
SOME RESULTS ON A GROUP UNDER WHICH
SYMMETRIC REED-MULLER CODES ARE INVARIANT

SİMETRİK REED-MULLER KODLARININ DEĞİŞMEZ
OLDUĞU BİR GRUP ÜZERİNE BAZI SONUÇLAR

SİBEL KURT TOPLU

PROF. DR. PINAR AYDOĞDU

Supervisor

DOÇ. DR. OĞUZ YAYLA

2nd Supervisor

Submitted to

Graduate School of Science and Engineering of Hacettepe University

as a Partial Fulllment to the Requirements

for the Award of the Degree of Doctor of Philosopy

in Mathematics

June 2024

ABSTRACT

SOME RESULTS ON A GROUP UNDER WHICH SYMMETRIC
REED-MULLER CODES ARE INVARIANT

Sibel KURT TOPLU

Doctor of Philosopy,Mathematics
Supervisor: Prof. Dr. PINAR AYDOĞDU
2nd Supervisor: Doç. Dr. OĞUZ YAYLA

June 2024, 91 pages

The Reed-Muller codes are a family of error-correcting codes that have been widely

studied in coding theory. In 2020, Wei Yan and Sian-Jheng Lin introduced a variant of

Reed-Muller codes so called symmetric Reed-Muller codes. We investigate linear maps of

the automorphism group of symmetric Reed-Muller codes and show that the set of these

linear maps forms a subgroup of the general linear group, which is the automorphism group

of punctured Reed-Muller codes. We provide a method to determine all the automorphisms

in this subgroup explicitly for some special cases.

Keywords: Reed-Muller codes, Symmetric Reed-Muller codes, Afne invariant,

Automorphism groups.

i

ÖZET

SİMETRİK REED-MULLER KODLARININ DEĞİŞMEZ OLDUĞU
BİR GRUP ÜZERİNE BAZI SONUÇLAR

Sibel KURT TOPLU

Doktora,Matematik
Danışman: Prof. Dr. PINAR AYDOĞDU
Eş Danışman: Doç. Dr. OĞUZ YAYLA

Haziran 2024, 91 sayfa

Kodlama teorisinde, yıllardır gönderici ve alıcı arasında veri alışverişini daha iyi hale

getirmek için çalışmalar yapılmaktadır. Bu bilgi alışverişi sırasında başa çıkılması gereken

en önemli sorun iletişim sırasında oluşacak hatalardır. Bunun için mesajın sonuna eklenen

kontrol bitleri gibi çeşitli önlemler alınmıştır. Bu kontrol bitleri sayesinde alıcı aldığı

mesajı kontrol edebilir. Aşağıda bu şekilde kontrol edilebilen kodlar için temel kavramlar

verilecektir.

Fn
q vektör uzayı üzerinde n uzunluklu bir C kodu, Fn

q kümesinin bir alt kümesidir. Özel

olarak, lineer kodların alfabesi de sonlu cisim üzerinde tanımlıdır. Fq üzerinde bir lineer

kod, Fn
q vektör uzayının bir alt uzayıdır.

Kod kelimeleri arasındaki minimum uzaklık bir kodun önemli parametrelerindendir. C,

Fn
q üzerinde bir lineer kod olsun. C’nin minimum uzaklığı kod kelimelerinin birbirleri

arasındaki uzaklıklardan en küçüğüdür, yani

d = d(C) = mind(x, y) x, y ∈ C, x ̸= y
ii

şeklinde tanımlıdır.

Bir lineer C kodu, Fn
q vektör uzayının k boyutlu alt uzayı ve C’nin minimum uzaklığı d ise

C koduna q-lu bir [n, k, d]-kod denir (bkz. [1]).

Bir kodu oluşturan tüm elemanlara kod sözcüğü denir. C lineer kodu qk adet kod kelimesine

sahiptir.

Bir lineer [n, k]-kodunun oranı k
n
’dir. Bu oran her bir kod kelimesinin ne kadar bilgi

taşıdığının ölçüsüdür. Bir C kodunun göreceli uzaklığı ise d(C)
n

olarak tanımlıdır.

Bir x ∈ Fn
q vektörünün ağırlığı, x’teki sıfırdan farklı sembollerin sayısıdır ve w(x) ile

gösterilir. Minimum uzaklık ve minimum ağırlık tanımları kullanıldığında

x, y ∈ Fn
q ⇐⇒ d(x, y) = w(x y)

olduğu görülür. Bundan dolayı, bir C lineer kodunun sıfırdan farklı kod kelimelerinin

minimum ağırlığı w(C), minimum uzaklığı d(C) birbirine eşittir.

C bir [n, k]-kod olsun. Satırları,C kodu için bir taban oluşturan k×n boyutlu birGmatrisine,

üreteç matrisi denir. Bileşenleri Fq’dan alınan ve sıralı k-lilerden oluşan vektör uzayı V (k, q)

olmak üzere, C kod uzayı aşağıdaki gibidir :

C = xG x ∈ V (k, q)

Üreteç matrisi, I birim matris olmak üzere, G = [Ik A] biçimindedir.

C’nin dual kodu C⊥ = v ∈ V (n, q) vc = 0, ∀c ∈ C olarak tanımlıdır. Bu durumda,

C kodunun duali C⊥ bir lineer [n, n k]-koddur. Bir C lineer kodunun dualinin duali de

kendisine eşittir, yani (C⊥)⊥ = C’dir.

C bir lineer [n, k]-kod olsun. C⊥’nin üreteç matrisi H , C’nin kontrol matrisi olarak

adlandırılır. Bu durumda,

x ∈ C ⇐⇒ xHT = 0

iii

sağlanır.

Kodlama teorisinin ana amaçlarından biri en yüksek hata doğrulama kapasitesine, geniş

bir göreceli uzaklığa ve yüksek bir bilgi oranına ulaşmaktır. Ancak, bu amaca ulaşmada

belirli kısıtlayıcı özellikler mevcuttur. Bu kısıtlardan bir tanesi de Singleton kısıtıdır. C bir

[n, k, d]-kod olmak üzere, bu kısıt aşağıdaki şekilde tanımlanır :

d ≤ n k + 1

Reed-Solomon kodları, 1960 yıllarında bulunmuş lineer kodlardır. Reed Solomon kodları

çoklu hata tespit eden ve düzeltebilen lineer kodlardır. Bu kod, Fn
q üzerinde tanımlı, blok

uzunluğu n, boyutu k, minimum uzaklığı d = n k + d’dir.

mK K ⊆ 1, 2, , n, K ≤ r

olur.

Reed-Solomon kodlarını inşa etmede birçok yöntem vardır. Her bir Reed-Solomon kod

kelimesi, derecesi k’den küçük polinom değerlerinin bir dizisidir. Reed-Solomon kod

kelimesinin mesaj sembolleri, derecesi k’den küçük, Fq üzerindeki polinomun katsayılarıdır.

Bir mesaj m = (m0,m1, ,mk−1), bir t polinomu t(x) = m0 + m1x + + mk−1x
k−1

içerisine gömülür. α ilkel bir eleman olmak üzere Reed-Solomon kodu

C = (t(1), t(α), , t(αn−1)) t ∈ Fq[x], der(t) ≤ k

şeklinde oluşturulur. Gönderici bu şekilde bir kod kelimesini 1,α, ,αn−1 kümesinde

değerlendirdiğinde ortaya çıkan s = (s1, s2, , sn)’yi alıcıya gönderir. Alıcı bu si

noktalarından en az t tanesinin si = t(αi) formatında olduğunu bilir ve buna göre aldığı

koddan mesajı tekrar oluşturur.

Reed-Muller (kısaca, RM) kodları ise 1950’lerde bulunmuş, kolay deşifre edilebilen lineer

blok kodlardır ve birçok oluşturulma yöntemi vardır. Bu kodlar, Boolean fonksiyonlarla ya

iv

da polinomlarla oluşturulur. r-dereceli Reed-Muller R(r,m) kodu derecesi en fazla r olan

tüm polinomların kümesidir. RM kodları yinelemeli olarak tanımlanabilir. R(0,m), tabanı

1 olan, 0-dereceli ve kod sözcüklerinin uzunluğu 2m olan koddur. R(r,m), 1 ≤ r < m için

r-dereceli ve uzunluğu 2m olan bir kod olsun. Bu kodu yinelemeli olarak

R(r,m) = (u, u+ v) u ∈ R(r,m 1), v ∈ R(r 1, m 1)

şeklinde oluşturabiliriz. R(r,m)’nin üreteç matrisiGr,m olsun. Bu durumda R(r+1, m+1)

için üreteç matrisi yinelemeli olarak üretilebilir ve bu durumda

G(r + 1,m+ 1) =

G(r + 1,m) G(r + 1, m)

0 G(r,m)

matrisi elde edilir (bkz. [1]).

0 ≤ r ≤ m olacak şekilde r ve m iki tamsayı olsun. Bu durumda R(r,m) aşağıdakileri

sağlar :

1) R(r 1, m) ⊂ R(r,m).

2) R(r,m)⊥ = R(m r 1, m)

3) R(r,m) kodunun boyutu

m
0

+

m
1

+ +

m
d

.

4) R(r,m) kodunun minimum uzaklığı d = 2m−r.

