Hacettepe University Graduate School of Social Sciences

Department of Economics

ESSAYS ON TECHNOLOGICAL CHANGE AND
ENVIRONMENTAL POLICY

Bilal CAYIR

Ph.D. Dissertation

Ankara, 2024






ESSAYS ON TECHNOLOGICAL CHANGE AND ENVIRONMENTAL POLICY

Bilal CAYIR

Hacettepe University Graduate School of Social Sciences

Department of Economics

Ph.D. Dissertation

Ankara, 2024



YAYIMLAMA VE FiKRi MULKIYET HAKLARI BEYANI

Enstitl tarafindan onaylanan lisanststi tezimin tamamini veya herhangi bir kismini, basili (kagit)
ve elektronik formatta arsivieme ve asagida verilen kosullarla kullanima agma iznini Hacettepe
Universitesine verdigimi bildiririm. Bu izinle Universiteye verilen kullanim haklari digindaki tim
fikri mulkiyet haklarim bende kalacak, tezimin tamaminin ya da bir boliminin gelecekteki
calismalarda (makale, kitap, lisans ve patent vb.) kullanim haklari bana ait olacaktir.

Tezin kendi orijinal galismam oldugunu, bagkalarinin haklarini ihlal etmedigimi ve tezimin tek
yetkili sahibi oldugumu beyan ve taahhiit ederim. Tezimde yer alan telif hakki bulunan ve
sahiplerinden yazili izin alinarak kullanilmasi zorunlu metinleri yazil izin alinarak kullandigimi ve
istenildiginde suretlerini Universiteye teslim etmeyi taahhit ederim.

Yiksekdgretim Kurulu tarafindan yayinlanan “Lisansiistii Tezlerin Elektronik Ortamda
Toplanmasi, Diizenlenmesi ve Erigsime Agilmasina lliskin Yénerge” kapsaminda tezim
asagida belirtilen kosullar haricince YOK Ulusal Tez Merkezi / H.U. Kiitiiphaneleri Agik Erigim
Sisteminde erisime agilir.

o Enstiti / Fakilte yonetim kurulu karari ile tezimin erisime agilmasi mezuniyet
tarinimden itibaren 2 yil ertelenmistir. ("

o Enstitl / Fakiilte yonetim kurulunun gerekgeli karari ile tezimin erisime agilmasi
mezuniyet tarihimden itibaren ..... ay ertelenmistir. @

o Tezimle ilgili gizlilik karari verilmistir. )

...... [ovooiiid o,
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%) jsansiistii Tezlerin Elektronik Ortamda Toplanmasi, Diizenlenmesi ve Erisime Agilmasina lliskin Yénerge”

(1) Madde 6. 1. Lisansiistii tezle ilgili patent basvurusu yapilmasi veya patent alma stirecinin devam etmesi
durumunda, tez danigsmaninin énerisi ve enstitii anabilim dalinin uygun gériisi (izerine enstitii veya faklilte
yoénetim kurulu iki yil siire ile tezin erisime agilmasinin ertelenmesine karar verebilir.

(2) Madde 6. 2. Yeni teknik, materyal ve metotlarin kullanildigi, heniiz makaleye déniismemis veya patent gibi
ybntemlerle korunmamis ve internetten paylasiimasi durumunda 3. sahislara veya kurumlara haksiz kazang
imkani olugturabilecek bilgi ve bulgulari iceren tezler hakkinda tez danigsmaninin énerisi ve enstitii anabilim
dalinin uygun gériisi lizerine enstitii veya fakliilte yonetim kurulunun gerekgeli karari ile alti ayr asmamak
lizere tezin erisime agilmasi engellenebilir.

(3) Madde 7. 1. Ulusal ¢ikarlari veya glivenligi ilgilendiren, emniyet, istihbarat, savunma ve giivenlik, saglik vb.
konulara iliskin lisansiistii tezlerle ilgili gizlilik karari, tezin yapildigi kurum tarafindan verilir *. Kurum ve
kuruluglarla yapilan isbirligi protokolii ¢cergevesinde hazirlanan lisanslisti tezlere iliskin gizlilik karari ise, ilgili
kurum ve kurulusun énerisi ile enstitii veya fakliiltenin uygun goriisii lizerine tniversite yonetim kurulu
tarafindan verilir. Gizlilik karari verilen tezler Yiiksekégretim Kuruluna bildirilir.

Madde 7.2. Gizlilik karari verilen tezler gizlilik slresince enstitlii veya fakilte tarafindan gizlilik kurallari
cercevesinde muhafaza edilir, gizlilik kararinin kaldirilmasi halinde Tez Otomasyon Sistemine yiiklenir.

* Tez danigsmaninin énerisi ve enstitii anabilim dalinin uygun gériisii lzerine enstitii veya fakiilte
ybnetim kurulu tarafindan karar verilir.
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ABSTRACT

CAYIR, Bilal. Essays on Technological Change and Environmental Policy, Ph.D
Dissertation, Ankara, 2024.

In this thesis, we provide three essays that explore technological change and environmental policy
based on the directed technical change model. We integrate theoretical and empirical analyses
to examine how fossil energy cost, cross-industry technology spillovers and environmental policy
shape innovation dynamics in clean and dirty technologies. The first chapter provides a detailed
review of the directed technical change model, emphasizing its application to environmental
economics. It highlights the importance of technology spillovers in influencing innovation
dynamics, thus setting the theoretical foundation for the subsequent analyses. The second
chapter develops a model of directed technical change that incorporates endogenous energy use,
exogenous energy costs, and cross-industry spillovers. The model identifies conditions under
which clean technologies can overcome the dominance of dirty technologies, offering insights into
the role of substitutability and exogenous fossil energy costs in driving this transition. The third
chapter investigates the factors that influence the distribution of innovations between clean and
dirty energy technologies in 16 European countries. Our findings indicate that rising energy prices
and research subsidies for clean technologies significantly support the development of clean
energy innovation in European countries. Some of our findings suggest that tax policy contributes
to dirty energy innovation. Given the challenges of transitioning directly to clean technologies,
firms in fossil-based industries likely focus on downstream innovations to offset costs from

environmental policies like energy taxes.

Keywords

Technological Change, Environmental Policy, Technology Spillovers, Energy, Innovation
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OZET

CAYIR, Bilal. Teknolojik Degisme ve Cevre Politikasi Uzerine Makaleler, Doktora Tezi,
Ankara, 2024.

Bu tezde, yonlendirilmis teknolojik degisme modeli temel alinarak teknolojik degisme ve gevre
politikalarini inceleyen ¢ makale sunulmaktadir. Fosil enerji maliyetleri, endustriler arasi teknoloji
yayilimlari ve gevre politikasinin temiz ve kirli teknolojilerdeki inovasyon dinamiklerini nasil
sekillendirdigini teorik ve ampirik analizlerle ele almaktayiz. Birinci bélim, yonlendirilmis teknolojik
degisme modelinin ayrintili bir incelemesini sunarak bu modelin ¢evre ekonomisindeki
uygulamasina odaklanmaktadir. Bu bdélum, teknoloji yayilimlarinin inovasyon dinamiklerini
etkilemedeki énemini vurgulayarak sonraki analizler igin teorik bir temel olusturmaktadir. ikinci
bdlim, ydnlendiriimis teknolojik degisme modelini i¢sel enerji kullanimi, digsal enerji maliyetleri
ve endustriler arasi yayihmlari icerecek sekilde gelistirmektedir. Bu model, temiz teknolojilerin kirli
teknolojilere olan hakimiyetini nasil agabilecegine dair kosullari belirleyerek, bu geciste ikame
edilebilirlik ve digsal fosil enerji maliyetlerinin rollne iligkin igsel bir ¢dziim sunmaktadir. Ugiinci
bolim, 16 Avrupa ulkesinde temiz ve kirli enerji teknolojileri arasindaki yeniliklerin dagilimini
etkileyen faktorleri arastirmaktadir. Bulgularimiz, artan enerji fiyatlarinin ve temiz teknolojilere
yonelik arastirma tesviklerinin Avrupa Ulkelerinde temiz enerji inovasyonunu 6énemli dl¢ide
destekledigini gostermektedir. Bazi bulgularimiz, vergi politikalarinin kirli enerji inovasyonuna
katkida bulunduguna isaret etmektedir. Temiz teknolojilere dogrudan gecisin zorluklari g6z 6nine
alindiginda, fosil bazli endistrilerdeki firmalar muhtemelen enerji vergileri gibi cevre
politikalarindan kaynaklanan maliyetleri dengelemek icin asagi akis uretim iglemlerine yonelik

inovasyonlara odaklanmaktadir.
Anahtar Sozciikler

Teknolojik Degisme, Cevre Politikasi, Teknoloji Yayilimlari, Eneriji, inovasyon
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INTRODUCTION

The effects of climate change are becoming increasingly severe, presenting huge
challenges in preventing further global warming. Over recent decades,
international initiatives have gained momentum, with significant milestones such
as the 1992 Rio de Janeiro Summit and the subsequent Kyoto Protocol in 1997.
These agreements signified the start of coordinated global efforts to curb
emissions, evolving into comprehensive targets under the Paris Agreement of
2015. However, despite these efforts, projections by the Intergovernmental Panel
on Climate Change (IPCC) indicate that surpassing critical warming thresholds
of 1.5°C and 2°C is likely without more aggressive measures.

The dual challenge of mitigating greenhouse gas emissions while adapting to
inevitable changes necessitates a deeper understanding of how technological
progress can support these goals. In this regard, economic research increasingly
highlights the pivotal role of innovation-driven transitions in energy systems.

Over the years, various policy proposals have been developed to combat climate
change. Notable among these are the carbon tax, which places a price on
greenhouse gas emissions, increased reliance on renewable and eco-friendly
energy sources, and the emission trading system (ETS). Recent economic
research has emphasized that technological development can play a crucial role
in environmental policy and the fight against climate change. Often grounded in
general equilibrium models, these studies focus on directed technical change in
economies with multiple sectors. Directed technical change allows for a detailed
analysis of how different factors influence the allocation of scientific research
across sectors, especially in models where innovation has an endogenous

dynamic. Such models are vital for understanding how innovation can drive the



transition to a low-carbon economy. This approach is grounded in endogenous
growth theory, with a focus on the concept of induced technical change dated
back to Hicks (1932). The foundational works of Romer (1986) and Lucas (1988)
highlight knowledge accumulation as a key driver of long-term economic growth.
A central idea of endogenous growth theory is that production processes
experience increasing returns to scale, in contrast to exogenous models like
Solow's. In endogenous growth models, technological change is the result of
efforts by individuals and firms to accumulate knowledge and maximize profits.
This makes technological progress an endogenous outcome of economic activity,
driven by innovation and investment in human capital (Romer, 1986; Lucas,
1988).

The concept of directed technical change in relation to climate change was
pioneered by Acemoglu et al. (2012). They introduced a growth model
incorporating environmental constraints and intertemporal endogenous directed
technological change. The model features two sectors: dirty and clean. While the
dirty sector generates negative environmental externalities through dirty
machinery, the clean sector has no such negative impact. The final good is
produced by combining inputs from both the dirty and clean sectors. The study
aims to answer how technologies in these sectors will respond to environmental

policies.

Their findings suggest that urgent measures like those proposed by Nordhaus
and Stern (2006) are necessary to prevent environmental catastrophe. This is
due to the initial productivity advantage and market size effect in the dirty sector.
However, Acemoglu et al. (2012) argue that carbon taxes and research subsidies
can optimally drive technological development and help avoid environmental
disaster. Furthermore, once clean technologies are sufficiently advanced,

research will naturally shift towards the clean sector, reducing the need for



ongoing policy interventions. However, this conclusion is contingent upon
sufficient substitutability between the dirty and clean sectors. Without this, long-
term intervention becomes inevitable. A key contribution of their work is the idea
that environmental disaster is more likely when the dirty sector relies on non-
exhaustible resources. If exhaustible resources are used, rising extraction costs
and decreasing resource availability could incentivize innovation in the clean

sector, thereby mitigating the risk of environmental disaster without intervention.

The transition from fossil-based to clean energy systems is at the heart of the
climate change discourse. While environmental policies such as carbon tax and
research subsidy have been explored extensively, the role of cross-sector
technological spillovers between clean and dirty technologies remains
underexplored. Technology spillovers, particularly those based on knowledge,
occur when knowledge is viewed as a public good and spread to individuals,
firms, and sectors. This term, known as knowledge spillovers, is crucial in
technological change. In the development of clean technologies, knowledge
externalities from dirty sectors are often leveraged, allowing clean technologies
to evolve without having to start entirely from scratch. Studies on energy
technology spillovers typically analyze patent citation data, as the number of
citations a patent receives reflects the extent of its technology diffusion. The more
citations, the wider the spread of the technology. Research shows that spillovers
between clean and dirty technologies accelerate the advancement of clean
technologies, with clean technologies benefiting more significantly from these
spillovers compared to their dirty counterparts (Dechezlepretre et al., 2013;
Ocampo-Corrales et al., 2020).

Building on this emerging concept, the contributions of this dissertation to the
existing literature are outlined as follows: First, this thesis advances the literature

by emphasizing the role of cross-industry technology spillovers between clean



and dirty technologies. Unlike many prior studies that largely overlook this
dimension, the dissertation integrates spillovers into directed technical change
models, providing a nuanced understanding of their impact on innovation
dynamics. Second, building upon the foundational model by Acemoglu et al.
(2012), the dissertation introduces a directed technical change model that
accounts for endogenous energy use, exogenous energy costs, and spillovers
between industries. Third, through applying panel count data techniques on
patent data from 16 European countries, the dissertation empirically investigates
how environmental policies, history of innovation, and energy costs affect
innovation in clean and dirty technologies. This focus is a departure from much
of the existing literature, which prioritizes clean innovations while mostly
neglecting dirty technologies. Overall, our research incorporates a detailed
examination of how technology spillovers, fossil energy costs and environmental
policy influence the innovation landscape, offering fresh perspectives on their role
in directing technical change.

The main objective of this thesis is to develop approaches highlighting how
environmental policy tools and innovation spillovers between fossil-based and
clean technologies can drive innovations toward clean technologies. To this end,
the first chapter of this thesis provides a comprehensive review of the literature
on the relationship between directed technical change and the environment, with
a particular focus on the role of cross-sector technology spillovers between clean
and dirty technologies. We identify a need for a thorough assessment of the
literature on directed technical change models. This chapter begins by reviewing
Acemoglu's (2002) foundational work on directed technical change, followed by
the environmental and climate context introduced by Acemoglu et al. (2012). It
then examines this literature's relatively underexplored role of cross-sector
technology spillovers. The chapter’s findings show that research on directed
technical change has primarily centered on the energy sector, with models
focusing on factors such as energy cost and efficiency measures. Additionally,



the limited theoretical and empirical evidence suggests that spillovers from dirty
to clean technologies do occur and could play a role in advancing sustainable

environmental goals.

In the second chapter, building on the insights from the first, we develop a
directed technical change model featuring two industries: clean and dirty. Unlike
previous studies, this model assumes endogenous energy use, exogenous
energy costs, and cross-industry technology spillovers, focusing on the factors
that drive innovations from fossil-based technologies toward renewable energy
technologies. The chapter's key findings reveal that the shift to clean technologies
is driven by the level of substitution rate, technology spillovers, and fossil energy
costs. High substitution rates and strong spillovers promote clean innovation,
while low substitution rates favor dirty technologies. High energy costs encourage
clean innovation when conditions are favorable but otherwise focus on improving

dirty technologies.

In the third chapter, we aim to empirically analyze the factors that influence the
distribution of innovations between clean and dirty energy technologies in 16
European countries. To achieve this, we employ a Poisson regression model to
assess the impact of environmental policy, history of innovation, and energy costs
on the direction of innovation in both clean and dirty technologies. Given that we
use patent counts as a measure of innovation, widely used in the literature, we
apply panel count data techniques. While most existing studies focus primarily on
clean innovations, this chapter contributes to the literature by exploring the
determinants of both clean and dirty innovations, as well as the effects of various
environmental policy instruments. Our findings indicate that rising energy prices
and research subsidies for the clean sector significantly support the development
of clean energy technologies in European countries.



The remainder of this dissertation is structured as follows: Chapter 1 reviews
foundational and contemporary studies on directed technical change. Chapter 2
introduces a formal model to analyze the direction of technical change between
clean and dirty technologies. Chapter 3 presents an empirical investigation into
innovation trends, followed by a discussion of policy implications.



CHAPTER1

TRANSITION TO CLEAN ECONOMY THROUGH INNOVATIONS
AND TECHNOLOGY SPILLOVERS: A REVIEW OF DIRECTED

TECHNICAL CHANGE MODELS

1.1. INTRODUCTION

High-skilled labor in the job market has consistently increased over many years.
The skilled labor growth has resulted in a concentration of technological
advancements within industries that heavily rely on such expertise. It is well-
established that the distribution of technological change is not uniform across
production factors and does not progress neutrally. In some countries, despite
the growing number of skilled labor, there is a noticeable upward trend in their
wage levels. This trend suggests a shift in technological change towards sectors
demanding skilled labor with specific skills and abilities, commonly known as skill-
biased technical change. This perspective is supported by Acemoglu’s research,
where he discusses how market forces in labor markets influence the direction of
technological change within a comprehensive framework (Acemoglu 1998,
2002). As discussed in Section 2, the impact of price and market size determines
the relative profitability of new technology across production factors.
Furthermore, the balance between these effects is influenced by the elasticity of
substitution and the extent of state dependence on the cost of various types of
innovation, shaping what is termed the innovation possibilities frontier (IPF).



Following Acemoglu’s pioneering studies, the directed technical change model is
widely used in different areas of economic research, such as fiscal and monetary
policies, international trade and investment, labor markets and environmental
economics (Acemoglu 2012; Shangao et al. 2016; Fried 2018; Haas and Kempa
2018; Kim 2019; Afonso and Forte 2023; Hemous and Olsen 2021). However,
how the direction of technical change responds to environmental policy has
received more attention in recent years, particularly with the baseline paper titled
“The Environment and Directed Technical Change” by Acemoglu, Aghion,
Bursztyn and Hemous in 2012. The paper characterizes equilibrium conditions
under a laissez-faire economy and optimal environmental policy to allocate
innovation efforts between clean and dirty technologies to avoid environmental
disaster by referring to the price, market and direct productivity effects. Following
this paper, a growing body of literature continues to develop divergent and
marginally modified versions of the environmental model of directed technical

change.

In this paper, we aim to review the literature on the environment and directed
technical change, encompassing both theoretical and empirical perspectives,
with a particular focus on cross-sector technology spillovers. The role of cross-
technology spillovers is pivotal in the shift towards clean energy and the global
effort to combat climate change, impacting both fossil and clean energy
production and consumption. Research on technology spillovers assumes
significance within the directed technical change models due to its supportive role
in advancing clean energy technologies and implementing environmental
policies. However, it is noticeable that these spillovers are not adequately
addressed in studies pertaining to the environment and directed technical
change. Therefore, this review seeks to highlight the crucial interaction among
cross-sector technology spillovers, environmental policies, and the direction of

innovation.



The remainder of the paper is organized as follows: Section 1.2 presents the main
aspects of the basic directed technical change model based on Acemoglu (1998,
2002). Section 1.3 explores the dynamics of the environmental model of directed
technical change. Section 1.4 reviews the alternative models and extensions of
the environmental model of directed technical change. Empirical evidence from
related literature is discussed in section 1.5. Then, in section 1.6, we give special
attention to cross-sector technology spillovers between clean and dirty
technologies.

