SOME RESULTS ON A GROUP UNDER WHICH
SYMMETRIC REED-MULLER CODES ARE INVARIANT

SIMETRIK REED-MULLER KODLARININ DEGISMEZ
OLDUGU BiR GRUP UZERINE BAZI SONUCLAR

SIBEL KURT TOPLU

PROF. DR. PINAR AYDOGDU
Supervisor
DOC. DR. OGUZ YAYLA

2nd Supervisor

Submitted to
Graduate School of Science and Engineering of Hacettepe University
as a Partial Fulfillment to the Requirements
for the Award of the Degree of Doctor of Philosopy

in Mathematics

June 2024

ABSTRACT

SOME RESULTS ON A GROUP UNDER WHICH SYMMETRIC
REED-MULLER CODES ARE INVARIANT

Sibel KURT TOPLU

Doctor of Philosopy, Mathematics
Supervisor: Prof. Dr. PINAR AYDOGDU
2nd Supervisor: Do¢. Dr. OGUZ YAYLA

June 2024, 91 pages

The Reed-Muller codes are a family of error-correcting codes that have been widely
studied in coding theory. In 2020, Wei Yan and Sian-Jheng Lin introduced a variant of
Reed-Muller codes so called symmetric Reed-Muller codes. We investigate linear maps of
the automorphism group of symmetric Reed-Muller codes and show that the set of these
linear maps forms a subgroup of the general linear group, which is the automorphism group
of punctured Reed-Muller codes. We provide a method to determine all the automorphisms

in this subgroup explicitly for some special cases.

Keywords: Reed-Muller codes, Symmetric Reed-Muller codes, Affine invariant,

Automorphism groups.

OZET

SIMETRIK REED-MULLER KODLARININ DEGISMEZ OLDUGU
BiR GRUP UZERINE BAZI SONUCLAR

Sibel KURT TOPLU

Doktora, Matematik
Damisman: Prof. Dr. PINAR AYDOGDU
Es Damisman: Do¢. Dr. OGUZ YAYLA
Haziran 2024, 91 sayfa

Kodlama teorisinde, yillardir gonderici ve alici arasinda veri aligverisini daha iyi hale
getirmek i¢in ¢alismalar yapilmaktadir. Bu bilgi alisverisi sirasinda basa cikilmasi gereken
en Onemli sorun iletisim sirasinda olusacak hatalardir. Bunun icin mesajin sonuna eklenen
kontrol bitleri gibi ¢esitli 6nlemler alinmistir. Bu kontrol bitleri sayesinde alic1 aldigi
mesaj1 kontrol edebilir. Asagida bu sekilde kontrol edilebilen kodlar icin temel kavramlar

verilecektir.

[, vektor uzay lizerinde n uzunluklu bir C' kodu, Fy kiimesinin bir alt kiimesidir. Ozel
olarak, lineer kodlarin alfabesi de sonlu cisim iizerinde tanimhdir. [F, iizerinde bir lineer

kod, F} vektor uzayimin bir alt uzayidir.

Kod kelimeleri arasindaki minimum uzaklik bir kodun 6nemli parametrelerindendir. C,
[y tizerinde bir lineer kod olsun. C’nin minimum uzakligi kod kelimelerinin birbirleri

arasindaki uzakliklardan en kiigiigiidiir, yani

d=d(C) =min{d(z,y) | x,y € C,z # y}.

ii

seklinde tanimlidir.

Bir lineer C' kodu, [vektor uzayimin & boyutlu alt uzayi ve C"nin minimum uzakhgi d ise

C koduna g-lu bir [n, k, d]-kod denir (bkz. [1]).

Bir kodu olusturan tiim elemanlara kod sozciigii denir. C' lineer kodu ¢* adet kod kelimesine

sahiptir.

Bir lineer [n, k|-kodunun oram %’dir. Bu oran her bir kod kelimesinin ne kadar bilgi
d(C)

tagidiginin Slgiisiidiir. Bir C' kodunun géreceli uzakligr ise =~ olarak tanimhdir.

Bir # € F} vektoriiniin agirhigi, z’teki sifirdan farkli sembollerin sayisidir ve w(z) ile
gosterilir. Minimum uzaklik ve minimum agirlik tanimlar1 kullanildiginda

v,y €Fy <= d(x,y) = w(x —y)
oldugu goriilir. Bundan dolayi, bir C' lineer kodunun sifirdan farkli kod kelimelerinin
minimum agirhigi w(C'), minimum uzaklid1 d(C') birbirine esittir.

C'bir [n, k]-kod olsun. Satirlari, C' kodu i¢in bir taban olusturan k& x n boyutlu bir G matrisine,
lirete¢ matrisi denir. Bilesenleri F,’dan alinan ve sirali k-lilerden olusan vektor uzay1 V (k, q)

olmak iizere, C kod uzay1 agagidaki gibidir :
C={2G|zeV(kq)}

Ureteg matrisi, I birim matris olmak iizere, G = [I}, | A] bigimindedir.

C’nin dual kodu C+ = {v € V(n,q) | v.c = 0,Ve € C} olarak tammlidir. Bu durumda,
C kodunun duali C* bir lineer [n,n — k]-koddur. Bir C' lineer kodunun dualinin duali de

kendisine esittir, yani (C+)+ = C’dir.

C bir lineer [n,k|-kod olsun. C*’nin iirete¢ matrisi H, C’nin kontrol matrisi olarak
adlandirilir. Bu durumda,

reC < zH' =0

ii

saglanir.

Kodlama teorisinin ana amaclarindan biri en yiiksek hata dogrulama kapasitesine, genis
bir goreceli uzakliga ve yiiksek bir bilgi oranina ulagsmaktir. Ancak, bu amaca ulagsmada
belirli kisitlayict 6zellikler mevcuttur. Bu kisitlardan bir tanesi de Singleton kisitidir. C bir

[n, k, d]-kod olmak iizere, bu kisit agagidaki sekilde tanimlanir :

d<n—k+1.

Reed-Solomon kodlari, 1960 yillarinda bulunmus lineer kodlardir. Reed Solomon kodlari
¢oklu hata tespit eden ve diizeltebilen lineer kodlardir. Bu kod, F§ iizerinde tanimli, blok

uzunlugu n, boyutu £, minimum uzaklig1 d = n — k + d’dir.

{mK | Kg {1727771}7'[(‘ S?"}
olur.

Reed-Solomon kodlarini inga etmede bir¢cok yontem vardir. Her bir Reed-Solomon kod
kelimesi, derecesi k’den kiiciik polinom degerlerinin bir dizisidir. Reed-Solomon kod

kelimesinin mesaj sembolleri, derecesi £’den kiiciik, I, iizerindeki polinomun katsayilaridir.

Bir mesaj m = (mg, mq, ..., mg_1), bir ¢ polinomu t(z) = mg + myx + ... + my_12* !

icerisine gomiiliir. «v ilkel bir eleman olmak iizere Reed-Solomon kodu
C={t1),t(a),....,t(a") | t € F[z],der(t) <k}

seklinde olusturulur. Gonderici bu sekilde bir kod kelimesini {1, ,...,a" '} kiimesinde

degerlendirdiginde ortaya c¢ikan s = (si,s9,...,5,)’yi alictya gonderir. Alict bu s;

noktalarindan en az ¢ tanesinin s; = t(a') formatinda oldugunu bilir ve buna gore aldig

koddan mesaj1 tekrar olusturur.

Reed-Muller (kisaca, RM) kodlar: ise 1950’lerde bulunmus, kolay desifre edilebilen lineer
blok kodlardir ve bir¢ok olusturulma yontemi vardir. Bu kodlar, Boolean fonksiyonlarla ya

v

da polinomlarla olugturulur. r-dereceli Reed-Muller R(r, m) kodu derecesi en fazla r olan
tiim polinomlarin kiimesidir. RM kodlar1 yinelemeli olarak tanimlanabilir. R(0,m), taban
1 olan, O-dereceli ve kod sozciiklerinin uzunlugu 2™ olan koddur. R(r,m), 1 < r < m igin

r-dereceli ve uzunlugu 2" olan bir kod olsun. Bu kodu yinelemeli olarak
R(r,m) ={(u,u+v) |ue R(r,m—1),v€ R(r—1,m—1)}.

seklinde olusturabiliriz. R(r, m)’ nin iirete¢ matrisi G, olsun. Bu durumda R(r+1,m+1)

i¢in lirete¢ matrisi yinelemeli olarak {iretilebilir ve bu durumda

G(r+1,m) G(r+1,m)

Gr+1l,m+1)=
0 G(r,m)

matrisi elde edilir (bkz. [1]).

0 < r < m olacak sekilde r ve m iki tamsay1 olsun. Bu durumda R(r,m) asagidakileri

saglar :

1) R(r—1,m) C R(r,m).
2) R(rym)t = R(m —r —1,m).
3) R(r,m) kodunun boyutu (7) + (7) + ...+ (7}).

4) R(r,m) kodunun minimum uzakhgi d = 2.

0 < r < m—1i¢in R(r,m) kodunun tim kod kelimelerinden belli bir koordinatinin
silinmesiyle elde edilen kod kelimelerinden olusan koda delinmis (punctured) Reed-Muller
kod R(r,m)* denir. Dolayisiyla, delinmis Reed-Muller kodlar, Reed-Muller kodlarinin 6zel
bir halidir.

Lineer kodlarin birbirlerine denklikleri ve bu denkliklerin cesitleri vardir. C; ve Cs5 lineer

kodlarinin permutasyon denk olmasi, C;’den Cy’ye giden bir koordinat permutasyonunun

var olmasi1 demektir. P,, permiitasyon matrisleri kiimesi, her satir1 ve siitununda yalnizca bir
adet 1 olan ve bunun digindaki tiim yerlerde 0 olan karesel matrislerden olusur. Permiitasyon
denk olan C'; ve (% lineer kodlar1 ayn1 uzunluga sahip olmakla birlikte, iirete¢ matrisleri G

ve (G5 arasinda, P € P,, olmak tizere,

G2:G1P.

esitligi saglanir (bkz. [1]).

Her bir satirinda ve siitununda, sifirdan farkli sadece bir eleman olan bir matrise monom adi

verilir. Tki lineer kodun monom denk olmast, iki kodun tirete¢ matrisleri G; ve G, arasinda

GQ = GlM

esitliginin saglanmasi demektir (bkz. [1]).

En genel olarak, iki lineer kodun denk olmasi soyle tanimlanmaktadir: C; ve C bir F' sonlu

cismi iizerinde ayni uzunluga sahip iki lineer kod olsun.

02 == OlM’}/

esitlifini saglayan bir M/ monom matrisi ve F’ lizerinde bir -y cisim otomorfizmasi varsa, C

ile C5 kodlar1 denktir denir.

Bu ii¢ denklikten yola ¢ikarak, li¢ tip otomorfizma grubu olusturulabilir. [, sonlu cismi
tizerinde uzunlugu n olan bir C' kodunu diisiinelim. C' kodunu kendisine gotiiren koordinat
permutasyonlarinin kiimesi bir grup olusturur ve bu gruba C’nin permutasyon otomorfizmasi
denir ve PAut(C) ile gosterilir. PAut(C')’nin S, nin bir alt grubu oldugu acikca goriilir.
Bir C' kodunu, monom denk olarak yine bu C' koduna gétiiren tiim monom matrisler bir
grup olusturur. Bu gruba, C”nin monom otomorfizma grubu denir ve M Aut(C') ile gosterilir.
Son olarak, C' kodunu kendisine gotiiren tiim M~ elemanlar1 C’nin otomorfizma grubunu

olusturur ve Aut(C') ile gosterilir. Bu otomorfizma gruplari arasinda

vi

PAut(C) C MAut(C) C Aut(C)
kapsamalar1 saglanir (bkz. [1]).

Ikili kodlar i¢in PAut(C) = MAut(C) = Aut(C) elde edilir. Bu durumda, s6z konusu
otomorfizma gruplari, S,, simetrik grubunun bir alt grubudur. Eger Aut(C'), genel afin gruba
izomorfik bir grup iceriyorsa, C' koduna afin degismez denir. Bu yiizden, R(r, m) kodu afin

degismezdir.

Genel afin grup GA(m,2), r dereceli R(r,m)’nin tiim kod kelimelerini yer degistirir ve
GA(m,2) C AutR(r,m) olur [2]. Genel lineer grup, delinmis Reed-Muller kodun tiim kod
kelimelerini yer degistirir. O halde, GL(m,2) C Aut(R(r,m))* elde edilir (bkz. [2]). Bu
bilgiler 1s181nda MacWilliam vd. kitabindan [2] su esitlikleri elde ederiz. 1 < r < m — 2
icin Aut(R(r,m)*) = GL(m,2) ve Aut(R(r,m)) = GA(m,2).

Kodlama teorisi alaminda kod otomorfizmalari 6nemli bir yer tutmaktadir. ~Ornegin,
lineer kodlarin otomorfizmalar1 kodun yapisini belirlemede, agirlik dagilimini hesaplamada,
kodlar1 siniflandirma ve ¢6zme algoritmalarim gelistirilmesinde ¢ok kullanigh bir kavramdir.
Ayrica otomorfizmalarin incelenmesi, etkili ¢6zme algoritmalarinin gelistirilmesine katkida
bulunabilir. Bir kodun i¢indeki simetriler kullanarak, hatalar1 diizeltmek i¢in hesaplama
acisindan daha verimli algoritmalarin tasarlanabilecegi diisliniilmektedir. Bu nedenle,
kodlarin otomorfizmalari, kodlarin hata diizeltme 6zelliklerini anlama ve karakterize etme
konusunda kritik bir rol oynar. Dolayisiyla, bir kodun simetrilerini inceleyerek, hatalarin
kodlanmig bilgiyi nasil etkiledigi ve kodun bu hatalar1 nasil diizeltebilecegi veya tespit
edebilecegi konusunda fikirler kazanilabilir. Kodlama teorisinde kod otomorfizmalari,
kodlarin yapisimi ve Ozelliklerini anlamak i¢in 6nemli bir aractir. Kod otomorfizmalari,
iki kodun birbirine esdeger olup olmadigini belirlemeye yardimci olur. Eger iki kod, bir
otomorfizma ile birbirine doniistiiriilebiliyorsa, bu kodlar ayni bilgiyi tasidigi anlamina
gelir. Kod otomorfizmalari, kodlarin yapisal 6zelliklerini incelemek i¢in de bir yontem
sunar. Bu sayede kodlarin simetrik ozellikleri ve yapilar1 daha iyi anlasilabilir. Ayrica,

kod otomorfizmalarini desifre etme siirecine entegre ederek, sifre ¢oziimleme stratejilerinin

vii

verimliligini ve etkinligini artirabilir. Otomorfizma grubunu tanimlamak ve 6zelliklerinden

faydalanmak, hesaplama yiikiinii azaltarak sifre ¢dziimleme performansini iyilestirebilir.

RM kodlari, Irving S. Reed ve Gustave Solomon Muller tarafindan 1954 yilinda tanitilan bir
hata diizeltme kodlar ailesidir. Literatiirde bircok RM kodu varyasyonu ve genellestirmesi
tanitilmistir (bkz. [2—4]). Bu kodlarin ikili versiyonlari, ikili polinomlarla tanimlanir ve
polinomun uygun noktalarda degerlendirilerek olusturulur. RM kodlarinin bir¢ok 6nemli
ozelligi vardir ve bu da onlar1 bircok uygulamada kullanmigli hale getirir. Ayrica, basit
kodlama ve ¢bzme algoritmalarina sahiptirler, bu da onlar1 daha verimli hale getirir. Benzer
sekilde, RM kodlarinin otomorfizmalari, kodlarin hata diizeltme o6zelliklerini anlama ve
karakterize etme konusunda kritik bir rol oynar. Bu nedenle, kodun simetrilerini inceleyerek,
hatalarin kodlanmig bilgiyi nasil etkiledigi ve kodun bu hatalar1 nasil diizeltebilecegi veya
tespit edebilecegi konusunda Ongoriiler kazanilabilir. Reed-Muller kodlari, ornegin, [Fo
lizerinde tamimlanan ikili RM kodlar1 ve [, iizerinde tanimlanan p-ary RM kodlar1 gibi
cesitli varyasyonlara sahiptir. RM kodlari, 6zellikle flag bellek ve kablosuz iletisim gibi
cesitli uygulamalarda yaygin olarak kullanilan bir tiirdiir. Ayrica, RM kodlar1 bir¢ok sekilde
genellestirilmigtir, 6rnegin, bir keyfi sonlu cisimde tanimlanan genellestirilmis Reed-Muller
kodlar1 (kisaca, GRM) [3], ve belirli bir simetri 6zelligine sahip olan simetrik Reed-Muller
kodlar1 (kisaca, SRM) [5] vardir.