0 ≤ r ≤ m 1 için R(r,m) kodunun tüm kod kelimelerinden belli bir koordinatının

silinmesiyle elde edilen kod kelimelerinden oluşan koda delinmiş (punctured) Reed-Muller

kod R(r,m)∗ denir. Dolayısıyla, delinmiş Reed-Muller kodlar, Reed-Muller kodlarının özel

bir halidir.

Lineer kodların birbirlerine denklikleri ve bu denkliklerin çeşitleri vardır. C1 ve C2 lineer

kodlarının permutasyon denk olması, C1’den C2’ye giden bir koordinat permutasyonunun

v

var olması demektir. Pn permütasyon matrisleri kümesi, her satırı ve sütununda yalnızca bir

adet 1 olan ve bunun dışındaki tüm yerlerde 0 olan karesel matrislerden oluşur. Permütasyon

denk olan C1 ve C2 lineer kodları aynı uzunluğa sahip olmakla birlikte, üreteç matrisleri G1

ve G2 arasında, P ∈ Pn olmak üzere,

G2 = G1P

eşitliği sağlanır (bkz. [1]).

Her bir satırında ve sütununda, sıfırdan farklı sadece bir eleman olan bir matrise monom adı

verilir. İki lineer kodun monom denk olması, iki kodun üreteç matrisleri G1 ve G2 arasında

G2 = G1M

eşitliğinin sağlanması demektir (bkz. [1]).

En genel olarak, iki lineer kodun denk olması şöyle tanımlanmaktadır: C1 ve C2 bir F sonlu

cismi üzerinde aynı uzunluğa sahip iki lineer kod olsun.

C2 = C1Mγ

eşitliğini sağlayan bir M monom matrisi ve F üzerinde bir γ cisim otomorzması varsa, C1

ile C2 kodları denktir denir.

Bu üç denklikten yola çıkarak, üç tip otomorzma grubu oluşturulabilir. Fq sonlu cismi

üzerinde uzunluğu n olan bir C kodunu düşünelim. C kodunu kendisine götüren koordinat

permutasyonlarının kümesi bir grup oluşturur ve bu gruba C’nin permutasyon otomorzması

denir ve PAut(C) ile gösterilir. PAut(C)’nin Sn’nin bir alt grubu olduğu açıkca görülür.

Bir C kodunu, monom denk olarak yine bu C koduna götüren tüm monom matrisler bir

grup oluşturur. Bu gruba, C’nin monom otomorzma grubu denir veMAut(C) ile gösterilir.

Son olarak, C kodunu kendisine götüren tüm Mγ elemanları C’nin otomorzma grubunu

oluşturur ve Aut(C) ile gösterilir. Bu otomorzma grupları arasında

vi

PAut(C) ⊆ MAut(C) ⊆ Aut(C)

kapsamaları sağlanır (bkz. [1]).

İkili kodlar için PAut(C) = MAut(C) = Aut(C) elde edilir. Bu durumda, söz konusu

otomorzma grupları, Sn simetrik grubunun bir alt grubudur. Eğer Aut(C), genel an gruba

izomork bir grup içeriyorsa, C koduna an değişmez denir. Bu yüzden, R(r,m) kodu an

değişmezdir.

Genel an grup GA(m, 2), r dereceli R(r,m)’nin tüm kod kelimelerini yer değiştirir ve

GA(m, 2) ⊂ AutR(r,m) olur [2]. Genel lineer grup, delinmiş Reed-Muller kodun tüm kod

kelimelerini yer değiştirir. O halde, GL(m, 2) ⊂ Aut(R(r,m))∗ elde edilir (bkz. [2]). Bu

bilgiler ışığında MacWilliam vd. kitabından [2] şu eşitlikleri elde ederiz. 1 ≤ r ≤ m 2

için Aut(R(r,m)∗) = GL(m, 2) ve Aut(R(r,m)) = GA(m, 2).

Kodlama teorisi alanında kod otomorzmaları önemli bir yer tutmaktadır. Örneğin,

lineer kodların otomorzmaları kodun yapısını belirlemede, ağırlık dağılımını hesaplamada,

kodları sınıandırma ve çözme algoritmalarını geliştirilmesinde çok kullanışlı bir kavramdır.

Ayrıca otomorzmaların incelenmesi, etkili çözme algoritmalarının geliştirilmesine katkıda

bulunabilir. Bir kodun içindeki simetriler kullanarak, hataları düzeltmek için hesaplama

açısından daha verimli algoritmaların tasarlanabileceği düşünülmektedir. Bu nedenle,

kodların otomorzmaları, kodların hata düzeltme özelliklerini anlama ve karakterize etme

konusunda kritik bir rol oynar. Dolayısıyla, bir kodun simetrilerini inceleyerek, hataların

kodlanmış bilgiyi nasıl etkilediği ve kodun bu hataları nasıl düzeltebileceği veya tespit

edebileceği konusunda kirler kazanılabilir. Kodlama teorisinde kod otomorzmaları,

kodların yapısını ve özelliklerini anlamak için önemli bir araçtır. Kod otomorzmaları,

iki kodun birbirine eşdeğer olup olmadığını belirlemeye yardımcı olur. Eğer iki kod, bir

otomorzma ile birbirine dönüştürülebiliyorsa, bu kodlar aynı bilgiyi taşıdığı anlamına

gelir. Kod otomorzmaları, kodların yapısal özelliklerini incelemek için de bir yöntem

sunar. Bu sayede kodların simetrik özellikleri ve yapıları daha iyi anlaşılabilir. Ayrıca,

kod otomorzmalarını deşifre etme sürecine entegre ederek, şifre çözümleme stratejilerinin

vii

verimliliğini ve etkinliğini artırabilir. Otomorzma grubunu tanımlamak ve özelliklerinden

faydalanmak, hesaplama yükünü azaltarak şifre çözümleme performansını iyileştirebilir.

RM kodları, Irving S. Reed ve Gustave Solomon Muller tarafından 1954 yılında tanıtılan bir

hata düzeltme kodları ailesidir. Literatürde birçok RM kodu varyasyonu ve genelleştirmesi

tanıtılmıştır (bkz. [2–4]). Bu kodların ikili versiyonları, ikili polinomlarla tanımlanır ve

polinomun uygun noktalarda değerlendirilerek oluşturulur. RM kodlarının birçok önemli

özelliği vardır ve bu da onları birçok uygulamada kullanışlı hale getirir. Ayrıca, basit

kodlama ve çözme algoritmalarına sahiptirler, bu da onları daha verimli hale getirir. Benzer

şekilde, RM kodlarının otomorzmaları, kodların hata düzeltme özelliklerini anlama ve

karakterize etme konusunda kritik bir rol oynar. Bu nedenle, kodun simetrilerini inceleyerek,

hataların kodlanmış bilgiyi nasıl etkilediği ve kodun bu hataları nasıl düzeltebileceği veya

tespit edebileceği konusunda öngörüler kazanılabilir. Reed-Muller kodları, örneğin, F2

üzerinde tanımlanan ikili RM kodları ve Fp üzerinde tanımlanan p-ary RM kodları gibi

çeşitli varyasyonlara sahiptir. RM kodları, özellikle aş bellek ve kablosuz iletişim gibi

çeşitli uygulamalarda yaygın olarak kullanılan bir türdür. Ayrıca, RM kodları birçok şekilde

genelleştirilmiştir, örneğin, bir key sonlu cisimde tanımlanan genelleştirilmiş Reed-Muller

kodları (kısaca, GRM) [3], ve belirli bir simetri özelliğine sahip olan simetrik Reed-Muller

kodları (kısaca, SRM) [5] vardır.

Bu tezde, SRM kodlarının otomorzma grubunun, lineer dönüşümlerden oluşan bir alt

grubunu inceleyeceğiz. Kodlama teorisi literatüründe, klasik kodların çoğunluğunun büyük

bir otomorzm grubu bulunur ve bu genellikle bir doğrusal gruba bağlıdır. Örneğin,

GRM kodları, Fq üzerinde derecesi m olan genel an grup GA(m, q) altında değişmezdir

(bkz. [3]). Bir kodun an grup altında değişmez olması için bir gereklilik, Kasami

ve arkadaşları tarafından [6]’de verilmiştir. Delsarte, bu kodları belirli doğrusal gruplar

altında değişmez olarak tanımlar [7]. GA(m, q) altında, sadece p-ary RM kodlarının

değişmez olduğunu gösterir, ancak tam otomorzma grubunun belirlenmesi sorunu

henüz çözümlenmemiştir. Bir kodun tam otomorzma grubunun belirlenmesi, sıklıkla

basit grupların kategorizasyonuyla ilişkilendirilen zor bir konudur. Dür, Reed-Solomon

kodlarının ve uzantılarının otomorzma grupları üzerine araştırmaları ile tanınır (bkz.

viii

[8]). Berger, GRM kodlarının tam otomorzma gruplarını [9]’da kanıtlamıştır. 1996’da,

Berger GA(m, q)’nın herhangi bir an değişmez kodun permütasyon grubunu içerdiğini

göstermiştir (bkz. [10]). Projektif ve homojen RM kodlarının tam otomorzma grupları

[11]’de bulunmuştur. Bu gruplar, sırasıyla projektif lineer grup ve genel lineer grup ile

ilişkilidir.