1.2. BASIC DIRECTED TECHNICAL CHANGE MODEL

Technological change does not diffuse uniformly across all factors of production.
Some factors or industries may be more biased toward efforts in developing new
technologies than others. As Acemoglu (1998, 2002) emphasized, the
developments in the US labor market during the 1970s provided noteworthy
insights. Data on the skilled labor market in the U.S. during these years indicate
an increase in the quantity of skilled labor measured by the number of college
graduates despite supply and demand dynamics in the labor market. Contrary to
expectations, the wage level of skilled labor also increased during this period.
This outcome supports the notion of skill-biased technological change, indicating
a complementary relationship between the development of new technology and
skilled labor. Acemoglu (1998, 2002) comprehensively explains why such a
relationship exists. Accordingly, the increase in highly skilled workers has made
it more profitable for innovators to develop high-tech solutions, enhancing their
productivity. This highlights the interdependence between the growth of highly
skilled workers and the profitability of developing innovative technologies.’

' See “Why do new technologies complement skills? Directed technical change and wage
inequality” by Acemoglu (1998) for more details about skill-biased technical change.
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Acemoglu explains this relationship within the Directed Technical Change model
framework, which allows the endogenization of the direction and bias of new
technologies. For instance, one may assume an economy with two factors of
production: skilled and unskilled labor, and thus, two types of technologies.
Suppose the profitability of technologies based on skilled labor is higher than that
of unskilled labor. In that case, profit-maximizing firms will be inclined to develop
technologies based on skilled labor. In the paper titled “Why do new technologies
complement skills? Directed technical change and wage inequality,” Acemoglu
argues that when there is an increase in the supply of skilled labor, the market for
skill-complementary technologies will expand, leading to the invention of more
technologies. Therefore, he suggested that the market size effect is the
determining factor in the direction of technological change.? Acemoglu’s
observations in 1998 indicate that an endogenous increase in the ratio of skilled
labor or a decrease in the cost of skills would result in wage inequality in favor of
skilled labor, highlighting the influence of market forces on the direction of
technological progress.

In his 2002 paper “Directed Technical Change”, Acemoglu systematically
formalized this approach and investigated its effects on income inequality
between rich and poor countries. This framework assumes that there are two
inputs: labor, L, and Z for capital, skilled labor, or land. Technological progress is
denoted by A. The production function, illustrating the production of the final good,
is structured in a constant elasticity of substitution (CES) form and can be

expressed as follows:

2 The market size effect refers to the expansion of the market for skill-complementary technologies
due to an increase in the number of skilled workers.
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Y = (nyT+(1—y)YZT> (1.1)

In equation (1.1), Y, and Y, denote the two inputs that are used in the production
of the final good. One may consider that Y; refers to unskilled labor-intensive
input, and Y, is a skilled labor-intensive input. y € (0,1) determines the share of
two factors in final production, and € € (0,) is the elasticity of substitution
between the two factors and implies that two factors are gross substitutes when
e > 1 and gross complements when & < 1. The elasticity of substitution between
the two inputs determines whether technological change is L-biased or Z-biased.
The efficiency of labor-biased and Z-biased technologies is endogenously
determined by the type and quality of machines produced by technology
monopolists. The profitability of each type of technology also dictates the type of
innovations that will be pursued. The production functions for inputs using these
two types of technologies are as follows:

V=2 (6 n P ) 1 (1.2)

Y, = 5 (I % ()P dj) 2P (1.3)

where B € (0,1) and total quantities of the two factors, L and Z, are supplied
inelastically. x; and x, denote the unskilled labor-complementary and skilled
labor-complementary machines, respectively. The range of machines either used
with unskilled or skilled labor is denoted by N, or N,, respectively. Clearly, there
are two different machine varieties used in the production of two different inputs
and N,/N, represents the relative productivity of skilled labor complementary

factor.
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The primary objective is to identify the determinants of the direction of
technological change. The motivation for profit-maximizing firms to engage in
more innovation is the desire to achieve greater profits. When examining the profit
of technology monopolists, it is essential to consider the net present discounted
value of profits rather than instantaneous profits. The net present discounted

value of profits in labor and Z factors is expressed as follows:

_ BPLl/BL BPZ”BZ

v and V, =

(1.4)

where P, and P, are the product prices, and r is the time-varying interest rate.
The larger V, compared to V;, the more technologies based on the Z factor will
be developed compared to those based on labor. The equation above reveals the
factors determining the profitability of both technologies. Accordingly, V, and V;,
are increasing in P, and P, implying a price effect and encouraging the
development of technologies that use the input with a higher price. On the other
hand, V, and V, are increasing in Z and L, indicating that innovation favors the
more abundant factor, expressed as the market size effect. Under the steady-
state assumption and defining that 6 = € — (¢ — 1)(1 — B), the paper expresses
the profitability ratio of Z-complementary new machine production to L-

complementary machine production:

1 o—1

‘;_i _ Pl/B% = (%)E (Invz_f)_g (%) ’ (1-5)

The price and market size effects determine the relative profitability of new
technology in both production factors. When the elasticity of substitution between
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the two factors is greater than one, an increase in the relative factor supply Z/L
will increase V,/V;, allowing the market size effect to dominate the price effect.
On the other hand, when the elasticity of substitution is less than one
(complementary case), an increase in Z/L will lead to a decrease in V,/V,,
allowing the price effect to dominate. Consequently, the substitution ratio
between the two factors determines which effect will dominate. If the price effect
dominates, developing new technologies that enhance the efficiency of the
scarce factor will be more profitable. Conversely, if the market size effect
dominates, developing technologies that enhance the efficiency of the abundant

factor will become more profitable.

In addition to the determining role of the elasticity of substitution, the degree of
state dependence on the cost of different types of innovation (termed the IPF)
can significantly shape the direction of technological change. The concept of the
degree of state dependence essentially suggests that the future costs of
innovations can be influenced by the current level of technology (or the current
state of research and development). Taking into account the potential state
dependence of the IPF, Acemoglu (2002) assumes that directing innovations
towards the Z factor in the current period will result in a reduction in the relative

costs of future Z-complementary innovations.

The results presented by Acemoglu (2002) provide crucial insights into the
income gap between developed and less developed countries. In the developed
countries, referred to as the North, directed technical change tends to make newly
developed technologies more skill-biased than in less developed countries. This
disparity contributes to a larger income gap between rich and poor nations. Since
less developed countries generally have fewer skilled workers than advanced
Northern countries, skill-biased technologies are not expected to have a
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significant role in less developed countries. Therefore, directed technical change

is a factor that deepens income inequality.®

1.3. ENVIRONMENTAL MODEL OF DIRECTED TECHNICAL CHANGE

In 2012, Acemoglu et al. show the significance of price and market size effects in
their Basic Directed Technical Change model, highlighting their impact on the
response of diverse technologies to environmental policies in a two-sector model.
Their study discusses intertemporal endogenous and directed technological
change within the framework of a growth model that considers environmental

constraints.

Acemoglu et al. (2012) focus on a comprehensive economic model comprising
both dirty and clean sectors. While the dirty sector introduces a negative
environmental externality through dirty machines, the clean sector is devoid of
such adverse effects. The combination of inputs from these two sectors results in
the production of the unique final good. Building on this foundation, the study
explores how technologies directed in different sectors respond to environmental

policies.

Analytical findings suggest that immediate definitive measures, compared to
those proposed by Nordhaus and Stern, are imperative to avoid environmental
catastrophe due to the advantages of the market size and initial productivity in
the dirty sector (Nordhaus 2010; Stern 2009). However, Acemoglu et al. (2012)
contend that using carbon taxes and research subsidies can serve as optimal
environmental response tools, adequately steering technological development

3 For more detailed discussion and findings on the debates regarding directed technical change
and income inequality, readers are referred to Antonelli and Scellato (2019), Chu et al. (2014) and
Jerzmanowski and Tamura (2019).
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and preventing environmental disasters. Furthermore, with the sufficient
advancement of clean technologies, further intervention becomes unnecessary
as research naturally shifts towards the clean sector. This proposition is based
on the assumption of a sufficient substitution rate between the clean and dirty

sectors; otherwise, permanent intervention becomes inevitable.

An important contribution of Acemoglu et al. (2012) lies in highlighting that the
likelihood of an environmental disaster increases when the dirty sector utilizes
non-exhaustible resources. In the case of exhaustible resources, extraction costs
and diminishing stocks can incentivize innovation to transition to the clean sector,
avoiding environmental disasters without intervention. However, this possibility
diminishes when non-exhaustible resources are employed, as there are no

associated costs.

The CES aggregate production function of a uniquely produced final good (Y;)

under competitive conditions is expressed as follows:

(1.6)

_ (y(E-1D/e (e-1)/e)\ ¥/ D
v, = (xS

where ¢ denotes the elasticity of substitution between clean and dirty
intermediates. The final good is produced by two inputs from the clean (Y,;) and

dirty intermediate sectors. Intermediate production functions are as follows:
_ 1 - ,
Yo = Lgz© fo A x gy di (1.7)

- 1 ,1- .
Var = RPLY™ [ AL xSy, di (1.8)
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where o, oy, a; € (0,1), a; + a; = a and A;;, denotes the quality of i-type machine
in sector denoted by j € (¢,d) and R, shows the consumption level of an

exhaustible resource.* The innovation side of the economy is as follows:

Ajt = (1 + Ynjsjt)Ajt—l (19)

In this framework, scientists face a choice each period to focus their research on
either clean or dirty technology. They are then randomly assigned to a machine,
with a chance of successful innovation determined by a probability parameter n;
in sector j (clean or dirty). Successful innovation improves machine quality by a
factor of 1 + y. A scientist who successfully innovates becomes the entrepreneur
for that period in producing the improved machine. If innovation fails, monopoly
rights go to a randomly selected entrepreneur using the old technology. The IPF
allows scientists to target a sector rather than a specific machine, ensuring
allocation across machines in a sector. The IPF also normalizes the measure of
scientists and denotes the scientist mass working on machines in each sector at
a given time by s;.. Finally, Acemoglu et al. (2012) define the environmental

quality S; as follows:

St+1 == _EYdt + (1 + S)St (1.10)

The equation (1.10) introduces the evolution of environmental quality over time.
The right-hand side of the equation determines the change in environmental

quality, subject to certain conditions. Specifically, when the right-hand side is

4 Acemoglu et al. (2012) define the evolution of the exhaustible resource as Q,,; = @, — R,. Q
reflects the resource stock and ¢(Q) is defined as per unit extraction cost.
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within the interval (0,S), environmental quality adjusts accordingly. If the right-
hand side is negative, environmental quality remains at zero (S,,, = 0), and if it
exceeds S, environmental quality stabilizes at its maximum level. The parameter
¢ signifies the environmental pollution rate due to the dirty input production, while

0 represents the environmental regeneration rate.

The equation (1.10) captures the key aspects of environmental change, including
the idea that greater degradation tends to lower the regeneration capacity. The
upper bound S reflects the maximum environmental quality, acknowledging that
pollution cannot be negative. This equation also discusses the concept of a point
of no return, where if environmental quality reaches zero, it remains at zero
indefinitely. This notion aligns with the concern among climate scientists that

irreversible environmental disasters may occur.

1.3.1. Non-Exhaustible Resource

The factors determining the relative profitability of conducting research in the

clean and dirty sectors are outlined as follows:

1/(1-a)
E—Ex(ﬁ) x Let ¢ Act=1 (1.11)

Pat Lgr  Age-1

According to this equation, the factors determining innovation efforts in either the
clean or dirty sectors are influenced by the price, market size, and direct
productivity effects. As mentioned earlier, the price effect directs innovations
towards the sector with higher prices, while the market size effect encourages
innovations to occur in the sector with higher employment. On the other hand,
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the direct productivity effect indicates that innovations occur in the sector where

the average productivity is relatively high.®
1.3.1.1. Substitution Case

When there is a substitution relationship between the two inputs, the assumption
that the clean sector is relatively backward compared to the dirty sector implies
that innovations must begin in the more advanced sector, the dirty sector.® In this
case, while the average productivity of the sector producing dirty input continues
to increase steadily, the productivity level of the clean sector remains constant.
Additionally, when the substitution coefficient is greater than one, it leads to the
unlimited growth of dirty input production. As a result, in the non-intervention
scenario, equilibrium allocations drive the economy towards an environmental
disaster. However, Acemoglu et al. (2012) argue that some degree of economic
intervention may inhibit an environmental disaster. For instance, the government
can allocate a proportional research subsidy through a lump-sum tax collected
from households to encourage scientists to contribute to the clean sector.
Accordingly, when there is a substitution relationship between inputs, temporary
incentives applied for a certain period may be sufficient to redirect all research
efforts to the clean sector. When the average efficiency ratio sufficiently increases
in favor of the clean sector, directing research to the clean sector for scientists
may become more profitable even without implementing research incentives.
Consequently, having a sufficient level of substitution will ensure that temporary

incentives lead to innovations towards clean technologies.

5 The argument on innovation shifting towards more productive sectors reflects the notion of
building on the shoulders of giants which implies a state dependence on the IPF.

A
Ado Nd Nd
innovation starts with dirty technologies when there is no policy intervention.

N e N e N
6 That is, the Assumption 1 is =2 < min{(1+yn,) @ (—”)"’,(1 +yng) © (—”)“’ reflects that
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1.3.1.2. Complementary Case

When there is a weak substitution relationship between clean and dirty inputs, in
other words, a complementary relationship, Acemoglu et al. (2012) suggest that
implementing impermanent intervention may not be enough to avoid an
environmental disaster. In a complementary case, temporary intervention
facilitates the redirection of research towards the clean sector. However, the
production quantity of dirty input will continue to increase.”

1.3.1.3 Optimal Policy

The environmental form of the directed technical change model emphasizes the
importance of research subsidy and carbon tax when shaping the optimal
environmental policy. The laissez-faire equilibrium in the economy leads to three
types of externalities. First, there is the environmental externality generated by
dirty input producers. Second, there are knowledge externalities arising from
research and development activities. Last, there is the standard static monopoly
distortion in the price of machines subject to monopolistic competition. To
eliminate externalities in the form of non-exhaustible resources used in the dirty
input production, the socially optimal allocation is characterized, recommending
lump-sum taxes and transfers. Therefore, Acemoglu et al. (2012) define the
combination of (i) carbon tax on dirty input, (ii) research subsidy for clean
innovations, and (iii) subsidy for the use of all machines as the first-best policy for
socially optimal allocation. Consequently, market failures arising from inefficient
use of machines due to monopolistic pricing are addressed with a subsidy for
machines, environmental damages from dirty input production are mitigated with

a carbon tax, and market failures by knowledge externalities on the IPF are

" For more details about complementary inputs and environmental policy, readers are referred
to Appendix | in Acemoglu et al. (2012).
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addressed with a research subsidy (directing innovation toward the clean sector

to deal with future environmental externalities).

Acemoglu et al. (2012) describe a scenario where only carbon tax is used as the
intervention tool for socially optimal allocation as a second-best policy. However,
relying solely on a carbon tax to combat both current and future environmental
externalities would necessitate higher tax rates, resulting in the distortion of
current production and a significant reduction in consumption. At this point, an
important question is whether the optimal environmental policy will be
implemented permanently or temporarily. Accordingly, if there is sufficient
substitution between clean and dirty inputs and the discount rate is low enough,
temporarily applying research subsidy and carbon tax will be sufficient for the
transition to clean innovation. However, the allocations required to correct
monopoly distortions are beyond this scope. When the discount rate is sufficiently
low, the positive long-term growth resulting from technological advancement in
clean input (given the substitution relationship, there will be no increase in dirty
input production) will be optimal. In this mechanism, research subsidies, properly
determined at the right level, will work to surpass the productivity level of the clean
sector over the dirty sector, making innovation in the clean sector more profitable.

Subsequently, even without subsidies, innovation will continue in the clean sector.

1.3.2. Exhaustible Resource

Acemoglu et al. (2012) have also characterized the environmental model of
directed technical change for the case where exhaustible resources are used in
the dirty sector. In this specification, even without intervention, preventing an
environmental disaster is possible because using exhaustible resources in the
dirty sector leads to continuously increasing usage costs due to extraction costs
and resource scarcity. However, it is initially assumed that there are no privately

held property rights for exhaustible resources, and the usage cost is determined



21

solely by the extraction cost. Later, it is assumed that property rights are vested
in infinite-lived firms or consumers, and thus, the Hotelling Rule determines the
price. Since exhaustible resources are used to produce dirty input, the stock of
exhaustible resources now affects the price and market size. Accordingly, as the
resource stock decreases, the efficiency of dirty input also decreases, and its
price increases. In the final state, the ratio of expected profits in the two sectors

becomes:

Mee KncC(Qt)QZ(S_l) (1+ynese)® ™ A2,
Mg Na (1 +ynaSa) 17t A"

(1.12)

where k denotes the time-invariant parameters, Q: is the resource stock at time {,
and the per unit extraction cost for the exhaustible resource is ¢(Q:) and is
decreasing in Q:. Accordingly, innovating in the clean sector will become more
profitable with a substitution relationship between the two inputs as the resource
stock depletes. In other words, decreasing resource stock will increase the
relative cost of dirty input, narrow market size, and encourage innovation in the
clean sector. A substitution elasticity greater than one will reduce the weight of
dirty input in the final good, preserving environmental quality and enabling
positive long-term growth without policy intervention. As a result, increasing
resource prices and extraction costs naturally create an incentive towards clean
technologies, demonstrating the possibility of economic growth that is less
harmful to the environment compared to the baseline model.

1.3.2.1. Optimal Policy

In the case where non-exhaustible resources are used, the optimal regulation
includes a subsidy that corrects monopoly distortions, a carbon tax on dirty input
production, and research subsidy for the clean sector. Here, since the private

extraction cost does not account for the value derived from the limited availability
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of exhaustible resources, the optimal allocation of resources also suggests the
continuous implementation of a resource tax. On the other hand, the case where
price-taking and profit-maximizing firms hold well-defined property rights over
exhaustible resources has also been considered. In this case, the price of
exhaustible resources is determined by the Hotelling rule. Accordingly, under the
assumption that the cost of extraction is fixed and equal to ¢ > 0, The pricing of
exhaustible resources should be established in a manner where the marginal
value of extracting one more unit today equals the discounted value of extracting

an additional unit in the future.

The Hotelling rule implies that the resource price asymptotically increases at the
same rate as the interest rate derived from the consumption Euler. Under these
conditions, if the discount rate and the elasticity of substitution between the two
sectors are sufficiently high, innovation occurs only in the clean sector. Under
laissez-faire, the prevention of environmental disaster is possible. However, if the
discount rate and elasticity of substitution are sufficiently low, avoiding
environmental disaster without intervention is impossible. In other words, when
the discount rate is low enough, the resource price increases more slowly than
the average productivity of the dirty sector, and innovations eventually turn
towards dirty technologies. When the discount rate is sufficiently high, the
resource price increases rapidly enough to allow innovations to turn towards
clean technologies within a limited period, ultimately avoiding disaster with
temporary research subsidies. However, a prerequisite for this is a strong
substitution relationship between the two sectors.