Bu tezde, SRM kodlarinin otomorfizma grubunun, lineer doniisiimlerden olusan bir alt
grubunu inceleyecegiz. Kodlama teorisi literatiiriinde, klasik kodlarin ¢ogunlugunun biiyiik
bir otomorfizm grubu bulunur ve bu genellikle bir dogrusal gruba baghdir. Ornegin,
GRM kodlar, [, iizerinde derecesi m olan genel afin grup GA(m, ¢) alunda degismezdir
(bkz. [3]). Bir kodun afin grup altinda degismez olmas1 i¢in bir gereklilik, Kasami
ve arkadaslan tarafindan [6]’de verilmistir. Delsarte, bu kodlar1 belirli dogrusal gruplar
altinda degismez olarak tamimlar [7]. GA(m,q) altinda, sadece p-ary RM kodlarinin
degismez oldugunu gosterir, ancak tam otomorfizma grubunun belirlenmesi sorunu
heniliz ¢oziimlenmemistir. Bir kodun tam otomorfizma grubunun belirlenmesi, siklikla
basit gruplarin kategorizasyonuyla iligskilendirilen zor bir konudur. Diir, Reed-Solomon

kodlarinin ve uzantilarinin otomorfizma gruplar1 lizerine aragtirmalar: ile tanmr (bkz.

viii

[8]). Berger, GRM kodlarinin tam otomorfizma gruplarim1 [9]’da kanitlamistir. 1996’da,
Berger GA(m, ¢)’nin herhangi bir afin degismez kodun permiitasyon grubunu icerdigini
gostermistir (bkz. [10]). Projektif ve homojen RM kodlarinin tam otomorfizma gruplari
[11]°de bulunmustur. Bu gruplar, sirasiyla projektif lineer grup ve genel lineer grup ile

iligkilidir.

SRM kodlari, T, iizerindeki ikili polinomlar kullamlarak ilk kez [5]’da tamtilmigtir. ki
degiskenli SRM kodlarinin yerel diizeltilebilirligi [12]’de tartistlmigtir. Ad1 gecen ¢alismada,
simetrik yapilarin avantajlar1 Ozetlenmistir ve SRM kodlarinin yerel diizeltilebilirlik
acisindan GRM kodlarina istiinliigiinii sezgisel olarak ele alinmistir. SRM kodlarimin ve
GRM kodlarinin ayni sonlu cisimdeki hata tolerans oranlar1 ve kod oranlart gosterilmistir.
Daha sonra, yerel olarak diizeltilebilir kodlarin bir sinifinin, ¢cok degiskenli SRM kodlar1
SRM,[n, r]’den olustugu belirlenmistir. Ardindan, SRM,[n, r|’nin dualitesi sunulmustur.
Ancak, bu kodlar1 degismez birakan doniisiimler, ozellikle de otomorfizma grubuna ait
olanlar, heniiz incelenmemistir. ~ Arastirmadaki bu bogluktan ilham alarak, odagimizi
bu sorunu ele almaya yonlendirdik. Bu calismada, simetrik Reed-Muller kodlarinin
otomorfizma grubunun lineer doniisiimleri incelenmis ve bu lineer doniisiimler kiimesinin,
delinmis Reed-Muller kodlarinin otomorfizma grubu olan genel lineer grubun bir alt grubunu
olusturdugu gosterilmistir. Bazi 6zel durumlar icin, bu alt gruptaki tiim otomorfizmalari

acikca belirlemek i¢in bir yontem sunulmustur.

m ve r pozitif tamsay1 olmak iizere, r dereceli, ¢”* uzunluklu genellestirilmis Reed-Muller

kodu
GRM,(m,r) = {(f())acry | f € Fyfar, .. @], deg(f) < r}.

kiimesi olarak tanimlanir. qw”’qq

Aut(GRMy(m,r)) = GA(m, q)

SRM kodlari, kod kelimelerinin belirli simetri 6zelliklerini saglayan GRM kodlarinin bir

alt kod ailesi olarak diigiiniilebilir (bkz. [5]). SRM’nin tanimini yapmak i¢in dnce bazi

notasyonlar1 vermek gerekir :

r=(x1,2T2,...,2,), 5 = (i1,42,...,1,) olmak lizere

E,(n,r) = {f(xl,xg, e Xy) = E Qiyig.i, det(x,7) | aiyiy. i, € Fq}
0<i1 <ig<...<in<q—1
11+Z2++’Ln§7’

tanimlansin.

A ={(a1,az,...,0,) €Fy | a; #a;;1 < j<i<n}

kiimesi iizerinde ~ denklik bagintis1 asagidaki gibi tanimlansin:
c~d <= c,d € F} olmak iizere o (c) = d kosulunu saglayan bir o € S, vardir.

[a], o’nin denklik simnifi olmak iizere, 2,(n) = A/ ~= {[a] | o € A} kiimesini

tanimlayalim.

n ve r pozitif tamsayilar olsun. [, iizerinde, r dereceli bir SRM kodu

SRM,[n, 7] = {(f(@))jaleaym) | f € Eq(n,r)}

kiimesi ile tammmhidir. (bkz. [12]).

n = 2 ve n = 3 igin ¢ bir asal olmak iizere I, iizerinde bir SRM kodu, genel afin grubunun
bir alt grubunda afin degismezdir. Ilk olarak, n = 2 durumu igin SRM,[2, 7] kodunun afin

degismez oldugu grubu inceledik.

T T2 T T2
Ey(2,7) = > o<icj<q-1aij | | |aiy € F, pelealalim. f(zy,20) = | | €
i+j<r xlj 1~2] xlj :UQ‘]
a
E,(2,r)ve A = olsun. Bir matris kullanilarak elde edilen doniisiime 7' diyelim.

c d

Bu durumda 7 (A) doniisiim matrisini asagidaki gibi elde ederiz :

T(A) (axy + bxg)' (cxy + dxy)’
f = . .
(azy + bxg)? (cxy + dxg)

= (axy + bxo)" - (cay + dx)! — (amy + brs)’ - (cwy + day)'.

E,(2,r) kiimesini degismez birakan doniisiimii bulmak icin a,b,c,d € [, katsayilarin
bulmak gerekir. Bunun icin yardimei bilgilere ihtiya¢c duyulur. Oncelikle bu yardimci
bilgileri verelim ardindan bu katsayilar1 elde etmek icin bu bigilerden istenilen kiimeye

ulagalim.

f € E,2,r)vea,p €T, vet pozitif bir tamsay1 olsun. Bu durumda
(a? + Bryze + axd)' - f € Ey(2,7)

olur. Ayrica, yine ayni a ve b katsayilari i¢in

1 1
€ E,2,r)
(axq + bza)t (bry + axy)

elde edilir. En genel anlamda bir afin doniisiim altindaki £, (2,) kiimesi, 0 < ¢ < j i¢in,

yine E,(2, r)’dedir, yani

axy + bxy)' (bzy + axy)’
(woa b (bra o)) g o,
(axq + bxs)’ (bxy + axs)’

elde edilir.

SRM,[2,] kodunun degismez oldugu grup, GL(2, ¢) nin bir alt grubuna izomorftur.

X1

a b
M = |a,beF,, a# by C GL(2,q).
b a

kiimesi tanimlansm. ¢ = r = 3 disinda ¢ > r > 2 igin, SRM,[2, r|, kod ailesi M’ye

izomorfik bir alt grup kapsar, yani SRM,[2,] kodu M doniisiimii alinda degismezdir.

g = r = 3 igin SRM3[2, 3] kodunun otomorfizma grubu, uzunlugu 3 olan tiim vektorleri
kapsar, yani Aut(SRM3([2,3]) = S5. , n = 2 i¢in kullandigimiz teknik n = 3 igin ¢ok
kullanigh degildir ve bu yontem uzun denklem sistemlerinin ¢oziilmesini zorunlu kilar. Bu
nedenle n = 3 durumunda, SRM,[3, r] kodunun afin degismez grubunu bulmak i¢in n = 2
durumundan farkli bir teknik kullandik. Boylelikle daha verimli ve kullanigh bir ¢oziim

yontemi elde etmis olduk.

q tek olmak iizere, derecesi r’den kiiciik ya da r’ye esit

—f(x1,29,x3), w tek permiitasyon,
f(@r1), Tr2)s Tr(z) =
f(x1,z9,23), m cift permiitasyon.

kosulunu saglayan bir f(z,x2,x3) € Fylx1, xa, 23] fonksiyonu ve m € Ss verilsin. Bu

durumda f(xy, 2, z3) € E,(3,7) elde edilir.

Simdi

b a a
K=¢Px|a b al|,|PePsa,beF,a#b b#—2ap C GL(3,q)

a a b

kiimesini ele alalm. A € K ve f(z1, 22, 23) € E,(3,r) olsun. g fonksiyonu g(z1, g, x3) =

Tr(A) seklinde tanimlansin. Bu durumda, g € E,(3,7) olur.

Bu yardimer bilgiler sayesinde, SRM, (3,] kodunu degismez birakan lineer doniistimleri

belirledik. ¢ > r > 3 olmak iizere, SRM,[3, 7] kodunun otomorfizma grubu, K

xii

kiimesine izomorf bir alt grup kapsar, yani SRM,[3, r], K ’dan elde edilen doniisiimler altinda

degismezdir.

Keywords: Reed-Muller kodlar, Simetrik Reed-Muller kodlar, Afin degismezlik,

Otomorfizma gruplari.

Xiii

ACKNOWLEDGEMENTS

First and foremost, I owe a great debt of gratitude to my advisor, Prof. Dr. Pinar Aydogdu.
I consider myself incredibly fortunate to have spent my doctoral journey working with her.
She has always provided me with invaluable advice and supported me even on my worst
days. Her technical insight, contagious enthusiasm for research, and unique character have

inspired and influenced me over the years.

I also want to express my gratitude to my master’s advisor, Oguz Yayla, for guiding
me into the academic journey. I extend my thanks for his great guidance and effective

recommendations that motivated me throughout my doctoral years.

Furthermore, I am immensely thankful to Dr. Talha Arikan. This work would not have been
possible without his exceptional support. He has continuously supported me throughout
this process, patiently assisting me whenever needed. I cannot express enough gratitude for
our lengthy discussions, brainstormings and debates during our meetings. His unwavering
support, positive attitude, and problem-solving approach, even during my toughest times,

enabled me to complete this thesis.

I would like to thank Prof. Dr. Ziilfikar Saygi and Prof. Dr. Mesut Sahin for their assistance

and encouragement.

Additionally, T am grateful to Damla Acar and Yagmur Cakiroglu for their close
friendship and enjoyable moments during my doctoral journey. Their support during my
disappointments, moments of despair, and tough times has been invaluable in helping me

overcome these challenges.

I wish to express my deep appreciation and gratitude to Dr. Taner Dursun, my director
at TUBITAK Bilgem Blockchain Research Laboratory, and my colleagues for providing a
pleasant atmosphere, motivation, and a comfortable working environment throughout my

professional life.

X1v

I extend my thanks to the Scientific and Technological Research Council of Turkey
(TUBITAK) for the financial support through the 2211/A Graduate Scholarship and to the
Council of Higher Education (YOK) for the 100/2000 PhD Scholarship.

I offer my deepest gratitude to my family for their endless support. Without them, I could
not have achieved anything. And Dad, although no longer with us, continues to inspire me
by his dedication and devotion to what he believes in. Thank you both for everything and

making me who I am right now.

I owe a debt of gratitude to my beloved husband, Tekin, for making me feel peaceful,

comfortable, and safe. With his love and support, [was able to complete this thesis.

Lastly, during the thesis writing process, I experienced an indescribable joy and surprise with
the wonderful news of my dear son. I am so happy to be completing this work with you. |
am filled with indescribable emotions and feel very emotional. I am so glad you came into

my life. I believe that with your energy, life will become much more beautiful.

XV

CONTENTS

Page
AB S T R A CT .. i
OZET ot ii
ACKNOWLEDGEMENTS ... Xiv
CONTENT S e XVi
ABB REV I AT IO . .. Xvii
1. INTRODUCTION ...ttt 1
2. PRELIMINARIES ...t 4
2.1 LInear COodesttt 4
2.2 Reed Solomon Codes.ouueiiiiii ettt 9
2.3 Reed-Muller Codesooviiiiiiiiiiiiii e 10
2.4 Equivalence of Linear Codes...........oviiiiiieeiiiiiitiiie i iiiee e 12
2.5 The Automorphisms of Reed-Muller Codes ..., 15
2.6 Generalized Reed-Muller Codes ..., 18
3. SYMMETRIC REED-MULLER CODES 22
4. LINEAR TRANSFORMATIONS UNDER WHICH SRM CODES ARE
INVARIANT . e 28
4.1 The Case D=2 oo e 28
4.2 The Case M= .ot 34
4.3 The @eneral CASEcuuiiiiiiiet ettt ettt 46
5. CODES AND THEIR APPLICATIONS IN INFORMATION SECURITY 48
5.1 Zero-knowledge Proofs in Industry ... 48
5.2 Homomorphic EnCryptionoooiiiiiiiiiiiinii i 55
5.3 SeCret Sharing . ..oovueei et 55
6. CONCLUSION AND FUTURE WORKouiit e 58
T APPEINAIX ..ttt e 66

Xvi

SRM

ABBREVIATIONS

Natural Numbers

Integers

Identity element of a group

Finite field of order ¢

The Symmetric group of order n
General Linear Group of order n
General Affine Group of order n

n dimensional IF;-vector space

The polynomial ring with n variables
The set of codes with Hamming weight ¢
The Hamming Distance

The Identity matrix of order n

The Transpose of matrix H

The set of n X n permutation matrix.
The Monomial Matrix

The degree of f function

Any permutation in S,

Equivalence Relation

Reed Muller

Symmetric Reed Muller

Xvii

1. INTRODUCTION

Working with automorphisms of the codes is important for various reasons in the field of
coding theory. The study of automorphisms can contribute to developing efficient decoding
algorithms. By exploiting the symmetries within a code, it may be possible to design more
computationally efficient algorithms to correct errors [5]. Thus, automorphisms of the codes
play a crucial role in understanding and characterizing the error-correction properties of the
codes. Therefore, by studying the symmetries of a code, one can gain insights into how
errors affect the encoded information and how the code can be designed to correct or detect

these errors.

Reed-Muller codes (RM codes, for short) are a family of error-correcting codes that were
first introduced by Irving S. Reed and Gustave Solomon Muller in 1954 (see [13-15]). A
large number of RM codes variations and generalizations were introduced in the literature,
for instance, see [2—4]. They have simple encoding and decoding algorithms which make
them useful and efficient to implement. There are some variants of RM codes, such as the
binary RM codes defined on the prime field I, and the p-ary RM codes defined on the prime
field IF,,, where p is a prime number. For more details on RM codes and variants we refer the
reader to [1, 2, 6, 16]. Furthermore, RM codes have been generalized in many ways, such
as the generalized Reed-Muller codes (GRM, for short) which are defined over an arbitrary
finite field, and the symmetric Reed-Muller codes (SRM, for short) which have a certain

symmetry property (see [3] and [5]).