SRM kodları, Fq üzerindeki ikili polinomlar kullanılarak ilk kez [5]’da tanıtılmıştır. İki

değişkenli SRM kodlarının yerel düzeltilebilirliği [12]’de tartışılmıştır. Adı geçen çalışmada,

simetrik yapıların avantajları özetlenmiştir ve SRM kodlarının yerel düzeltilebilirlik

açısından GRM kodlarına üstünlüğünü sezgisel olarak ele alınmıştır. SRM kodlarının ve

GRM kodlarının aynı sonlu cisimdeki hata tolerans oranları ve kod oranları gösterilmiştir.

Daha sonra, yerel olarak düzeltilebilir kodların bir sınıfının, çok değişkenli SRM kodları

SRMq[n, r]’den oluştuğu belirlenmiştir. Ardından, SRMq[n, r]’nin dualitesi sunulmuştur.

Ancak, bu kodları değişmez bırakan dönüşümler, özellikle de otomorzma grubuna ait

olanlar, henüz incelenmemiştir. Araştırmadaki bu boşluktan ilham alarak, odağımızı

bu sorunu ele almaya yönlendirdik. Bu çalışmada, simetrik Reed-Muller kodlarının

otomorzma grubunun lineer dönüşümleri incelenmiş ve bu lineer dönüşümler kümesinin,

delinmiş Reed-Muller kodlarının otomorzma grubu olan genel lineer grubun bir alt grubunu

oluşturduğu gösterilmiştir. Bazı özel durumlar için, bu alt gruptaki tüm otomorzmaları

açıkça belirlemek için bir yöntem sunulmuştur.

m ve r pozitif tamsayı olmak üzere, r dereceli, qm uzunluklu genelleştirilmiş Reed-Muller

kodu

GRMq(m, r) = (f(α))α∈Fm
q
 f ∈ Fq[x1, , xm], deg(f) ≤ r

kümesi olarak tanımlanır. qw”qq

Aut(GRMq(m, r)) = GA(m, q)

SRM kodları, kod kelimelerinin belirli simetri özelliklerini sağlayan GRM kodlarının bir

alt kod ailesi olarak düşünülebilir (bkz. [5]). SRM’nin tanımını yapmak için önce bazı

ix

notasyonları vermek gerekir :

x = (x1, x2, , xn), i = (i1, i2, , in) olmak üzere

Eq(n, r) :=

f(x1, x2, , xn) =

0≤i1<i2<<in≤q−1
i1+i2++in≤r

ai1i2in det(x, i) ai1i2in ∈ Fq

tanımlansın.

∆ = (a1, a2, , an) ∈ Fn
q aj ̸= ai, 1 ≤ j < i ≤ n

kümesi üzerinde ∼ denklik bağıntısı aşağıdaki gibi tanımlansın:

c ∼ d ⇐⇒ c, d ∈ Fn
q olmak üzere σ(c) = d koşulunu sağlayan bir σ ∈ Sn vardır.

[α], α’nın denklik sınıfı olmak üzere, Ωq(n) := ∆ ∼= [α] α ∈ ∆ kümesini

tanımlayalım.

n ve r pozitif tamsayılar olsun. Fq üzerinde, r dereceli bir SRM kodu

SRMq[n, r] = (f(α))[α]∈Ωq(n) f ∈ Eq(n, r)

kümesi ile tanımlıdır. (bkz. [12]).

n = 2 ve n = 3 için q bir asal olmak üzere Fq üzerinde bir SRM kodu, genel an grubunun

bir alt grubunda an değişmezdir. İlk olarak, n = 2 durumu için SRMq[2, r] kodunun an

değişmez olduğu grubu inceledik.

Eq(2, r) =

0≤i<j≤q−1

i+j≤r
aij

x1
i x2

i

x1
j x2

j

 aij ∈ Fq

ele alalım. f(x1, x2) =

x1
i x2

i

x1
j x2

j

∈

Eq(2, r) ve A =

a b

c d

 olsun. Bir matris kullanılarak elde edilen dönüşüme Tf diyelim.

x

Bu durumda Tf (A) dönüşüm matrisini aşağıdaki gibi elde ederiz :

Tf (A) =

(ax1 + bx2)
i (cx1 + dx2)

i

(ax1 + bx2)
j (cx1 + dx2)

j

= (ax1 + bx2)
i · (cx1 + dx2)

j (ax1 + bx2)
j · (cx1 + dx2)

i

Eq(2, r) kümesini değişmez bırakan dönüşümü bulmak için a, b, c, d ∈ Fq katsayılarını

bulmak gerekir. Bunun için yardımcı bilgilere ihtiyaç duyulur. Öncelikle bu yardımcı

bilgileri verelim ardından bu katsayıları elde etmek için bu bigilerden istenilen kümeye

ulaşalım.

f ∈ Eq(2, r) ve α, β ∈ Fq ve t pozitif bir tamsayı olsun. Bu durumda

(αx2
1 + βx1x2 + αx2

2)
t · f ∈ Eq(2, r)

olur. Ayrıca, yine aynı a ve b katsayıları için

1 1

(ax1 + bx2)
t (bx1 + ax2)

t

∈ Eq(2, r)

elde edilir. En genel anlamda bir an dönüşüm altındaki Eq(2, r) kümesi, 0 ≤ i < j için,

yine Eq(2, r)’dedir, yani

(ax1 + bx2)
i (bx1 + ax2)

i

(ax1 + bx2)
j (bx1 + ax2)

j

∈ Eq(2, r)

elde edilir.

SRMq[2, r] kodunun değişmez olduğu grup, GL(2, q)’nin bir alt grubuna izomorftur.

xi

M =

a b

b a

 a, b ∈ Fq, a ̸= ±b

⊂ GL(2, q)

kümesi tanımlansın. q = r = 3 dışında q ≥ r > 2 için, SRMq[2, r], kod ailesi M ’ye

izomork bir alt grup kapsar, yani SRMq[2, r] kodu M dönüşümü altında değişmezdir.

q = r = 3 için SRM3[2, 3] kodunun otomorzma grubu, uzunluğu 3 olan tüm vektörleri

kapsar, yani Aut(SRM3[2, 3]) = S3. , n = 2 için kullandığımız teknik n = 3 için çok

kullanışlı değildir ve bu yöntem uzun denklem sistemlerinin çözülmesini zorunlu kılar. Bu

nedenle n = 3 durumunda, SRMq[3, r] kodunun an değişmez grubunu bulmak için n = 2

durumundan farklı bir teknik kullandık. Böylelikle daha verimli ve kullanışlı bir çözüm

yöntemi elde etmiş olduk.

q tek olmak üzere, derecesi r’den küçük ya da r’ye eşit

f(xπ(1), xπ(2), xπ(3)) =

f(x1, x2, x3), π tek permütasyon,

f(x1, x2, x3), π çift permütasyon

koşulunu sağlayan bir f(x1, x2, x3) ∈ Fq[x1, x2, x3] fonksiyonu ve π ∈ S3 verilsin. Bu

durumda f(x1, x2, x3) ∈ Eq(3, r) elde edilir.

Şimdi

K =

P ∗

b a a

a b a

a a b

,

P ∈ P3, a, b ∈ Fq, a ̸= b, b ̸= 2a

⊂ GL(3, q)

kümesini ele alalım. A ∈ K ve f(x1, x2, x3) ∈ Eq(3, r) olsun. g fonksiyonu g(x1, x2, x3) =

Tf (A) şeklinde tanımlansın. Bu durumda, g ∈ Eq(3, r) olur.

Bu yardımcı bilgiler sayesinde, SRMq[3, r] kodunu değişmez bırakan lineer dönüşümleri

belirledik. q ≥ r > 3 olmak üzere, SRMq[3, r] kodunun otomorzma grubu, K

xii

kümesine izomorf bir alt grup kapsar, yani SRMq[3, r],K’dan elde edilen dönüşümler altında

değişmezdir.

Keywords: Reed-Muller kodlar, Simetrik Reed-Muller kodlar, An değişmezlik,

Otomorzma grupları.

xiii

ACKNOWLEDGEMENTS

First and foremost, I owe a great debt of gratitude to my advisor, Prof. Dr. Pınar Aydoğdu.

I consider myself incredibly fortunate to have spent my doctoral journey working with her.

She has always provided me with invaluable advice and supported me even on my worst

days. Her technical insight, contagious enthusiasm for research, and unique character have

inspired and inuenced me over the years.

I also want to express my gratitude to my master’s advisor, Oğuz Yayla, for guiding

me into the academic journey. I extend my thanks for his great guidance and effective

recommendations that motivated me throughout my doctoral years.

Furthermore, I am immensely thankful to Dr. Talha Arıkan. This work would not have been

possible without his exceptional support. He has continuously supported me throughout

this process, patiently assisting me whenever needed. I cannot express enough gratitude for

our lengthy discussions, brainstormings and debates during our meetings. His unwavering

support, positive attitude, and problem-solving approach, even during my toughest times,

enabled me to complete this thesis.

I would like to thank Prof. Dr. Zülkar Saygı and Prof. Dr. Mesut Şahin for their assistance

and encouragement.

Additionally, I am grateful to Damla Acar and Yağmur Çakıroğlu for their close

friendship and enjoyable moments during my doctoral journey. Their support during my

disappointments, moments of despair, and tough times has been invaluable in helping me

overcome these challenges.

