.247) 

 -1.836*** 
(0.264) 

-2.130*** 
(0.296) 

CTIMP 
(Dummy) 

  0.086 
(0.078) 

  0.269*** 
(0.103) 

ETSIMP 
(Dummy) 

  0.037 
(0.074) 

  -0.024 
(0.091) 

Constant -7.226*** 
(0.933) 

-5.929*** 
(2.084) 

-4.999** 
(2.202) 

-0.364 
(1.115) 

8.554*** 
(2.662) 

10.45*** 
(2.852) 

Observations 298 298 298 298 298 298 

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively. 

Results of the dependent variable clean patent are in Column. (1) – (3) and the dependent 

variable dirty patent are in Column. (4) – (6). 
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NEGATIVE BINOMIAL REGRESSION RESULTS WITH ENERGY TAX 
INSTEAD OF ENERGY PRICE 

 Clean Patents Dirty Patents 

(1) (2) (3) (4) (5) (6) 

Own Stock 
Clean 

0.512*** 
(0.035) 

0.621*** 
(0.040) 

0.577*** 
(0.044) 

   

Own Stock Dirty    0.572*** 
(0.059) 

0.760*** 
(0.065) 

0.793*** 
(0.071) 

Energy tax -0.140 
(0.087) 

-0.0504 
(0.092) 

-0.0503 
(0.094) 

-0.020 
(0.118) 

0.070 
(0.120) 

-0.0008 
(0.123) 

Clean R&D 0.135** 
(0.057) 

0.139** 
(0.055) 

0.105* 
(0.056) 

0.0506 
(0.062) 

0.0595 
(0.061) 

0.038 
(0.062) 

Dirty R&D -0.016 
(0.024) 

-0.082*** 
(0.024) 

-0.070*** 
(0.024) 

-0.0180 
(0.032) 

-0.123*** 
(0.032) 

-0.110*** 
(0.033) 

Efficiency R&D -0.040 
(0.035) 

-0.001 
(0.035) 

-0.005 
(0.035) 

-0.039 
(0.045) 

-0.009 
(0.045) 

0.001 
(0.045) 

GDP  0.210 
(0.199) 

0.221 
(0.199) 

 -0.102 
(0.268) 

-0.221 
(0.285) 

Tertiary  -1.273*** 
(0.223) 

-1.468*** 
(0.244) 

 -1.876*** 
(0.273) 

-2.137*** 
(0.297) 

CTIMP 
(Dummy) 

  0.132* 
(0.079) 

  0.272*** 
(0.105) 

ETSIMP 
(Dummy) 

  0.181** 
(0.071) 

  -0.017 
(0.083) 

Constant -0.851*** 
(0.253) 

1.631 
(2.076) 

2.573 
(2.119) 

-0.103 
(0.333) 

8.287*** 
(2.772) 

10.63*** 
(3.013) 

Observations 298 298 298 298 298 298 

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively. 

Results of the dependent variable clean patent are in Column. (1) – (3) and the dependent 

variable dirty patent are in Column. (4) – (6). 
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CROSS EFFECTS OF PAST CLEAN AND DIRTY INNOVATIONS (2000-2019) 

 Dependent Variable: Clean Patents Dependent Variable: Dirty Patents 

(1) (2) (3) (4) (5) (6) 

Own Stock 
Clean 

0.381*** 
(0.080) 

0.357*** 
(0.079) 

0.504*** 
(0.101) 

-0.081 
(0.128) 

-0.083 
(0.134) 

-0.034 
(0.078) 

Own Stock Dirty -0.072 
(0.083) 

-0.032 
(0.087) 

-0.087 
(0.102) 

0.434*** 
(0.139) 

0.436*** 
(0.147) 

0.415*** 
(0.128) 

Energy price 1.123*** 
(0.254) 

0.981*** 
(0.245) 

 0.344 
(0.424) 

0.357 
(0.439) 

 

Energy tax -0.256** 
(0.128) 

 -0.159 
(0.138) 

0.116 
(0.197) 

 0.122 
(0.197) 

Clean R&D 0.165** 
(0.064) 

0.151** 
(0.064) 

0.226*** 
(0.076) 

0.090 
(0.057) 

0.098 
(0.065) 

0.095 
(0.060) 

Dirty R&D 0.010 
(0.041) 

0.034 
(0.037) 

0.017 
(0.049) 

-0.027 
(0.063) 

-0.040 
(0.043) 

-0.025 
(0.066) 

Efficiency R&D 0.053 
(0.047) 

0.064 
(0.047) 

0.053 
(0.052) 

0.041 
(0.062) 

0.031 
(0.072) 

0.033 
(0.063) 

Observations 283 283 283 283 283 283 

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively. 

Results of the dependent variable clean patent are in Column. (1) – (3) and the dependent 

variable dirty patent are in Column. (4) – (6). 
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