In coding theory, the majority of classical codes have a sizable automorphism group that is
connected to a linear group. For example, GRM codes are invariant under the general affine
group GA(m, q) of degree m over the finite field I, (see [3]). A requirement for a code to
be invariant under the affine group is provided by Kasami et al. in [6]. Delsarte describes
the codes which are invariant under certain linear groups in [7]. He shows that only p-ary
RM codes can be invariant under GA(m, q). Nonetheless, the issue of fully determining

the automorphism group of affine invariant codes has not yet been resolved. Determining the

complete automorphism group of a code is a challenging topic that is frequently connected to
the categorization of simple groups. Diir is credited with the research of the automorphism
groups of Reed-Solomon codes and their extensions (see [8]). In [9], Berger proved the
complete automorphism groups of GRM codes. In 1996, Berger demonstrated that GA (m, q)
contains the permutation group of any affine-invariant code (see [17]) and then he showed
how to create a formal expression for every affine-invariant code’s permutation group in
[10]. The complete automorphism groups of the projective and homogeneous RM codes
can be found in [11]. These groups are associated with the projective linear group and the
general linear group, respectively. In this work, we aim to investigate a subgroup of the

automorphism group of SRM codes whose elements are linear maps.

SRM codes are first introduced by using bivariate polynomials over I, in [5]. The local
correctability of the bivariate SRM codes is discussed in [12]. The authors begin by outlining
the advantages of the symmetric structure and offering intuitions to indicate the superiority
of SRM codes over GRM codes in terms of local correctability. The tolerance of error ratios
of SRM codes and GRM codes over the same finite field, as well as their code rate, are
demonstrated. They establish that a class of locally-correctable codes that is composed of
multivariable SRM codes SRM,[n, r| in [12]. Furthermore, the dual of SRM,[n, 7] is also
presented. However, transformations preserving these codes, specifically belonging to the
automorphism group, have not been studied yet. Taking inspiration from this gap in this

research, we have directed our focus toward addressing this problem.

Unless otherwise stated, throughout this dissertation, we will work on the field F,, where
q is a prime number. Main object of the presented work is to determine the set of linear

transformations that leaves SRM codes invariant.

In Section 2, some fundamental concepts that will be used throughout this dissertation are
provided. In Section 3, the definitions and notations used in constructing SRM codes are
given. The original work of this dissertation is presented in Section 4. In this section, we
investigate linear transformations that leave SRM codes invariant. The set of these linear

transformations forms a subgroup of the general linear group. We indicate a relationship

between the transformations that remain the SRM codes invariant for n = 2 and those for n =
3. Therefore, we believe that we can form this group for a generic n, despite the challenge
of determining all transformations. For any given n, we anticipate the group that leaves the
SRM codes invariant, akin to previous cases. This group involving affine transformations is
a subgroup of the general linear group GA(n, ¢). However, determining whether this group
forms a complete set which leaves the SRM codes invariant remains an open problem for the

future. Therefore, in Section 5, we state a conjecture on this problem.

2. PRELIMINARIES

In this section, we fix some main notations, and recall some basic definitions and results that

will used throughout the dissertation.

2.1 Linear Codes

For many years, coding theory has been utilized to facilitate data transmission between a
sender and a receiver. Often, the channel through which messages pass between these two
parties is susceptible to errors. In such cases, the receiver may request the sender to resend
the message. However, this method proves ineffective as it significantly increases traffic.
Instead, by adding redundant information, known as redundant bits, to the message, the
sender enables the receiver to accurately check and correct the message. For this process to
succeed, the error rate must be within certain constraints. The set of all messages encoded in

this manner forms is what we call error correction codes.

The idea here is for the sender to encode fixed length data of length £ into codewords of
length n, and then transmit these codewords to the receiver. It is necessary to consider the
linear algebraic structure on the codes. For linear codes, the alphabet is always a finite
field. Construction, encoding and decoding of linear codes are generally easier compared to

non-linear codes.

This chapter consists of important concepts from coding theory and field theory that are
essential to the reminder of the thesis. Definitions related to coding theory, including
binary codes, generator and parity-check matrices, bounds on code parameters, methods
for constructing new codes from existing ones, and examples of linear codes, are provided.
This section utilizes the book Fundamentals of Error-Correcting Codes by Huffman and

Pless [1] to provide the essential definitions.

Linear codes are defined over alphabets which are finite fields. We denote by I, the finite

field with g elements, where ¢ is a prime power.

Definition 2.1.1. [1] A linear code C of length n and dimension & over IF, is a k-dimensional
subspace of the vector space I, where I, is the finite field with ¢ elements. Such a code is

referred as [n, k| code over F,. All elements of a code are called codewords.

Notice that an [n, k| linear code C' over FF, has ¢* codewords.

Definition 2.1.2. [18] The rate of an [n, k] code is defined as .

The rate is a quantity which shows that how much information is being transmitted per
codeword. It is associated to the redundancy »r = n — k, the number of parity symbols

in a codeword.

Every codeword in an [n, k| linear code can be represented as a linear combination of the
basis vectors. We can present these vectors in a matrix format, where they constitute the

columns of an n X k& matrix.

Definition 2.1.3. [1] Let C be an [n, k] linear code over . A matrix G' € F,"** is called a

generator matrix for C if its k columns span C'.

Encoding a message m &€ Fqk is a transformation that sends the message to the codeword

G.m € C'. In other words, the linear transformation m — G.m is an encoding map
. ok n
T:F, > F.

Definition 2.1.4. [1] A parity check matrix H of C'is an (n — k) x n matrix over [F, with
rank n — k. It is defined by
C={zeF;!|Hs" =0}

Note that the rows of A will also be independent. In general, there are also several possible

parity check matrices for C.

Example 2.1.5. The generator matrix and corresponding parity check matrix of a [5, 3]

00111
01101
linearcode CareG=11 0 0 1 0| and H = , respectively.
1 01 10
01001

The standard form of an [n, k] linear code is (I;|A), where I is a k x k identity matrix, and

Ais ak x (n — k) matrix. The corresponding standard form of the parity-check matrix is

(_AT|In—k>-

The generator matrix of an [n, k| linear code is a matrix whose rows are linearly independent
and generate the code. The rows of the A parity-check matrix are also linearly independent
and generate a code known as the dual of C, denoted by C*. The code C* is an [n,n — k]

code, and the /1 matrix serves as its generator matrix.

Definition 2.1.6. [18] Let C be a linear [n, k] code. The dual code of C*, denoted by
C*t:={a€F,|(ab)=0forallbe C},

where (a, b) is the standard inner product.

It follows from the definition that C* consists of all those vectors a € [y such that a.b’ =0
for all b € C, where b” denotes the transpose of the vector b. This means that the codewords

of C* are orthogonal to C.

For ¢y, ¢y € Y, the (Hamming) distance d(cy, c3) is defined to be the number of coordinates

in that ¢; and ¢, differ.

Definition 2.1.7. [1] The minimum distance d of a linear C' is the smallest distance between

distinct codewords, i.e.,

d=d(C)=min{d(z,y) : z,y € C,x # y}.

In order to determine the minimum distance of a linear code, it suffices to compute the
distance from all zero codewords to their closest codewords. For instance, let v be a
codeword, and let vy, ..., v, be codewords at a distance of d from this codeword. Then,
the difference v — v yields all zero code words, and the differences v; — v, ..., v,, —v provide

codewords at a distance d from all zero code words.

A linear code C' of length n, dimension &, and minimum distance d over the finite field I,
is referred as an [n, k, d] code over IF,. Additionally these codes have also some significant
features that we would like to incorporate. We aim to measure how much a code differs from
another. In coding theory, the parity check matrix of a linear code provides information about

the minimum distance of that code.

Theorem 2.1.8. [1] The minimum distance d of a linear code [n, k, d| is the minimum number
of linearly dependent columns of a parity check matrix H of the linear code. Any d — 1

columns of H is linearly independent.

Proof. Given that the parity check matrix A has n — 1 columns such as ¢y, %y, ...,%,_1. For

any codeword ¢, cH? = (. Then we can write this equality :

C.ho + C.hl + ...+ C.hn_l = 0.

From theorem 2.1.11, any codeword ¢ holds the equality d = wt(c). Let the nonzero

coordinates of cbe 1,2,...,d. So

c1.hy +co.he+ ... +cqg.hyg =0.

O

The minimum distance between codewords is a crucial invariant for a code. The minimum
distance of a code (' is the smallest distance between distinct codewords and is significant in

determining the error-correcting capability of the code C'. A larger minimum distance allows

for the correction of more errors. The Hamming weight wt(v) of a vector v in F is the

number of non-zero coordinates of x.

Definition 2.1.9. [1] The Hamming weight wt of a v € Fy is defined to be the number of

nonzero elements in v.

wt(v) = d(v,0).

Similarly, the weight of a C code is described as follows:

wt(C) = min{d(v,0) : 0 #£v € C}.

Example 2.1.10. The linear code C = {0000, 1000, 0100, 1100} over F3, then we have:

wt(1000) = 1,
wt(0100) = 1,
wt(1100) = 2.

Hence d(C) = 1.

Theorem 2.1.11. []] The minimum distance of a linear code C' is the minimum weight of

any nonzero codeword.

One of the primary objectives in coding theory is to achieve high error-correction capability,
characterized by a wide relative distance and a high information rate. However, there exist

certain constraining properties. For instance, the singleton bound is given as follows:

Theorem 2.1.12. [1] Let C be an [n,k,d)-code. Then the inequality d < n — k + 1 is

satisfied.

This inequality arises from the properties that generator matrices must satisfy. Specifically,

the rank of a code’s parity-check matrix is n — k. Therefore, this matrix has n — k£ + 1

linearly dependent columns, meaning that any n — k£ + 1 columns are linearly dependent.
Consequently, the minimum distance is at most n — k + 1. For linear codes, the Singleton
bound can also be derived by examining the systematic generator matrix of the code. Each

row of this matrix has a Hamming weight of at most n — k + 1.

2.2 Reed Solomon Codes

Reed-Solomon codes are error correction codes created by Irving S. Reed and Gustave
Solomon in 1960 (see [19]). These codes transform data blocks defined over finite fields
into codewords. Reed-Solomon codes have the ability to detect and correct multiple error
symbols. By adding n — k parity symbols to the data, they can detect up to n — k errors and

correct half of them.

There are multiple methods for constructing Reed-Solomon codes. Each Reed-Solomon
codeword is a sequence of values of polynomials of degree less than k. The message symbols
of a Reed-Solomon codeword consist of the coefficients of a polynomial of degree less than

k over IF,.

Reed-Solomon codes RS(n, k) are codes defined over F, with length n and dimension &
(i.e. message length). A message m = (mg,my, ..., my_1) is embedded into a polynomial

1 of degree at most k — 1. The coefficients of

p(xr) = mo + mx + ...+ my_ 2t
the polynomial my_y,my_s,...,my_; may be zero for some j < k. The message is
encoded as ¢ = (p(z1),p(22),...,p(z,)) by evaluating the polynomial at distinct points
21,%2,...,2n € I, After the encoding process is completed in this way, the resulting

codeword c is transmitted.

C ={(t(z1),p(z2),...,p(z" ")) | p € Fylz], der(p) < k}.

Once the sender produces such a codeword, the receiver obtains the values s =

(81,89, ...,5,), knowing that these points are evaluated on the set 2;,25,...,2" . The

receiver knows that at least k of the points s; are of the form s; = p(z%), and aims to

reconstruct the message by attempting to construct the polynomial p.

2.3 Reed-Muller Codes

Reed-Muller codes are linear block codes created by Reed and Muller in the 1950s (see
for insatnce, [13, 14]). Initially, binary Reed-Muller codes were developed, and later they
were extended to general cases. Although the block length of Reed-Muller codes is lower
than that of BCH [20, 21] codes, they are useful error correction codes because they can be
easily encoded and decoded. They form the simplest class of geometric codes and generalize
Reed-Solomon and Walsh-Hadamard codes. Reed-Muller codes can be constructed in
multiple ways. The initial definition of Reed-Muller codes was created using Boolean
functions. Since we will consider this definition throughout the dissertation, we will recall
the construction using Boolean functions. In this section, the necessary definitions have been

derived with reference to the book by MacWilliams and Sloane [2].

We start with recalling the definition of a Boolean polynomial. Consider the polynomial ring

Fylxg, 21, . .., xm_1] over Fy with m variables.

Definition 2.3.1. [2] A Boolean monomial t is an element from the polynomial ring

Folzo, 1, ..., Tm_1] Of the form ¢ = z°z}* ... 2, "', where r; € Nfori=0,...,m—1. A

Boolean polynomial over [Fy consists of a linear combination of Boolean monomials.

Now consider the transformation p : Fy[zg, 21, ..., 2, 1] — F3 defined by

)
p(1)=11...1=1*"
p(rg) =1...10...0 = 12m g2t
)

p(z1)=1...10...01...10...0 = 12" "0*" 12" """

p(z;)=1...10...01...10...0=12"""0>" " .12 0¥

10

The transformation p possesses a homomorphic property with respect to the addition and
the multiplication. Let ¢ be a product of k variables, i.e., t = xozy...xz. Then p(t) =
p(xo)p(xy) ... p(xy). Similarly, if h be a sum of k variables, i.e., h = g + z1 + ... + 4,
then p(h) = p(zo) + p(x1) + ... + p(zr). Hence, p : Folzg, 21, ..., Ty 1] — F2" is aring

isomorphism [2].
Now we will recall the definition of a Reed-Muller code.

Definition 2.3.2. [2] The d-th order Reed-Muller code (RM, for short) R(d,m) is defined
to be the set of all polynomials of degree at most d in the F [zo, z1,...,2,-1]. The set

consisting of these monomials is provided below

{JI =1 K €{1,2,....,m},|K| < d}.
i€k
The p isomorphism can be viewed as a subset of F2", specifically as a binary linear code of

length 2.

Note that the R(d, m) code can be regarded as a subgroup of 3" under the p transformation.
Binary RM codes can be defined recursively. The code R(0,m) is a trivial code. The 0-th
order RM code is defined to be the repetition code of length 2 with basis {1}. Another

trivial code is R(m, m) which is the m-th order RM code F3".

Theorem 2.3.3. [2] For 1 < d < m, the d-th order R(d,m) of length 2™ is defined
recursively as R(d,m) = {(u,u+v) |u € R(d,m —1),v € R(d—1,m —1)}.

Assume that G(0,m) is a generator matrix for R(1,m). Then a generator matrix of the RM
code R(1,m+ 1) is

Cllm o 1) G(O(;m) G(Ol,m)

The next result generalizes this idea.

Theorem 2.3.4. [2] Let G(d, m) be a generator matrix of R(d, m). Then R(d,m) has a

generator matrix

G(d+1,m) G(d+1,m)
Gd+1,m+1)=
0 G(d,m)

Reed-Muller codes can also be constructed by using multivariate polynomials. The message
bits of RM codes, similar to Reed-Solomon codes, form the coefficients of a multivariate
polynomial. This polynomial is evaluated in a vector to obtain the RM codeword. Hence, an

alternative definition of the d-th order RM code can be given in this context.

Definition 2.3.5. [2, p. 373] The r'* order binary RM code R(r,m) of length n = 2™
for 0 < r < m, is the set of all vectors f, where f(z1,...,,,) is a binary multivariable

polynomial of degree at most r, i.e.,

R(r.m) = {(f(e))aczy

fE€Fsfzq, ... an], deg(f) <7}

Theorem 2.3.6. [2] Assume that d and m are integers such that 0 < d < m. If R(d,m) is

the d-th order RM code then the following statements are satisfied:

1) R(k,m) C R(l,m) holds if 0 < k <[l <m.

2) R(d,m) has the dimension (’3) + (”11) 4t (73)

3) R(d,m) has minimum distance 2™ .

4) The dual of R(d, m) is the dual code to R(m —d — 1,m) for0 < d < m — 1.

2.4 Equivalence of Linear Codes

Let I, be the finite field of order ¢ = p™ for a prime p and F} be the n-dimensional vector
space over [F,. The measure of dissimilarity between two vectors is established by counting
the coordinates in which they differ. Recall that a linear [n, k, d|-code is a k-dimensional

12

linear subspace of Fy with the minimum distance d. A generator matrix GG of a linear
[n, k]-code C'is any matrix of row rank k, whose rows come from the code C. We will

give the definitions of some types of code equivalences.