1.4. ALTERNATIVE MODELS AND EXTENSIONS

Following the pioneering study of Acemoglu et al. (2012), a growing body of
literature continues to develop divergent and marginally modified models of the
environmental model of directed technical change. Table 1 presents the reviewed
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literature regarding the extensions of the environmental models of directed
technical change. First, Acemoglu et al. (2012) proposed some modeling
alternatives to the model explained in the previous section. These modeling
alternatives that are briefly explained below are specified as the direct impact of
environmental degradation on productivity, alternative technologies, and

substitution between productivity improvements and green technologies.
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Table 1 Extensions of the Directed Technical Change Models

Year Author(s) Title Modification
2012 Acemoglu D., Aghion “The Environment and Directed  Direct impact
P., Bursztyn L., Technical Change” of
Hemous D. environmental
degradation on
productivity
2012 Acemoglu D., Aghion “The Environment and Directed Alternative
P., Bursztyn L., Technical Change” technologies
Hemous D.
2012 Acemoglu D., Aghion “The Environment and Directed Substitution
P., Bursztyn L., Technical Change” between
Hemous D. productivity
improvements
and green
technologies.
2012 Hemous, D. “Environmental Policy and Trade,
Directed Technical Change in a unilateral
Global Economy: The Dynamic policy
Impact of Unilateral
Environmental Policies.”
2014 Andre FJ., Smulders S.  “Fueling growth when oil peaks: Energy
Directed technological change efficiency
and the limits to efficiency
2016 Acemoglu D., Akcigit Transition to Clean Technology” Energy
U., Hanley D., Kerr W. Technology
2017 Lennox JA., “Directed technical change with Capital
Witajewski-Baltvilks J.  capital-embodied technologies: embodiment,
Implications for climate policy”  Obsolescence
2017 Van den Bijgaart I. “The unilateral implementation Trade,
of a sustainable growth path unilateral
with directed technical change” policy
2017 Witajewski-Baltvilksa J.,  “Induced technological change Energy
Verdolinia E., Tavonia and energy efficiency efficiency

M.

improvements”
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2018

2018

2018

2019

2024

2023

2023

Fried S.

Greaker M., Heggedal

TR., Rosendahl KE.

Haas C., Kempa K.

Durmaz T., Schroyen F.

Casey G.

Kruse-Andersen PK.

Acemoglu D., Aghion
P., Barrage L., Hemous
D.

“Climate Policy and Innovation:
A Quantitative Macroeconomic
Analysis”

“Environmental Policy and the
Direction of Technical Change”

“Directed Technical Change and
Energy Intensity Dynamics:
Structural Change vs. Energy
Efficiency”

“Evaluating Carbon Capture and
Storage in a Climate Model with
Endogenous Technical Change”

Energy Efficiency and Directed
Technical Change: Implications
for Climate Change Mitigation

“Directed technical change,
environmental sustainability, and
population growth”

“Climate Change, Directed
Innovation, and Energy
Transition: The Long-run
Consequences of the Shale Gas
Revolution”

Technology
Spillovers

Innovation
policy

Energy
intensity,
Energy
efficiency

Carbon
capture and
storage

Energy
efficiency

Population
growth

Energy
transition

Direct Impact of Environmental Degradation on Productivity: This approach

suggests that in the absence of any economic intervention, there will be an

environmental disaster in a limited time, or consumption will converge to zero

over time. In this approach, the decline in environmental quality negatively affects

labor productivity in both sectors. In the absence of intervention, the productivity

loss caused by environmental degradation due to the increasing average

productivity of the dirty sector will lead to the convergence of total output and

consumption to zero. Alternatively, the decrease in productivity may not be

sufficient to counterbalance the rising productivity in the dirty sector, resulting in
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an environmental disaster within a limited time. The temporary research subsidies
policy proposed by Acemoglu et al. (2012) in the basic model for the clean sector
will prevent environmental disasters and convergence of consumption with lower

short-term intervention costs in this case.

Alternative Technologies: In this modeling, Acemoglu et al. (2012) practically
have the potential to reduce the environmental damage caused by dirty
technologies through clean innovations. This approach suggests a framework
where the average sectoral efficiencies of dirty and clean inputs correspond to a
task fraction between clean and dirty technologies. Accordingly, clean innovations
both increase the average efficiency of the clean sector and the quantity, reducing
the pollution intensity of the aggregate production process. Therefore, this
approach suggests that there could be a single type of Technical Change that
reduces pollution in the existing production process.

Substitution Between Productivity Improvements and Green Technologies:
Acemoglu et al. (2012) suggest eliminating the distinction between clean and dirty
technologies and instead propose categorizing them as technologies that
increase efficiency and reduce pollution. In this case, research can be directed
towards improving the efficiency of dirty machines or reducing pollution levels.
Without intervention, output may continue to grow indefinitely, leading to an
environmental disaster. However, innovations that reduce pollution can guide
technological development and help avoid disaster. In such a setting, intervention
cannot be temporary, as in Acemoglu et al. (2012) baseline model, and must
occur in the form of pollution reduction instead of productivity increase. This could
potentially constrain long-term growth. Increasing pollution-reducing innovations
on existing technologies here diminishes the relative importance of green

innovation by overshadowing research on clean technologies. The conclusion is
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that there is a complementary relationship between clean technologies and

pollution-reducing innovations rather than a substitution relationship.

Acemoglu et al. (2012) establish the foundation for models of directed technical
change (DTC) by introducing a framework that explores the direct effects of
environmental degradation on productivity, the availability of alternative
technologies, and the substitution dynamics between dirty and clean
technologies. This influential study served as a milestone for the following
research, inspiring the development of diverse modeling approaches. However,
these approaches are often studied in isolation, with limited attention to their
interconnections. In this section, we critically review the various models in the
literature, highlighting their relationships and offering a comprehensive
perspective.

Acemoglu et al. (2012) suggest that temporary subsidies could be sufficient to
prevent environmental disasters. However, this perspective overlooks the
broader insights from open-economy models, such as those proposed by
Hemous (2012) and Van den Bijgaart (2017). These models highlight the
importance of technology spillovers and trade, revealing that temporary
measures may fail to ensure long-term environmental sustainability. Hemous
(2012) integrates the directed technical change framework into an open economy,
examining whether a number of countries can achieve sustainable growth by
implementing unilateral environmental policies. The model includes two countries
(North and South) and two traded goods, one of which is defined as a polluting
good produced using clean and dirty inputs, leading to global externalities.
Additionally, Hemous (2012) introduces an extension that accounts for
technology spillovers across countries. The model's findings indicate that carbon
tax alone does not ensure sustainable growth or environmental quality

preservation. However, temporary clean research subsidies and tariffs
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implemented in one country can lead to sustainable growth with high levels of
environmental quality. These findings hold true even in cases where there are
technology spillovers between countries. Van den Bijgaart (2017), employs a
similar approach and analyzes the effects of unilateral policies on production and
innovation using a two-country (local and foreign) model. The findings show that
when foreign countries increase dirty goods production in response to local
reductions, this also stimulates innovation in the dirty sector of those foreign
countries. This indirect effect of unilateral policies on innovation can have
significant implications for the type of unilateral policies implemented to achieve

sustainable growth.

Andre and Smulders (2014) explore the relationship between energy use,
productivity growth, and resource scarcity. They illustrate how the allocation of
resources to the energy sector can drive technological change, offering valuable
insights into this dynamic. The research deals with the influence of extraction
costs and technological advancements on long-term economic dynamics and
sustainability. The findings suggest that technological change responds to
resource scarcity, with resource allocation to the energy sector adapting
according to its production significance. Additionally, the paper reveals how
energy scarcity shapes the bias of technological change and outlines its
implications for overall innovation (Andre and Smulders 2014). This model
parallels the work of Witajewski-Baltvilksa et al. (2017), which explores how
productivity improvements in energy-intensive sectors can reduce energy
demand. Unlike the baseline model of Acemoglu et al. (2012), this study
incorporates energy-intensive and non-energy-intensive inputs into the
production process instead of clean and dirty inputs. The theoretical findings of
the model indicate that if there is a complementary relationship between the two
types of inputs, innovations in the energy-intensive sector have a reducing effect
on energy demand. The model explains this result with the market size effect,
similar to the baseline model of Acemoglu et al. (2012). The level of these



29

innovation efforts in the long term (in balanced growth path) depends on the

growth rate of energy costs.

Both Andre and Smulders (2014) and Witajewski-Baltvilksa et al. (2017)
emphasize the relationship between energy efficiency and technological change.
However, Haas and Kempa (2018) offer an innovative contribution by
distinguishing between the structural and efficiency effects of dynamics in energy
intensity. Haas and Kempa (2018) marginally modify the environmental model of
directed technical change by considering heterogeneous energy intensity
dynamics in the presence of exhaustible resources. The paper decomposes
aggregate energy intensity into structural effect and efficiency effect. While the
structural effect defines structural adjustments in the sectors with low energy
intensities, the efficiency effect defines the improvements in energy efficiency
within sectors. The paper explains energy price growth and sectoral productivity
as determinants of the relative importance of these two effects and drivers of the
directed technical change. Accordingly, while the structural effect dominates the
energy intensity dynamics if research is directed to the labor-intensive sector, the
efficiency effect dominates when research is directed to the energy-intensive
sector. The paper concludes that energy price shocks can redistribute innovation

activities across sectors.

Durmaz and Schroyen (2019) examine the role of carbon capture and storage
(CCS) technologies in resource allocation, emphasizing the critical need for a
balance between clean and dirty technologies. The paper investigates whether
carbon capture and storage and research and development efforts in this sector
contribute to the socially efficient solution to the climate change problem. Durmaz
and Schroyen (2019) address the Pareto-efficient policy allocation of resources
across dirty, clean and carbon capture and storage sectors. The main findings

highlight a critical level for the marginal cost of carbon capture and storage, at
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which marginal cost is above the critical level innovation first allocated in dirty and
then clean energy. However, when the marginal cost of carbon capture and
storage is below this critical level, innovations are allocated both in dirty energy
and carbon capture and storage technology.

Fried (2018) modifies the Directed Technical Change framework, which assumes
that innovation occurs in multiple types of energy by considering the assumption
of technology spillovers between sectors, as the realization of innovation in only
one energy type is inconsistent with real data. The final product is produced by
the model using three inputs: fossil, green, and non-energy. Accordingly, limited
innovation is allocated among fossil, green, and non-energy intermediate inputs.
The study also externally accounts for the price of oil imports to model oil shocks.
Fried (2018) employs a constant carbon tax implication to study the dynamic
effects of climate policy with endogenous innovation. According to the findings,
after 20 years, the tax causes the level of green innovation to be 50% higher than
without the tax and fossil innovation to be 60% lower. In the model with the tax,
the relative price of green energy to fossil energy is 7% lower after 20 years
compared to the price in the without tax model, and it is 17% lower in the new
balanced growth path.

Kruse-Andersen (2023) examines the impact of population growth on pollution,
suggesting that more people could mean either more emissions or greater
research capacity. Population growth can have two potentially opposing effects
on pollution emissions. Accordingly, more people may imply more production and
thus more emissions, or more people may imply an increase in research capacity,
which depending on the direction of research, can reduce the emission intensity
of production. Kruse-Andersen (2023) questions how to achieve a specific
climate target in the presence of these two effects. Under the assumption of

simultaneous research in both dirty and clean technologies, both analytical and
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numerical results have shown that population growth remains a burden on the
environment, even if all innovation efforts are directed towards clean
technologies. Kruse-Andersen (2023) provides a more detailed analysis of the
impact of population dynamics on environmental sustainability compared to the
works of Acemoglu et al. (2012) and Greaker et al. (2018) on innovation direction.
However, further quantitative analysis may be needed to better predict the long-
term effects of population growth on sustainability.

Acemoglu et al. (2023) assess the short- and long-term effects of the shale gas
revolution, highlighting the potential of fossil fuels to slow innovation. This study
addresses the indirect effects of fossil fuel dependence on clean energy
innovation, emphasizing the need for a combined approach of carbon taxes and
clean incentives. However, this suggestion may overlook forces such as trade
and technology diffusion, which other literature discusses.

The literature on environmentally directed technical change (DTC) offers various
modeling approaches for achieving sustainable growth and environmental
sustainability goals. However, the findings from these studies need to be
integrated into a more consistent and actionable framework for policy design. The
reviewed models address key issues such as energy efficiency, carbon capture,
technology spillover, and population dynamics. However, these studies are often
analyzed in isolation. For instance, Andre and Smulders (2014)'s work on energy
scarcity and efficiency could enhance a broader energy policy framework when
considered alongside Haas and Kempa (2018)'s research on how energy price
shocks affect innovation. Similarly, Acemoglu et al. (2023)'s paper on the indirect
effects of the shale gas revolution could be integrated with Fried (2018)'s
exploration of the connection between carbon taxes and innovation spillovers.
Despite these insights, the findings underscore the complexity of policy design.

For example, while temporary subsidies (Acemoglu et al., 2012) may be effective
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in the short term, they could fail to be sustainable in the long term if international
cooperation and technology diffusion are not taken into account (Hemous, 2012;
Van den Bijgaart, 2017). The effectiveness of carbon capture technologies is
constrained by economic feasibility and cost-effectiveness (Durmaz and
Schroyen, 2019), pointing to the need for a combined approach to carbon pricing
and technological incentives. Socioeconomic factors like population growth also
play a crucial role in both directing innovation and ensuring sustainable resource

management (Kruse-Andersen, 2023).

Overall, this section highlights that achieving environmental sustainability
requires an integrated approach to technological innovation and energy policies.
Future research can develop more comprehensive policy recommendations by

linking models more effectively and combining different approaches.

The models reviewed in this literature survey address topics such as directing
innovation, energy efficiency, carbon capture technologies, and capital dynamics
within the framework of environmentally directed technical change. However,
several key limitations are apparent. Specifically, the mechanisms driving the
speed and effectiveness of technology spillovers, as well as the long-term
economic and environmental impacts of fossil energy costs (e.g., environmental
and social costs) have not been thoroughly examined. Future studies should
focus on bridging these gaps by developing strategies to accelerate technology
spillovers and creating policy frameworks that endogenize exogenous costs.
Such approaches could offer more comprehensive and effective solutions for

achieving environmental sustainability.
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1.5. EMPIRICAL LITERATURE

After analyzing the foundation in 1998 and 2002 within the framework of directed
technical change, along with environmental policies in 2012, the dynamics of
environmental policy and climate change mitigation continue to be examined
through theoretical and empirical applications. In this context, Acemoglu et al.
(2012) initially analyzed the environmental model of directed technical change
with a basic application. Subsequently, these analyses have continued with
different sector preferences and specifications. This section discusses the
findings of the numeric and econometric literature on directed technical change

and the environment.

Acemoglu et al. (2012) presented the findings of a quantitative study for the
theoretical model in the context of a non-exhaustible resource setup. In the
analysis, they tested the effects of different discount rate values and the elasticity
of substitution on optimal environmental policy and the transition to clean
technology. The analysis considered a period of 5 years, and it was assumed that
the carbon tax was zero before the implementation of the optimal policy. Based
on the substitutability assumption between clean and dirty energy types, the
elasticity of substitution was tested for two different values, 3 and 10. These two
values, were chosen to emphasize the significant role of the elasticity of
substitution. Similarly, two different values were also anticipated for the discount
rate, determined as 0.001 per annum, suggested by Stern, and 0.015 per annum,
suggested by Nordhaus. Accordingly, when the elasticity of substitution is 10 and
3, and the discount rate is 0.001, an optimal policy emerges that requires all
innovation efforts to be urgently directed towards clean technologies. With the
elasticity of substitution 3 and a discount rate of 0.015, the transition to clean
technologies takes place approximately within 50 years. When the elasticity of
substitution is 10, it was observed that research subsidies are implemented at a
lower level and in a shorter period. With the elasticity of substitution 10, the
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implementation of a carbon tax in a small amount and for a short period is
considered sufficient for the transition to clean technology. However, when the
elasticity of substitution is 3, and the discount rate is 0.015, the transition to clean
technology and production is delayed, necessitating the application of a carbon
tax at a higher level and for a longer period (over 185 years). On the other hand,
when the elasticity of substitution is 10, the temperature increase initially occurs
at a small level, then decreases, reaching pre-industrial levels after 90 years.
With the elasticity of substitution 3 and a discount rate of 0.015, the temperature
increases over 300 years, almost reaching catastrophic levels. The findings of
Acemoglu et al. (2012) essentially demonstrated that if the substitution
relationship between dirty and clean technologies is sufficiently high, the discount
rates of Stern and Nordhaus have a limited impact on the optimal environmental
policy. Besides, using only a carbon tax as a policy intervention requires a higher
tax level. Lanzi and Wing (2011) empirically examine the impact of energy prices
on innovation in the fossil fuel and renewable energy sectors within a two-sector
framework, offering a contrast to the theoretical model of Acemoglu et al. (2012).
By using real data from OECD countries, their study fills an empirical gap in the
literature, measuring the elasticity value and determining how changes in energy
prices influence innovation levels between the two sectors. This framework
establishes and estimates the relationship between relative energy prices and
relative innovation levels between the two sectors. The findings, based on data
from 23 OECD countries during the period 1978-2006, indicate that changes in
relative energy prices lead to changes in relative innovation levels between fossil
and renewable technologies. Additionally, the elasticity of substitution between
fossil and renewable sectors is determined to be 1.64. The results suggest an
increase in innovation in renewable technologies, while in fossil technologies,
innovation initially rises but starts decreasing after reaching a threshold level of

relative prices.



35

Unlike the previous studies, Fried (2018) compares the effects of both
endogenous and exogenous innovations on reducing carbon emissions and
optimizes the carbon tax level based on these dynamics. Moreover, by
considering interactions such as technology spillovers between the green and
fossil energy sectors, the paper addresses a gap in the literature by analyzing
how these interactions influence the carbon tax. The paper analyzes energy price
increases triggered by historical oil shocks, identifying oil shocks as a proxy for
climate policy-induced energy price increases, with the early 1970s oil shocks
considered historical examples. The analysis sets the elasticity of substitution at
1.5 between green energy, fossil energy, and oil imports. Fried (2018) follows a
two-stage approach. First, innovations are treated endogenously, while in the
second stage, they are included in the exogenous model. A fixed carbon tax is
included between 2015 and 2019. The level of the carbon tax is determined to
reduce carbon emissions by 30% relative to the balanced growth value within 20
years (2030-2034). The level of the tax depends on whether innovations are
determined as endogenous or exogenous. In the endogenous innovation model,
machines, researchers, and workers are part of a dynamic process influenced by
the carbon tax. In the exogenous innovation model, the number of researchers
remains constant at the baseline balanced growth value while machines and
workers respond to the tax. The findings indicate that the carbon tax has a
significant impact on reducing emissions in the endogenous model, and the level
of the tax required to achieve a 30% reduction in emissions within 20 years would
decrease by 19.2%. Fried (2018) also contributes to the relevant literature by
accounting for technology spillovers between the green and fossil sectors. The
paper assumes that the spillover rate can be between 0.3 and 0.9. The results
show that strong spillover rates decrease the changes in relative technologies,
thus reducing the impact of endogenous innovations on the size of the carbon
tax. However, even at the highest spillover rate of 0.9, endogenous innovations
are found to reduce the size of the carbon tax by over 15%.
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Haas and Kempa (2018) focus on the effects of energy prices and technological
changes on energy intensity, emphasizing sectoral structural changes and within-
sector energy efficiency improvements. This study analyzes cross-country energy
intensity dynamics by addressing the differences between energy-intensive and
labor-intensive sectors. Haas and Kempa (2018) aggregate 32 sectors in 26
Organization for Economic Co-operation and Development (OECD) countries
into energy-intensive and labor-intensive sectors, covering the period between
1995 and 2007. The model is calibrated based on 1995 data, and energy intensity
and determinant changes are simulated until 2007. Haas and Kempa (2018)
calculate the average energy intensity, categorizing sectors with intensity above
the average as energy-intensive and those below as labor-intensive. The
elasticity of substitution between the two sectors is set at 2. The findings indicate
that the larger the increase in energy prices, the more pronounced the decrease
in energy intensity. The overall decrease in energy intensity is more significant in
countries where technical change is directed towards labor-intensive sectors. In
11 out of the 26 countries, innovation efforts are oriented towards energy-
intensive sectors, and therefore, the dynamics of energy intensity are dominated
by the efficiency effect.