I wish to express my deep appreciation and gratitude to Dr. Taner Dursun, my director

at TÜBİTAK Bilgem Blockchain Research Laboratory, and my colleagues for providing a

pleasant atmosphere, motivation, and a comfortable working environment throughout my

professional life.

xiv

I extend my thanks to the Scientic and Technological Research Council of Turkey

(TÜBİTAK) for the nancial support through the 2211/A Graduate Scholarship and to the

Council of Higher Education (YÖK) for the 100/2000 PhD Scholarship.

I offer my deepest gratitude to my family for their endless support. Without them, I could

not have achieved anything. And Dad, although no longer with us, continues to inspire me

by his dedication and devotion to what he believes in. Thank you both for everything and

making me who I am right now.

I owe a debt of gratitude to my beloved husband, Tekin, for making me feel peaceful,

comfortable, and safe. With his love and support, I was able to complete this thesis.

Lastly, during the thesis writing process, I experienced an indescribable joy and surprise with

the wonderful news of my dear son. I am so happy to be completing this work with you. I

am lled with indescribable emotions and feel very emotional. I am so glad you came into

my life. I believe that with your energy, life will become much more beautiful.

xv

CONTENTS

Page

ABSTRACT . i

ÖZET . ii

ACKNOWLEDGEMENTS . xiv

CONTENTS . xvi

ABBREVIATIONS. xvii

1. INTRODUCTION . 1

2. PRELIMINARIES . 4

2.1 Linear Codes . 4

2.2 Reed Solomon Codes . 9

2.3 Reed-Muller Codes . 10

2.4 Equivalence of Linear Codes. 12

2.5 The Automorphisms of Reed-Muller Codes . 15

2.6 Generalized Reed-Muller Codes . 18

3. SYMMETRIC REED-MULLER CODES . 22

4. LINEAR TRANSFORMATIONS UNDER WHICH SRM CODES ARE

INVARIANT . 28

4.1 The case n=2 . 28

4.2 The case n=3 . 34

4.3 The general case . 46

5. CODES AND THEIR APPLICATIONS IN INFORMATION SECURITY 48

5.1 Zero-knowledge Proofs in Industry . 48

5.2 Homomorphic Encryption . 55

5.3 Secret Sharing . 55

6. CONCLUSION AND FUTURE WORK . 58

7. Appendix . 66

xvi

ABBREVIATIONS

N : Natural Numbers

Z : Integers

1G : Identity element of a group

Fq : Finite eld of order q

Sn : The Symmetric group of order n

GLn : General Linear Group of order n

GAn : General Afne Group of order n

Fn
q : n dimensional Fq-vector space

Fq[x1, , xn] : The polynomial ring with n variables

wt : The set of codes with Hamming weight t

d(·, ·) : The Hamming Distance

In : The Identity matrix of order n

HT : The Transpose of matrix H

Pn : The set of n× n permutation matrix.

M : The Monomial Matrix

deg(f) : The degree of f function

π : Any permutation in Sn

∼ : Equivalence Relation

RM : Reed Muller

SRM : Symmetric Reed Muller

xvii

1. INTRODUCTION

Working with automorphisms of the codes is important for various reasons in the eld of

coding theory. The study of automorphisms can contribute to developing efcient decoding

algorithms. By exploiting the symmetries within a code, it may be possible to design more

computationally efcient algorithms to correct errors [5]. Thus, automorphisms of the codes

play a crucial role in understanding and characterizing the error-correction properties of the

codes. Therefore, by studying the symmetries of a code, one can gain insights into how

errors affect the encoded information and how the code can be designed to correct or detect

these errors.

Reed-Muller codes (RM codes, for short) are a family of error-correcting codes that were

rst introduced by Irving S. Reed and Gustave Solomon Muller in 1954 (see [13–15]). A

large number of RM codes variations and generalizations were introduced in the literature,

for instance, see [2–4]. They have simple encoding and decoding algorithms which make

them useful and efcient to implement. There are some variants of RM codes, such as the

binary RM codes dened on the prime eld F2 and the p-ary RM codes dened on the prime

eld Fp, where p is a prime number. For more details on RM codes and variants we refer the

reader to [1, 2, 6, 16]. Furthermore, RM codes have been generalized in many ways, such

as the generalized Reed-Muller codes (GRM, for short) which are dened over an arbitrary

nite eld, and the symmetric Reed-Muller codes (SRM, for short) which have a certain

symmetry property (see [3] and [5]).

In coding theory, the majority of classical codes have a sizable automorphism group that is

connected to a linear group. For example, GRM codes are invariant under the general afne

group GA(m, q) of degree m over the nite eld Fq (see [3]). A requirement for a code to

be invariant under the afne group is provided by Kasami et al. in [6]. Delsarte describes

the codes which are invariant under certain linear groups in [7]. He shows that only p-ary

RM codes can be invariant under GA(m, q). Nonetheless, the issue of fully determining

the automorphism group of afne invariant codes has not yet been resolved. Determining the

1

complete automorphism group of a code is a challenging topic that is frequently connected to

the categorization of simple groups. Dür is credited with the research of the automorphism

groups of Reed-Solomon codes and their extensions (see [8]). In [9], Berger proved the

complete automorphism groups of GRM codes. In 1996, Berger demonstrated thatGA(m, q)

contains the permutation group of any afne-invariant code (see [17]) and then he showed

how to create a formal expression for every afne-invariant code’s permutation group in

[10]. The complete automorphism groups of the projective and homogeneous RM codes

can be found in [11]. These groups are associated with the projective linear group and the

general linear group, respectively. In this work, we aim to investigate a subgroup of the

automorphism group of SRM codes whose elements are linear maps.

SRM codes are rst introduced by using bivariate polynomials over Fq in [5]. The local

correctability of the bivariate SRM codes is discussed in [12]. The authors begin by outlining

the advantages of the symmetric structure and offering intuitions to indicate the superiority

of SRM codes over GRM codes in terms of local correctability. The tolerance of error ratios

of SRM codes and GRM codes over the same nite eld, as well as their code rate, are

demonstrated. They establish that a class of locally-correctable codes that is composed of

multivariable SRM codes SRMq[n, r] in [12]. Furthermore, the dual of SRMq[n, r] is also

presented. However, transformations preserving these codes, specically belonging to the

automorphism group, have not been studied yet. Taking inspiration from this gap in this

research, we have directed our focus toward addressing this problem.

Unless otherwise stated, throughout this dissertation, we will work on the eld Fq, where

q is a prime number. Main object of the presented work is to determine the set of linear

transformations that leaves SRM codes invariant.

In Section 2, some fundamental concepts that will be used throughout this dissertation are

provided. In Section 3, the denitions and notations used in constructing SRM codes are

given. The original work of this dissertation is presented in Section 4. In this section, we

investigate linear transformations that leave SRM codes invariant. The set of these linear

transformations forms a subgroup of the general linear group. We indicate a relationship

2

between the transformations that remain the SRM codes invariant for n = 2 and those for n =

3. Therefore, we believe that we can form this group for a generic n, despite the challenge

of determining all transformations. For any given n, we anticipate the group that leaves the

SRM codes invariant, akin to previous cases. This group involving afne transformations is

a subgroup of the general linear group GA(n, q). However, determining whether this group

forms a complete set which leaves the SRM codes invariant remains an open problem for the

future. Therefore, in Section 5, we state a conjecture on this problem.

3

2. PRELIMINARIES

In this section, we x some main notations, and recall some basic denitions and results that

will used throughout the dissertation.

2.1 Linear Codes

For many years, coding theory has been utilized to facilitate data transmission between a

sender and a receiver. Often, the channel through which messages pass between these two

parties is susceptible to errors. In such cases, the receiver may request the sender to resend

the message. However, this method proves ineffective as it signicantly increases trafc.

Instead, by adding redundant information, known as redundant bits, to the message, the

sender enables the receiver to accurately check and correct the message. For this process to

succeed, the error rate must be within certain constraints. The set of all messages encoded in

this manner forms is what we call error correction codes.

The idea here is for the sender to encode xed length data of length k into codewords of

length n, and then transmit these codewords to the receiver. It is necessary to consider the

linear algebraic structure on the codes. For linear codes, the alphabet is always a nite

eld. Construction, encoding and decoding of linear codes are generally easier compared to

non-linear codes.

This chapter consists of important concepts from coding theory and eld theory that are

essential to the reminder of the thesis. Denitions related to coding theory, including

binary codes, generator and parity-check matrices, bounds on code parameters, methods

for constructing new codes from existing ones, and examples of linear codes, are provided.

This section utilizes the book Fundamentals of Error-Correcting Codes by Huffman and

Pless [1] to provide the essential denitions.

Linear codes are dened over alphabets which are nite elds. We denote by Fq the nite

eld with q elements, where q is a prime power.

4

Denition 2.1.1. [1] A linear code C of length n and dimension k over Fq is a k-dimensional

subspace of the vector space Fn
q , where Fq is the nite eld with q elements. Such a code is

referred as [n, k] code over Fq. All elements of a code are called codewords.

Notice that an [n, k] linear code C over Fq has qk codewords.

Denition 2.1.2. [18] The rate of an [n, k] code is dened as k
n
.