Definition 2.4.1. [1] Let 7 = (71, 7o, ..., 7,) be a permutation of {1,2,...,n}. Then x n
permutation matrix P is defined as follows: (7, 7;)-th entries are 1 fori = 1,2,...,n, and 0

elsewhere. P,, denotes the set of all n X n permutation matrices.

Definition 2.4.2. [1] Two linear codes C; and C5 are permutation equivalent if there is a
permutation of coordinates which sends C to Cs. Hence, two linear codes C; and C', of the

same length are permutation equivalent if there exists a permutation matrix P € P,, such that

G2:G1P7

where (G; and (G5 are the generator matrices of the codes C; and (), respectively.

If we work on a finite field other than F5, then we may need a more general form of the

equivalence.

Definition 2.4.3. [1] A monomial matrix is a square matrix with exactly one nonzero entry
in each row and column. A monomial matrix M can be written either in the form D P or the

form PD; , where D and D1 are diagonal matrices and P is a permutation matrix.

Example 2.4.4. Consider the following monomial matrix M :

a 0 0
M=10 0 b
0 ¢c O
M satisfies the following equations :
a 0 0] |1 0 O 1 0 0]]a 00
DP=10 b 0{ |0 0 1|=PDi=10 0 1{ (0 ¢ O
0 0 ¢||0O 1O 0 1 010 0 b

Definition 2.4.5. Two linear codes C; and C of the same length over F, are said to be

monomially equivalent when there exists a monomial matrix M such that

G2 - G1M7

where (G and (G5 are the generator matrices of the codes C; and (), respectively.

Note that monomial equivalence and permutation equivalence coincide for binary codes.

Let «y be a field automorphism of I, and M = D P be a monomial matrix over [F,, where PP
is a permutation matrix and D is a non-singular diagonal matrix over ;. Applying the map
M~ to any codeword is described by the following process: Firstly, the i component of
code is multiplied by the i** diagonal entry of D fori = 1,2...,n. Then the corresponding
permutation associated with the permutation matrix P is applied to the codeword. Finally,

the automorphism -y is applied to all components.
Now we will recall the most general form of the equivalence of linear codes.

Definition 2.4.6. Two linear codes C; and C of the same length over F, are said to be

equivalent when there is a monomial matrix M and a field automorphism «y of F, such that
Cy = Ci My,

where C'; M is obtained by applying M~ to each codeword of (.

Note that all equivalence definitions are the same for the binary codes. Furthermore,

monomial equivalence and general equivalence coincide for p-ary codes, where p is a prime.

Since we have three types of equivalences, there exist three possible definitions of the

automorphism groups of the code families by considering C'; = (5 in the above definitions.

Now consider a code C of length n over the field IF,. The set of coordinate permutations that

map the code C' to itself forms a group, called the permutation automorphism group of C and

14

denoted by PAut(C). Obviously, PAut(C) is a subgroup of the symmetric group S,,. The
set of monomial matrices, by which C' is monomially equivalent to itself, forms the group
MAut(C'), which is called the monomial automorphism group of C. The set of maps of the
form M+, where M is a monomial matrix and + is a field automorphism, that map C' to itself

forms the group Aut(C), called automorphism group of C.

We always have that PAut(C) € MAut(C) C Aut(C). If ¢ = 2, then PAut(C) =
MAut(C) = Aut(C). If ¢ is a prime, then MAut(C) = Aut(C) (see [1, p. 26]).

All these definitions and conclusions are well-known in the literature and can be found in

any basic coding theory book, for example in [1].

2.5 The Automorphisms of Reed-Muller Codes

To gain a broader perspective on Reed-Muller automorphism groups, we will first examine
the automorphism groups of binary RM codes. Since we are working over Fy, PAut(C) =
MAut(C) = Aut(C). Therefore, determining the permutation automorphism or monomial
automorphism is sufficient to determine the automorphism of RM codes. Subsequently, we

will extend the definitions of automorphisms to fields I, distinct from [F5.

RM codes can be defined in terms of multivariable polynomials as follows. Let z =
(1,...,x,) range over F3'. Any function f(z) = f(x1,...,x,,) which takes the values

0 and 1 is called a binary multivariable function. We recall the following definitions.

Definition 2.5.1. [2, p. 377] For 0 < r < m — 1, a code which is obtained by puncturing
(or deleting) the coordinate corresponding to x; = - - - = z,, = 0 from all the codewords of

R(r,m) is called the punctured RM code, and it is denoted by R(r, m)*.

First we will mention the notion of affine invariance which is crucial for our discussion on

automorphism groups. Before going further, we need some basic notions.

Let A = [a;;] be an invertible /m x m binary matrix and b be a binary m x 1 vector. Consider

the transformation 7" from binary m-tuples to binary m-tuples defined by

T T
T2 T2

T — A +b,
Lm Lm

which permutes binary m-tuples. 7" can be also considered as a permutation of multivariate

polynomials as follows:

Tf(A,b) : f([El, e ,.Z’m) — f(z a1;%; + bl, R Zamjxj + bm> (1)

The set of all such transformations formed by 7" is a group, which is known as the general
affine group over Fy and is denoted by GA(m,2) (see [2]). It is obvious that if f is a
polynomial of degree r, sois T (A, b).

As we mentioned above, for a binary code it is known that PAut(C) = Aut(C'), and hence
it is a subgroup of the symmetric group S,,. Following [22], a code C' is said to be affine

invariant if Aut(C') includes a subgroup that is isomorphic to the affine linear group.

The following example demonstrates that the RM code families are one of the examples
of affine invariant codes. This example is important to see the equivalence between
transformations applied to variables of the function to evaluate codeword and transformations

applied to the codeword itself.

Example 2.5.2. [22, p. 7] R(r, m) codes are affine invariant.

Proof. Let A be an m x m invertible matrix over Fo and b € [F7'. The affine linear
transformation 7" : x — Ax+b yields a permutation on the coordinates of the codeword since
the codewords of RM codes are evaluation vectors and are indexed by the vectors z € F7'.

16

Then such a permutation belongs to Aut(R(r,m)). Let ¢ be a codeword in R(r, m). Then
there exists a polynomial f € Fy[zy,...,x,] with deg(f) < r such that ¢ = (f(®))acFym-
Since the result of the transformation (f o T")(z) is another polynomial of degree less than
or equal to 7, we have ¢ = (f o T')(a)aerp € R(r,m). Thus, R(r,m) codes are affine

invariant. O

Thus, the general affine group GA(m, 2) permutes the codewords of the 7 order R(r,m)
and GA(m,2) C AutR(r,m) (see [2]). The subgroup of GA(m,2) consisting of all

transformations

X1 X1

T2 X2
T — A

Tm Tm

(i.e., for which b = 0) is known as the general linear group and is denoted by GL(m, 2). We

can consider the transformation 7" described above in the following way, too:

T(A): (z1,...,2p) — <Za1jx1,...,2amjxj). 2)

For the sake of convenience in usage, the function 7 (A, b) will be denoted as 7(A) when

b=0:

Tf(A) : f(.ﬁCl, c.. ,xm) — f(z a1;Tj, .. ., Zamjxj). (3)

Since the transformation 7'(A) in (2) fixes the zero m-tuple, the group GL(m,2) permutes
the codewords of the punctured RM code R(r,m)*, i.e., GL(m,2) C AutR(r,m)* (see [2,
p- 399)).

We know from [2, p. 400] that

Aut(R(r,m)*) = Sem_y for r=0 and m —1,

Aut(R(r,m)) = Sgm for r=0 and m.

Furthermore, the following result is also given in [2, p. 400] which determines the

automorphism group of RM codes of r*" order with length 2™ over F, completely.

Theorem 2.5.3. [2, p. 400] For 1 <r <m — 2:

o Aut(R(r,m)*) = GL(m, 2),

o Aut(R(r,m)) = GA(m,2).

Note that one may easily adopt the definitions of the general affine group and general
linear group on F, for any prime g. These groups are denoted by GA(m, ¢) and GL(m, q),

respectively. These groups are the subjects of the next subsection.

2.6 Generalized Reed-Muller Codes

GRM codes were first introduced by Kasami et al. [23] as a generalization of RM codewords
over any finite field. They also established the fundamental parameters of GRM codes. GRM
codes are easily constructed and possess rich structural properties, making them applicable
across a wide range of fields, such as homomorphic computation [24] and secret sharing [25].
GRM codes are list-decodable [26], locally testable [27], and locally correctable [28]. These
features make GRM codes highly valuable in theoretical computer science [12]. The LCC
property allows the correction of a codeword by checking only a few random bits, granting
these codes advantages in areas such as circuit lower bounds, data storage and transmission,

secure multiparty computation and combinatorics.

Due to these valuable properties, GRM codes are currently the subject of extensive research.

Delsarte [3], Assmus and Key [29] studied these codes and their relatives in details.

18

Delsarte [3] has elucidated the connection between the univariate and multivariate versions
of GRM codes and established their code distances. Additionally, various variants of
GRM codes have been studied, including Projective Reed-Muller codes [30], Grassmann
codes [31], and Quantum Reed-Muller codes [32]. Furthermore, many researchers have

been considering GRM codes as significant examples of extended cyclic codes.

GRM codes are obtained by constructing the codes over any finite field IF,, where ¢ is a
prime power. The following is a formal definition of GRM codes. For more details see

[3, 23, 33, 34]

Definition 2.6.1. [3] Let m and r be positive integers. The GRM code of order r with block

length ¢ over I, is defined by

GRM,(m,r) = {(f(oz))aeﬂrqm | [€Fglzn,... 2], deg(f) <7}

The GRM code is a linear code that forms a subspace of the vector space Fj. Let the

dimension of the GRM (m, r) code be denoted by k. The value of & is as follows:

m—1

{(107l17"-7lm—1>’li€Z70§liSq_1azli§T}
i1

where [; is the degree of the monomial with index .

Recall that for ¢ = 2, the dimension of the RM;(m, r) code is () + (7) + ...+ (). For

q > 2, the minimum distance and dimension are given as follows:

Theorem 2.6.2. [3] The dimension of RM,(m,r) is

& t—kqg+m—1
())
t:Ok:0<) k t—kq

The minimum distance of RM,(m, 1) is ¢™ *"*(¢—b), wherer = a(q—1)+b,0 < b < ¢—1.

Example 2.6.3. The code GRM,(2,4) is the linear code over with the generator matrix G

19

—_
—_
—_
—_
—_
—_

11 1] 1

—_

Zo

A

- o O =
=
—_ O
— =

—_
—_
—_

X2

€3

—_ =

Tolq

= e e

1 Lol

_ O O O = R~ O =
_ O O

—_

1 T1T9

—_
=)
—_

Tols

011 13

Q

|
o o o o (@) (@) (@] (@) (@) (@] —
o o (@] o o (@] o o o
(@] o (@] o (e (@] (@] (@) — o
S (e (@] o @) — (@] (@) — =
S (@] (@] o (e (@) (@] — (@) o
(] (@] (@] (@] — (@) (@] — (@n] — —
o O O O O o = o o o =
o O = O O O = o O =
S BH O O O O = O = O ==
] — — (@) e} — — @] — —
— @] e} o @] (@] —

o o O
o o O

11 1 ToT3

Some codewords belonging to the G RM,(2, 4) code by evaluating are given below:

c| = 1—|—.I’0+3371+2$3
= [1201120130233023]
Cy = 1—|—2ZL‘0+2$1+3$3

= [1331133102200220]

It is shown in [3] that for 0 < r < m(q — 1), the automorphism group of GRM,(m,) codes

contains the general affine group GA(m, ¢) under the natural action on V' = Fm.

Knorr and Willems in [16] give a complete description of the automorphism group of the
p-ary RM codes for any prime p, in which they prove that the automorphism group of the

p-ary RM codes equals the general affine group GA(m, p).

In [9], Berger and Charpin provide a complete description of the automorphism group of

a GRM code. They show that the automorphism group of GRM codes is the affine linear

20

group, i.e.,

Aut(GRM, (m, 1)) = GA(m, q).

21

3. SYMMETRIC REED-MULLER CODES

The Symmetric Reed-Muller (SRM, for short) codes, a variant of Reed-Muller codes, are
introduced for the first time in this paper [5]. The authors focus on the bivariate version of
SRM codes and demonstrate that these codes take the form of locally-correctable codes.
They have determined the minimum distance of SRM codes for specific cases. Finally,
they introduce the multivariate version of SRM codes. SRM codes which exhibit specific
symmetry properties within their codewords may be considered as subcodes of GRM codes.
In a subsequent paper [12] by the same authors, it was shown that multivariate Symmetric
Reed-Muller codes are locally correctable codes. Additionally, the dual codes of multivariate

Symmetric Reed-Muller codes were presented.
Before presenting the formal definition in [12], we recall some notions.

The set E,(n,r) C Fy[x1, 29, ..., x,] is defined by

E,(n,r) = {f(xl, To, ..., Tpy) = E iy, det(2,7) | Qiyiy. i, € Fq},
0<i1<19<...<in<g—1
i1+io+...+in<r

where x = (z1, 2, ...,%,), ¢ = (i1,142,...,1%,) and
1'1“ .1'2“ c. xn“
. Ilm .1’222 c J;nlz
det(z,7) :==
A o7 S

Consider the set
A ={(ar,a,...,a,) €Fy | a; #a;;1 < j<i<n}

and an equivalence relation ~ on A defined as follows:

22

c~d <= Jo € S, suchthato(c) = d, forc,d € F}.

Then define the set £, (n) := A/ ~= {[a] | &« € A}, where [a] denotes the equivalent class
of a. In order to get rid of duplications, the definition of SRM codes is given by using this

quotient set as follows:

Definition 3.0.1. [12] Let n and r be positive integers, where n denotes the number of

variables. The SRM code of degree r over I is defined by

SRMq[n’r] = {(f<a))[a]€§2q(n) | f € Eq(nvr)}'

Remark 3.0.2. According to the definition, when ¢ < 7, the possible {iy, s, ..., ,} sequence
may not cover a partition of . On the other hand, for the sequence {i,is,...,i,} =
{0,1,2,...,n — 1} the smallest value of r should be @ Thus, the definition of SRM

n(n—1)

code is correct under the condition ¢ > r > ==), where q is chosen to be large enough.

Note that under the condition mentioned in the remark above, when n = 1, SRM,[1, r| codes

are exactly generalized Reed-Solomon codes with degree parameter 7.

When n = 2, we have

Eq(2,r) = { > ay(aial — ola))
0<i<j<q—1
i+j<r

a;j € Fq} C Fy[z1, o).

The evaluation of f(x1,x2) at (z1,x2) € F2 forms as the following matrix

flao,a0) flao,01) ... flao, 1)
f(Oél, Oé(]) f(Oél, Oél) ce f(Oél, Oéq_l)

f(Oéqfl,) f(aqu) ... f(Oéqfla aqfl)

Example 3.0.3. Letn =2, r = 2 and q = 3. Then,

23

l’li J]Qi
F5(2,2) = Z Qi , | lay; €F3p ={an (Y —X)+ Ctoz(Y2 - XQ) | ao1,ap2 € Fs}

0<i<j<2 1! @yl
<2

evaluation points
01 | 02 12
Y- X 1|2 1
2 2(Y — X) 2|1 2
S Y? - X? 111 0
2 2(Y? — X?) 2| 2 0
E YV -X)+(Y2-X% [20 1
Y -X)+2y?-X% | 0 | 1 1
2 - X)+(Y?=X* | 0 | 2 2
2 - X)+2(Y*=X* [1] 0 2

Thus, all codewords of the SRM5(2,2) code are as follows:

{(121), (212), (110), (220), (201), (011), (022), (102)}

Remark 3.0.4. Let ¢ < r. Since the set E,(n,r) has two constraints, 0 < i < j < ¢ —1
and i + j < r, all possible pairs (i, j) correspond to all possible vectors. Therefore, the SRM

code loses its distinctiveness. Thus, ¢ > r should be chosen.