Hou, Roseta-Palma, and Ramalho (2020) take a different approach from Haas
and Kempa by analyzing the factor bias of technological change across countries.
Their study shows that technological change typically shifts towards energy use,
increasing energy consumption rather than labor. This highlights how
technological change affects production factors, focusing more on the broader
impact than on direct sectoral dynamics aimed at reducing energy intensity. They
conduct an analysis of directed technical change in production activities for 16
developed and developing countries between 1991 and 2014. In the study, a

stochastic frontier model was estimated using three inputs: capital, labor, and



37

energy within the production function. The results obtained by calculating the
factor bias index show that technological change is mostly directed towards
energy. Countries exhibit different bias orders regarding technological change,
but overall, technological change tends to be directed towards energy rather than
labor.

Hou and Song (2022) focus on optimizing the energy structure, particularly within
the context of China. Their study examines the transition from fossil fuels to
electricity and from thermal energy to clean energy through the lens of
technological change. It explores how technological advancements impact the
transformation of the energy structure. The study also highlights that
technological change could potentially reverse the desired energy transition,
underscoring the need for policies like carbon taxes to counterbalance these
effects. Hou and Song (2022) explore the role of directed technical change in
improving the energy structure in China. The study suggests that optimizing the
energy structure would support the decarbonization process. In this analysis,
using a translog production function, three different inputs are considered:
thermal power, clean energy, and traditional fossil energy. The study investigates
the path of improving the energy structure, specifically substituting fossil energy
with electricity and substituting thermal power with clean energy, and then
examines whether directed technical change optimizes the energy structure in
China. Findings suggest a substitution relationship between thermal power and
clean energy during the internal transition process. In the external transition
process, technical change is directed towards fossil energy instead of thermal
power and clean energy, indicating a substitution relationship among these three
inputs. This implies that the effect of technical change operates contrary to the
transition of the energy structure from fossil energy to electricity. Therefore, the
study suggests that the Chinese government should implement measures such
as carbon taxes to eliminate the impact of directed technical change and optimize
the energy structure.
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The main difference between these three studies lies in their focus and analytical
approach to reducing energy intensity: Haas and Kempa concentrate on sectoral
structure and efficiency improvements, Hou and Roseta-Palma analyze
technological changes in production factors, while Hou and Song focus on
policies aimed at transforming the energy structure.

Other approaches explore how directed technological change can contribute to
environmental sustainability from various perspectives beyond the energy sector.
As a novel approach, Yang et al. (2020) contribute to the directed technical
change literature with a distinct application. Their study explores the impact of a
directed technical change associated with big data on environmental quality. The
findings indicate that as the relative benefits of R&D in clean technology increase,
the utilization of big data further enhances environmental quality. Moreover, while
the application of big data may diminish incentives for R&D in clean technology
to avert environmental disasters, its influence on environmental taxes varies
depending on the advancement of clean technology levels. Zhou et al. (2020)
investigate the impact of industrial structural rationalization, upgrading, and eco-
industrialization processes on energy and environmentally focused technological
progress. During the process of industrial structural change, inter-sectoral
technical efficiency improvements cause the flow of production factors from low-
efficiency sectors to high-efficiency sectors, leading to changes in the economy's
composition. To achieve this, a spatial autoregression model is constructed using
panel data covering the years 2000-2016 for the 30 provinces of China. The
empirical results demonstrate that directed technical change is based on
multidimensional industrial structural changes. Particularly at the national level,
industrial structural rationalization can incentivize all forms of directed technical

change.
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Recent research on environmental policies and climate change has been
enriched through both theoretical and empirical analyses within the framework of
directed technical change models. These studies cover various topics, including
the transition to clean technologies, the interplay between energy prices and
technological change, sectoral differences, the dynamics of energy intensity, and
the environmental impacts of innovations. Starting with Acemoglu et al.'s (2012)
foundational model, studies like those by Fried (2018) and Lanzi and Wing (2011)
have examined the roles of carbon taxes and innovations. Research by Haas and
Kempa (2018) and Hou et al. (2020) has focused on changes in energy intensity
and optimizing energy structures, while Yang et al. (2020) have highlighted the
environmental impacts of big data usage. Overall, this body of literature provides
valuable insights for policymakers by assessing the multifaceted effects of
directed technical change on energy transition and sustainability.

To conclude, the environmental model of directed technical change literature,
generally links the model to environmental policies based on energy type, price,
and efficiency measures. However, we notice that the relevant literature has not
adequately explored technology spillovers between clean and dirty technologies
or their effects on relative productivity levels and the costs of environmental
policies. Therefore, the next section takes an in-depth examination of the

relationship between technology spillovers and directed technical change.

1.6. CROSS-INDUSTRY TECHNOLOGY SPILLOVERS

Directed technical change models effectively cover topics like the direction of
innovations, energy efficiency, carbon capture technologies, and capital
dynamics. However, some key areas remain underexplored, particularly the
effects of technology spillovers on sustainability.
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Technology spillovers can play a significant role in the transition to clean energy
and the fight against climate change in fossil and clean energy production and
consumption. Looking at technology spillovers on a knowledge basis, knowledge
characterized by the public good property can spread to other individuals, firms,
and sectors to some extent, known as knowledge spillovers. Earlier studies
addressed technology spillovers and their implications for economic growth
(Arrow 1972; Caballero and Jaffe 1993; Jaffe 1986; Romer 1986; Romer 1990).
Then, some of the papers investigate the theoretical and empirical foundations of
technology spillovers, exploring various aspects such as trade, international
investment, competition and productivity growth within the framework of
endogenous technological change (Acemoglu 2002; Acemoglu and Akcigit 2012;
Aghion and Howitt 1990; Keller 2004; Keller and Yeaple 2009). A large body of
literature examines intra-industry and inter-industry technology spillovers from
various perspectives and analyzes the dynamics determining them. However,
given that this review focuses on directed technical change from an
environmental perspective, we limit our coverage in this section to technology

spillovers emerging between clean and dirty technologies.

Often, when inventing and developing clean technologies, the knowledge
externalities emerging from dirty sectors and technologies are utilized to bring
about clean technologies instead of starting from scratch. For instance, as
highlighted by Donald (2023), during the development of the first Tesla prototype,
engineers redesigned the internal combustion engine by filling it with batteries
rather than starting from scratch. As Fried (2018) cited from Perlin (2000), another
example of spillovers between clean and dirty technologies is the mass
commercialization of solar cells, driven by oil companies demanding energy to
power lights on their offshore rigs. On the other hand, clean technologies also
potentially provide a form that can facilitate the spread of innovations to different
technologies. Dechezlepretre et al. (2013) have demonstrated that innovations
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emerging in clean energy exhibit a much higher spillover effect and generality

compared to dirty energy.

Technology spillovers are often overlooked in research related to environmental
policies for transitioning to a low-carbon economy. However, technology
spillovers that may arise in clean and dirty energy technologies can significantly
combat climate change. Considering spillovers between clean and dirty energy
technologies within the directed technical change framework mostly does not
draw attention in the existing literature. A rare example of this framework by Fried
(2018) considers within and cross-sector innovation spillovers in green and fossil
energy types. Fried (2018) differs from Acemoglu et al. (2012) by suggesting that
innovations can occur not only within one type of technology or industry but in
both sectors involving clean and dirty production. This is made possible through
cross-sector technology spillovers. In a setup where the spillover rate ranges
between 0.3 and 0.9, Fried (2018) shows that with a strong spillover rate, the
differences in relative technology levels between clean and dirty sectors are
expected to decrease over time.

As another example, Hemous (2012) offers an extension that considers the
possibility of cross-country technology spillovers in a model economy where
unilateral environmental policies are implemented in two countries, North and
South. The theoretical and numerical findings indicate that in the presence of
knowledge spillovers or international innovative firms, a transition to clean
innovation in the South can be achieved with policies in the North, thereby
preventing a disaster without the South needing to specialize in the non-polluting
sector.
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Studies examining the spillover of different types of energy technologies are often
analyzed through data related to patents (citations) developed on these
technologies rather than relying on numerical analyses. Because the more
citations a patent receives, the more the technology is diffused. From this
perspective, Dechezlepretre et al. (2013) employ patent citation data to show the
relative intensity of knowledge spillovers in clean and dirty technologies
considering energy production, automobiles, fuel and lighting. The paper strongly
implies the relative advantage of clean patents in all four technologies and
explains this superiority by the two properties of clean technologies, namely,
generalizability and being a new area for innovation compared to dirty
technologies. Similarly, in the analysis conducted by Ocampo-Corrales et al.
(2020) based on patent data for European regions, it has been found that clean
energy technologies have a greater scientific foundation compared to other
technologies. Additionally, the study highlights that they significantly benefit from
scientific and technological knowledge flows from distant places. The research
emphasizes that this case is specific to clean technologies and distinguishes
them from other cutting-edge technologies and technologies related to energy

generation from traditional energy sectors.

In the analysis conducted by Jee and Srivastav (2022) using patent citation data,
it is suggested that the majority of clean technologies do not receive direct
knowledge flow from dirty technologies but are indirectly connected. It has been
proposed that, although to a lesser extent, areas such as geothermal energy,
clean metals, and carbon capture and storage are more susceptible to
technological spillovers than dirty technologies. Fernandez et al. (2022)
conducted a regression analysis to examine the determining factors of patented
knowledge diffusion between renewable energy technologies and other energy
patents (such as fossil and nuclear patents) carried out by firms. Firstly, the
findings indicate that patents making more references to the literature and
previous patents achieve greater diffusion. On the other hand, joint patents with
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other firms or universities have a negligible impact on renewable energy
technology. Another notable finding of the study is that the collaboration between
firms and universities in patents related to other forms of energy hinders the

diffusion of innovations.

The overall literature suggests that technology spillovers between clean and dirty
technologies support the progress of clean technologies and that clean
technologies benefit more from spillovers compared to dirty ones.

1.7. CHAPTER SUMMARY

In this paper, we review the growing literature on the environment and directed
technical change, placing particular emphasis on cross-sector technology
spillovers. The foundational theory of directed technical change asserts that
technological advancements are not neutral and are likely to be directed toward
specific production factors due to the effects of price and market size. The
environmental implications of this theory provide practical insights into
addressing challenges such as climate change.

Acemoglu et al. (2012) extend the earlier directed technical change framework
by incorporating environmental policy and innovations, presenting several
noteworthy implications. These include (i) the possibility of achieving sustainable
growth through the implementation of temporary policies (a combination of a
carbon tax and research subsidy) with a sufficient substitution rate between clean
and dirty technologies, (ii) the facilitation of a shift to clean innovation when using
exhaustible resources in dirty input production, and (iii) in contrast to models with
exogenous technology, a more optimistic scenario is portrayed, but with a call for

immediate and decisive action.
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In this review, we ask two pivotal questions concerning the environmental model
of directed technical change. First, does empirical literature align with the
theoretical conclusions of the model? Second, how do cross-sector technology
spillovers, which are not considered in the baseline environmental model of
directed technical change, impact the direction of innovations during the transition
to a low-carbon economy? The overall sense from the empirical literature
suggests that directed innovations in clean technologies respond to
environmental policy and generally link the directed technical change model to
environmental policy based on energy type, energy price, and energy efficiency
measures. Relevant literature on technology spillovers emphasizes the crucial
role of technology spillovers in advancing clean energy and combating climate
change. It discusses instances where knowledge from dirty sectors contributes
to clean technology development and vice versa. Overall, technology spillovers
between clean and dirty technologies support the progress of clean technologies
and those clean technologies benefit more from spillovers compared to dirty
ones. However, we observe that the impact of technology spillovers on the
productivity levels of clean and dirty technologies, and their sensitivity to changes
in fossil energy costs, have not been sufficiently addressed in the existing
literature on directed technical change.

There are several points that need to be considered by future research. For
instance, there is a need for further quantitative and empirical analyses to develop
an understanding of the environmental effects that may arise from integrating
cross-sector and cross-country technology spillovers with directed technical
change. Furthermore, since there is no consensus on whether there is a
substitution or complementary relationship between clean and dirty technologies,

obtaining more empirical evidence on this matter could be beneficial.
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CHAPTER 2

GREENING THE ECONOMY WITH FOSSIL ENERGY COSTS AND
INNOVATION SPILLOVERS: INSIGHTS FROM A DIRECTED

TECHNICAL CHANGE MODEL

2.1. INTRODUCTION

The costs associated with fossil energy usage hold an essential role in economic
activities, simultaneously emerging as one of the paramount issues in recent
times due to their pivotal connection with climate change. The dependence on
fossil energy resources deepens the devastating effects of climate change, and
thus, preventing global warming has become quite a challenging issue. Despite
numerous joint actions and efforts, the share of renewable energy in the total final
energy consumption remains at significantly low levels (19.1% in 2020) (UNSD,
2023). The dimensions of climate change and the predictions about the near
future have started to be perceived as catastrophic beyond a serious warning.

Different policy proposals have been developed for many years to prevent climate
change. In particular, the environmental policy and climate change literature
widely discusses policy tools such as taxing greenhouse gas emissions under the
carbon tax, switching to renewable and environmentally friendly energy sources,
and the ETS. In recent years, economic research has drawn attention to that,
arguing technological change can contribute to the fight against climate change
in terms of environmental policy. These studies predominantly employ general



46

equilibrium models, grounded in the framework of directed technological change
within economies that include multiple intermediate inputs. This approach is
based on endogenous growth theory, particularly the concept of induced technical
change. In the seminal papers of Romer (1986) and Lucas (1988), knowledge
accumulation is identified as a key driver of economic growth, with increasing
returns to scale in production processes serving as a core assumption of
endogenous growth theory. Unlike Solow models with exogenous technological
change, this framework defines technological change as endogenous, driven by
agents' efforts to accumulate knowledge and maximize profits (Romer, 1986;
Lucas, 1988). Additionally, the concept of induced technical change suggests that
technological progress responds to economic conditions and market signals.
Based on this foundation, directed technological change allows us to examine
which factors will allocate scientific research between industries producing
intermediate inputs with different characteristics in the modelling where
innovation has an endogenous dynamic. Therefore, such models help us

understand the role of innovation in the transition to a low-carbon economy.

Modelling directed technology toward climate change dating back to pioneering
study of Acemoglu et al. (2012) titled “The Environment and Directed Technical
Change”. Based on the seminal papers on directed technical change in 1998 and
2002, Acemoglu et al. (2012) presented the environmental model of directed
technological change. The model considers endogenous innovation and
examines how innovations can be distributed among intermediate industries with
different characteristics (Acemoglu, 1998; Acemoglu, 2002, Acemoglu et al.,
2012). The paper focuses on a general equilibrium model with intermediate
inputs: dirty and clean. While dirty input production causes a negative
environmental externality by using dirty machines, clean input production has no
negative effect. The unique final good is produced by combining these two inputs.
Acemoglu et al. (2012) suggest that using carbon tax and research subsidies can
be optimal environmental response tools to drive technological development and
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avoid environmental disasters. Moreover, when clean technologies are
sufficiently developed, there will be no need for further intervention as research
will be directed toward this intermediate industry. The study seeks to answer how
innovations directed at different inputs will respond to environmental policies.
Findings show that urgent definitive measures such as Nordhaus (2002) and
Stern (2009) are necessary to avoid environmental catastrophe because of the
advantage of the market size effect and initial productivity in the dirty technologies
(Nordhaus, 2010; Stern, 2009).

An extension of the environmental model of directed technical change by Haas
and Kempa (2018) explores heterogeneous energy intensity dynamics. They
consider energy-intensive and labor-intensive intermediate inputs instead of dirty
and clean ones (Haas and Kempa, 2018). Acemoglu et al. (2012) model the
energy price as a function of the resource stock since they analyze how the
depletion of an exhaustible resource might induce a redirection of technical
change towards a clean input production due to continuously increasing prices.
Haas and Kempa (2016) use an exogenous price for energy and endogenous
energy use, as their focus is the analysis of energy intensity dynamics in
alternative (historical) scenarios with different energy price growth rates. Then,
they analytically decompose energy intensity into a sector and an efficiency
effect. The relative importance of these effects is determined by energy price
growth and relative sector productivity, which drive the direction of research.

Considering both endogenous innovation and following the seminal paper of
Acemoglu et al. (2012), various modelling approaches have been employed in
the literature. Previously, Gerlagh (2008) demonstrates that induced
technological change resulted in a shift from knowledge accumulation in energy
production to energy savings. Acemoglu et al. (2016) revisit the approach used

in their earlier research, applying it to firm-level data in the US energy sector.
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While they emphasize the theoretical foundation of combining carbon taxes with
research subsidies, their findings suggest that the optimal policy relies more
heavily on research subsidies. Fried (2018) constructed a general equilibrium
model incorporating endogenous innovation in fossil, green, and non-energy
inputs. By considering cross-sector technology spillovers and historical oil shock
data, the author illustrates that a carbon tax stimulates innovation in green
technologies. Durmaz and Schroyen (2020) expand the environmental model of
directed technical change by introducing a third intermediate sector, Carbon
Capture and Storage. The study addresses the Pareto-efficient policy allocation
of resources and suggests that, based on the estimates of the marginal cost of
carbon capture and storage, the renewable energy regime dominates the fossil
energy regime. Another extension of the environmental model of directed
technical change, developed by Pesenti (2022), introduces a third intermediate
good responsible for adaptation. The author investigates the existence of
innovation in all three input technologies, but the model does not yield an interior
balanced growth path where innovation occurs in all three technologies.

In this paper, we aim to examine how (relative) past productivity and fossil energy
costs interact with allocating research across dirty and clean intermediate
industries in the presence of cross-industry technological spillovers. Moreover,
we question whether fossil energy costs could shift innovation efforts by limiting
the relative past productivity. Our theoretical approach is in the spirit of Acemoglu
et al. (2012) and Haas and Kempa (2016), but we contribute to the directed
technical change literature differently. Building on Acemoglu et al. (2012), the
model features a production function with two inputs: a clean input, which relies
on renewable resources and causes no environmental pollution, and a dirty input,
which uses fossil fuels and generates pollution. However, following Haas and
Kempa (2016), this study uses exogenous energy price and endogenous energy
use since we focus on the effect of relative productivity levels and technology
spillovers on the direction of technical change in energy technologies. Our model
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features clean and dirty input production, with fossil energy use in the dirty

intermediate good production.

The common feature of the models presented by Acemoglu et al. (2012) and
Haas and Kempa (2018) is the oversight of technological spillovers between
intermediate industries, assuming that technological spillovers are equal to zero.
However, as highlighted by Fried (2018), empirical findings, especially those
derived from the US, indicate that clean and dirty innovations have co-occurred
positively since 1970. Indeed, Fried's (2018) simulated model demonstrates that
a stronger cross-sector spillover rate reduces the productivity gap between clean
and dirty technologies. Therefore, following Fried (2018), this study considers the
potential existence of technological spillovers among intermediate industries
producing clean and dirty inputs. Through technological spillovers, innovation
emerging in one input technology can enhance the productivity level of another.

The rest of the paper is organized as follows: Section 2.2 defines the model
economy. In this section, we define the environment, preferences, technologies,
market structures, decision problems and market clearing conditions. Section 2.3
characterizes the decentralized equilibrium and presents the main results of the
model. Section 2.4 concludes.

2.2. MODEL ECONOMY

This section builds a general equilibrium model with endogenous technological
change. The following subsections introduce the model environment, production
technologies and define the market structures. Then we write the decision

problems and market clearing conditions.



50

2.2.1. Environment

We consider an infinite-horizon discrete time economy denoted by t € {0,1, ... }.

2.2.1.1. Demographic Structure

The model economy is inhabited by a continuum of households, including
workers, scientists, final good producer, intermediate input producers and
machine producers. There is a fixed mass of workers (L > 0) employed in the
intermediate input production and a fixed mass of scientists (S > 0) hired by
machine producers. Technological change emerges through the productivity-
enhancing innovations created by scientists who decide in which intermediate
industry they will conduct research.?