The rate is a quantity which shows that how much information is being transmitted per

codeword. It is associated to the redundancy r = n k, the number of parity symbols

in a codeword.

Every codeword in an [n, k] linear code can be represented as a linear combination of the

basis vectors. We can present these vectors in a matrix format, where they constitute the

columns of an n× k matrix.

Denition 2.1.3. [1] Let C be an [n, k] linear code over Fq. A matrix G ∈ Fq
n×k is called a

generator matrix for C if its k columns span C.

Encoding a message m ∈ Fq
k is a transformation that sends the message to the codeword

Gm ∈ C. In other words, the linear transformation m → Gm is an encoding map

T : Fk
q → Fn

q

Denition 2.1.4. [1] A parity check matrix H of C is an (n k) × n matrix over Fq with

rank n k. It is dened by

C = x ∈ Fn
q HxT = 0

Note that the rows of H will also be independent. In general, there are also several possible

parity check matrices for C.

5

Example 2.1.5. The generator matrix and corresponding parity check matrix of a [5, 3]

linear code C are G =

0 0 1 1 1

1 0 0 1 0

0 1 0 0 1

and H =

0 1 1 0 1

1 0 1 1 0

, respectively.

The standard form of an [n, k] linear code is (IkA), where Ik is a k × k identity matrix, and

A is a k × (n k) matrix. The corresponding standard form of the parity-check matrix is

(AT In−k).

The generator matrix of an [n, k] linear code is a matrix whose rows are linearly independent

and generate the code. The rows of the H parity-check matrix are also linearly independent

and generate a code known as the dual of C, denoted by C⊥. The code C⊥ is an [n, n k]

code, and the H matrix serves as its generator matrix.

Denition 2.1.6. [18] Let C be a linear [n, k] code. The dual code of C⊥, denoted by

C⊥ := a ∈ Fn
q ⟨a, b⟩ = 0 for all b ∈ C,

where ⟨a, b⟩ is the standard inner product.

It follows from the denition that C⊥ consists of all those vectors a ∈ Fn
q such that abT = 0

for all b ∈ C, where bT denotes the transpose of the vector b. This means that the codewords

of C⊥ are orthogonal to C.

For c1, c2 ∈ Fn
q , the (Hamming) distance d(c1, c2) is dened to be the number of coordinates

in that c1 and c2 differ.

Denition 2.1.7. [1] The minimum distance d of a linear C is the smallest distance between

distinct codewords, i.e.,

d = d(C) = mind(x, y) : x, y ∈ C, x ̸= y

6

In order to determine the minimum distance of a linear code, it sufces to compute the

distance from all zero codewords to their closest codewords. For instance, let v be a

codeword, and let v1, , vn be codewords at a distance of d from this codeword. Then,

the difference vv yields all zero code words, and the differences v1v, , vnv provide

codewords at a distance d from all zero code words.

A linear code C of length n, dimension k, and minimum distance d over the nite eld Fq

is referred as an [n, k, d] code over Fq. Additionally these codes have also some signicant

features that we would like to incorporate. We aim to measure how much a code differs from

another. In coding theory, the parity check matrix of a linear code provides information about

the minimum distance of that code.

Theorem 2.1.8. [1] The minimum distance d of a linear code [n, k, d] is the minimum number

of linearly dependent columns of a parity check matrix H of the linear code. Any d 1

columns of H is linearly independent.

Proof. Given that the parity check matrix H has n 1 columns such as t0, t1, , tn−1. For

any codeword c, cHT = 0. Then we can write this equality :

ch0 + ch1 + + chn−1 = 0

From theorem 2.1.11, any codeword c holds the equality d = wt(c). Let the nonzero

coordinates of c be 1, 2, , d. So

c1h1 + c2h2 + + cdhd = 0

The minimum distance between codewords is a crucial invariant for a code. The minimum

distance of a code C is the smallest distance between distinct codewords and is signicant in

determining the error-correcting capability of the code C. A larger minimum distance allows

7

for the correction of more errors. The Hamming weight wt(v) of a vector v in F n
q is the

number of non-zero coordinates of x.

Denition 2.1.9. [1] The Hamming weight wt of a v ∈ Fn
q is dened to be the number of

nonzero elements in v.

wt(v) = d(v, 0)

Similarly, the weight of a C code is described as follows:

wt(C) = mind(v, 0) : 0 ̸= v ∈ C

Example 2.1.10. The linear code C = 0000, 1000, 0100, 1100 over F4
2, then we have:

wt(1000) = 1,

wt(0100) = 1,

wt(1100) = 2

Hence d(C) = 1.

Theorem 2.1.11. [1] The minimum distance of a linear code C is the minimum weight of

any nonzero codeword.

One of the primary objectives in coding theory is to achieve high error-correction capability,

characterized by a wide relative distance and a high information rate. However, there exist

certain constraining properties. For instance, the singleton bound is given as follows:

Theorem 2.1.12. [1] Let C be an [n, k, d]-code. Then the inequality d ≤ n k + 1 is

satised.

This inequality arises from the properties that generator matrices must satisfy. Specically,

the rank of a code’s parity-check matrix is n k. Therefore, this matrix has n k + 1

8

linearly dependent columns, meaning that any n k + 1 columns are linearly dependent.

Consequently, the minimum distance is at most n k + 1. For linear codes, the Singleton

bound can also be derived by examining the systematic generator matrix of the code. Each

row of this matrix has a Hamming weight of at most n k + 1.

2.2 Reed Solomon Codes

Reed-Solomon codes are error correction codes created by Irving S. Reed and Gustave

Solomon in 1960 (see [19]). These codes transform data blocks dened over nite elds

into codewords. Reed-Solomon codes have the ability to detect and correct multiple error

symbols. By adding n k parity symbols to the data, they can detect up to n k errors and

correct half of them.

There are multiple methods for constructing Reed-Solomon codes. Each Reed-Solomon

codeword is a sequence of values of polynomials of degree less than k. The message symbols

of a Reed-Solomon codeword consist of the coefcients of a polynomial of degree less than

k over Fq.

Reed-Solomon codes RS(n, k) are codes dened over Fq with length n and dimension k

(i.e. message length). A message m = (m0,m1, ,mk−1) is embedded into a polynomial

p(x) = m0 + m1x + + mk−1x
k−1 of degree at most k 1. The coefcients of

the polynomial mk−1,mk−2, ,mk−j may be zero for some j ≤ k. The message is

encoded as c = (p(z1), p(z2), , p(zn)) by evaluating the polynomial at distinct points

z1, z2, , zn ∈ Fq. After the encoding process is completed in this way, the resulting

codeword c is transmitted.

C = (t(z1), p(z2), , p(zn−1)) p ∈ Fq[x], der(p) ≤ k

Once the sender produces such a codeword, the receiver obtains the values s =

(s1, s2, , sn), knowing that these points are evaluated on the set z1, z2, , zn−1. The

9

receiver knows that at least k of the points si are of the form si = p(zi), and aims to

reconstruct the message by attempting to construct the polynomial p.

2.3 Reed-Muller Codes

Reed-Muller codes are linear block codes created by Reed and Muller in the 1950s (see

for insatnce, [13, 14]). Initially, binary Reed-Muller codes were developed, and later they

were extended to general cases. Although the block length of Reed-Muller codes is lower

than that of BCH [20, 21] codes, they are useful error correction codes because they can be

easily encoded and decoded. They form the simplest class of geometric codes and generalize

Reed-Solomon and Walsh-Hadamard codes. Reed-Muller codes can be constructed in

multiple ways. The initial denition of Reed-Muller codes was created using Boolean

functions. Since we will consider this denition throughout the dissertation, we will recall

the construction using Boolean functions. In this section, the necessary denitions have been

derived with reference to the book by MacWilliams and Sloane [2].

We start with recalling the denition of a Boolean polynomial. Consider the polynomial ring

F2[x0, x1, , xm−1] over F2 with m variables.

Denition 2.3.1. [2] A Boolean monomial t is an element from the polynomial ring

F2[x0, x1, , xm−1] of the form t = xr0
0 xr1

1 x
rm−1

m−1 , where ri ∈ N for i = 0, ,m 1. A

Boolean polynomial over F2 consists of a linear combination of Boolean monomials.

Now consider the transformation ρ : F2[x0, x1, , xm−1] → F2m

2 dened by

ρ(0) = 00 0 = 02
m

ρ(1) = 11 1 = 12
m

ρ(x0) = 1 10 0 = 12
m−1

02
m−1

ρ(x1) = 1 10 01 10 0 = 12
m−2

02
m−2

12
m−2

02
m−2

...

ρ(xi) = 1 10 01 10 0 = 12
m−i−1

02
m−i−1

 12
m−i−1

02
m−i−1

10

The transformation ρ possesses a homomorphic property with respect to the addition and

the multiplication. Let t be a product of k variables, i.e., t = x0x1 xk. Then ρ(t) =

ρ(x0)ρ(x1) ρ(xk). Similarly, if h be a sum of k variables, i.e., h = x0 + x1 + + xk,

then ρ(h) = ρ(x0) + ρ(x1) + + ρ(xk). Hence, ρ : F2[x0, x1, , xm−1] → F2m

2 is a ring

isomorphism [2].

Now we will recall the denition of a Reed-Muller code.