Below, an example related to this remark is provided:

Example 3.0.5. Let ¢ = r = 3 and n = 2. According to the F3(2,3), the table of the

functions and their evaluation points is provided below :

24

evaluation points

functions

01|02 12
Y - X
2Y — X)
V? - X2
2(Y? — X?)

Y - X)+(Y? - X?)

(Y — X) +2(Y2 — X?)

20 — X) + (V2 — X2)

20V — X) +2(Y? — X?)

Xy2-x2y

Y -X+Xv2-Xx2y

2Y —X)+XY2-x2y

v2_x21xy2_x2y

2(v2-x2)+xv2-x2y

(Y=X)+(Y2-x2)+xv2-Xx2y

(Y=X)+2(v2-Xx2)+xy2_x2y

2Y —X)+(v2-x2)+ xy2-x2y

2Y —X)+2(Y2-Xx2)+Xy2_Xx2y

2(XY2-Xx2y)

Y-X+2(XY2-x2y)

2(Y —X)+2(XY2-x2Yy)

y2_ox212(Xy2-Xx2y)

2(v2-x2)42(Xv2-x2y)

(Y=X)+(Y2-x2)+2(xv2-Xx2Y)

(Y=X)+2(Y2-X2)+2(XY2-X2Y)

2(Y —X)+(Y2-x2)+2(xY2-x2Yy)

20y —X)+2(Y2-x2)+2(Xv2-X2Y)

=l B el BN el I \CRE I VR o BV o e R B el I en i B NI B NI B B NGRS e = I el IR I NG B NG R B NI
SN[| OIN|FF|IFF|IN|O|IO|IN ||| N ||| N[O |0 | N[O ([N ||~
jenl BRan i BN R R i B B el B NI B L == B ==R B NOR B NI i B e R B O B AR\ R i B el el R VN

25

Therefore, the SRM3[2,3] code has no distinctiveness within the vector space F3j.
SRM;]2, 3] = {001,002, 010,011,012, 020, 021, 022, 100, 101, 102,110, 111, 112,120, 121,
122,200, 201, 202, 210, 211, 212, 220, 221, 222}

Since f(x1,21) = 0 and f(x1,22) = —f(x2,21), the above matrix is a skew-symmetric
matrix. Thus, it is entirely determined by the entries in the strictly upper triangular part.

Therefore, the codeword of bivariate SRM, i.e., when n = 2, codes are defined as the strictly

upper triangular part of this matrix. Furthermore, SRM,[2, 7] codes are of length @.

Remark 3.0.6. For each f(x1,s,...,2,) € E,(n,r), the following properties hold:
o f(z1,22,...,2,) =0, if there exists 1 < r # s < n such that x,, = z,.
* Letm = (i,j) € S, be a transposition. Then

f(@, 20, 00) = = f(Tr()s Tr2)s - - > Ta(n))-

e Let 7 € S,. Then f(xy,22,...,2,) = Ff(Tra),Zr(2);---+Trm))- The sign is

determined by evenness or oddness of the permutation 7.

For more details about the set E,(n, r), we refer the reader to [5].

Example 3.0.7. Letn = 3, r = 3 and q = 3. Then,

p "
l’li ZEQi l’gi 1 1 1
E5(3,3) = E Qi |xy? my! wal| |air €3 p = 1wy x| |Gk € Fs
0<i<j<k<L2
i+j+k<3 Ilk l’zk l’gk %12 .7722 1’32
\ Y, \ J

2 2, 2 2 2 2 2 2 2 2 2 2
= {0, (wox3 + ;125 + T3 — T3x3 — TIT2 — 123), 2(woxs + 125 + XT3 — T3x3 — TIT2 — T123))

The coefficients of the monomial pairs (1223, v3x3), (v123, ¥325), (1123, 2323) of each
element of Fs3(3,3) have opposite signs pairwise. So the summation of the coefficients
of these monomials is zero. Furthermore, xiv5x3, %3, 23, ¥3 are not the monomials of any
members in E3(3,3), so their coefficients are zero.

26

Remark 3.0.8. We would like to note that the observations in Example 3.0.7 are general facts
for each element of E,(3,7). In other words, for any f € E,(3,r), the coefficient of the
monomial (zz%z5%) is negative of the coefficient of the monomial (xfr(l)xzr (2)907’:(3)), where
m € S5 is an odd permutation. Additionally, when any two of ¢, j, and k are equal, the

coefficient of the monomial (z'y’2") is zero for each f € E,(3,r).

27

4. LINEAR TRANSFORMATIONS UNDER WHICH
SRM CODES ARE INVARIANT

In this section, we will derive the invariant groups of SRM for n = 2 and n = 3 over the field
[F,,, where p is any prime number. For n = 2 and n = 3, we determine the exact set formed by
transformations that leave SRM codes invariant under a subgroup of the affine linear group.
Different methods were employed to determine this set for the values of n = 2, 3, separately.
The reason for using different methods is that one approach may not be highly suitable for
the other. Our main theorems, which identify the group formed by transformations that leave
the SRM code invariant, and the necessary lemmas for these theorems are provided for each

n=2,3.

4.1 The case n=2

Recall SRM,,[2,] is an evaluated code family whose evaluation polynomials come from the

set E,(2,7),

' T
EQ(27 T) = Z Q5 1' 2 Qi € Fq
0<i<j<q—1 1! xo’
i+j<r

1t xy! a b ..
Let f(zq,29) = | € E/(2,r)and A = . Under the Ts(A) transformation in

1) 1o’ c d
(1), we get

(axy + bxy)' (cxy + das)
Ty(A) =

(azy + bxs) (cxy + dxy)?

= (axy + bxo)" - (cay + das)’ — (amy + brs)’ - (cxy + day)'.

28

We investigate the coefficients a,b,c,d € F, to find the transformations that keep the set

E,(2,r) invariant. For this purpose, we need the following auxiliary lemmas.

Lemma 4.1.1. Let f € E,(2,r) and o, € F, and t be a positive integer. Then we have
(x] + Brixe + ax3)' - f € Ey(2,7).

Proof. Without loss of generality, we shall assume that

xb o at
_ | 2l ai g J i
=1 | =TTy — T T,
])

where 0 < i < j < (¢ — 1) such i + 5 < r. We use the induction on ¢ to prove the claim.
When ¢t = 1, we have

(ax? + Bayxs 4+ axd) - f = a(a? + 22) (2t — alad) + B(wyas) (2ia) — alad)

= a(fi+ f2) + Bfs,

where

— 2.0 J peit+2 ol J 2 J+2 i — il g+l J+1 i+l
fi =277 0y —may™, fo=ayry T -2y ey and fs =2y ayt —aoag

Thus, f1, fa, f3 € E,(2,r), which implies that (ax? + Szi25 + ax3) - f € E,(2,r). For the

next step, suppose that the claim holds for ¢ > 1, i.e., we have that
(x] + Brixe + ax3)' - f € Ey(2,7). 4)
Then it is sufficient to show that the statement holds for (¢ + 1).

(] + Briwy + axs) ™ - f = (axt + Bryxs + ax3)((ax] + Brixy +ax3)t - f). (5)

29

By the equation (4), we have
g = (ax? + Bryxy + ax3) - f € B, (2,7).

Since g € E,(2,), we may consider the equation (5) as follows:

(ax] + Bri79 + 23) - g = (] + Bri39 +) - Z aijYij,

0<i<j<q—1
i+i<r

where a;; € IF, and

% 7
R S I B
| = xiad — xix,.

9ij = | .
i d
T] Ty

By the case of ¢ = 1, we have all (ax? + Bx129 + aa3) - g;j € E,(2,7). Thus, (azi +
Bri1y + ax3) - g € E,(2,r). In the same manner, this is generalized for any f € E,(2,7),

which completes the proof. U

Lemma 4.1.2. Let a,b € F, and t be a positive integer. Then

1 1
€ E,(2,r).
(axl + bﬂ?g)t (bel + (L’Ez)t

30

Proof. When t is odd, consider

1 1
(axy + bxa)' (bxy + axs)

_ Z (Z) <bkatfk akbtfk) hatk
k=0
(t-1)/2
_ <2> (bkat k akbt—k) (xkxg k _xtl—kxg)
k=0
(t—1)/2 k
_ (t) (bkat—k: _ akbt—k> R
= K T

Clearly, the corresponding determinant is an element of E,(2, 7).

When ¢ is even, similarly, we get that

1 1 e
= (k’) (bkat_k — akbt_k) ahatF
(CLLIJl + bSL’Q)t (bﬂ?l + CLI’Q)t k=0

t/2—1

t
= Z (k:) (bkat*k — akbt*k) (:r:lf:v?k — mﬁka];) .
k=0

In the above equation, when k = t/2, the coefficient of the term xtl/ 2xt2/ % is zero. Finally, as
in the odd case, the corresponding determinant is an element of £, (2, 7). Thus, the proof is

completed. |

Proposition 4.1.3. Let a,b € IF, and i, j be positive integers such that © < j. Then

ary + bro) (bxy + axs)
(az1 +bza) - (b + azs) € E,(2.7).

(axy + bxy) (bxy + axy)?

31

Proof. The determinant can be written as:

ary + bry)' (bry + axy)’ . . 1 1
(az, Q)A (b, Z)A = (azy + bxg)'(bx1 + axy)’ - o
(axy + bxo)? (bxy + axs)’ (axy + bxg)’™" (bxy + axq)’ ™"

i | 1
= (abz? + (a® + b*)x122 + abx3)

(axy + bxa)' (b1 + azs)

where t = j — 7. By utilizing Lemmas 4.1.1 and 4.1.2, the proof follows. Il

The following theorem gives a necessary and sufficient condition for SRM,[2,r| to be

invariant under which subgroup of GL(2, q).

Theorem 4.1.4. Let M be a set defined as

a b
M = |a,beF,, a# +bpy C GL(2,q).
b a

The automorphism group of the SRM,[2, r], where ¢ > r > 2 except ¢ = r = 3, code family
contains a subgroup isomorphic to M, i.e., SRM,[2,] is invariant under the transformations

of M.
Proof. Let A € GL(2, q). Then take the transform 7™:

T:leAxlzab T

To To c d| |z

In the set E,(2, r), there exist unique polynomials of degree 1 and 2, which are

1 1
f($1,$2) = =T — 1
1 T2

32

Y

and

1 1
_ .2 2
9(331,332) - = Ty — Ty,
2 2
Ty Ta

respectively. If T¢(A) and T,(A) are elements of E,(2,7), it is easy to see that T(A) and
T,(A) must be scalar multiples of f(x,22) and g(z1, z2), respectively. In the light of this

fact, we have

1 1
Tf(A) = f(axl + beQ, cxry + dSEQ) =
(azy + bxe) (cxy + dxs)

=(d—b)xy — (a —)z
and

1 1
T,(A) = g(azxy + by, cxq + dxg) =

(axy + bzg)? (cxy + dxy)?

= (cxy + dw)? — (azy + bxy)?

= (d® = v¥*)x3 — (a® —)] + (2cd — 2ab)x 115,
From the above, we obtain the following equations

a—c=d-—b,
(a® = ¢*) = (b* = &),

(2cd — 2ab) = 0.

If we solve the equations above together with the fact ad — bc # 0, then we will get a = d
and b = c¢. Combining this with Proposition 4.1.3, we obtain that SRM,[2, r] is invariant

under the transformations that come from the set A/, which completes the proof.]

Note that when ¢ = r = 3, the set SRMj3[2, 3] contains all vectors of length 3 so that
Aut(SRMg[Q, 3]) = S‘g,.

33

In the following subsection, we will focus on the SRM, (3,) in the same manner.

4.2 The case n=3

Recall that the code family SRM,[3, 7] with the length S %7 M is an evaluated code

family whose evaluation polynomials come from the set £, (3, r), where

()
Jfli in I’gi
E,(3,r) = E Qi (w17 wy? wy?| | aie € Fy
0<i<j<k<q—1
i+ h<r P b s
\ Vs
Under the T (A) transformation in (1), where
a b c
A=1d e f|.
g h 1

we investigate the coefficients a, b, ¢, d, e, f, g, h, i € F, to determine the transformation

that keeps the set £,(3, r) invariant. We require the auxiliary lemmas for this aim.

The following lemma gives us a different interpretation of the set £,(3, 7).

Lemma 4.2.1. Let f(x1, 29, x3) € Fy[x1, 22, 23] with a degree less than or equal to r, where

q is odd, such that for any m € S,

—f(x1,m9,23), 7 is an odd permutation,
F(@r(1), Tr(2), Tn(3)) = (6)
f(x1, 29, x3), T is an even permutation.

Then f(xy1,x2,23) € Ey(3,7).

Proof. Firstly, we may assume that we have a homogeneous nonzero multivariate polynomial
f (1, 29, x3) of degree t < r, with the property (6).

34

Since f is nonzero, we have a monomial term Ay’ 2)z% in f. Without loss of generality, we
may choose the powers 0 < i < j < k, where 7, j, k are integers such that< 4+ 7 + k£ = ¢. So

we write [as follows
f@1, 9, 13) = Aghabah + go(a1, 22, 73), (7

where Ay € F, and go(z1, 29, x3) is a homogeneous polynomial of degree ¢ such that the

coefficient of the i x5 in go(z1, 9, 23) is zero.

Consider the case ¢ = j. Then by the property (6), we get

flzo, 21, 23) = Aowéxix’?f + go(x2, 21, 3)

.
= —f(x1, 2, 23) = — A1 2573 — go(T1, T2, T3).
Equivalently, we have

2A0xém’ix§ + go(xe, 1, x3) + go(x1, 22, 23) = 0.

Since the coefficient of the monomial xixbz% in go(zy, w0, z3) is zero, zhzirh must be

a monomial term of go(z9,x1,23), whose coefficient is —2A,. This is the contradiction.
Similarly, we get a contradiction for the cases ¢ = k and j = k. Thus, there are no monomial

terms x”lx%x’g such that at least two of 7, 7 and k values are the same.

By the cases mentioned above, we may assume that in the monomial term xi 2325, 4, j, k are

distinct, i.e., 0 < i < j < k. Consider the relation (7). When 7 = (12), we have

f(xe, 21, 23) = onlﬂ{x’gf + go(z2, 21, 73)

= —f(CCl, T2, $3) = —onixéx’; - 90(9517372, 513'3)'

35

By the above equation, the monomial term — Agz}27 % must be appeared in go(z1, 2, 23).

Thus, the relation (7) can be rewritten as
f(z1, 20, 23) = onixgx'g - on{xéxlg + g1(21, 22, 73).
Applying similar steps for the permutations 7 = (13) and 7 = (23), we get
flxy, z0,23) = oniméxlg — on{x’éw'g — Aom'fa:%xg — on’imgxg + g3(x1, 29, x3)
Applying the permutation 7 = (123) to f(x1, xo, x3) in the above relation, we get

— i .0 0.k J i ke k. .J i i ko.J
f(za, x3,21) = Agxoala] — Agxianay — Agriziary — Agrizsah + gs(z2, 3, 21)

= f(r1, 29, 23) = onixéx'g - A0${xé$§ - Aol“’fx“;xé - onﬁmgwé + g3(w1, 22, 73),
which implies the monomial term Agz}z%z% must be appeared in gs(z1, 3, 23). Thus,
f(xy, x9, 25) = Agztadak + Agahaial — Agrd abak — Agxal ol — Agxt ek ol + gy (21, 24, 23).
Finally, if we apply the permutation 7 = (132), the polynomial f(z1, x2, x3) will be of form

i, ..k ki, .J J ko0 J ik k. J..i ik
Aoz xhaes + Apxixyxl + Apxixsey — Agxixses — Apriaday — Aoriasal + gs(v1, 22, 13)

i
Ty Ty T3
=Ao|z]) a}|+ gs(x1, 20, 73),

R

where g5(x1, T2, x3) is a homogeneous polynomial of degree ¢ such that the coefficients of

the monomials xfr(l)mi(Z)xi(?)), for any ™ € S3, are zero.