2.2.1.2. Endowments

Workers

Workers supply labor to the intermediate input industries. Intermediate industries
employ workers to operate their clean and dirty input production. Workers in this
context are assumed to be homogeneous and mobile across industries, ensuring

competitive wages.
Scientists

Scientists are responsible for innovation, focusing on enhancing the productivity
of industry-specific machines. The allocation of scientists between the clean and

8 We use “industry” term instead of formerly used “sector”. Intermediate input produced using
machines powered by clean energy is produced in the clean industry, while one relying on fossil
energy is produced in the dirty industry.
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dirty industries is endogenous and influenced by factors such as relative wages,
productivity levels, and spillover effects. The total mass of scientists can move
freely between industries.

Energy

The model includes two types of energy resources, each associated with a
specific intermediate input industry:

Fossil Energy

Fossil energy resources are used explicitly in the production of the dirty
intermediate input. This resource is treated a costly input, with their utilization
contributing to negative environmental externality. The cost of fossil energy is
exogenous and plays a role in determining the direction of innovation and the

relative productivity of industries.
Renewable Energy

Renewable resources, such as solar and wind, are used in the production of the
clean intermediate input. These resources are freely available and do not incur
any explicit cost. Unlike fossil energy, renewable resources are characterized by
their environmental neutrality, making them a critical component of the clean

industry’s production process.

2.2.2. Preferences

A representative household maximizes utility by consuming the final good; the

utility function is:

C) = G 2.1
U = =0 @1
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where C; is the household’s consumption at time f, and 1/0 denotes the inter-

temporal elasticity of substitution. The budget constraint is:
1
Ce = WiLay +WiLee + Wi Sg +wiSe, + f (Taie + Teie)di (2.2)
0

where w! denotes the wages of workers, and, w$ denotes the wages of scientists
in dirty and clean intermediate input industries, while (my;; + 1.;;) represents the
total profits of machine producers in both intermediate input industries. The
representative household does not save, so it consumes all its income and earns

from the wages of workers and scientists and the profits of machine producers.

2.2.3. Technologies

Our model is a modified version of the environmental model of directed technical
change proposed by Acemoglu et al. (2012). But we incorporate numerous
features from Acemoglu et al. (2012), Haas and Kempa (2018), and Fried (2018)
during the modelling process. However, the most distinctive characteristics that
make this paper unique involve investigating how productivity-enhancing
research will be distributed across intermediate industries when considering
endogenously determined energy usage, an exogenous fossil energy cost, and
the possibility of technology spillovers between the two intermediate input
technologies. Figure 1 displays the nested tree structure for the production side
of the economy.
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Figure 1 Nested Production Structure
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2.2.3.1. Final Good Production

The final good Y, is produced competitively using dirty, Y; and clean, Y,

intermediate inputs. The production of dirty input, derived from fossil energy

resources, leads to negative externalities. In contrast, clean input sourced from

renewable resources is characterized by the absence of adverse environmental

effects. According to the CES production function:

_ _ /-1
v, = (Y pys )T (2.3)
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where ¢ is the elasticity of substitution between dirty and clean inputs.
Accordingly, e > 1 when the two inputs are (gross) substitutes, € <1 means
two inputs are (gross) complements and € = 1 refers the Cobb-Douglas case.
Throughout the paper, we assume that the two inputs are (gross) substitutes
(e>1).

2.2.3.2. Intermediate Input Production

The two intermediate industries under consideration are the dirty, which utilizes
fossil energy resources and produces environmentally harmful input with high
emissions, and the clean, which represents the industry producing inputs using

renewable energy sources with negligible emissions.

The two intermediate inputs, Y, and Y; which are indexed by j € (¢,d) are
produced competitively and purchased by a final good producer at market prices.

Each intermediate production function includes labor, L;,, and a continuum of
industry-specific machines, x;;, where i indicates industry-specific machine type.

The intermediate production functions are as follows:

1

Yoo = L%;af A x e di (2.4)
0
1
Yoo = E 2L5" f A xS di (2.5)
0

where a = a; + oy, and o, oy, a; € (0,1), 4j; is the quality of machine of type i at
time t, and x;;; is the quantity of this machine. A profit-maximizing intermediate

input producer chooses labor and machines by taking prices as given. In this
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production technology, dirty input uses fossil energy resource, E;;. However, we
assume that clean input does not include a clean energy resource in production
explicitly since renewable resources such as solar and wind are freely available

for human use.®
2.2.3.3. Machines

Each intermediate industry has a uniform group of machine producers, each
manufacturing specific machines at a constant cost of 1. and y, unit of the final
good in clean and dirty industries, respectively. In other words, supplying one unit
of clean type of machine costs iy, units of the final good and dirty type of
machines costs Y, units of the final good. These machines are subsequently sold

to producers of intermediate goods.

In every period, machine producers enlist the services of scientists to enhance
the productivity of machines within their industry, reflected as A;;; growth through
innovation. This endogenous innovation leads to progressive technology
enhancement, primarily focusing on the technology infused within the machines
employed for intermediate input production. We assume that machine producers

within an industry act symmetrically.

® An example is photovoltaic solar panels, which directly convert sunlight into electricity. Recent
research on solar energy, has introduced new solutions for achieving high temperatures above
1000°C using solar power. It is emphasized that semi-transparent materials (e.g., quartz)
effectively capture infrared (IR) radiation by absorbing solar radiation. Consequently, higher
temperatures can be achieved inside the material than on its surface (Thermal trapping effect).
This type of technology is considered to make decarbonization possible in industrial processes
requiring high temperatures, such as cement production and metallurgical extraction (Casati et
al., 2024).
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2.2.3.4. Innovation

In our model, innovation arises from the efforts of scientists working on industry-
specific machines. Successful innovations lead to improvements in machine
quality and productivity enhancements. Consequently, endogenous innovation
drives a productivity-enhancing process of creative accumulation. We define the

average productivity in intermediate industry j;
1
0

The technological progression for machine producers for machine type i within

every industry j evolves according to the following law of motion:

A1\’
Ajie = Aje1 | 1 +2S5)), ( i H) (2.7)

J

The parameter A signifies the success of scientists in generating innovation and
remains consistently positive. Here, S;;; is the mass of scientists working on
machines in industry j at time t. We assume that innovation effort is active in all
industries implying that S.; >0 and S;; >0 for all i and all t. Then, n
characterizes the transformation of research yields as the scientist count rises. A
value of n between 0 and 1 implies diminishing returns for scientific research
within a single period, reflecting the concept termed the “stepping on toes effect”
in endogenous innovation literature (Greaker et al., 2018). This effect highlights
that having more scientists in the same industry increases the likelihood of
replicating a discovery, with innovation being productive only when it unveils

something novel. If n equals one, constant returns to research are present, and
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if it surpasses one, increasing returns occur. In this analysis, we will assume
diminishing returns to research, hence 7 lies within the range of 0 and 1. 4;,_4

and A;_, represent the average quality of machines in industry j and the overall

productivity level at time t — 1 respectively.

The parameter ¢ quantifies the degree of innovation spillovers between

intermediate industries. The range of ¢ spans from zero to one, where ¢ =0

Ap—1

¢
signifies the absence of spillovers. The ratio (A ) is termed the total factor

jt—-1
productivity (TFP) catch-up ratio, characterizing the influence of cross-industry
spillovers on an industry's productivity. This ratio reflects the intuitive notion that
intermediate industries that lag behind others tend to gain more from spillovers.
In other words, the higher the ratio, the less productive an industry has been
historically compared to the average, implying greater potential for benefiting

from spillovers.

2.2.4. Market Structures

This economy is characterized by several forms of trade. First, households
consume/buy the final good sold by the final good producer and this final good is
the numeraire of this economy. Second, intermediate input producers sell clean
and dirty inputs Y;, at the price P;; in a competitive market and the final good
producer is the buyer here. Third, machine producers sell industry-specific
machines, x;;;, at the price P, in a monopolistically competitive market and
intermediate input producers are the buyers now. Last, workers and scientists sell
their labor at the wages wf and w; in competitive markets, respectively.
Intermediate input producers and machine producers are the buyers in the worker

and scientist markets, respectively.
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The market for the final good is perfectly competitive. The final good producer
purchases intermediate clean (Y.) and dirty (Y4) inputs at market prices. The two
intermediate inputs, Y. and Y, are also produced competitively in clean and dirty

industries, respectively.

Clean and dirty machines are produced by industry-specific machine producers
and sold to the intermediate input producers. Machine producers operate under
a monopolistically competitive market and hold the power to set prices, resulting
in profits from machine sales, following Acemoglu et al. (2012). The technology
of industry-specific machines at any given time depends on the past knowledge
level within the industry and the innovation efforts of employed scientists. As
described in Fried (2018), innovations in industry-specific machines grant the
machine producer an exclusive one-period patent. After this patent expires, other
machine producers can access and incorporate the technological advancements
that were previously protected.

The job market for scientists is competitive, requiring market wage payment, w;.
The market for workers is also competitive. Scientists and workers freely move
across clean and dirty industries.

2.2.5. Decision Problems

This section introduces the decision problems of the agents in the economy.
These are the problems of the household, the representative final good producer,
intermediate input producer, industry-specific machine producer, and scientists.

2.2.5.1. Final Good Producer’s Problem

The cost minimization problem of the representative final good producer is:
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min P, Y. + Py Yy (2.8)

Yer.Yae

subject to the final good production technology in (2.3). Solving for the
competitively produced final good producer’s maximization problem and using
(A.2.2) and (A.2.3), the relative production and price of the two inputs are as

follows:

1
& = <ﬁ)g i = <&) € (2.9)
Yoe  \Pg " Py \Yg

This equation shows that there is an inverse relationship between the relative
prices and relative supplies. Defining that P..Y,; + P;.Y;: = P.Y;, where P; is the
price index, we normalize the final good as numeraire for all f and the price index

is as follows:

1
(PirE+ Py )2 =1 (2.10)
2.2.5.2. Intermediate Input Producers’ Problem

Intermediate input producers maximize their profits by deciding the quantity of
labor, industry-specific machines, and fossil energy demand (in dirty industry).
Since clean input production does not use fossil energy resources in the
production process, we have to solve the maximization problems in each industry

separately.

Clean Industry
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The maximization problem of a representative input producer in clean input

production can be written as follows:

1 1
0

Letxcie 0

Using the first order conditions with respect to the quantity of labor demand, labor
demand in the clean industry can be expressed as: (see (A.2.5) and (A.2.6)).

|

L
Wi

1—a)P, (* «
Ly = l(—)“ f Al xg‘l-tdil . (2.12)
0

Then solving for machine demand in clean industry according to (A.2.7) yields:

1

aP.\1-a
xeie = (52)  LeeAeie 2.13)

cit

Dirty Industry

The maximization problem of a representative input producer in dirty industry can

be written as follows:

1 1
max Iy, = Py E2Ly;“ f A%t i — wEL,, — f Pyie Xgiedi — CprEqp. (2.14)
0 0

dit dit
Latxgit.Et
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The user cost of fossil energy is given by cg;. Using the first order condition with
respect to the quantity of machines in dirty industry (A.2.11), the machine demand

in dirty industry can be written as:

1

0 Py EJ2 LY\ 1%
Xy = (%) Agie- (2.15)
it

Then first order conditions for quantity of labor demand (A.2.9) and (A.2.12) gives
the labor demand:

1
L _=
We a
Ly = - . (2.16)
dt <(1 . O()PthazAl 0‘1x0‘1>

dt “dit dit

From the first order condition (A.2.13), the fossil energy demand can be written
as:

1

B, = ( Cet >a2-1 (2.17)
“ aZPdtL%i;aAZtalx;ilt .

2.2.5.3. Machine Producers’ Problem

The machine market operates under monopolistic competition, granting
producers some market power to determine both the quantity and price of the
machines they offer for sale. Now, we solve the maximization problem of a

representative machine producer problem for both intermediate inputs.
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Clean Industry

The monopolist producer of machine i in industry ¢ chooses first x.;; and then
Scit to maximize profits Il.;; = PeirXcir — WeXcir,» SUbject to inverse demand curve

and then the evolution of technology, respectively.

The maximization problem of a representative machine producer in clean industry

can be written as:

max P Lty *aAf x5 — WeXeie (2.18)

Xcit

subject to the demand for machines in clean industry. The first order condition for

clean machine quantity implies that profit maximizing machine price P, is a
constant mark up over marginal cost, thus P,;; = % Then assuming that ¢, = a?

as in Acemoglu et al. (2012), which leads to P.; = a, then the equilibrium

machine demand in clean industry in (2.13) will be:

1
Xcit = Pclt_aLctAcit (219)

Using the definition of demand for machines x.;;, equilibrium price for machines
P.;; and technological change A.;;, the maximization problem of the machines
producer problem in clean industry subject to the choice of the number of
scientists can be expressed as:

1T1a n Apq ¢ S
max HCit ES O((l - (X)Pct LCtACt—l 1 + }\Scit <A ) - Wt SCit (2.20)
ct—1

Scit
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The first order conditions of the maximization problem relative to choice of the
number of scientists is given in (A.2.14). Finally, we remove the machine index in

the last equation of (A.2.14) yields:

S a(l — cOMA(Ace )" P(A-1) Pxce
wy = = (2.21)
Sct ACt

Dirty Industry

The monopolist producer of machine i in industry d chooses first x;;; and then
Sai: to maximize profits I;;: = PyicXair — YaXair, SUbject to inverse demand curve
and then the evolution of technology. The maximization problem of a
representative machine producer in dirty industry can be written as:

1-a a2 1-a; a;
max Pyl E oAy x gl — WaXair (2.22)
dit

subject to the demand for machines in dirty industry. The first order condition for

dirty machine quantity implies that profit maximizing machine price P,;; is a
constant mark up over marginal cost, thus P;;; = % Assuming that ¢, = a? as
1

in Acemoglu et al. (2012), which leads to P;;; = a4, then the equilibrium machine

demand in dirty industry in (2.15) will be:

1
Xgit = (Pthdo?L%i;a)l_alAdit (2.23)
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Using the definition of demand for machines x,;;, equilibrium price for machines
P,;; and technological change A,;;, the maximization problem of the machines
producer problem in dirty industry subject to the choice of the number of scientists
can be expressed as:

1

L Arg\*
dt—1

Sdit

The first order conditions of the maximization problem relative to choice of the
number of scientists is given in (A.2.15). Finally, we remove the machine index in

the last equation of (A.2.15) yields:

s a;(1— a1)77/1(Adt—1)1_¢(At—1)¢xdt

t — 1 (225)
S A
dt dt

w.

2.2.5.4. Scientist’'s Problem

Scientists are typically faced with an optimization problem in a market where free
mobility is possible, choosing the industry that offers them the highest wage. In
this scenario, the industry offering the highest wage will continuously attract
innovations to itself. However, as observed in Acemoglu et al. (2012), this case
is valid when there is no innovation spillover (¢ = 0). In this paper, assuming
innovation spillovers between intermediate industries, we consider that
innovation can occur in both forms of input, resulting in scientists naturally
receiving equal wages in both industries. However, this case is closely related to
the extent of innovation spillovers. In cases where the spillover is sufficiently high,
the past productivity advantage will weaken, allowing innovations to emerge in



65

both industries. In the absence of a sufficient level of innovation spillover, the past
productivity effect will guide innovations in favor of the advanced industry in terms
of industrial productivity.

2.2.6. Market Clearing Conditions

In this section, we define the market clearing conditions for the model economy.

First, market clearing for the unique final good is:

1 1
Yo =C + <¢cf Xciedi + lbdf Xait di) + CeeEqe- (2.26)
0

0
Second, market clearing for labor requires:

Lae + Lt <L (2.27)

where the L.H.S. denotes the total demand of workers and the R.H.S. denotes

the fixed exogenous supply of workers.

Last, market clearing for scientists requires:

Sat +S.e < (2.28)

where the L.H.S. is the total demand of scientists and the R.H.S. is the fixed

exogenous supply of scientists.
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2.3. EQUILIBRIUM

This section derives the equilibrium conditions for all the variables. In this
economy, there is no policy intervention, so that will characterize the laissez-faire

equilibrium.

We define the equilibrium as a sequence of wages wf, wS, prices for

intermediate inputs (P;;) and machines (P;;), intermediate output (Y;;), demands

for machines (x;;), labor (L;), scientists (S;;), the exogenous energy price ( cg;),

and fossil energy demand (E,;;) such that in each period:

e Sjit, P; and x;;,, maximizes profits of i-type machine producer in industry
j € (c,Ad).

e Y, maximizes profits of final good producers.

e Ly, E;; maximizes profits of the dirty input producers and L., maximizes
profits of clean input producers.

e Prices for intermediate inputs (P;.), prices of machines (P;;;), and wages

(wf, w)) clear the markets for intermediate inputs, machines and the two

types of labor respectively.

2.3.1. Equilibrium Allocations

In this section, we present the equilibrium allocation of fossil energy demand,
labor and scientist by considering the solved maximization problems. To make
this possible, we rewrite the equations regarding intermediate production
functions and fossil energy demand.

Substituting equilibrium demand (2.19) in the clean input production (2.4) yields
that:
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a

Yo = LA P17 (2.29)

Substituting equilibrium demand (2.23) in the dirty input production (2.5) yields
that:

Oy 1—a oq

Yar = Ej; L, APy (2.30)

Then, solving for equilibrium energy input demand by substituting machine
demand (2.23) in (2.17) yields:

1-aq 1

A\ Te L
E,, :( 2 dt) Ly PTE (2.31)

Then, plugging (2.31) into (2.30) gives the equilibrium dirty input production as

follows:

o
22 o

A Age\1-a —
Y, = ( 2 t) Pl%Ly Ay (2.32)

Crt

The equation suggests an inverse relationship between the production of dirty
inputs and the cost of fossil energy. In other words, rising fossil energy costs could
discourage the production of these inputs. However, the equation also indicates
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that when industrial productivity reaches a sufficiently high level, the impact of

fossil energy costs may become negligible for producers of intermediate inputs.

We also substitute the energy input demand (2.31) in machine demand in the
dirty industry (2.23) to get a simpler form:

a2 1-a
o, “Py
Xait = ( : 22 t) AgitLae (2.33)

Now turning to the wage for labor, substituting equilibrium machine demand in
clean industry into the (A.2.6) yields:

1
wt = (1 - Q)PL %4, (2.34)

Substituting equilibrium machine demand in dirty industry (2.23) into the (A.2.9)
yields:

1 (25 (25

wh=Q-P, “E;; L, Ay (2.35)

Labor market is perfectly competitive and we assume that there is a free
movement between the two industries. Thus, clean and dirty industries have
identical wages in equilibrium. Then, setting the labor wages ratio and combining
with (2.31) gives the relative prices and productivities as follows:
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oy 21—0
Pey 0" Ay

0y gl1-a
Py¢ Cp A

(2.36)

Setting the relative supply of dirty input (2.32), and clean input (2.29) gives the

ratio:

o5 @
Yor _ < Cg )m Let Act <Pct)1_a

_et _<t i (2.37)
Yae oz Age Lat Age \Pgt

Substituting equation (2.9) and (2.36) in the above equation and defining that
p=1-a)1—-¢), p; =1 —a,;)(1 —¢), the relative labor allocation can be

expressed as:

(e-1) -
Ly [c? AY
== ( i2> s (2.38)

Now, turning to the innovation side and the choice of scientist, we can rewrite

(2.21) and (2.25) using x;;; =Y

itP;c as follows:

_ a(l— a)nA(Ace—) P (A1) ?Y Py
Sclt_nAct

wp

(2.39)

s a;(1— “1)71/1(Adt—1)1_¢(At—1)¢ydtpdt
wP = - (2.40)
Sdt Adt
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Equations (2.39) and (2.40) show that the production of clean (Y..P.;) and dirty

(Y4:P4:) inputs is directly proportional to the wages of scientists working in these

industries. Since the market for scientists is perfectly competitive, the wage of a

scientist in any industry is expected to equal the marginal return to innovation in

that industry. This implies that input production in an industry is directly linked to

the marginal return of innovation within that industry.