Denition 2.3.2. [2] The d-th order Reed-Muller code (RM, for short) R(d,m) is dened

to be the set of all polynomials of degree at most d in the Fq[x0, x1, , xm−1]. The set

consisting of these monomials is provided below

i∈K
xi K ⊆ 1, 2, ,m, K ≤ d

The ρ isomorphism can be viewed as a subset of F2m

2 , specically as a binary linear code of

length 2m.

Note that the R(d,m) code can be regarded as a subgroup of F2m

2 under the ρ transformation.

Binary RM codes can be dened recursively. The code R(0,m) is a trivial code. The 0-th

order RM code is dened to be the repetition code of length 2m with basis 1. Another

trivial code is R(m,m) which is the m-th order RM code F2m

2 .

Theorem 2.3.3. [2] For 1 ≤ d < m, the d-th order R(d,m) of length 2m is dened

recursively as R(d,m) = (u, u+ v) u ∈ R(d,m 1), v ∈ R(d 1, m 1)

Assume that G(0,m) is a generator matrix for R(1,m). Then a generator matrix of the RM

code R(1,m+ 1) is

G(1,m+ 1) =

G(0,m) G(0,m)

0 1

The next result generalizes this idea.

11

Theorem 2.3.4. [2] Let G(d,m) be a generator matrix of R(d,m). Then R(d,m) has a

generator matrix

G(d+ 1, m+ 1) =

G(d+ 1, m) G(d+ 1, m)

0 G(d,m)

Reed-Muller codes can also be constructed by using multivariate polynomials. The message

bits of RM codes, similar to Reed-Solomon codes, form the coefcients of a multivariate

polynomial. This polynomial is evaluated in a vector to obtain the RM codeword. Hence, an

alternative denition of the d-th order RM code can be given in this context.

Denition 2.3.5. [2, p. 373] The rth order binary RM code R(r,m) of length n = 2m

for 0 ≤ r ≤ m, is the set of all vectors f , where f(x1, , xm) is a binary multivariable

polynomial of degree at most r, i.e.,

R(r,m) =

(f(α))α∈Fm

2
 f ∈ F2[x1, , xm], deg(f) ≤ r

Theorem 2.3.6. [2] Assume that d and m are integers such that 0 ≤ d ≤ m. If R(d,m) is

the d-th order RM code then the following statements are satised:

1) R(k,m) ⊆ R(l,m) holds if 0 ≤ k ≤ l ≤ m

2) R(d,m) has the dimension

m
0

+

m
1

+ · · ·+

m
d

.

3) R(d,m) has minimum distance 2m−d.

4) The dual of R(d,m) is the dual code to R(m d 1, m) for 0 ≤ d ≤ m 1

2.4 Equivalence of Linear Codes

Let Fq be the nite eld of order q = pm for a prime p and Fn
q be the n-dimensional vector

space over Fq. The measure of dissimilarity between two vectors is established by counting

the coordinates in which they differ. Recall that a linear [n, k, d]-code is a k-dimensional

12

linear subspace of Fn
q with the minimum distance d. A generator matrix G of a linear

[n, k]-code C is any matrix of row rank k, whose rows come from the code C. We will

give the denitions of some types of code equivalences.

Denition 2.4.1. [1] Let π = (π1, π2, , πn) be a permutation of 1, 2, , n. The n× n

permutation matrix P is dened as follows: (i, πi)-th entries are 1 for i = 1, 2, , n, and 0

elsewhere. Pn denotes the set of all n× n permutation matrices.

Denition 2.4.2. [1] Two linear codes C1 and C2 are permutation equivalent if there is a

permutation of coordinates which sends C1 to C2. Hence, two linear codes C1 and C2 of the

same length are permutation equivalent if there exists a permutation matrix P ∈ Pn such that

G2 = G1P,

where G1 and G2 are the generator matrices of the codes C1 and C2, respectively.

If we work on a nite eld other than F2, then we may need a more general form of the

equivalence.

Denition 2.4.3. [1] A monomial matrix is a square matrix with exactly one nonzero entry

in each row and column. A monomial matrixM can be written either in the form DP or the

form PD1 , where D and D1 are diagonal matrices and P is a permutation matrix.

Example 2.4.4. Consider the following monomial matrix M :

M =

a 0 0

0 0 b

0 c 0

M satises the following equations :

DP =

a 0 0

0 b 0

0 0 c

1 0 0

0 0 1

0 1 0

= PD1 =

1 0 0

0 0 1

0 1 0

a 0 0

0 c 0

0 0 b

13

Denition 2.4.5. Two linear codes C1 and C2 of the same length over Fq are said to be

monomially equivalent when there exists a monomial matrix M such that

G2 = G1M,

where G1 and G2 are the generator matrices of the codes C1 and C2, respectively.

Note that monomial equivalence and permutation equivalence coincide for binary codes.

Let γ be a eld automorphism of Fq and M = DP be a monomial matrix over Fq, where P

is a permutation matrix and D is a non-singular diagonal matrix over Fq. Applying the map

Mγ to any codeword is described by the following process: Firstly, the ith component of

code is multiplied by the ith diagonal entry of D for i = 1, 2 , n. Then the corresponding

permutation associated with the permutation matrix P is applied to the codeword. Finally,

the automorphism γ is applied to all components.

Now we will recall the most general form of the equivalence of linear codes.

Denition 2.4.6. Two linear codes C1 and C2 of the same length over Fq are said to be

equivalent when there is a monomial matrix M and a eld automorphism γ of Fq such that

C2 = C1Mγ,

where C1Mγ is obtained by applying Mγ to each codeword of C1.

Note that all equivalence denitions are the same for the binary codes. Furthermore,

monomial equivalence and general equivalence coincide for p-ary codes, where p is a prime.

Since we have three types of equivalences, there exist three possible denitions of the

automorphism groups of the code families by considering C1 = C2 in the above denitions.

Now consider a code C of length n over the eld Fq. The set of coordinate permutations that

map the code C to itself forms a group, called the permutation automorphism group of C and

14

denoted by PAut(C). Obviously, PAut(C) is a subgroup of the symmetric group Sn. The

set of monomial matrices, by which C is monomially equivalent to itself, forms the group

MAut(C), which is called the monomial automorphism group of C. The set of maps of the

formMγ, whereM is a monomial matrix and γ is a eld automorphism, that map C to itself

forms the group Aut(C), called automorphism group of C.

We always have that PAut(C) ⊆ MAut(C) ⊆ Aut(C). If q = 2, then PAut(C) =

MAut(C) = Aut(C). If q is a prime, then MAut(C) = Aut(C) (see [1, p. 26]).

All these denitions and conclusions are well-known in the literature and can be found in

any basic coding theory book, for example in [1].

2.5 The Automorphisms of Reed-Muller Codes

To gain a broader perspective on Reed-Muller automorphism groups, we will rst examine

the automorphism groups of binary RM codes. Since we are working over F2, PAut(C) =

MAut(C) = Aut(C). Therefore, determining the permutation automorphism or monomial

automorphism is sufcient to determine the automorphism of RM codes. Subsequently, we

will extend the denitions of automorphisms to elds Fq distinct from F2.

RM codes can be dened in terms of multivariable polynomials as follows. Let x =

(x1, , xm) range over Fm
2 . Any function f(x) = f(x1, , xm) which takes the values

0 and 1 is called a binary multivariable function. We recall the following denitions.

Denition 2.5.1. [2, p. 377] For 0 ≤ r ≤ m 1, a code which is obtained by puncturing

(or deleting) the coordinate corresponding to x1 = · · · = xm = 0 from all the codewords of

R(r,m) is called the punctured RM code, and it is denoted by R(r,m)∗.

First we will mention the notion of afne invariance which is crucial for our discussion on

automorphism groups. Before going further, we need some basic notions.

15

Let A = [aij] be an invertiblem×m binary matrix and b be a binarym× 1 vector. Consider

the transformation T from binary m-tuples to binary m-tuples dened by

T :

x1

x2

...

xm

→ A

x1

x2

...

xm

+ b,

which permutes binary m-tuples. T can be also considered as a permutation of multivariate

polynomials as follows:

Tf (A, b) : f(x1, , xm) → f

a1jxj + b1, ,

amjxj + bm

 (1)

The set of all such transformations formed by T is a group, which is known as the general

afne group over F2 and is denoted by GA(m, 2) (see [2]). It is obvious that if f is a

polynomial of degree r, so is Tf (A, b).

As we mentioned above, for a binary code it is known that PAut(C) = Aut(C), and hence

it is a subgroup of the symmetric group Sn. Following [22], a code C is said to be afne

invariant if Aut(C) includes a subgroup that is isomorphic to the afne linear group.

The following example demonstrates that the RM code families are one of the examples

of afne invariant codes. This example is important to see the equivalence between

transformations applied to variables of the function to evaluate codeword and transformations

applied to the codeword itself.

Example 2.5.2. [22, p. 7] R(r,m) codes are afne invariant.

Proof. Let A be an m × m invertible matrix over F2 and b ∈ Fm
2 . The afne linear

transformation T : x → Ax+b yields a permutation on the coordinates of the codeword since

the codewords of RM codes are evaluation vectors and are indexed by the vectors x ∈ Fm
2 .