36

Thereafter, if we apply what we did for f(z1, x5, x3) to g5(x1, x2, 23) by following the same

steps for the other possible triple partition, ¢t = 7; + j; + k1, we will get

i i i i i1 a1
Ty Ty Ty Ty Ty Ty
flry,we,03) = Ao |2] o))|+ Au|2lt o)t 2| + ge(w1, 72, 73),
E ok ok ki k1 Kk
Ty Ty I3 L7 Ty Ty

where Ay, Ay € F, and gg(x1, z2, x3) is a homogeneous polynomial of degree .

Since the number of the triple partitions of ¢ is finite, we may continue the above procedure

until all possible partitions are over. Finally, the polynomial f is of form

7 1 7 il il i1 id ’id id

Ty Ty Ty Ty Ty Ty Ty Ty T3

f(x1, 2, 3) = Ag) x) x|+ A R o o e e o Ay it) xl
k .k Ak ki k1 k ke kq _kaq

Ty Ty T3 Ty Ty Ty Ty Ty T3

where A;’s in F. Thus, f(x1, 22, 23) € E,(3,7) by the definition.

In general, for any polynomial F'(zq,x2, z3) satisfying the condition (6), we may write

F(x1, 29, 23) = f3(x1, 22, x3) + fa(z1, 22, 3) + -+ - + fr(x1, 22, 3),

where f;’s are homogeneous polynomials of degree i for i € {3,4,...,7}. Hence, for any
i€{3,4,...,r}, wegetthat f; € E,(3,r). Thus, F(x1,xs, x3) € E,(3,r), which completes
the proof. Il

Consider the subgroup

b a a

K=¢Px|a b a|,|PePs,a,beF,,a#b b# —2a

8)

a a b

37

of GL(3, ¢). We will show that K is a subgroup under which E, (3, r) is invariant. First, we

need the following key lemma.

Lemma 4.2.2. Let A € K and f(xy,x9,23) € E4(3,7). Then the function g defined as
g(x1, 22, 23) = T§(A) belongs the set E,(3,r).

b a a

Proof. Firstly, assume that A = |q b af. Let f(z1,22,23) € E,(3,r). Under the

a a b

transformation 7'(A) in (2), we have variables x1 — bxy + axs + axs, ro — axy + brs + axs

and 3 — ary + axs + bxrs.

Let g = T¢(A). Then

g(z1, 29, 23) = Tr(A) = f(bxy + axy + axs, axy + bry + azs, ary + axs + brs)

Now let 7 = (12) € S;.

9(Tr(1), Tr2), Tr(z)) = 9(T2, 21, 23) = f(bx2 + a1 + axs, axs + bxy + axs, ary + axy + bxs)
= — f(bxy + axs + axs, axy + bre + axs, axy + axy + bxs)

= —g(z1, 22, 73),
where second line comes from the fact that f(z1, 23, 23) € E,(3,r). Similarly, when 7 =
(13) orm = (23)’ we get that g(xﬂ'(l)7 xﬂ(2)7 xﬂ'(?))) = _g(‘rla T2, .1'3).
On the other hand, when 7 = (123) € S3, we have that
9(Tr(1), Tr2), Tr(z)) = 9(T2, 23, 21) = f(bxe + axs + axy, axy + bws + axy, ary + avs + br)
= —f(axy + bxs + axq, brs + axs + axy, axs + axs + bxy)

= f(bxy + axs + axs, axy + bry + axs, axy + axy + bxg)

= g(mlaxZ;xi’))'

38

Similarly, when 7 = (132), we obtain that g(2~), Tx(2), Tr(3)) = 9(21, T2, T3).

Finally from above, we can characterize the multivariate polynomial g(z1, 2, z3) as follows

for any m € Ss:

—g(z1, 9, 23), mis an odd permutation,
9(T1), Tr(2), Tr(3)) =
g(x1,x9,x3), 7 isan even permutation.

Hence, by Lemma 4.2.1, g = T¢(A) € E,(3,7).

Now let B # A be an element of the set K. Then there exists I3 #* P € P; such that
B = PA, where P is the permutation matrix associated with a permutation ¢. Under the

transformation 7'(B) = T'(PA), we have
To1y = br1 + axy + aws, Ty > axy +bry +aws and z,(3) > ary + axg + brs.
Equivalently, we get

1 = bTo—1(1) + aTs-1(2) + ATo-1(3), Ta > ATe-1(1) + bTs-1(2) + AT5-1(3)

T3 = ATs-1(1) + ATs-1(2) + bl’a-fl(g),

where o~! denotes the inverse of the permutation o. Thus,

9(z1, 39, 23) = Tf(PA) =

f(bl’g—l(l)—l-al’a—l(g)—l—ama—l (3); ATy—1 (1)+b$0—1(2)—|—a£€0—1(3) ; AT5=1(1)FAT5-1(2) —|—bl’a—1(3)),

which gives

h(z1, 22, 23) = 9(To1), To2), Toez)) = f(bT1+ax2+axs, ax+bvo+axs, axi+ars+brs).

We obtain h € E,(3,r) from the previous steps. Finally, ¢ = T¢(PA) € E,(3,r), which
completes the proof. O

39

1 0 2
Remark4.23. Let [0 1 1| € GL(3,¢)\ K,¢> 3 and

2 20
f(x1, 20, 23) = —2%y2 + 2y2® + 2%yP2 — 2%y’ — 2y + 2y®2® € B, (3,7).
Consider the function g defined as :

9(@1, w2, w3) = Ty(A)
= f(x1 + 2x9, x9 + T3, 221 + 2x9)
= —42Py — 42°2 — 102ty — 122tyz — 22122 — 2623y%2 — 83y2? + 182323
+102%2% — 14a%yP 2 — 182%% 22 + 142y 2> + 82°2* + day® + 12zy* 2 — 28xy3 2>

— 4oy 2% + 2dayzt — 8x2° + 8y°z — 16y*2? + 16y°2* — Syz°.

By the definition of E,(3,r) and the Remark 3.0.6, it is easily seen that g does not belong to
the set £,(3,7).

As seen above, Lemma 4.2.2 is not valid for any element of GL(3,q). However,
Lemma 4.2.2 guarantees that the function g = Ty(A), where A € K and f € E,(3,7),
remains in the set £,(3, 7). The following theorem also ensures that the set K is an exact set

in GL(3,r).

Theorem 4.2.4. The automorphism group of the SRM,[3, r], where ¢ > r > 3, code family
contains a subgroup isomorphic to K in the equation (8), i.e., SRM,[3, r| is invariant under

the transformations that come from K.
Proof. By the definition of E,(3, r), the members of degrees 3 and 4 in E,(3,) are the sets

N = {aom Tr1 To I3

2 .2 .2
Iy Ty Iy

agio € Fq }

40

and

Q= {%13 T1 To T3

3 .3 .3
Ty Ty Iy

ap13 € Fq}a

a b ¢

respectively. Let B € ngz% be an invertible matrix such that B = (4 e f|. Itis clear that

g h 1
when f € N and g € @), the following conditions must hold:

By Equation 3, the transformations 7% (B) and T, (B) are obtained as below:

1 1 1
Ty(B) = | (axy + bry + cxs) (doy +exo + fr3) (9o + hay + ix3)
(axl + b$2 + C$3)2 (dl’l + exqy + fl’3)2 (gl‘l + hSEQ + i$3)2

and

1 1 1
T,(B) = | (axy + by + cxs) (dry +exy + frs) (gry + hag + izs) |-

(a:cl + Z)Q?Q + CZIJ3)3 (dﬂ?l + exq + fSL’3>3 (gl’l + h&?z + i$3)3

If T4(B),T,(B) € E,3,r), then we will have Ty(B) € N and T,(B) € (. By

Remark 3.0.8, we have the following 19 equations for the corresponding monomials:

41

[z12923)T,(B) =0
[z12323] T, (B) =0
[212223) Ty (B) = 0 [z12025]Ty(B) = 0
[27]T4(B) = 0 [2323]Ty(B) = 0
[23]Ty(B) =0 [2%23]Ty(B) =0
[23]T¢(B) =0 [2323]Ty(B) = 0
[2123]T¢(B) + [2{22]Ty(B) = 0 [24]Ty(B) = 0
[2203|T(B) + [a325] Ty (B) = 0 [25]T4(B) =0
[2123|T5(B) + [a123] Ty (B) = 0 [25]Ty(B) = 0
[2123]Ty(B) + [2122]Ty(B) = 0
[2203]Ty(B) + [2325]Ty(B) = 0
[2123]Ty(B) + [2725]Ty(B) = 0

Here, [z}x}a%|h(x1, o, 73) denotes the coefficient of the monomial zizlzk of the

polynomial h. The explicit equations that come from the above 19 constraints are provided

below in sequence:

—2bcd—2(ac—cd)e—2(ab—bd—ae) f+2(bc—e f)g+2(ac—df —(c—f)g)h+2(ab—de—(b—e)g—(a—d)h)i = 0

—a*d +ad®* — (a — d)g* + (a®* —d*)g =0

—b%e+be? — (b—e)h? 4+ (b* —e*)h =0

—f+cf? —(c— [i* + (P = f7)i=0

42

— 2abd — b*d + bd® + ae* — (b — e)g® — (a — d)h? — (a® — 2ad)e — 2(ab — bd)e

+2(ab — de)g + (b* — €*)g + (a* — d* — 2(a — d)g)h + 2(ab — de — (b — €)g)h = 0

—2bce—cPedce®+bf%—(c—f)h%—(b—e)i®—(b*—2be) f—2(be—ce) f+2(be—e fYh+(c? — f2) h+ (b —e* —2(b—e) h)i

+2(bc—ef —(c— f)h)i=0

—2acd—c*d+cd* +af*—(c— f)g? — (a—d)i® — (a® — 2ad) f —2(ac—cd) f —2(ac—df)g+ (¢* — f*)g+

(a? —d* —2(a —d)g)i +2(ac — df — (c— f)g)i =0

—3bc’d—3ac’e—3(bd+ae) f* —3((b—e)g+(a—d)h)i* —6(abc—cde) f +3(bc® —ef?)g+3(ac® —df*)h

+ 6(abc —def — (¢ — f)gh)i=0

— 3b%cd — 6abce + 3cde? — 3(c — f)gh® — 3(ab® — 2bde — ae?) f

+ 3(b%c — €% f)g + 6(abc — def)h + 3(ab* — de* — 2(b — e)gh — (a — d)h?)i =0

—6abed —3(a*c—cd?)e—3(a?b—bd* —2ade) f +6(abc—def)g+3(a*c—d* f — (c— f)g*)h+3(a*b—d’e
—2(b—e)gh — (a —d)h?)i =0

— 3ab*d + 3ade® — 3(a — d)gh® — 3(a®b — bd?)e + 3(ab® — de*)g + 3(a®b — d*e — (b—€)g*)h = 0

— 3ac?d + 3adf? — 3(a — d)gi® — 3(a*c — cd®) f + 3(ac® — df*)g + 3(a*c — d*f — (c — f)g?)i =0

43

— 3bc?e + 3bef? — 3(b — ed)hi* — 3(b*c — ce?) f + 3(bc* — ef*)h + 3(b*c — €*f — (c — f)h?)i =0
—a*d+ad® — (a—d)g® + (a® —d*)g =0
—bPetbe® —(b—e)h®+ (b* —e*)h =0

—SftefP—(c—fid+ (- fNi=0

—3a2bd—b*d+bd® —3ab*e+3bde* +-ae® — (b—e)g® —3(b—e)gh?® — (a—d)h* — (a® —3ad?)e+3(a*b—d%e)g

+ (b —e*)g + (a® — d® — 3(a — d)g*)h + 3(ab® — de*)h = 0

—3b%ce—cletce® —3bc? f+3cef2+bf3 —(c— f)h —3(c— f)hi% —(b—e)i® — (b® —3be?) f +3(b—e* f)h

+ (A= 4+ (> —e® =3(b—e)h?)i+3(bc® —ef?)i=0

—3a’cd—cPd+cd® —3ac® f+3cdf* +af>—(c—f)g® —3(c— f)gi* —(a—d)i® — (a® —3ad?) f+3(a*c—d* f)g

+ (03 — f3)g + (a3 —d? - 3(a — d)g2)i + 3(a02 — dfz)i =0

When these equations are solved by SageMath, we obtain the set of matrices K in (8).

If the transformations with coefficient matrices from the set /" are applied to functions taken
from the sets NV and (), respectively, then the resulting new functions will remain within the

sets NV and Q).

We solve these equations for the unknowns a, b, ¢, d, e, f, g, h, i with the help of the computer
algebra system SageMath [35]. We refer the reader to the Appendix for a detailed

examination of the code, see Section 7.

We obtain the solution set .S as follows, where a and b € F:

44

a b b a b b a b b b a b b a b b b a b b a
b a bl,|b a bl,|b b al,|a b bl,[b b a|l,|b a bl,|a b b
b b a b b a b a b b b a a b b a b b b b a

In order all the matrices in S to be invertible, a,b € F, must satisfy the conditions a # b
and a # —2b. Hence, the solution set will be the set /K in (8). By combining this with
Lemma 4.2.2, we obtain that the set K is the maximal set in GL(3, ¢) such that £,(3,r) is

invariant under the transformations that come from GL(3, ¢). 4

We are not able to apply the same technique used in the case n = 2 when n = 3, because
we have some cumbersome identities to simplify and overcome. Instead, we prefer different
approaches for the proofs when n = 2 and n = 3. Furthermore, we believe that the approach
used for n = 3 may be adapted to the general n. Nevertheless, finding the exact set is still

challenging for the general n.

We give examples of SRM,[2, 7] and SRM,[3,] for some ¢, values, respectively.

Example 4.2.5. Let ¢ = 5, n = 2, r = 4 and (iy,i3) € 0,1 2),(0,3),
01
(0,4),(1,2), (1,3), (1,4), (2,3), (2,4), (3,4)}. For a matrix ,
10
0 2 3 4 0 0 4 1 1 3
2 0 0 704’40721’12’31’
31 2 4 4 4 3
, and o € [, the following equation holds:
1 3 4 2 2 3 4

ol (e1a) = (@al)| = (amy + bw2)" (o + des)™ = (awy + bwa)(cxy + d)"

45

Example 4.2.6. Let ¢ = 7, n = 3 and r = 5. Then (iy,i2,13) €
{(0,1,2),(0,1,3),(0,1,4),(0,2,3)}. Let

= m1x§ + :L‘ng + :L‘:{’xg - xi’xz - ajgxg — xla:g,

4 4 4 4 4 4
= X1T9 + ToX3 + T{T3 — T 1Ty — Tol3 — T1T3,

ga(w1, 9, w3) = xixh + wdad + xjwy — aial — wiaf — xiag,
and
a b b
A=<CP|b a b||PEPs,a,beF;a#b, a# —2b
b b a
Then

E7(3,5) = {a1g1 + a292 + azgs + asgs | a1, as, a3, a4 € Fr}.

For the matrix K € Aand g € E;(3,5), the polynomial T,(K) € Ez(3,5) by Theorem 4.2.4.
Since the SRM~|[3, 5] code is a type of polynomial evaluation codes, as in Example 2.5.2,

SRM¢(3, 5] is invariant under the corresponding transformations in A.

Note that the determinants of matrices in solution set must be nonzero. For example, the
1

solution set on F5 for n = 2 does not include the element because its determinant
4 1

is zero. Moreover, as the parameter n increases, the values of ¢ and r should be adjusted
accordingly.
4.3 The general case

Determining all transformations under GL(n, ¢) that leaves the SRM code invariant for a
general n is quite challenging. For this, there needs to be a general method to identify

such transformation. Nevertheless, we can predict the solution set that leaves the SRM code

46

invariant for a general n and is a subgroup of the affine linear group. However, we have not
established that this set may include all possible linear transformations under which SRM
codes are invariant. We leave the task of finding a generalized method for this problem for

future work.