Then, we substitute x.;; and x;;; in (2.39) and (2.40) respectively:

1
_ a(l = a)nA(Age-1)*"? (At—1)¢PC1t_aLctAct

1-7
Sct ACt

wp

1
S — a, (1 — al)nA(Adt—l)l_d)(At—1)¢(PthgtzL%i;a)l_alAdt

Ve sty
dt dt

The relative wage for scientists is as follows:

1
a(l—a) (Act—1)1_¢Pclt_aLctS_(1_n)

ct
1 1-«a az
a

(1 — a)(Age_ 9P L5 A E!

1=

dat

(2.41)

(2.42)

(2.43)

The wage for scientists must be identical in equilibrium since the market for

scientists is perfectly competitive. Then, the relative allocation of scientists must

be:
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1 1-n
S a(l—a) [Aq_1\"?[ PL@ L
Sct _ ( ) < ct 1) ct1 y Ctl—a (2.44)
Sat (1 —ay) \Age_q —a =2 1—a
Pdt ! Edt 1Ldt !
Exploiting equilibrium fossil energy demand E;; (2.31) in (2.44) yields that:
1
1 1—
See | al-a) < Crt )ﬁ—za (Pct)ﬁ Lee (Act_l)l“” ! (2.45)
Sat a;(1—ay) \a Ay Py Lge \Age—1 .

Equation (2.45) allows to examine the factors that determine the relative

allocation of research in equilibrium.

1. Past Productivity Effect: Defined by the ratio of past productivities to the
power of 1 — ¢.

1

P — . . .
“)1 “ it steers innovation towards

2. Price Effect: Represented as (P—

dt

industries with higher prices.
3. Market Size Effect: This is captured by the labor ratio and leads scientists
to industries with greater employment and, correspondingly, more

machinery.

The past productivity effect can be further divided into two components:

e A "Direct Productivity Effect" as described by the ratio of past

productivities (%). This draws scientists to more advanced industries,

dt-1
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illustrating the path dependence in research and cross-period spillovers

within the same industry.

-
e "Spillover Effect" expressed as (j:‘:#) . This effect encourages

dt-1

scientists to move towards the less developed industry, with its intensity
increasing as the spillover parameter ¢ becomes larger. This reflects the
idea that less advanced industries benefit more from spillovers coming
from other industries. Due to the range of ¢ lying between zero and one,
the value of ¢ is invariably positive. Consequently, the direct productivity
effect usually dominates, although its impact decreases as the spillover
parameter ¢ increases. This illustrates how cross-industry technology
spillovers can reduce the influence of past productivity in scientific
research.

Now, combining (2.36) and (2.38) with (2.45) and defining w =

-1
a(1-a) (%2) yields:

a;(1-aq1) \a,

—p-1 1-¢T=7
ﬁzlw(cgz)@—ﬂ A ] (2.46)

Since productivity growths are constant in balanced growth path, the relative
productivity level will be fixed in time. Thus, we define that

-p-1
At _ (Act—l

ATP1-1

7 ) Therefore, the equation (2.46) evolves as follows:
dt dt-1

S 1 &1 /A . \1-7
(ﬁ)zwl— (ca2)1- ( ct 1) (2.47)
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The relative allocation of scientists is determined by cross-industry spillovers,
time-invariant parameters, fossil energy prices, the level of past productivities,
and returns to scientific research. Now, a strong spillover rate and weak return to
scientific research limits the past productivity effect. Then increasing exogenous
fossil energy cost (increasing in S.;) motivates technical change toward clean
energy if ¢ > 1. However, if ¢ < 1, then increasing exogenous fossil energy cost

motivates technical change toward dirty energy (increasing in Sg;).

Following (2.47), we can discuss the factors determining the relative number of
scientists working in the clean industry.

Substitution Rate

The substitution rate (¢) between the clean and dirty industries is a key factor
influencing scientists' choices about where to focus their innovation efforts. Its
impact can be analyzed as follows:

Substitution Case (¢ > 1)

A high substitution rate between the two industries allows clean technologies to
quickly gain market share as their productivity improves, making the clean sector
more appealing to scientists (market size effect). With greater substitutability,
clean and dirty technologies can replace each other more easily. Consequently,
rising fossil energy costs further enhance the competitive edge of clean
technologies, accelerating the shift of scientists toward the clean industry
(transition dynamics). Although not explicitly discussed here, high substitution
rate is likely to increase the effectiveness of policies like carbon taxes and

research subsidies, ensuring faster returns on investments in clean technologies.
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Complementary Case (¢ < 1):

When the clean and dirty technologies are complementary (a lower substitution
rate), the productivity advantage of dirty industries becomes persistent, leading
scientists to continue focusing on this industry. This makes the shift to clean
technologies more challenging. If clean and dirty technologies are
complementary, scientists may find it less attractive to move to the clean industry,
as clean technologies depend on the productivity of dirty ones. A low substitution
rate hinders the market's natural transition to clean technologies, necessitating

long-term and ongoing policy interventions.

Technology Spillovers

Technology spillovers enable knowledge transfer between clean and dirty
technologies, shaping the focus of scientists. Strong spillovers can either narrow
or widen the productivity gap between these industries. When spillovers are
robust, clean technologies can advance faster by drawing on insights from dirty
technologies, attracting more scientists to the clean industry. This process helps
reduce the initial disadvantage (assumed by Acemoglu et al., 2012) of clean
technologies and levels the playing field between the two industries. Combined
with a high substitution rate, strong spillovers further accelerate the shift of
scientists toward clean technologies. Moreover, they can lessen the need for

prolonged and intensive policy interventions.
The Role of Fossil Energy Cost
Fossil energy costs are a significant exogenous factor here that influences how

scientists allocate their efforts between clean and dirty industries. An increase in

fossil energy costs makes clean technologies more appealing. However, the
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extent of this effect depends on the substitution rate and spillover effects. With a
high substitution rate (¢ > 1) and a strong spillover rate, increasing fossil energy
costs can quickly drive scientists toward the clean industry. On the other hand,
when fossil energy costs are low, innovation in dirty technologies becomes more

profitable, leading scientists to be less inclined to focus on clean technologies.

With a low substitution rate (¢ < 1), the impact of increasing fossil energy costs
on clean and dirty technologies becomes more complex and limited. A low
substitution rate means that clean and dirty technologies are complementary,
rather than directly interchangeable, so they are used together rather than one
replacing the other. In this context, higher fossil energy costs may encourage
innovation that improves the efficiency of dirty technologies, such as efforts to
reduce energy intensity or develop new carbon capture and storage (CCS)
technologies. Since dirty technologies cannot easily be replaced by clean ones,
the economy may remain reliant on them even as fossil energy costs increase.
As a result, increasing fossil energy costs could prompt scientists to focus on
developing cost-reducing, efficiency-enhancing, and low-emission innovations
within the dirty industry, increasing investment in technologies that optimize fossil

energy use.

2.4. CHAPTER SUMMARY

In this paper, we establish a model economy to examine how industrial relative
productivity levels and fossil energy costs in the presence of positive technology
spillovers influence the allocation of innovations across dirty and clean
intermediate industries. Using a directed technical change model, this chapter
explores the factors determining the distribution of endogenous innovations
shaped by the research efforts of scientists between industries producing dirty

and clean inputs under laissez-faire conditions.
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Our theoretical findings suggest that the substitution rate between clean and dirty
technologies, along with technology spillovers and fossil energy costs, are crucial
in shaping scientist allocation and guiding innovation efforts. When the
substitution rate is high (¢ > 1), clean technologies can more easily replace dirty
ones, making the clean industry more attractive and driving faster transitions. In
contrast, a low substitution rate (¢ < 1) means clean and dirty technologies
complement each other, maintaining the productivity advantage of dirty
technologies and keeping scientists focused on dirty innovation. Technology
spillovers further influence this balance by transferring knowledge between the
industries; strong spillovers help close the productivity gap, particularly when the
substitution rate is high, accelerating the shift to clean technologies. Exogenous
fossil energy costs also play a significant role: higher costs tend to encourage
clean innovation when substitution and spillovers are strong, while low
substitution rates direct efforts toward improving efficiency and reducing the
emissions of dirty technologies. These forces collectively underline the market-

driven processes that govern the transition to clean technologies.
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CHAPTER 3

ENERGY COSTS, ENVIRONMENTAL POLICY AND DIRECTED

TECHNICAL CHANGE: EVIDENCE FROM EUROPE

3.1. INTRODUCTION

There is growing evidence that environmental policies can effectively direct
innovation toward clean technologies, enhancing environmental standards. By
reducing reliance on fossil fuels and encouraging the adoption of renewable
energy sources, these policies contribute to lowering carbon emissions. However,
achieving a sharp transformation in energy use appears challenging due to both
economic and social constraints. While innovation is increasingly viewed as a key
driver of this shift, it has not yet fully assumed its role as a central focus in the

fight against climate change.

Innovation or technological development more broadly, is heavily influenced by
historical habits and existing structures, making it inherently path-dependent.
This makes the transition from a fossil fuel-based economy to a clean energy
economy more complex than it may seem. The directed technical change
literature provides important policy insights to help overcome the productivity
advantage of dirty technologies and accelerate the shift to clean technologies.
Drawing on seminal works by Acemoglu et al. (2012) and Acemoglu et al. (2016),
the literature generally advocates for a combination of policy instruments, such
as carbon taxes and research subsidies for clean technologies. It is particularly

emphasized that solely implementing a carbon tax would excessively distort initial
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production, whereas research subsidies can significantly facilitate the transition
to clean technologies. Moreover, delays in implementing these policies would
result in higher economic and environmental costs, given the productivity

advantage of fossil-based energy systems.

Policy instruments like carbon taxes or trading, renewable energy incentives, and
research subsidies play a critical role in fostering the development and diffusion
of clean technologies. These instruments have attracted significant attention in
both theoretical and practical domains in related literature. However, much of the
existing research focuses on specific countries or regions, where the impact of
such policies can differ considerably. This geographic limitation complicates the
generalizability of findings, making it challenging to assess the broader
effectiveness of policy recommendations in countries and regions with varying

economic, political, and social structures.

This chapter aims to contribute to directed technical change literature by
empirically investigating how energy costs and environmental policies drive
technological innovation towards clean or dirty innovations. We examine the
potential roles of energy costs, stringent environmental policies, and research
subsidies. This study examines not only tax-based policies but also the impact of
energy prices, a primary determinant of energy consumption, on the direction of
innovation. The analysis is based on annual data from 16 European countries,
covering 2000-2020 period. The study utilizes various datasets, including patent
counts for clean and fossil energy technologies, energy prices, and policy
measures such as carbon taxes and emissions trading systems. By exploring the
dynamics between these factors, we aim to understand the motivations behind
clean and dirty innovations on the direction of technological change.
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The remaining sections of the paper are organized as follows: Section 3.2.
presents the existing literature. Section 3.3. introduces data, methodology and
results. We discussed our findings and policy recommendations in Section 3.4.

The main results and limitations are evaluated in the conclusion.

3.2. LITERATURE REVIEW

Directed technical change has emerged as a central concept for addressing
environmental and climate change challenges. The influential research by
Acemoglu et al. (2012) has significantly contributed to this field, showing how
technological change can be intentionally guided to achieve economic growth
and environmental sustainability. This body of work emphasizes the potential of
technological advancements to promote economic development and lessen

environmental harm simultaneously.

Despite their recognized importance, comprehensive empirical evidence at the
regional or country level remains limited, particularly within diverse entities like
the European Union. Existing studies often focus on individual nations, hindering
the generalizability of findings and the formulation of broadly applicable policy
recommendations. Lanzi and Wing (2010) find that in a panel of 23 OECD
countries, an increase in relative energy prices shifts innovation toward clean
energy technologies. Similarly, Ley et al. (2016) observe a positive relationship
between industry-specific energy prices and clean innovations within an OECD
panel. Kruse and Wetzel (2016) note that this positive relationship between
energy prices and clean innovations among OECD countries becomes more
pronounced, especially after the Kyoto Protocol agreement in 1997. Amin et al.
(2021) suggest that in a panel of 46 countries, net fossil energy-importing nations
are more inclined to invest in renewable energy technologies when oil prices rise.
In the context of China, Liu et al. (2020) find that while energy prices support

clean energy innovations in central and western China, they do not have the
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same effect in the eastern region. Lin and Chen (2018) indicate that in China,
electricity prices positively influence long-term innovation in renewable energy
technologies. Sector-specific findings by Aghion et al. (2016) reveal that tax-
inclusive energy prices in the automotive industry support clean innovations while

suppressing dirty ones.

Policy instruments like carbon taxes, renewable energy incentives, and
emissions trading systems (ETS) are also essential for promoting clean
technologies and reducing dependence on fossil fuels. Acemoglu et al. (2012)
suggest that if clean and dirty technologies are sufficiently substitutable,
temporary tax and subsidy policies can redirect innovation toward clean
technologies, leading to sustainable growth. Calel and Dechezleprétre (2016) find
that among firms regulated by the EU ETS, low-carbon innovation increases by
up to 10% without displacing innovation in other technologies. Oppelt (2024),
using the synthetic control method in a study on Sweden, finds that carbon taxes
significantly and strongly support clean innovations. In a similar study on China,
Wang et al. (2020) divide the country into six regions and find that the China’s
Carbon ETS has regionally varying effects on clean innovations. Cheng and Yu
(2024) suggest that the China’s Carbon ETS promotes clean innovations. Naqvi
and Stockhammer (2018), drawing on a post-Keynesian macroeconomic model,
argue that continuous resource tax growth is necessary to direct technological
change toward a cleaner economy. However, they recommend combining this
policy with a planned government spending program to boost demand and

encourage investment.

Furthermore, alongside policy tools like taxes and carbon trading systems, public
and private research subsidies for clean technologies is a crucial component of
environmental policy. Empirical evidence highlights the relationship between

R&D budgets and clean innovation. Johnstone et al. (2010) demonstrate that
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public policies play a significant role in supporting clean technologies, particularly
emphasizing the need for subsidies in high-cost energy technologies like solar.
Dong et al. (2019) show that in China’s automotive industry, clean R&D subsidies
are more effective in improving environmental quality over the long term. Gugler
et al. (2024) find that in European countries, clean innovations respond more

effectively to clean R&D subsidies than to environmental taxes and regulations.

Finally, we observe the relative importance of the past knowledge effect as a
factor determining the direction of technological change or innovation. Acemoglu
(2002, 2007) discusses the concept of the IPF, noting that path dependency may
occur, meaning that innovations are built on existing technologies. This idea,
often referred to as "Building on the shoulders of giants" implies that progress in
a particular technology makes future advancements in that technology more
effective. Aghion et al. (2016) provide evidence from the automotive industry,
showing that the sector exhibits path dependency, driven by spillovers and firms'

own histories of innovation.

The existing literature provides both theoretical and empirical evidence that
energy costs and environmental policies direct innovations toward clean
technologies. However, the literature reveals two key gaps. First, there is a need
for a comprehensive analysis that considers energy costs and environmental
policy instruments alongside their past knowledge stocks. Second, while current
research often focuses on whether energy costs and environmental policies
direct innovations toward clean technologies, there is a notable lack of findings

regarding their impact on innovations in dirty technologies.
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3.3 COUNT DATA ANALYSIS

3.3.1. Data

The study utilizes annual data for 16 European countries from 2000 to 2020. The
analysis includes some European countries due to substantial data gaps in
countries outside the selected 16. The period starting in 2000 was chosen
because the dataset for clean energy and fossil energy patents begins in that
year. Table 2 provides definitions of the variables used and the dataset's sources.
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Table 2 Definition and Sources of Selected Variables

Name Definition Source
CLEANPAT IEA: extracted from the OECD STI Micro-data Lab: IEA
Intellectual Property Database, http://oe.cd/ipstats.
(patent counts)
DIRTYPAT IEA: extracted from the OECD STI Micro-data Lab: IEA
Intellectual Property Database, http://oe.cd/ipstats.
(patent counts)
ENRP real index (base 2010) of economy-wide energy Liddle, B. (2022)
prices
ENRTAX Energy Taxes: Percentage of GDP EUROSTAT
CLEANSUB IEA Energy Technology RD&D Budgets: USD IEA
(2023 prices and exchange rates)
DIRTYSUB IEA Energy Technology RD&D Budgets: USD IEA
(2023 prices and exchange rates)
EFSUB IEA Energy Technology RD&D Budgets: USD IEA
(2023 prices and exchange rates)
GDP GDP per capita (constant 2015 US$) World Bank
national
accounts data.
TERTIARY Gross enrollment ratio World Bank
Databank
CTIMP 1: carbon tax implemented / O: carbon tax is not Dolphin, G.,
implemented Xiahou, Q.
(2022).
ETSIMP 1: ETS implemented / 0: ETS is not implemented Dolphin, G.,
Xiahou, Q.

(2022).
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The data on clean and dirty energy patents are sourced from the International
Energy Agency, which extracts them from the OECD’s Intellectual Property
Database. These data are based on patent counts, covering the number of
published applications for patents of invention. Table 3 provides a detailed
breakdown of clean and dirty energy patents by technology. According to
International Energy Agency (IEA) (2024) data, the top technologies generating
the most patents in the global clean energy sector in recent years are: Storage
(excluding e-mobility), industry energy efficiency or substitution, building energy
efficiency, solar, and e-Mobility. In contrast, the dirty energy sector shows the
most patent activity in downstream processing technologies, followed by

upstream technologies and transmission distribution.
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Table 3 Clean and Dirty Energy Patents by Technology

Patents by
Sector

Patents by Technology

Clean Energy

Agriculture energy efficiency

Air - rail — marine

Bioenergy

Building energy efficiency

Carbon capture and storage

Energy efficiency

Grid,

Hydrogen and fuel cells

Industry energy efficiency or substitution

Patents Nuclear
Other renewables
Renewable energy integration in buildings
Renewables
Solar
Storage (not e-mobility)
Vehicle fuel efficiency
Wind
e-Mobility
Coal and solid fuels exploration and mining
Conventional oil and gas exploration and

Upstream extraction
Unconventional oil and gas exploration and
extraction
Coal-to-gas
Dirty Energy gzzl-c’tg:(ij?;;(ijcjr]si,nand gas-to-liquids

Patents Processing g .

Hydrogen fuel production
Downstream

Transmission
distribution

Oil refining
Solid fuel conditioning

Compressed gaseous fuel shipping
Gas fuel pipelines

Gaseous fuel distribution

Liquid fuel distribution (gas stations)
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Liquid fuel pipelines

Liquid fuel tanker shipping

Rail tanker liquid fuels transport
Road tanker gaseous fuels transport
Road tanker liquid fuels transport
Solid fuel shipping

Stationary tank storage for gases
Stationary tank storage for liquids
Underground gaseous fuel storage
Underground liquid fuels storage

IEA (2024), Energy Technology Patents Data Explorer, IEA, Paris

Data on energy prices are sourced from the real index of economy-wide energy
prices developed by Liddle (2022) and extended via the CPI-all items series from
OECDStat. The energy tax data, expressed as a percentage of (Gross Domestic
Product) GDP, are collected from the EUROSTAT database. This tax
encompasses a broad definition based on fossil energy sources, including
components such as energy products for transport purposes (unleaded petrol,
leaded petrol, diesel, other energy products like LPG, natural gas, kerosene, or
fuel oil), energy products for stationary purposes (light fuel oil, heavy fuel all,
natural gas, coal, coke, biofuels, electricity consumption and production, district
heat consumption and production, other energy products for stationary use), and
greenhouse gases (carbon content of fuels, emissions of greenhouse gases).