16

Then such a permutation belongs to Aut(R(r,m)). Let c be a codeword in R(r,m). Then

there exists a polynomial f ∈ F2[x1, , xn] with deg(f) ≤ r such that c = (f(α))α∈F2m
.

Since the result of the transformation (f ◦ T)(x) is another polynomial of degree less than

or equal to r, we have c′ = (f ◦ T)(α)α∈Fm
2

∈ R(r,m). Thus, R(r,m) codes are afne

invariant.

Thus, the general afne group GA(m, 2) permutes the codewords of the rth order R(r,m)

and GA(m, 2) ⊂ AutR(r,m) (see [2]). The subgroup of GA(m, 2) consisting of all

transformations

T :

x1

x2

...

xm

→ A

x1

x2

...

xm

(i.e., for which b = 0) is known as the general linear group and is denoted by GL(m, 2). We

can consider the transformation T described above in the following way, too:

T (A) : (x1, , xm) →

a1jx1, ,

amjxj

 (2)

For the sake of convenience in usage, the function Tf (A, b) will be denoted as Tf (A) when

b = 0:

Tf (A) : f(x1, , xm) → f

a1jxj , ,

amjxj

 (3)

Since the transformation T (A) in (2) xes the zero m-tuple, the group GL(m, 2) permutes

the codewords of the punctured RM code R(r,m)∗, i.e., GL(m, 2) ⊂ AutR(r,m)∗ (see [2,

p. 399]).

We know from [2, p. 400] that

17

Aut(R(r,m)∗) = S2m−1 for r = 0 and m 1,

Aut(R(r,m)) = S2m for r = 0 and m

Furthermore, the following result is also given in [2, p. 400] which determines the

automorphism group of RM codes of rth order with length 2m over F2 completely.

Theorem 2.5.3. [2, p. 400] For 1 ≤ r ≤ m 2:

• Aut(R(r,m)∗) = GL(m, 2),

• Aut(R(r,m)) = GA(m, 2).

Note that one may easily adopt the denitions of the general afne group and general

linear group on Fq for any prime q. These groups are denoted by GA(m, q) and GL(m, q),

respectively. These groups are the subjects of the next subsection.

2.6 Generalized Reed-Muller Codes

GRM codes were rst introduced by Kasami et al. [23] as a generalization of RM codewords

over any nite eld. They also established the fundamental parameters of GRM codes. GRM

codes are easily constructed and possess rich structural properties, making them applicable

across a wide range of elds, such as homomorphic computation [24] and secret sharing [25].

GRM codes are list-decodable [26], locally testable [27], and locally correctable [28]. These

features make GRM codes highly valuable in theoretical computer science [12]. The LCC

property allows the correction of a codeword by checking only a few random bits, granting

these codes advantages in areas such as circuit lower bounds, data storage and transmission,

secure multiparty computation and combinatorics.

Due to these valuable properties, GRM codes are currently the subject of extensive research.

Delsarte [3], Assmus and Key [29] studied these codes and their relatives in details.

18

Delsarte [3] has elucidated the connection between the univariate and multivariate versions

of GRM codes and established their code distances. Additionally, various variants of

GRM codes have been studied, including Projective Reed-Muller codes [30], Grassmann

codes [31], and Quantum Reed-Muller codes [32]. Furthermore, many researchers have

been considering GRM codes as signicant examples of extended cyclic codes.

GRM codes are obtained by constructing the codes over any nite eld Fq, where q is a

prime power. The following is a formal denition of GRM codes. For more details see

[3, 23, 33, 34]

Denition 2.6.1. [3] Let m and r be positive integers. The GRM code of order r with block

length qm over Fq is dened by

GRMq(m, r) =

(f(α))α∈Fm

q
 f ∈ Fq[x1, , xm], deg(f) ≤ r

The GRM code is a linear code that forms a subspace of the vector space Fn
q . Let the

dimension of the GRM(m, r) code be denoted by k. The value of k is as follows:

 (l0, l1, , lm−1) li ∈ Z, 0 ≤ li ≤ q 1,

m−1

i=1

li ≤ r

where li is the degree of the monomial with index i.

Recall that for q = 2, the dimension of the RM2(m, r) code is

m
0

+

m
1

+ +

m
r

. For

q > 2, the minimum distance and dimension are given as follows:

Theorem 2.6.2. [3] The dimension of RMq(m, r) is

r

t=0

m

k=0

(1)k

m

k

t kq +m 1

t kq

The minimum distance ofRMq(m, r) is qm−a−1(qb), where r = a(q1)+b, 0 ≤ b ≤ q1.

Example 2.6.3. The code GRM4(2, 4) is the linear code over with the generator matrix G

19

G =

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1

1

x0

x1

x2

x3

x0x1

x0x2

x1x2

x0x3

x1x3

x2x3

Some codewords belonging to the GRM4(2, 4) code by evaluating are given below:

c1 = 1 + x0 + 3x1 + 2x3

= [1201120130233023]

c2 = 1 + 2x0 + 2x1 + 3x3

= [1331133102200220]

It is shown in [3] that for 0 ≤ r ≤ m(q1), the automorphism group ofGRMq(m, r) codes

contains the general afne group GA(m, q) under the natural action on V = Fqm .

Knorr and Willems in [16] give a complete description of the automorphism group of the

p-ary RM codes for any prime p, in which they prove that the automorphism group of the

p-ary RM codes equals the general afne group GA(m, p).

In [9], Berger and Charpin provide a complete description of the automorphism group of

a GRM code. They show that the automorphism group of GRM codes is the afne linear

20

group, i.e.,

Aut(GRMq(m, r)) = GA(m, q)

21

3. SYMMETRIC REED-MULLER CODES

The Symmetric Reed-Muller (SRM, for short) codes, a variant of Reed-Muller codes, are

introduced for the rst time in this paper [5]. The authors focus on the bivariate version of

SRM codes and demonstrate that these codes take the form of locally-correctable codes.

They have determined the minimum distance of SRM codes for specic cases. Finally,

they introduce the multivariate version of SRM codes. SRM codes which exhibit specic

symmetry properties within their codewords may be considered as subcodes of GRM codes.

In a subsequent paper [12] by the same authors, it was shown that multivariate Symmetric

Reed-Muller codes are locally correctable codes. Additionally, the dual codes of multivariate

Symmetric Reed-Muller codes were presented.

Before presenting the formal denition in [12], we recall some notions.

The set Eq(n, r) ⊆ Fq[x1, x2, , xn] is dened by

Eq(n, r) :=

f(x1, x2, , xn) =

0≤i1<i2<<in≤q−1
i1+i2++in≤r

ai1i2in det(x, i) ai1i2in ∈ Fq

,

where x = (x1, x2, , xn), i = (i1, i2, , in) and

det(x, i) :=

x1
i1 x2

i1 xn
i1

x1
i2 x2

i2 xn
i2

...
...

x1
in x2

in xn
in

Consider the set

∆ = (a1, a2, , an) ∈ Fn
q aj ̸= ai, 1 ≤ j < i ≤ n

and an equivalence relation ∼ on ∆ dened as follows:

22

c ∼ d ⇐⇒ ∃σ ∈ Sn such that σ(c) = d, for c, d ∈ Fn
q .

Then dene the set Ωq(n) := ∆ ∼= [α] α ∈ ∆, where [α] denotes the equivalent class
of α. In order to get rid of duplications, the denition of SRM codes is given by using this

quotient set as follows:

Denition 3.0.1. [12] Let n and r be positive integers, where n denotes the number of

variables. The SRM code of degree r over Fq is dened by

SRMq[n, r] = (f(α))[α]∈Ωq(n) f ∈ Eq(n, r)

Remark 3.0.2. According to the denition, when q < r, the possible i1, i2, , in sequence
may not cover a partition of r. On the other hand, for the sequence i1, i2, , in =

0, 1, 2, , n 1 the smallest value of r should be n(n−1)
2

. Thus, the denition of SRM

code is correct under the condition q ≥ r ≥ n(n−1)
2

, where q is chosen to be large enough.

Note that under the condition mentioned in the remark above, when n = 1, SRMq[1, r] codes

are exactly generalized Reed-Solomon codes with degree parameter r.

When n = 2, we have

Eq(2, r) :=

0≤i<j≤q−1
i+j≤r

aij(x
i
1x

j
2 xj

1x
i
2)

 aij ∈ Fq

⊆ Fq[x1, x2]

The evaluation of f(x1, x2) at (x1, x2) ∈ F2
q forms as the following matrix

f(α0,α0) f(α0,α1) f(α0,αq−1)

f(α1,α0) f(α1,α1) f(α1,αq−1)
...

...

f(αq−1,α0) f(αq−1,α1) f(αq−1,αq−1)

Example 3.0.3. Let n = 2, r = 2 and q = 3. Then,

23

E3(2, 2) =

0≤i<j≤2
i+j≤2

aij

x1
i x2

i

x1
j x2

j

 aij ∈ F3

= a01(Y X) + a02(Y
2 X2) a01, a02 ∈ F3

evaluation points

fu
nc
tio

ns

01 02 12
Y X 1 2 1

2(Y X) 2 1 2
Y 2 X2 1 1 0

2(Y 2 X2) 2 2 0
(Y X) + (Y 2 X2) 2 0 1
(Y X) + 2(Y 2 X2) 0 1 1
2(Y X) + (Y 2 X2) 0 2 2
2(Y X) + 2(Y 2 X2) 1 0 2

Thus, all codewords of the SRM3(2, 2) code are as follows:

(121), (212), (110), (220), (201), (011), (022), (102)

Remark 3.0.4. Let q < r. Since the set Eq(n, r) has two constraints, 0 ≤ i < j ≤ q 1

and i+ j ≤ r, all possible pairs (i, j) correspond to all possible vectors. Therefore, the SRM

code loses its distinctiveness. Thus, q > r should be chosen.