47

5. CODES AND THEIR APPLICATIONS IN
INFORMATION SECURITY

Reed-Muller codes have been highly influential in computational theory, playing a central
role in several key developments across various fields. For example, in cryptography,
they are utilized in computational integrity in zero-knowledge proofs, secret sharing
scheme, homomorphic encryption etc. Reed-Muller codes have also been applied in
error-resilient design, particularly in distributed computation, where they are employed in
information dissemination algorithms for networks. Importantly, they play a crucial role in
theoretical perspectives such as interpolation, linearity, partial derivatives, self-reducibility
of low-degree polynomials, as well as in list decoding, local testing, and decoding. Finally,
polynomials, which are fundamental objects in many computational aspects, interact closely

with the study of coding-theoretic questions related to RM codes.

We are aware that numerous studies have explored the use of Reed-Muller codes in
cryptography, with the volume of research in this area increasing steadily. We believe that by
leveraging the advantages of SRM codes over RM codes, more efficient and practical models
will emerge. Therefore, we aim to expand the scope of research in these areas and identify

new open problems for further investigation.

These cryptographic applications of coding theory, in particular RM codes, have become
indispensable for ensuring security in modern communication systems. The issues

mentioned above will be discussed in detail below.

5.1 Zero-knowledge Proofs in Industry

In cryptography, zero-knowledge (ZK) proofs enable a prover to demonstrate the truth of a
statement to a verifier without revealing any information about the statement itself [36]. A

person who possesses confidential information about a situation should be able to produce

48

evidence related to it with ease. On the other hand, a verifier, even after being convinced of

the truth of the situation, should remain unable to provide proof of it to other third parties.

Zero-knowledge proofs require interaction between the prover and the verifier [37]. This
interaction involves the verifier selecting one or more random challenges. Despite this
randomness, the prover’s successful responses to these challenges convince the verifier that
the prover possesses the claimed knowledge. If there is no interaction, the verifier could
replay the protocol’s execution transcript to a third party, thus convincing the third party
that the verifier also possesses the confidential information. However, using the Fiat-Shamir

heuristic method, non-interactive zero-knowledge proofs can be constructed [38].

Zero-knowledge proofs have three important properties:

* Completeness: If the statement in question is true, an honest verifier will be convinced

by an honest prover.

* Soundness: If the statement is false, no dishonest prover can convince an honest

verifier that the statement is true, except with a very small probability.

» Zero-Knowledge: If the statement is true, the verifier learns nothing other than the fact
that the statement is true. This can be formalized as follows: every verifier has some
simulators such that, given only the statement being proved, the simulator can produce
a transcript that is indistinguishable from an interaction between an honest prover and

an honest verifier.

With zero-knowledge proofs, the concept of computational integrity arises, which means the
output of a specific computation is correct. This necessitates the use of a proof mechanism.
Zero-knowledge proofs are a cryptographic solution that ensures both privacy and the

computational integrity of the data.

Privacy is the ability of an individual to maintain control over their personal information.
With the development of services such as e-voting, e-tax, and e-cash, and the widespread
use of social media, the need for personal privacy and confidentiality has increased. In this

49

context, techniques exist to demonstrate that a secret element belongs to a public set. These
techniques are known as cryptographic primitives called set membership and range proofs.
Set membership proofs allow users to prove that their committed secrets belong to a public
set without revealing the secrets themselves. For instance, in an e-voting system, voters
can prove they have cast a valid vote without disclosing their choice. Range proofs, on the
other hand, are a special case of set membership where the public set is a large range of
integers. Typically, range proofs are used in conjunction with electronic identities to enforce

age restrictions [39].

KYC procedures can be performed using zk-set membership without revealing user
information. For example, an individual can prove that their country of residence is within
the European Union without disclosing the specific country. It will also be possible to verify
whether the individual is on the white or black lists established for anti-money laundering

(AML) purposes between countries.

In a resource-constrained environment, one of the use cases of zero-knowledge proofs is to
outsource computations to an external, powerful, but untrusted source. At this point, one
of the emerging technologies is layer 2 solutions in blockchain technology. Transactions
that take place on layer 2, outside the main chain, are proven on the main chain using
zero-knowledge proofs. This process is called zk-rollup, and the validity proof created after
off-chain transactions, along with the resulting state change, significantly reduces transaction
costs on the main chain. In these transactions, zero-knowledge proofs are used to ensure that

the transactions are performed correctly and are valid, rather than to ensure privacy [40].

Zero-knowledge proofs are used to address privacy concerns in distributed systems [41-43].
For example, Zerocash was designed to prevent the traceability of transactions [43]. In
this system, both user and transaction information are anonymous. zk-SNARKSs are used
to ensure anonymity. It is a privacy-focused cryptocurrency inspired by the 2014 work
Cryptonote [44]. In Monero [45], users are untraceable, and both the sender and receiver
are anonymous. To ensure the anonymity of transaction amounts, range proofs are used, and

or-proofs are employed to verify the correctness of the committed values.

50

In blockchain ecosystem, smart contracts are pieces of code executed by all participants in
the Ethereum network. All information in smart contracts can be viewed by other parties.
The lack of a privacy mechanism in the system is a major issue. This issue can be resolved
by using zk-SNARK or zk-STARK. Additionally, there is a special smart contract called
Hawk. However, each contract requires a new setup and a trusted manager who can access
the user’s information. In Bulletproofs, there is no need for a trusted setup, and the proof
sizes are smaller, making them suitable for use in private smart contracts. Zether [46] is
a decentralized, privacy-based payment mechanism compatible with Ethereum and other
smart contract platforms. For efficiency and usability, an account-based approach similar to
Ethereum has been followed. In this mechanism, which keeps account balances encrypted
and controls deposit, transfer, and withdrawal operations based on encrypted balances,
Y-protocols are used for zero-knowledge proofs. Ciphertexts encrypted with ElGamal

encryption are proven to be within a certain range using Bulletproofs.

Post-quantum zero-knowledge proofs are also being researched today. Benoit Libert
et.al. [47] worked on a lattice-based zk-range proof structure; however, the proof size is very
large. Even if the secret is small, the proof does not reduce in size. Therefore, optimization

efforts have begun.

Stark FRI AG codes in FRI information security

Public trust demands transparency from ZK systems, meaning these systems must be
established without relying on any trusted party and ensure that powerful entities cannot
provide false testimony. For ZK systems to be used with big data, the public verification
process must scale sub-linearly with respect to the size of the data. In the 1990s, transparent
ZK proofs that could be verified exponentially faster than the size of the data were defined,
but no practical implementations were achieved. To date, no ZK system implemented in
code has managed to achieve both transparency and exponential verification speedup for
general computations simultaneously. In their work, Eli Ben-Sasson et al. [48] claim to have

realized for the first time a transparent ZK system (ZK-STARK) where the verification scales

51

exponentially faster than the size of the data and exhibits exponential verification speed-up
for certain computations. Their system utilizes developments in interactive oracle proofs

(IOP), akin to fast (linear-time) IOP systems for error-correcting codes.

In their work, Eli Ben-Sasson et al. presented a scalable and transparent ZK system within
the IOP model. They improved the verification time and ensured that the communication
complexity is smaller than the witness size. The main source of innovation and performance
improvement in this system is the fast Reed-Solomon IOP (FRI) protocol. However, it
has been understood that some of the main components of such systems require long
verification times and work efficiently only asymptotically for large computations. In the
original ZK-STARK algorithm, Reed-Solomon error-correcting codes were used as the
error-correcting codes for the verifier. In their work, Eli Ben-Sasson et al. [49] suggested

using AG (algebraic geometry) codes instead of these codes.

Computational-integrity (CI) is a crucial aspect to be considered in terms of accountability.
However, scalability and privacy emerge as two major problems. This is because
scaling performance to meet continuously increasing demand will inevitably prevent
some participants from verifying integrity due to limited computational resources. On
the other hand, without cryptographically blinding information, making all blockchain
transactions publicly available is unacceptable for both businesses and individuals. Methods
to address these two problems have been studied for a long time. From the 1980s
to the 1990s, theoretical work on interactive proofs, zero-knowledge proofs (ZKP), and

probabilistically-checkable-proofs (PCP) has addressed how to tackle these two problems.

The first theoretical work on zero-knowledge proofs began in the early 1990s with
discussions on PCP. The PCP theorem establishes a balance between the prover’s time to
generate the proof and the verifier’s time to verify it. Zero-knowledge proofs based on PCP

have fundamental advantages regarding computational integrity.

The PCP theorem is one of the most important topics in complexity theory. PCP
(probabilistically-checkable-proof) is a proof system that allows the validity of a claim to

be checked by querying only a small portion of the proof [50]. The PCP theorem, in

52

computational complexity theory, is a type of probabilistically checkable proof. It checks
the proof by using a limited amount of randomness and reading a limited number of its
bits. The algorithm must accept correct proofs and reject incorrect proofs with very high

probability.

What makes PCP interesting is the existence of probabilistically checkable proofs, which can
be verified by reading only a few random bits of the proof. This theorem has provided lower

bounds for constraint satisfaction problems [51].

The PCP theorem states that every NP-proof can be encoded into another proof, known as
a probabilistically checkable proof (PCP), which can be tested by a verifier querying only a
small portion of it. However, a significant issue is the size of the overhead introduced by this
encoding. Specifically, the problem is comparing the length of the encoded PCP with the
original NP-proof. Even with the additional overhead in PCP protocols, good performance

has been achieved using Reed-Solomon error-correcting codes [50].

In their work, Eli Ben-Sasson et al. [49] explored the idea of replacing low-degree
polynomials in PCP structures with tensors of transitive algebraic geometry (AG) codes,
where AG codes generalize Reed-Solomon and Reed-Muller codes. They demonstrated that
the automorphisms of an AG code can be used to simulate the role of affine transformations in
earlier algebraic PCP constructions. Using this observation, they concluded that any family
of transitive AG codes that is asymptotically good over a fixed-size alphabet produces a

family of constant-rate PCPs with low query complexity in terms of polynomial degree.

In this study [49], AG codes were utilized because they share the multiplication property
used in the PCP arithmetization of Reed-Solomon and Reed-Muller codes. Although many
error-correcting codes exist, most of them lack other properties of Reed-Solomon codes, such
as systematicity and polynomial closure. Most importantly, the key feature of Reed-Solomon
and Reed-Muller codes is that they possess a transitive automorphism group. Therefore, the
idea of replacing Reed-Solomon codes with AG codes that have the same desirable properties

while also achieving a constant rate was considered. When integrating AG codes into the

53

PCP structure, it is sufficient to work with AG codes that have a transitive automorphism

group.

Here, we need to provide the definition of the doubly transitive property, which is a degree
of transitivity. A code C has an automorphism group Aut(C'), which is the group of
permutations m € Aut(C') that keeps the code invariant, i.e., for f € C, it holds that
(fom) € C. Foreachi € D, the codeword (f o m) is defined by w(7) 2 w(m(i)). If
for any two distinct pairs of elements (i, 5), (i, ') € D?, there exists a m € G that maps 7 to

i’ and j to j', then G acts doubly transitively on D.

RM codes are doubly transitive codes, since RM codes are affine-invariant. The RM
code family remains fixed under any invertible affine transformation, and the degree of
the functions generating the codewords are also invariant under such transformations. One
motivation for studying the doubly transitive property is its impact on the code rate under
fixed alphabet size and query complexity, which is relatively low. To date, there are no
known doubly transitive codes other than RM codes. Although certain code families have
highly rich automorphism groups, they do not exhibit this property. However, these codes can
be characterized by giving the degree to which they approach the doubly transitive property.
The query complexity of AG codes with a nearly doubly transitive automorphism group can
be reduced from |D|? to | D|. In fact, the degree of the doubly transitive property of a code
family also indicates the degree of its locally correctable property. Doubly transitive AG
codes are also locally correctable. Locally correctable codes are error-correcting codes where
any symbol in the codeword can be verified using a few other randomly chosen symbols. The

doubly transitive property is used to demonstrate the local correctability of tensor codes [52].

At this point, we focused on families of AG codes that possess a transitive automorphism
group or doubly transitive automorphism group. Specifically, we studied symmetric
Reed-Muller codes within the AG code family and attempted to increase the knowledge

on the automorphism group of symmetric Reed-Muller codes.

54

5.2 Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is considered a solution for preserving privacy and
security in computations on encrypted data. In 2009, Gentry proposed the first fully
homomorphic encryption (FHE) system [53]. Following this, extensive research has been
conducted on homomorphic encryption schemes based on lattice-based hard problems. One
of the most notable works is the Cheon-Kim-Kim-Song (CKKS) scheme, which allows
approximate homomorphic encryption. However, even in this scheme, the computational
complexity remains very high, such that performing homomorphic operations can take
days to complete. This emphasizes the need for further advancements to make FHE more
practical in real-world applications. Current FHE schemes are predominantly constructed
using lattice-based cryptography. However, homomorphic multiplications and refreshing the
ciphertext require a significant amount of computational resources. Therefore, there is a need
for new methods that can reduce computational complexity in practical applications of FHE.
Various solutions have been proposed in the literature to address this challenge. One of these

approaches is to tackle the problem through a code-based homomorphic operation scheme.

While linear codes are closed under addition, they are not closed under homomorphic
multiplication. The proposed solution addresses this limitation by using Reed-Muller (RM)
codes, which support both addition and multiplication. With this method, it is crucial to
preserve the rank of RM codes after addition or multiplication operations. To achieve this,
a bootstrapping technique is suggested, which creates a one-to-one correspondence between
computations on messages and computations on RM codewords. This technique ensures
that the integrity of the RM codes is maintained during the homomorphic operations. The
potential of symmetric Reed-Muller codes to reduce noise in homomorphic encryption will

be explored in future studies.

5.3 Secret Sharing

For a protocol to be secure, the sensitive information it contains must be stored reliably
and confidentially. Examples of such sensitive information include private keys in public

55

key systems. One of the primary motivations for secret sharing is the reconstruction of a
cryptographic key in case it is lost. In real-life scenarios, there are situations where a group
of people needs access to confidential information. In such cases, only trusted members of
the group should have access to this secret information. Additionally, when storing highly
sensitive data, it may be necessary to split it into parts and store these parts in different
locations. Each piece of data should provide as little information as possible about the entire
set of data, and only when a minimum number of pieces are combined should the original
data be recoverable. This significantly increases the effort required for an adversary to obtain

the full confidential information.

A secret sharing scheme is a method for securely sharing a secret among a group of
participants. For a given secret, the so-called dealer calculates appropriate shares and
distributes them to the participants. The shares will only allow pre-defined subsets of
participants to reconstruct the secret from their shares. These subsets are called authorized,
and the set of all authorized subsets is referred to as the access structure. The remaining
subsets are unauthorized and should learn as little as possible about the secret from their

shares.

In 1979, Shamir [54] introduced a threshold signature scheme in which all participants
receive shares that represent parts of a secret as a polynomial. In this scheme, there is
no hierarchy among participants, meaning each participant’s share has equal importance in
reconstructing the secret. Independently of Shamir’s work, Blakley [55] conducted similar
research in the same year. The schemes developed in both works are referred to as threshold
access structures, where any subset of participants that meets the threshold value is capable
of reconstructing the secret. In 1991, Simon [56] employed a monotone access structure in
his study. In these access models, all supersets of authorized sets are also authorized. In the
following years, studies began on access models in which the pieces held by the participants
had different weightings as they came together to form the secret. These models are generally

referred to as hierarchical threshold schemes [57-59]

In the study [60], a novel secret sharing scheme based on binary error-correcting codes is

56

presented, which can implement arbitrary access structures. In this secret sharing scheme,
the secret is a codeword in a binary error-correcting code, and the shares are binary words of
the same length. When a group of participants wants to reconstruct the secret, they compute
the sum of their shares and apply Hamming decoding to the sum. The feature of the shares
is that when the group is authorized, the secret corresponds to the codeword closest to the
sum of the shares. Otherwise, the sum results in a different codeword through the Hamming
decoding process. The shares can be described as solutions to a system of linear equations
that is closely related to first-order Reed-Muller codes. Additionally, the access structure
model in this study [60] was constructed through Reed-Muller codes. In another study [25],
multiplicative linear secret sharing schemes were examined. Such schemes can be defined
through linear codes. In this study, a more general class of Reed-Muller type codes, suitable

for multiparty computation, was presented.