Our analysis also considers various factors while testing the motivations behind
clean and dirty innovations. We account for government spending on energy
technology, including central or federal government budgets and state-owned
companies' budgets on sectors such as clean energy, fossil fuels, and efficiency.
Energy efficiency encompasses techniques, processes, equipment, and systems
designed to deliver increased services with the same energy input or maintain
service levels with reduced energy consumption. In the industrial sector, the
focus is on developing energy-efficient processes, techniques, and
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equipment. R&D efforts concentrate on design, insulation materials, energy
management systems, lighting, heating, cooling, and ventilation technologies for
buildings. In transportation, the emphasis is on designing energy-efficient
vehicles, utilizing new materials, enhancing powertrains, developing electric
vehicle infrastructure, and exploring alternative fuels. Other areas of energy
efficiency R&D include waste heat recovery, community-level
solutions, agricultural and forestry applications, heat pumps, and measurement

systems.

We also consider the countries’ patent stocks as a proxy for countries’ past
knowledge or history of innovation. This allows us to observe the effect of past
knowledge on current innovation efforts. Following Aghion et al. (2016), we

calculate the clean and dirty patent stocks using the perpetual inventory method.

PATStOijit = PA’I}'l't + (1 - 6)PATjit_1

where j € (Clean,Dirty), PATstockj, is the patent stock and PATj; is a

nonnegative patent count for country i =1, ..., N, attime t =1, ..., T. We consider
the depreciation of R&D capital, §, as 20% commonly assumed in the literature.
Kruse and Wetzel (2016) emphasize that a country's overall patent activities can
influence clean and dirty patent technologies. Moreover, we control GDP per
capita and tertiary school enrollment. Figure 2 displays descriptive statistics for

all variables.
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Figure 2: Descriptive Statistics

Variables Mean Std. Deviation Min Max

Clean Patents 247.320 487.021 0.29 2846
Dirty Patents 31.218 47.453 0.14 210.02

Energy Price 4.541 0.126 4.186 4.796

Energy Tax 0.540 0.261 0.301 1.078
Clean Subsidy 66.638 75.321 0 362.297
Dirty Subsidy 31.807 60.697 0 345.889
Efficiency Subsidy 68.646 73.928 0 403.114
Triadic Patents 848.446 1393.504 1.366 7641.34
GDP 10.471 0.577 8.901 11.375

Tertiary Enrollment 4.198 0.198 3.393 4.569
Own Stock Clean Patents 6.299 1.840 1.098 10.561

Own Stock Dirty Patents 4.583 1.631 0 8.035

Figure 3 illustrates the number of patents for clean and dirty technologies in 16
European countries from 2000 to 2020. Panel (a) shows that Germany leads in
clean patent applications, followed by France. However, as we approach 2020,
patent applications in Germany decline, converging with those in France. Thus,
Germany and France are the leading European countries in clean patent

applications.

Panel (b) reveals that Germany and France also dominate in patent applications
for dirty technologies, exhibiting parallel trends. Panel (c), which depicts the
average patent applications for both clean and dirty technologies across the 16
European countries, indicates that during the 2000-2020 period, the trend in
patenting clean technologies consistently surpassed that of dirty technologies.
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This suggests that the number of patent applications for clean technologies in

Europe was significantly higher than those for dirty technologies.
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Since around 2013, the decline in energy prices in Europe has played a key role
in the reduction of clean energy patents. As fossil fuel prices became cheaper,
investments in alternative technologies, such as renewable energy and energy
efficiency, became less attractive, which likely contributed to the decrease in
clean energy patents. Additionally, from around 2017, the falling share of energy
taxes in GDP may have led to a decline in patents related to fossil fuel
technologies, particularly in downstream processes. This suggests that as fossil
fuels became more affordable, investments in high-carbon energy technologies
weakened, resulting in a drop in patent activity in this sector.

Figure 4 presents the economy-wide energy prices for 16 European countries
from 2000 to 2020, indexed to the year 2010. Energy prices generally trended
upward until around 2010, after which they exhibited a fluctuating pattern until
2020.

Figure 4 Energy Price (Index: 2010=100), 2000-2020
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Figure 5 illustrates the energy taxes as a share of GDP for 16 European countries
from 2000 to 2020. It shows that Italy has implemented the highest energy taxes
in recent years. In contrast, Germany and France, which rank highly in patenting
dirty technologies, have more moderate energy tax rates.

Figure 5 Energy Taxes: Percentage of GDP, 2000-2020
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Figure 6 visualizes the average energy prices, energy taxes, and energy
technology R&D budgets for 16 European countries from 2000 to 2020. In Panel
(a), the economy-wide energy prices in the examined countries show a steady
increase until around 2013, when they entered a declining trend. Panel (b) depicts
the share of energy taxes in GDP, showing a decline until approximately 2009,
followed by an increase (though not to previous levels), and then a sharp decline
between 2016 and 2020. Panel (c) presents the R&D budgets allocated for
energy technologies. It is observed that, from around 2003 onwards, the funding
for clean and energy-efficient technologies surpasses that for dirty technologies.
Except the last couple of years, the budgets for clean and energy-efficient
technologies have been at similar levels.
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3.3.2. Methodology

Using standard Ordinary Least Squares (OLS) regression to estimate count
variables, such as patent counts, is challenging due to certain assumptions.
Count variables often violate key OLS assumptions, such as conditional normality
and homoscedasticity (constant variance). Count data techniques are
recommended as an alternative since these variables typically exhibit non-normal
conditional distributions and fail to meet the constant variance assumption. The
Poisson distribution, which better accommodates integer values and is more
appropriate for count data, is often seen as a better fit for such analyses

compared to the normal distribution (Coxe et al. 2009).

As our study aims to explain the determinants of clean and dirty innovations using
patent counts, we utilize count data methods. To achieve this, we implement a
Poisson regression model for our panel data, and the model in exponential form

is as follows:

PATj; = exp(x;;0 + w;) + & 3.1

where PATj;, is a nonnegative patent counts of energy type j (clean and dirty) for
country i = 1, ..., N, at time t = 1, ..., T. Then, x/, represents the vector of
independent variables, w; is the country-specific fixed effect and ¢;;, is the error

term.

In our analysis, we focus on two dependent variables: clean energy patents
(CLEANPAT) and dirty energy patents (DIRTYPAT). Thus, we test two separate
models based on energy costs, environmental policies, and patent stocks to
reveal the determinants of clean and dirty innovations.
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We use economy-wide energy price (ENRP), energy tax (ENRTAX) and clean
(Own stock clean) and dirty (Own stock dirty) patent stocks as explanatory
variables. Furthermore, we employ R&D subsidies for clean (CLEANR&D), dirty
(DIRTYR&D) and energy efficiency (EFR&D) separately as explanatory variables
to observe the effect of research subsidies on the direction of technical change.
While Aghion et al. (2016) also incorporated R&D subsidies for energy
technologies into their analysis, their approach differed from ours in that they
utilized the aggregate value of these subsidies, without distinguishing between
the specific types of energy technologies. As a novel approach, we use
decomposed data for R&D subsidies in energy technologies as clean, dirty and
energy efficiency subsidies. In our model, we control for GDP per capita level and
tertiary education enrollment ratio. Finally, we incorporate two dummy variables
as environmental policy measures, indicating the implementation of a carbon tax
(CTIMP) and emission trading system (ETSIMP).

However, traditional fixed effect count data models assume strict exogeneity in
all regressors, making it impossible to observe the impact of past observations
on current outcomes. Blundell et al. (2002) proposed the pre-sample mean (PSM)
estimator as a solution, using pre-sample information of the dependent count data
variable within a linear feedback model. Following Blundell et al. (2002)’s
approach we define the country-specific fixed effect as:

where  PAT;; = (1/TP) X2, PAT};, represents the PSM of our dependent

variables, i.e. clean and dirty patent counts, in year n. TP is the number of

observation and ¢ is the related parameter to be estimated. This estimator
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provides reliable results, particularly in the presence of linear feedback and
unobserved heterogeneity. According to Monte Carlo simulation findings from
Blundell et al. (2002), the PSM estimator has shown significantly better
performance than the quasi-differenced Generalized Method of Moments (GMM)

estimator.

Partially following the methodology of Aghion et al. (2016), we employ three
distinct regression models: energy price-energy tax, energy price only, and
energy tax only. This approach allows us to discern the individual and combined
effects of energy prices and taxes on both clean and dirty innovation. To ensure
the robustness of our results, we conduct sensitivity analyses by evaluating the
regression across three different model specifications, each incorporating various
combinations of control variables and environmental policy indicators. This
comprehensive approach enables a more nuanced understanding of their impact

on clean and dirty innovation.

3.3.3. Regression Results

Table 4 reports our regression results for the dependent variable clean patents in
column (1) — (3) and we repeat the same procedure for the dependent variable
dirty patents in column (4) — (6).

A common result in columns (1) - (3) is that the coefficient of the economy-wide
energy price is positive and statistically significant for clean energy patents. The
elasticities between 1.773 and 1.980 indicate that a 10% increase in energy price
is associated with about 17%-20% more clean energy patents, respectively,
under different specifications. Aghion et al. (2016), in their analysis of the
automotive industry across 80 countries, found that a 10% increase in fuel prices
led to a 10% increase in clean energy patents. Similarly, Kruse and Wetzel (2016)
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concluded that an increase in energy prices positively affects solar energy

patents. However, there is no significant effect of energy tax on clean patents.

Another common result in the first three columns is that countries with a history
of clean innovation (own stock clean) proxied by lagged patent stocks exhibit a
strong tendency to persist in developing clean technologies, characterized by a
notable elasticity between 0.212 and 0.222.

As a novel approach, we use decomposed data for the R&D subsidies includes
spending from central or federal government budgets, as well as budgets of state-
owned companies on energy technologies, into clean, dirty and efficiency
subsidies. Our findings in Table 4, strongly show that clean subsidies have a
positive and significant effect on clean patents. The estimated coefficients
between 0.242 and 0.263 indicate that a 10% increase in clean subsidies is
associated with about 2.4%-2.6% increase in clean patents. In contrast to the
effect of clean subsidies, dirty and energy efficiency subsidies are not statistically
significant for clean patents.
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Table 4 Regression with Energy Price and Energy Tax

Dependent Variable: Clean Patents

Dependent Variable: Dirty Patents

(1) () @)

(4) () (6)

Own Stock 0.212%* 0.220*** 0.222***
Clean (0.0416) (0.0767) (0.0701)
Own Stock Dirty 0.308*** 0.410**  0.406***
(0.105) (0.111) (0.100)
Energy price 1.980*** 1.755** 1.773*** 0.618 0.439 0.318
(0.222) (0.235) (0.281) (0.696) (0.660) (0.696)
Energy tax -0.201 0.000926 -0.0175 0.230 0.382 0.249
(0.156) (0.161) (0.186) (0.257) (0.246) (0.254)
Clean R&D 0.242** 0.263*** 0.263*** -0.154***  -0.167*** -0.107
(0.0643) (0.0751) (0.0795) (0.0393) (0.0494)  (0.0737)
Dirty R&D 0.00769 0.00806 0.0237 -0.0472 -0.0429
0.0219 (0.0689) (0.0689) (0.0759) (0.0724)  (0.0669)
(0.0521)
Efficiency R&D -0.00897 0.0187 0.0204 -0.00990 -0.0472 0.0375
(0.0492) (0.0566) (0.0592) (0.0531) (0.0724)  (0.0724)
GDP 1.487* 1.475** 0.156 0.0502
(0.742) (0.734) (0.588) (0.508)
Tertiary -0.572 -0.591 -1.428***  -1.901***
(0.502) (0.524) (0.430) (0.491)
CTIMP 0.0221 0.390**
(Dummy) (0.0798) (0.171)
ETSIMP 0.0221 0.109
(Dummy) (0.0798) (0.121)
Constant -5.473*** -18.08** -17.93** -1.323 3.080 7.218
(0.860) (8.450) (8.683) (2.457) (5.820) (6.251)
Observations 298 298 298 298 298 298

Robust standard errors in parentheses. ***,

*kk k%

and * denote p<0.01, p<0.05, p<0.1 respectively.

Results of the dependent variable clean patent are in Column. (1) — (3) and the dependent

variable dirty patent are in Column. (4) — (6).
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Columns (4) and (6) report the estimation results using the same procedure in
the first three columns, but this time, we use the dirty patents variable as the
dependent variable. First, our findings for economy-wide energy price and tax do
not produce a statistically significant impact on dirty patents. Interestingly,
implementing a tax policy (CTIMP) positively affects dirty innovation efforts.

Another common result in columns (4) - (6) is that countries with a history of dirty
innovation (own stock dirty) exhibit a strong tendency to persist in developing
clean technologies, characterized by a notable elasticity between 0.308 and
0.410.

Columns (1) - (3) in Table 5 show the results regarding the dependent variable
clean patents using only energy price variable instead of energy tax. We find very
similar coefficients for the countries’ history of innovation in clean technologies,
energy prices, and clean R&D subsidies compared with our earlier estimates on

clean patent activities.



100

Table 5 Regression with Energy Price instead of Energy tax

Dependent Variable: Clean Patents

Dependent Variable: Dirty Patents

(1) (2) (3) (4) (5) (6)
Own Stock 0.218*** 0.220*** 0.222***
Clean (0.0424)  (0.0766)  (0.0710)
Own Stock 0.307*** 0.416*** 0.420***
Dirty (0.0994)  (0.0930)  (0.0947)
Energy price 1.862*** 1.756*** 1.760*** 0.644 0.570 0.424
(0.214) (0.205) (0.248) (0.659)  (0.561) (0.682)
Clean R&D 0.224*** 0.263*** 0.262*** -0.170*** -0.167*** -0.108
(0.0654)  (0.0763)  (0.0815) | (0.0396)  (0.0442)  (0.0680)
Dirty R&D 0.0434 0.00763 0.00884 -0.00429 -0.0692 -0.0543
(0.0453)  (0.0644)  (0.0664) | (0.0492)  (0.0521)  (0.0520)
Efficiency R&D 0.00243 0.0187 0.0212 -0.0301 -0.0358 0.0287
(0.0487)  (0.0568)  (0.0606) | (0.0453)  (0.0738)  (0.0675)
GDP 1.485** 1.505** -0.617 -0.401
(0.740) (0.766) (0.966) (0.805)
Tertiary -0.571 -0.596 -1.130** -1.780***
(0.514) (0.531) (0.439) (0.503)
(Dummy) (0.0583) (0.143)
ETSIMP -0.0123 0.0785
(Dummy) (0.0619) (0.114)
Constant -5.433*** -18.06** -18.21** -0.874 10.26 11.52
(0.859) (8.404) (8.878) (1.968)  (8.753) (8.586)
Observations 298 298 298 298 298 298

Robust standard errors in parentheses.

*kk k%

and * denote p<0.01, p<0.05, p<0.1 respectively.

Results of the dependent variable clean patent are in Column. (1) — (3) and the dependent

variable dirty patent are in Column. (4) — (6).

We also repeat the procedure for the dependent variable dirty patents in Table 5.

We find similar effects for lagged dirty patent stock and carbon tax implementation

(CTIMP) dummy compared with our earlier estimates on dirty patent activities.
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Columns (1) - (3) in Table 6 show the results regarding the dependent variable
clean patents using only energy tax variable instead of energy price. Accordingly,
there is no significant effect of energy tax on clean innovation. We find similar
signs for lagged clean patent stock and clean R&D subsidies compared with our
earlier estimates on clean patent activities. In this specification, we observe that
implementing an emission trading system (ETSIMP) in Europe significantly
contributes to clean energy patenting.

We also repeat the procedure for the dependent variable dirty patents in Table 6.
In model (6), carbon tax policy positively influences dirty patent activity in Europe.
While this finding is rare in the literature, some studies suggest that stringent
environmental policies can support the development of fossil-based energy
technologies alongside clean energy technologies. Lanzi et al. (2012) note that
as fossil fuel prices rise in 11 OECD countries, patenting activity in clean
technologies increases, and patenting in fossil technologies also continues to
grow, though at a slower pace. We find similar effects for lagged dirty patent

stock compared with our earlier estimates on dirty patent activities.



Table 6 Regression with Energy Tax instead of Energy Price

102

Clean Patents

Dirty Patents

(1)

)

@)

(4)

®)

(6)

Own Stock 0.401*** 0.420*** 0.366***
Clean (0.0318) (0.0573) (0.0768)
Own Stock Dirty 0.370*** 0.451* 0.420***
(0.0679) (0.0683) (0.0782)
Energy tax -0.00803 0.246 0.282 0.243 0.423 0.287
(0.178) (0.210) (0.268) (0.245) (0.263) (0.269)
Clean R&D 0.377** 0.368*** 0.323*** -0.183*** -0.191** -0.113
(0.0816) (0.0877) (0.0952) (0.0697) (0.0818) (0.0848)
Dirty R&D 0.0433 -.0025478 -0.000643 0.0338 -0.0438 -0.0410
(0.0664) (0.077) (0.0750) (0.0825) (0.0773) (0.0674)
Efficiency R&D -0.0242 0.0235 0.0309 -0.0447 -0.0282 0.0230
(0.0625) (0.0654) (0.0806) (0.0443) (0.0583) (0.0698)
GDP 1.856* 1.787 0.323 0.148
(1.085) (1.150) (0.510) (0.561)
Tertiary -1.216*** -1.253*** -1.525%** -1.987***
(0.389) (0.412) (0.338) (0.485)
CTIMP 0.0278 0.387**
(Dummy) (0.101) (0.178)
ETSIMP 0.186*** 0.151
(Dummy) (0.0418) (0.112)
Constant 1.218** -13.38 -12.29 0.931 3.304 7.719
(0.492) (11.53) (12.22) (0.869) (5.414) (5.661)
Observations 298 298 298 298 298 298

*kk k%

Robust standard errors in parentheses. ***,

and * denote p<0.01, p<0.05, p<0.1 respectively.

Results of the dependent variable clean patent are in Column. (1) — (3) and the dependent

variable dirty patent are in Column. (4) — (6).
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To address potential overdispersion, we also tested the models using negative
binomial regression, the results of which are presented in Appendix 4. Our
findings generally align with those from the Poisson regression. Finally, we also
check the cross effects of past clean and dirty innovation stocks with our Poisson
regression model and the results are reported in Table 7.

Table 7 Cross Effects of Past Clean and Dirty Innovations

Dependent Variable: Clean Patents Dependent Variable: Dirty Patents
(1) (2) 3) (4) () (6)
Own Stock 0.155** 0.142 0.318** -0.145** -0.104 -0.191***
Clean (0.020) (0.114) (0.160) (0.070) (0.067) (0.065)
Own Stock Dirty | 0.072*** 0.097 0.104 0.676*** 0.640**  0.681***
(0.0229) (0.145) (0.207) (0.081) (0.080) (0.081)
Energy price 1.985*** 1.871* -0.624* -0.603**
(0.0594) (0.225) (0.278) (0.297)
Energy tax -0.193*** 0.00327 0.203** 0.197**
(0.024) (0.195) (0.093) (0.092)
Clean R&D 0.252** 0.239*** 0.393*** -0.106 -0.102 -0.111
(0.017) (0.067) (0.096) (0.072) (0.074) (0.073)
Dirty R&D 0.020*** 0.040 0.041 0.067** 0.077* 0.064**
(0.006) (0.044) (0.067) (0.031) (0.030) (0.031)
Efficiency R&D -0.015 -0.007 -0.033 -0.078* -0.087* -0.098**
(0.011) (0.041) (0.046) (0.047) (0.046) (0.045)
Observations 298 298 298 298 298 298

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively.
Results of the dependent variable clean patent are in Column. (1) — (3) and the dependent

variable dirty patent are in Column. (4) — (6).