There are many studies on error-correcting codes in the context of secret sharing. One of
the open problems we leave for future work is the advantages and disadvantages that the use
of SRM codes may bring to schemes inspired by these studies. This is because we believe
that codes with efficient encoding and decoding capabilities will lead to the development of

effective schemes and provide good privacy threshold for secret sharing.

57

6. CONCLUSION AND FUTURE WORK

Our work aims at determining the set of affine-invariant transformations. The linear
automorphism groups of SRM for n = 2 and n = 3 over the field F,,, where p is any prime
number is proven in this study. For n = 2 and n = 3, we find that the exact set generated
by transformations remaining SRM codes invariant is a subgroup of the affine linear group.
For different values of n, different techniques were used to determine this set. We give the
essential lemmas for our main theorem, which identifies the group created by transformations

leaving the SRM code invariant.

This study has offered valuable insights into affine invariant transformations on SRM codes;
however, there exists an unresolved question that calls for further investigation in future
research. We could not give a general proof for an arbitrary n, and leave it an open problem
of the complete determination of the automorphism group Aut(SRM) for any n > 3. We
state the problem left for future researches as follows and include our prediction regarding

set M associated with the solution of this problem :

Let J, be the n x n all one matrix, I, be the n x n identity matrix and P, be the

set of permutations of order n. Let M be a subset of GL(n,q) defined as M =

{P((b-a)l,+alJ,)| P € Pna,b € Fy,a#ba+# (1 —n)b} C GL(n,q). Then, the
(n—=1)

automorphism group of the SRM,[n, r] for ¢ > r > % contains a subgroup isomorphic

to M, i.e., SRMq[n, r] is invariant under the transformations in M.
The proof of the invariance of SRM,[n, 7] codes under the transformations, which come from
the set M, may be similarly done to that of Lemma 4.2.2. Notwithstanding, in order to show

that the set M is the complete set in this manner is quite challenging to follow the same

techniques.

On the other hand, error correction codes have numerous applications across various
fields, some of which have been discussed above. In particular, Reed-Muller codes have
significantly accelerated research in terms of efficiency, speed, and accuracy by being
integrated into new technologies. Ongoing studies on these codes span a wide range

58

of applications, from data privacy to satellite technologies. Improvements made through
research on Reed-Muller codes are expected to enhance the technologies that utilize these

codes.

At this juncture, we anticipate obtaining better results in applications through the use of
SRM codes. It is well-known that employing codes with transitive automorphism groups in
proof systems will lead to more efficient proofs [49]. Therefore, we believe that SRM codes
will prove beneficial in this context. To this end, we have investigated the automorphism
groups of SRM codes. This raises an open question regarding the transitivity of this group.
Once the transitivity of the automorphism group of SRM codes is established, we expect
that their application in proof systems will yield even greater efficiency. Consequently, this
will lead to significant advancements across all fields where proof systems are employed,
resulting in exponential improvements in areas such as e-voting, homomorphic encryption,

secret sharing, and other related domains.

59

(2]

[3]

[7]

[10]

[11]

REFERENCES

W. C. Huffman and V. Pless. Fundamentals of error correcting codes. Cambridge

University Press, 2003.

F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes,
volume 16. Elsevier, 1977.

P. Delsarte, J. M. Goethals, and F. J. MacWilliams. On generalized reed-muller
codes and their relatives. Information and control, 16(5):403—-442, 1970.

V. Pless, R. A. Brualdi, and W. C. Huffman. Handbook of coding theory. Elsevier
Science Inc., 1998.

W. Yan and S. J. Lin. Symmetric reed—muller codes. IEEE Transactions on

Communications, 68(7):3937-3947, 2020.

T. Kasami, S. Lin, and W. Peterson. Some results on cyclic codes which are
invariant under the affine group and their applications. Information and Control,

11(5-6):475-496, 1967.

P. Delsarte. On cyclic codes that are invariant under the general linear group.

IEEE Transactions on Information Theory, 16(6):760-769, 1970.

A. Diir. The automorphism groups of reed-solomon codes. Journal of

Combinatorial Theory, Series A, 44(1):69-82, 1987.

T. P. Berger and P. Charpin. The automorphism group of generalized reed-muller

codes. Discrete mathematics, 117(1-3):1-17, 1993.

T. P. Berger and P. Charpin. The permutation group of affine-invariant extended

cyclic codes. IEEE transactions on Information theory, 42(6):2194-2209, 1996.

T. P. Berger. Automorphism groups of homogeneous and projective reed-muller

codes. IEEE Transactions on Information Theory, 48(5):1035-1045, 2006.

60

[12]

[13]

[14]

[15]

[16]

[17]

[20]

[21]

[22]

W. Yan and S. J. Lin. Local correctabilities and dual codes of symmetric
reed—muller codes. In 2021 IEEE Information Theory Workshop (ITW), pages
1-5. IEEE, 2021.

D. E. Muller. Application of boolean algebra to switching circuit design and
to error detection. Transactions of the IRE professional group on electronic

computers, (3):6—12, 1954.

I. S. Reed. A class of multiple-error-correcting codes and the decoding scheme.

IEEE Transactions on Information Theory, 4(4):38-49, 1954.

E. Abbe, O. Sberlo, A. Shpilka, M. Ye, et al. Reed-muller codes. Foundations
and Trends® in Communications and Information Theory, 20(1-2):1-156, 2023.

R. Knorr and W. Willems. The automorphism groups of generalized reed-muller

codes. Astérisque, 181:182, 1990.

T. P. Berger. On the automorphism groups of affine-invariant codes. Designs,

codes and cryptography, 7:215-221, 1996.

V. Lint and J. Hendricus. Introduction to coding theory, volume 86. Springer

Science & Business Media, 1998.

I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal

of the society for industrial and applied mathematics, 8(2):300-304, 1960.

Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error

correcting binary group codes. Information and control, 3(1):68-79, 1960.
Alexis Hocquenghem. Codes correcteurs d’erreurs. Chiffers, 2:147-156, 1959.

E. Abbe, A. Shpilka, and M. Ye. Reed—muller codes: Theory and algorithms.
IEEE Transactions on Information Theory, 67(6):3251-3277, 2020.

61

[23]

[24]

[26]

[27]

[28]

[31]

[32]

[33]

T. Kasami, S. Lin, and W. Peterson. New generalizations of the reed-muller

codes—i: Primitive codes. IEEE Transactions on information theory,

14(2):189-199, 1968.

J. Cho, Y.-S. Kim, and J. S. No. Homomorphic computation in reed-muller codes.

IEEE Access, 8:108622-108628, 2020.

I. Duursma and J. Shen. Multiplicative secret sharing schemes from reed-muller
type codes. In 2012 IEEE International Symposium on Information Theory
Proceedings, pages 264-268. IEEE, 2012.

R. Pellikaan and X. W. Wu. List decoding of g-ary reed-muller codes. IEEE
Transactions on Information Theory, 50(4):679-682, 2004.

N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing reed-muller
codes. IEEE Transactions on Information Theory, 51(11):4032-4039, 2005.

S. Yekhanin et al. Locally decodable codes. Foundations and Trends® in
Theoretical Computer Science, 6(3):139-255, 2012.

E. F. Assmus and J. D. Key. Designs and their Codes. 103. Cambridge University
Press, 1992.

A. B. Sorensen. Projective reed-muller codes. IEEE Transactions on Information

Theory, 37(6):1567-1576, 1991.

P. Beelen, S. R. Ghorpade, and T. Hoholdt. Affine grassmann codes. IEEE
Transactions on Information theory, 56(7):3166-3176, 2010.

A. M. Steane. Quantum reed-muller codes. IEEE Transactions on Information

Theory, 45(5):1701-1703, 1999.

M. Bhaintwal and S. K. Wasan. Generalized reed—muller codes over. Designs,

Codes and Cryptography, 54(2):149-166, 2010.

62

[34]

[35]

[36]

[37]

[39]

[42]

[43]

E. Weldon. New generalizations of the reed-muller codes—ii: Nonprimitive codes.

IEEE Transactions on Information Theory, 14(2):199-205, 1968.

SageMath. The Sage Mathematics Software System (Version 9.3), 2021.

https://www.sagemath.org.

V. Mulder, A. Mermoud, V. Lenders, and B. Tellenbach. Trends in Data

Protection and Encryption Technologies. Springer Nature, 2023.

O. Goldreich. Foundations of Cryptography, Volume 2. Cambridge university
press Cambridge, 2004.

M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its
applications. In Providing Sound Foundations for Cryptography: On the Work of
Shafi Goldwasser and Silvio Micali, pages 329-349. 2019.

Eduardo Morais, Tommy Koens, Cees Van Wijk, and Aleksei Koren. A survey
on zero knowledge range proofs and applications. SN Applied Sciences, 1:1-17,

2019.

Jens Ernstberger, Stefanos Chaliasos, Liyi Zhou, Philipp Jovanovic, and Arthur

Gervais. Do you need a zero knowledge proof? Cryptology ePrint Archive, 2024.

Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin:
Anonymous distributed e-cash from bitcoin. In 2013 IEEE symposium on security

and privacy, pages 397-411. IEEE, 2013.

Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos
Papamanthou. Hawk: The blockchain model of cryptography and
privacy-preserving smart contracts. In 2016 IEEE symposium on security and

privacy (SP), pages 839-858. IEEE, 2016.

Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous

63

[44]

[45]

[46]

[48]

[50]

[51]

[52]

payments from bitcoin. In 2014 IEEE symposium on security and privacy, pages

459-474. 1EEE, 2014.
Nicolas Van Saberhagen. Cryptonote v 2.0. 2013.

Malte Moser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat
Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan,
et al. An empirical analysis of traceability in the monero blockchain. arXiv

preprint arXiv:1704.04299, 2017.

Benedikt Biinz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether:
Towards privacy in a smart contract world. In International Conference on

Financial Cryptography and Data Security, pages 423—443. Springer, 2020.

Benoit Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based
zero-knowledge arguments for integer relations. In Annual International

Cryptology Conference, pages 700-732. Springer, 2018.

E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and

post-quantum secure computational integrity. Cryptology ePrint Archive, 2018.

E. Ben-Sasson, Y. Kaplan, S. Kopparty, O. Meir, and H. Stichtenoth. Constant

rate pcps for circuit-sat with sublinear query complexity. Journal of the ACM

(JACM), 63(4):1-57, 2016.

S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verification
and the hardness of approximation problems. Journal of the ACM (JACM),
45(3):501-555, 1998.

S. Arora. How np got a new definition: a survey of probabilistically checkable

proofs. arXiv preprint cs/0304038, 2003.

Y. Kaplan and E. Ben-Sasson. Multi-variate Abstractions of Algebraic Geometry
Codes, With Applications. Ph.D. thesis, Computer Science Department,
Technion, 2016.

64

[55]

[56]

[57]

[58]

[59]

[60]

Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

Adi Shamir. How to share a secret. Communications of the ACM,

22(11):612-613, 1979.

George Robert Blakley. Safeguarding cryptographic keys. In Managing
requirements knowledge, international workshop on, pages 313-313. 1EEE

Computer Society, 1979.

Gustavus J Simmons. Geometric shared secret and/or shared control schemes.
In Conference on the Theory and Application of Cryptography, pages 216-241.
Springer, 1990.

Tamir Tassa. Hierarchical threshold secret sharing. Journal of cryptology,

20:237-264, 2007.

Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in
multi-recipient encryption schemeas. In Public Key Cryptography—PKC 2003:
6th International Workshop on Practice and Theory in Public Key Cryptography
Miami, FL, USA, January 68, 2003 Proceedings 6, pages 85-99. Springer, 2002.

Muhammed Ali Bingol, Sermin Kocaman, Ali Dogan, and Sibel Kurt Toplu.
Flexhi: A flexible hierarchical threshold signature scheme. In Science and

Information Conference, pages 509-529. Springer, 2024.

Claudia Kisser. Secret sharing schemes based on error-correcting codes. Ph.D.

thesis, Universitit Tiibingen, 2016.

65

20

21

7. Appendix

reset ()

forget (assumptions())

Define the variables

X,y,2 = var('x y z")

Define the expression T

a,b,c,d, e, £, g, h, 1 = var('ab c de £f ghi")

X = a*xtb*xy+tcxz

<
|

= dxxtexy+f*z

Z = gxxthxyt+tixz

D1 = matrix([[1,1,1]1,[X,Y,2],[X"2,Y"2,2"°2]]) .determinant ()

Dls = (D1l.full_simplify())

D2 = matrix([[1,1,1]1,[X,Y,2],[X"3,Y"3,2°3]1]) .determinant ()
D2s = (D2.full_simplify())

#print (D1s)

egnsl =

. [Dls.coefficient (x+xy*z),Dls.coefficient (x"3),Dls.coefficient (y~3),
< \\Dls.coefficient (z"3),Dls.coefficient (x+y~2)+ \\

— Dls.coefficient (x"2+y),Dls.coefficient (zxy~2)+ \\

— Dls.coefficient(z"2+y),Dls.coefficient (x+z"2)+ \\

< Dls.coefficient (x " 2+z)]

66

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

#show (eqns1)

eqns2 = [D2s.coefficient (x+xy+xz~2),D2s.coefficient (x+xy 2+z),\\

— D2s.coefficient (x"2+y*z), D2s.coefficient (x"2+y~2),\\

« D2s.coefficient (x"2+xz72), D2s.coefficient (z"2+xy~2),\\

— D2s.coefficient(x"4),D2s.coefficient (y~"4),D2s.coefficient (z74),\\
— D2s.coefficient (xxy~3)+D2s.coefficient (x"3*y),\\

— D2s.coefficient (zxy 3)+D2s.coefficient (z"3*y),\\

— D2s.coefficient (x+xz"3)+D2s.coefficient (x " 3xz)]

#show (eqnsZ2)

egqns = eqgqnsl+eqns?

print ("-———--"""""""—— ")

for eq in egns:

show (eq)

#print (eq(a=2,b=1,c=1,d=1,e=2,f=1,g=1,h=1,1=2))
print ("-——————————— = ")
det=matrix([[a,b,c], [d,e,f], [g,h,1]]) .determinant ()
sol =

— solve([eqns[1]==0,eqns[2]==0,eqgns[13]==0,eqns[14]==0,eqgns[4]==0,
eqns[16]==0],a,b,d,e, g, h)

#print (sol)

sol_dict =

— solve([egns[1l]==0,egns[2]==0,eqns[13]==0,eqns[14]==0,eqns[4]==0,

egqns|[16]==0],a,b,d,e,g,h,solution_dict=True)

#sol=solve ([egns[1],eqns[13]],a,d, g)
sol =

— solve([egns[1]==0,eqns[2]==0,eqns[3]==0,eqns[13]==0,eqns[14]==0,

67

42

43

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

eqns[15]==0,eqns[4]==0,eqns[16]==0],a,b,c,d,e, f,g9,h,1)

sol_dict =

— solve([egns[1]==0,eqns[2]==0,eqns[3]==0,eqns[13]==0,eqns[14]==0,
egqns[15]==0,egns[4]==0,eqns[16]==0]1,a,b,c,d,e, f,g,h,1i,
solution_dict=True)

#sol= solve(eqns,a,b,c,d,e, f,g,h, 1)

#print (len(sol),sol)

eqns_ex = [egns[0],eqns[3],eqns[1l5]]+tegns[5:13]+eqns[17:19]

for j in range(len(sol_dict)):
if ((det(sol_dict[j])) .full_simplify()) !=0:
print (j,sol_dict[3])
sol_g =
< solve(egqns_ex+sol[jl,a,b,c,d,e,f,g,h,i,solution_dict=True)
#print (sol_g)
for k in range(len(sol_g)):
if ((det(sol_glk])).full_simplify())!=0:

print (j,k,sol_g[k])

#eqgns_ex_subt=[eqns_ex[k] (sol[j]) for k in
— range (len(egns_ex))]
#print (eqns_ex_subt[0])

#print (solve (eqns_ex_subt,a,b,c,d,e, f,g,h,1))

#Sol_p = [e::a, i::a, c::b, d::b, f::b, g::b, h::b]

#solve (egns+sol_p,a,b,c,d, e, f,g,h, 1)

68