Columns (1) and (3) of Table 7 indicate that countries with a history of innovation
in clean energy technologies are significantly more likely to continue innovating
in clean technologies in the future, with elasticities ranging from 0.155 to 0.318.
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In contrast, Columns (4) through (6) show that countries with a history of
innovation in dirty energy technologies are much more likely to persist in
innovating in dirty technologies, with elasticities of 0.640 and 0.681. These
findings suggest that the impact of past dirty innovation on future dirty innovation
is substantially greater than that of past clean innovation on future clean
innovation. Moreover, a history of clean innovation is negatively associated with
future dirty innovation, with elasticities of -0.104 and -0.191, implying that
countries with a history of clean innovation are less likely to innovate in dirty

technologies moving forward.

As highlighted in the Data section and depicted in Figure 3, a notable observation
is the sharp decline in the number of clean patents recorded in 2020. This decline
is likely influenced by the disruptions caused by the COVID-19 pandemic. To
account for the potential impact of the pandemic on our analysis, we re-estimated
all models after excluding the year 2020 from the dataset. The revised results
remained largely consistent with the original findings, confirming the reliability of
our conclusions. As a piece of evidence, we report the results of the analysis for
Table 7, using the dataset excluding the year 2020, in Appendix 4.

3.4. DISCUSSION

This study contributes to the literature on directed technical change and
environment in the energy sector. The empirical results reveal several key
insights into the dynamics of clean and dirty innovation activities across 16
European countries from 2000 to 2020.

First, the positive and statistically significant effect of energy prices on clean
patenting highlights the critical role of energy costs as a driver of innovation in
clean energy technologies. This finding aligns with the expectations of the
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directed technical change model, which suggests that higher energy costs can
incentivize the development of cleaner alternatives. This finding also aligns with
the time series, panel data analysis, and firm-level results obtained by authors
such as Lanzi and Wing (2010), Aghion et al. (2016), Ley et al. (2016), and Lin
and Chen (2018).

Aghion et al. (2016) suggest that rising energy costs suppress dirty patent
activities, slowing down innovation in fossil technologies within the automotive
industry. However, our findings do not show such a clear slowdown in the context
of 16 European countries. In fact, some of our findings suggest that energy tax
positively influences dirty innovation. Our dirty innovation indicator largely reflects
patent counts from the downstream processing sector, along with contributions
from upstream and transmission distribution technologies. This pattern may
reflect a path dependency, where sectors specializing in dirty technologies focus
on making existing fossil-based systems (specifically in downstream processing
and transmission distribution) more efficient rather than transitioning sharply
toward clean technologies. Policies like environmental or energy tax can increase
the operational costs of firms working with fossil energy technologies, such as
coal, oil, and gas. To manage these costs, companies may turn to developing
more energy-efficient technologies. As Lanzi et al. (2012) argue, rising fossil
energy prices or carbon taxes can drive innovation toward both clean and dirty
technologies through an efficiency effect. Wang et al. (2021) suggest that
advancements in coal-to-gas conversion under downstream processing improve

air quality, aligning with environmental policy goals.

Our indicator of dirty innovation mainly reflects activities within the downstream
processing of fossil fuels, such as coal-to-gas transitions. This indicates a
preference for using intermediates like gas during the shift from fossil fuels to

clean energy. Given the challenges of transitioning directly to clean technologies,
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it seems reasonable for firms in fossil-based industries to focus on downstream
innovations to avoid the additional costs imposed by environmental policies like
energy taxes. However, this approach could delay fully adopting fully renewable
clean energy. Aghion et al. (2019) argue that if intermediates like gas are used to
transition from fossil fuels to clean technologies, it should only be implemented

within a limited timeframe.

Brown et al. (2022) take a different view, suggesting that environmental taxes can
support R&D in sectors where new inventions are hard to generate but knowledge
transfer is relatively easy. Firms specializing in dirty technologies may invest in
R&D to acquire technical expertise through technology transfer. Furthermore, the
current tax rates in Europe might not be optimal. As Yang et al. (2019) noted in
their study of China, the tax system does not fully support innovation in clean
energy technologies.

Our findings also highlight the importance of R&D subsidies in promoting clean
energy innovations. The significant positive effect of clean R&D subsidies on
clean patents supports the notion that targeted financial support can effectively
direct technological advancements towards cleaner energy technologies. This
result is consistent with previous studies, such as Acemoglu et al. (2012),
Acemoglu et al. (2016), Johnstone et al. (2010), Dong et al. (2019) and Gugler et
al. (2024), which emphasize the role of subsidies in guiding the direction of
innovation. While clean R&D subsidies positively impact clean patent activities,
dirty subsidies have a positive and significant effect on dirty patent activities,
indicating that the specificity of subsidies is crucial in achieving desired outcomes.
We also find weak evidence regarding the impact of energy efficiency subsidies
on dirty patent activities.
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Moreover, we also validate the positive contribution of history of innovation in both
future clean and dirty patent activities. The coefficients of the lagged stock
variables indicate that previous innovations in clean (dirty) energy contribute to
technological developments in clean (dirty) innovation in the future. Aghion et al.
(2016) also report a similar effect and magnitude on the auto industry for the path
dependency hypothesis. This section of the analysis suggests another important
finding. European countries with a history of clean innovation are likely to

generate less dirty innovation in the future.

In conclusion, this study offers strong empirical evidence on the key forces
influencing technological innovation in Europe’s energy sector. The results
highlight the critical roles of energy costs, targeted R&D subsidies, and history of
innovation in guiding the direction of technological change. However, the
inconsistent impact of environmental policy measures and the varying effects of
economic and educational factors indicate that a more refined policy approach
may be necessary to promote clean energy innovations effectively. Future
research, especially studies encompassing a more comprehensive array of
countries and exploring cross-sectoral spillovers, would enhance our

understanding of these complex dynamics.

3.5. CHAPTER SUMMARY

This study presents empirical findings on how energy costs, environmental policy,
and history of innovation influence the direction of technological change. By using
panel count data techniques, we analyze the impacts of energy price, energy tax,
R&D subsidies and countries’ history of innovation on clean and dirty innovation
propensity. We also control the effect of GDP per capita and tertiary school

enrollment ratio on innovation activities.



108

Our regression results align with several key findings in the directed technical
change literature. First, we show that higher energy price is associated with a
higher innovation effort in clean energy technologies but its effect on dirty
innovation is ambiguous. Second, our findings highlight the essential role of
research subsidies in the direction of technical change, as Acemoglu et al. (2012)
emphasized, particularly given the higher elasticity of clean R&D subsidies
compared to dirty ones. Last, we confirm the path dependency hypothesis,
suggesting that countries with a higher propensity for innovation in clean (dirty)
technologies are more likely to innovate in clean (dirty) technologies in the future.

Several limitations should be acknowledged to contextualize the findings and
guide future research. First, one significant limitation is the potential for cross-
sector technology spillovers, which the study does not fully address.
Technological advancements in one sector can influence and drive innovations in
other sectors. However, the current analysis does not capture these cross-sector
interactions. Second, the study focuses on 16 European countries without
comparing the results with those of other regions or countries. This limitation
restricts the generalizability of the findings. Different regions may have varying
levels of policy stringency, innovation capacities, and economic structures. A
comparative analysis with non-European countries or other regions could provide
a more comprehensive understanding of how contextual factors shape these

dynamics.
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CONCLUSION

One of the key areas where technological change have the greatest impact is
energy sector. Technological improvements have made it possible to use both
renewable and non-renewable energy sources more efficiently and effectively. In
this context, technological change is essential for either replacing unsustainable
production methods based on fossil fuels with sustainable, renewable energy

alternatives or improving the efficiency of current fossil fuel use.

While engineering continues to drive technological progress, a key question for
economists remains: How feasible is a full transition to clean technologies for
economies still heavily reliant on fossil fuels, given the path dependency of these
technologies? One of the most comprehensive answers to this question comes
from Acemoglu et al. (2012). Their research shows that without government
intervention through environmental policies, dirty technologies will retain a
relative productivity advantage over clean technologies, making the fight against
climate change unsuccessful. They propose that the optimal policy involves
applying carbon taxes and research subsidies for clean technologies together for
a certain period. Under the condition that the substitution rate between clean and
dirty technology sectors is sufficiently high, this approach can permanently
improve the productivity of clean technologies and support efforts to combat
climate change.

In this thesis, we explore the pivotal role of technological change in addressing
the global challenge of transitioning from fossil-based to renewable energy
systems. Our analysis highlights the importance of fossil energy costs, cross-
industry technology spillovers and environmental policy in directing innovation
efforts towards clean energy technologies.
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One of the central insights of this research is the critical role of substitution rates,
spillovers, and energy costs in determining the direction of technological change.
The theoretical model developed in this dissertation incorporates these factors,
demonstrating their influence on the allocation of innovation efforts across clean
and dirty sectors. Specifically, it shows that strong technology spillovers and high
substitution rates can mitigate the productivity advantage of dirty technologies,
thereby accelerating the transition to clean technologies. Empirical findings
further validate and extend these theoretical insights. Using patent data from 16
European countries, the analysis confirms that rising energy prices and targeted
research subsidies significantly enhance clean technology innovation. However,
the results also underline the persistence of path dependency in technological
innovation: countries with a strong historical focus on dirty or clean technologies
tend to continue along these trajectories. The theoretical result discussed in
Chapter 2, where a low substitution rate between clean and dirty technologies
leads to higher fossil energy costs driving dirty innovation, is partially observed in
Chapter 3 for European countries. Our empirical findings suggest that, in certain
specifications, energy taxes (especially as indicated by the carbon tax dummy)
stimulate dirty innovation. We attribute this notable outcome to the fact that, within
our sample, the dirty innovation indicator is primarily based on energy patents
related to downstream processing technologies.

The directed technical change model and empirical analysis in the last two
chapters of this dissertation raise several important questions for future research
beyond the scope of the questions addressed. First, the model developed in the
second chapter could be further enhanced by incorporating an environmental
constraint, which would provide a more comprehensive and holistic analysis.
Second, in the third chapter’s country-level panel data analysis, the lack of access
to country-level patent citation data restricts our ability to fully capture the effects
of technology spillovers, which are typically proxied by patent citations in the
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literature. By organizing patent citations by country using existing databases, a
comprehensive citation dataset can be created. This would provide a valuable
resource for conducting more detailed analyses of technological trends,
innovation patterns, and cross-country technology spillovers.
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APPENDIX 3 DECISION PROBLEMS

Final Good Producer Problem

_ Lenele1
L=P,Y, —PyYy + A [Yt — (vETVE gy ey ] (A.2.1)

where 4 is the Lagrange multiplier.

FOCs imply that:

1 1
Py =AY (Y5 4y o)e T (A.2.2)
1 1
Py = AV E(YE Ve 4y He)e T (4.2.3)
v, = (vEoV/e 4 yen1/e) e A.2.4
t _( ct + dt ) ( r e )

Intermediate Input Producers' Problem

Clean Input

Solving for Labor and wage in clean industry yields:

FOCs:
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Lep: (1 — )P Lot AL xS, —wE =0 (A4.2.5)

wit = (1 — )P, L 2AL“xE, (A4.2.6)

Solving for machine demand in clean industry:

Xeie: PerLe “0Ag x ot — Peye = 0 (4.2.7)

Dirty Input

Solving for machine demand, labor and energy demand in dirty industry:

FOCs:

Xaie: Pae ES2 LY % AL Sy x ™ — Py = 0 (A.2.8)
Lge: (1 — )Py ES? LR AL x5 —wh =0 (4.2.9)

Ege: 0 Pg B2 LA xSt —cp = 0 (4.2.10)



Solving for (A.2.8) yields,

a2 y1—a g1—0aq -1 _
Pthdt Ldt Adit G Xgie = Pait

Solving for (A.2.9) yields,

_ A2 r—ogql-0g g _ L
(1 = O PgE 2 Lgi Ay X gy = Wi

Finally, solving for (A.2.10) yields that,

ar—1;1—a g1-a; oq __
0 PatEyr Lae Agir Xair = CE

Machine Producer Problem

Clean Industry
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(A.2.11)

(A.2.12)

(A.2.13)

The FOCs of the maximization problem relative to choice of the number of

scientists:

ﬁ Arq ¢ n-1
Scit:a(l —(X)Pct LctAct—1A<A ) nS,;
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ws = c (A.2.14)

Dirty industry

The FOCs of the maximization problem relative to choice of the number of

scientists:

. A\ -
Saie: a1 (1 — al)(PatngLEt“)l_“lAdt—M <T> nsgitl - Wts =0
t—1

A\
wi = (1 — a)XgieAge-14 (A—t ) nsgitl
dt-1

A, ¢
a1 XqiNAA g1 (A =1 )
-1 (A.2.15)

(1 —1a1) Séi_tnAdit

ws =
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APPENDIX 4 ROBUSTNESS CHECK RESULTS

NEGATIVE BINOMIAL REGRESSION RESULTS WITH ENERGY PRICE AND
ENERGY TAX

Dependent Variable: Clean Patents Dependent Variable: Dirty Patents

(1) () @) (4) () (6)

Own Stock 0.383*** 0.482*** 0.488***
Clean (0.037) (0.045) (0.047)

Own Stock Dirty 0.566*** 0.751*** 0.791***
(0.064) (0.069) (0.072)

Energy price 1.649*** 1.415** 1.372*** 0.062 0.103 0.055
(0.230) (0.228) (0.245) (0.270) (0.261) (0.291)

Energy tax -0.214** -0.144 -0.162* -0.024 0.057 -0.008
(0.083) (0.089) (0.092) (0.120) (0.125) (0.129)

Clean R&D 0.123** 0.121* 0.114* 0.049 0.055 0.038
(0.053) (0.052) (0.053) (0.063) (0.062) (0.062)
Dirty R&D -0.005 -0.053** -0.050** -0.0179 -0.122***  -0.110***
(0.023) (0.024) (0.024) (0.032) (0.032) (0.033)

Efficiency R&D -0.051 -0.021 -0.018 -0.039 -0.009 0.001
(0.033) (0.033) (0.033) (0.045) (0.045) (0.045)

GDP 0.191 0.160 -0.125 -0.236
(0.185) (0.188) (0.276) (0.296)
Tertiary -0.949*** -1.093*** -1.869***  -2.126™**
(0.223) (0.245) (0.274) (0.303)

CTIMP 0.111 0.270**
(Dummy) (0.078) (0.105)

ETSIMP 0.011 -0.025
(Dummy) (0.075) (0.093)
Constant -7.182*** -4.747** -3.650 -0.349 8.116*** 10.52***

(0.932) (2.196) (2.312) (1.121) (2.821)  (3.074)

Observations 298 298 298 298 2908 298

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively.
Results of the dependent variable clean patent are in Column. (1) — (3) and the dependent
variable dirty patent are in Column. (4) — (6).
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NEGATIVE BINOMIAL REGRESSION RESULTS WITH ENERGY PRICE
INSTEAD OF ENERGY TAX

Dependent Variable: Clean Patents

Dependent Variable: Dirty Patents

(1)

()

3)

(4)

®)

(6)

Own Stock 0.388*** 0.484*** 0.485***
Clean (0.037) (0.045) (0.047)
Own Stock 0.568*** 0.748*** 0.791***
Dirty (0.064) (0.069) (0.072)
Energy price 1.565*** 1.346*** 1.274** 0.054 0.135 0.049
(0.228) (0.223) (0.239) (0.267) (0.253) (0.277)
Clean R&D 0.106* 0.111** 0.101* 0.048 0.055 0.038
(0.053) (0.052) (0.053) (0.062) (0.062) (0.062)
Dirty R&D -0.006 -0.055** -0.053** -0.017 -0.123*** -0.110***
(0.023) (0.024) (0.024) (0.032) (0.032) (0.033)
Efficiency R&D -0.037 -0.013 -0.010 -0.038 -0.012 0.002
(0.032) (0.033) (0.033) (0.045) (0.045) (0.044)
GDP 0.336** 0.329** -0.182 -0.227
(0.165) (0.166) (0.248) (0.256)
Tertiary -1.020*** -1.154*** -1.836*** -2.130***
(0.221) (0.247) (0.264) (0.296)
CTIMP 0.086 0.269***
(Dummy) (0.078) (0.103)
ETSIMP 0.037 -0.024
(Dummy) (0.074) (0.091)
Constant -7.226*** -5.929*** -4.999** -0.364 8.554*** 10.45***
(0.933) (2.084) (2.202) (1.115) (2.662) (2.852)
Observations 298 298 298 298 298 298

Robust standard errors in parentheses.

variable dirty patent are in Column. (4) — (6).

*kk k%

and * denote p<0.01, p<0.05, p<0.1 respectively.
Results of the dependent variable clean patent are in Column. (1) — (3) and the dependent
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Clean Patents

Dirty Patents

(1)

)

@)

(4)

®)

(6)

Own Stock 0.512*** 0.621*** 0.577***
Clean (0.035) (0.040) (0.044)
Own Stock Dirty 0.572*** 0.760*** 0.793***
(0.059) (0.065) (0.071)
Energy tax -0.140 -0.0504 -0.0503 -0.020 0.070 -0.0008
(0.087) (0.092) (0.094) (0.118) (0.120) (0.123)
Clean R&D 0.135** 0.139** 0.105* 0.0506 0.0595 0.038
(0.057) (0.055) (0.056) (0.062) (0.061) (0.062)
Dirty R&D -0.016 -0.082*** -0.070*** -0.0180 -0.123*** -0.110***
(0.024) (0.024) (0.024) (0.032) (0.032) (0.033)
Efficiency R&D -0.040 -0.001 -0.005 -0.039 -0.009 0.001
(0.035) (0.035) (0.035) (0.045) (0.045) (0.045)
GDP 0.210 0.221 -0.102 -0.221
(0.199) (0.199) (0.268) (0.285)
Tertiary -1.273*** -1.468*** -1.876*** -2.137**
(0.223) (0.244) (0.273) (0.297)
CTIMP 0.132* 0,272+
(Dummy) (0.079) (0.105)
ETSIMP 0.181** -0.017
(Dummy) (0.071) (0.083)
Constant -0.851*** 1.631 2,573 -0.103 8.287*** 10.63***
(0.253) (2.076) (2.119) (0.333) (2.772) (3.013)
Observations 298 298 298 298 298 298

*kk k%

Robust standard errors in parentheses. ***,

and * denote p<0.01, p<0.05, p<0.1 respectively.

Results of the dependent variable clean patent are in Column. (1) — (3) and the dependent

variable dirty patent are in Column. (4) — (6).
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CROSS EFFECTS OF PAST CLEAN AND DIRTY INNOVATIONS (2000-2019)

Dependent Variable: Clean Patents

Dependent Variable: Dirty Patents

(1) () @)

(4) (%) (6)

Own Stock 0.381*** 0.357*** 0.504*** -0.081 -0.083 -0.034
Clean (0.080) (0.079) (0.101) (0.128) (0.134) (0.078)
Own Stock Dirty -0.072 -0.032 -0.087 0.434* 0.436***  0.415***
(0.083) (0.087) (0.102) (0.139) (0.147) (0.128)
Energy price 1.123*** 0.981*** 0.344 0.357
(0.254) (0.245) (0.424) (0.439)
Energy tax -0.256** -0.159 0.116 0.122
(0.128) (0.138) (0.197) (0.197)
Clean R&D 0.165** 0.151** 0.226*** 0.090 0.098 0.095
(0.064) (0.064) (0.076) (0.057) (0.065) (0.060)
Dirty R&D 0.010 0.034 0.017 -0.027 -0.040 -0.025
(0.041) (0.037) (0.049) (0.063) (0.043) (0.066)
Efficiency R&D 0.053 0.064 0.053 0.041 0.031 0.033
(0.047) (0.047) (0.052) (0.062) (0.072) (0.063)
Observations 283 283 283 283 283 283

Robust standard errors in parentheses. ***, ** and * denote p<0.01, p<0.05, p<0.1 respectively.

Results of the dependent variable clean patent are in Column. (1) — (3) and the dependent

variable dirty patent are in Column. (4) — (6).
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