Below, an example related to this remark is provided:

Example 3.0.5. Let q = r = 3 and n = 2. According to the E3(2, 3), the table of the

functions and their evaluation points is provided below :

24

evaluation points

fu
nc
tio

ns

01 02 12

Y X 1 2 1

2(Y X) 2 1 2

Y 2 X2 1 1 0

2(Y 2 X2) 2 2 0

(Y X) + (Y 2 X2) 2 0 1

(Y X) + 2(Y 2 X2) 0 1 1

2(Y X) + (Y 2 X2) 0 2 2

2(Y X) + 2(Y 2 X2) 1 0 2

XY 2−X2Y 0 0 2

Y −X+XY 2−X2Y 1 2 0

2(Y −X)+XY 2−X2Y 2 1 1

Y 2−X2+XY 2−X2Y 1 1 2

2(Y 2−X2)+XY 2−X2Y 2 2 2

(Y −X)+(Y 2−X2)+XY 2−X2Y 2 0 0

(Y −X)+2(Y 2−X2)+XY 2−X2Y 0 1 0

2(Y −X)+(Y 2−X2)+XY 2−X2Y 0 2 1

2(Y −X)+2(Y 2−X2)+XY 2−X2Y 1 0 1

2(XY 2−X2Y) 0 0 1

Y −X+2(XY 2−X2Y) 1 2 2

2(Y −X)+2(XY 2−X2Y) 2 1 0

Y 2−X2+2(XY 2−X2Y) 1 1 1

2(Y 2−X2)+2(XY 2−X2Y) 2 2 1

(Y −X)+(Y 2−X2)+2(XY 2−X2Y) 2 0 2

(Y −X)+2(Y 2−X2)+2(XY 2−X2Y) 0 1 2

2(Y −X)+(Y 2−X2)+2(XY 2−X2Y) 0 2 0

2(Y −X)+2(Y 2−X2)+2(XY 2−X2Y) 1 0 0

25

Therefore, the SRM3[2, 3] code has no distinctiveness within the vector space F 3
3 .

SRM3[2, 3] = 001, 002, 010, 011, 012, 020, 021, 022, 100, 101, 102, 110, 111, 112, 120, 121,
122, 200, 201, 202, 210, 211, 212, 220, 221, 222

Since f(x1, x1) = 0 and f(x1, x2) = f(x2, x1), the above matrix is a skew-symmetric

matrix. Thus, it is entirely determined by the entries in the strictly upper triangular part.

Therefore, the codeword of bivariate SRM, i.e., when n = 2, codes are dened as the strictly

upper triangular part of this matrix. Furthermore, SRMq[2, r] codes are of length
q(q−1)

2
.

Remark 3.0.6. For each f(x1, x2, , xn) ∈ Eq(n, r), the following properties hold:

• f(x1, x2, , xn) = 0, if there exists 1 ≤ r ̸= s ≤ n such that xr = xs.

• Let π = (i, j) ∈ Sn be a transposition. Then

f(x1, x2, , xn) = f(xπ(1), xπ(2), , xπ(n))

• Let τ ∈ Sn. Then f(x1, x2, , xn) = f(xτ(1), xτ(2), , xτ(n)) The sign is

determined by evenness or oddness of the permutation τ .

For more details about the set Eq(n, r), we refer the reader to [5].

Example 3.0.7. Let n = 3, r = 3 and q = 3. Then,

E3(3, 3) =

0≤i<j<k≤2
i+j+k≤3

aijk

x1
i x2

i x3
i

x1
j x2

j x3
j

x1
k x2

k x3
k

 aijk ∈ F3

=

1 1 1

x1 x2 x3

x1
2 x2

2 x3
2

 aijk ∈ F3

= 0, (x2x
2
3 + x1x

2
2 + x2

1x3 x2
2x3 x2

1x2 x1x
2
3), 2(x2x

2
3 + x1x

2
2 + x2

1x3 x2
2x3 x2

1x2 x1x
2
3)

The coefcients of the monomial pairs (x2x
2
3, x

2
2x3), (x1x

2
2, x

2
1x2), (x1x

2
3, x

2
1x3) of each

element of E3(3, 3) have opposite signs pairwise. So the summation of the coefcients

of these monomials is zero. Furthermore, x1x2x3, x
3
1, x

3
2, x

3
3 are not the monomials of any

members in E3(3, 3), so their coefcients are zero.

26

Remark 3.0.8. We would like to note that the observations in Example 3.0.7 are general facts

for each element of Eq(3, r). In other words, for any f ∈ Eq(3, r), the coefcient of the

monomial (xi
1x

j
2x

k
3) is negative of the coefcient of the monomial (xi

π(1)x
j
π(2)x

k
π(3)), where

π ∈ S3 is an odd permutation. Additionally, when any two of i, j, and k are equal, the

coefcient of the monomial (xiyjzk) is zero for each f ∈ Eq(3, r).

27

4. LINEAR TRANSFORMATIONS UNDERWHICH

SRM CODES ARE INVARIANT

In this section, we will derive the invariant groups of SRM for n = 2 and n = 3 over the eld

Fp, where p is any prime number. For n = 2 and n = 3, we determine the exact set formed by

transformations that leave SRM codes invariant under a subgroup of the afne linear group.

Different methods were employed to determine this set for the values of n = 2, 3, separately.

The reason for using different methods is that one approach may not be highly suitable for

the other. Our main theorems, which identify the group formed by transformations that leave

the SRM code invariant, and the necessary lemmas for these theorems are provided for each

n = 2, 3.

4.1 The case n=2

Recall SRMq[2, r] is an evaluated code family whose evaluation polynomials come from the

set Eq(2, r),

Eq(2, r) =

0≤i<j≤q−1
i+j≤r

aij

x1
i x2

i

x1
j x2

j

 aij ∈ Fq

Let f(x1, x2) =

x1
i x2

i

x1
j x2

j

∈ Eq(2, r) and A =

a b

c d

. Under the Tf (A) transformation in

(1), we get

Tf (A) =

(ax1 + bx2)
i (cx1 + dx2)

i

(ax1 + bx2)
j (cx1 + dx2)

j

= (ax1 + bx2)
i · (cx1 + dx2)

j (ax1 + bx2)
j · (cx1 + dx2)

i

28

We investigate the coefcients a, b, c, d ∈ Fq to nd the transformations that keep the set

Eq(2, r) invariant. For this purpose, we need the following auxiliary lemmas.

Lemma 4.1.1. Let f ∈ Eq(2, r) and α, β ∈ Fq and t be a positive integer. Then we have

(αx2
1 + βx1x2 + αx2

2)
t · f ∈ Eq(2, r)

Proof. Without loss of generality, we shall assume that

f =

xi
1 xi

2

xj
1 xj

2

= xi

1x
j
2 xj

1x
i
2,

where 0 ≤ i < j ≤ (q 1) such i + j ≤ r. We use the induction on t to prove the claim.

When t = 1, we have

(αx2
1 + βx1x2 + αx2

2) · f = α(x2
1 + x2

2)(x
i
1x

j
2 xj

1x
i
2) + β(x1x2)(x

i
1x

j
2 xj

1x
i
2)

= α(f1 + f2) + βf3,

where

f1 = xi+2
1 xj

2 xj
1x

i+2
2 , f2 = xi

1x
j+2
2 xj+2

1 xi
2 and f3 = xi+1

1 xj+1
2 xj+1

1 xi+1
2

Thus, f1, f2, f3 ∈ Eq(2, r), which implies that (αx2
1 + βx1x2 + αx2

2) · f ∈ Eq(2, r). For the

next step, suppose that the claim holds for t > 1, i.e., we have that

(αx2
1 + βx1x2 + αx2

2)
t · f ∈ Eq(2, r) (4)

Then it is sufcient to show that the statement holds for (t+ 1).

(αx2
1 + βx1x2 + αx2

2)
t+1 · f = (αx2

1 + βx1x2 + αx2
2)((αx

2
1 + βx1x2 + αx2

2)
t · f) (5)

29

By the equation (4), we have

g = (αx2
1 + βx1x2 + αx2

2)
t · f ∈ Eq(2, r)

Since g ∈ Eq(2, r), we may consider the equation (5) as follows:

(αx2
1 + βx1x2 + αx2

2) · g = (αx2
1 + βx1x2 + αx2

2) ·

0≤i<j≤q−1
i+j≤r

aijgij ,

where aij ∈ Fq and

gij =

xi
1 xi

2

xj
1 xj

2

= xi

1x
j
2 xj

1x
i
2

By the case of t = 1, we have all (αx2
1 + βx1x2 + αx2

2) · gij ∈ Eq(2, r). Thus, (αx2
1 +

βx1x2 + αx2
2) · g ∈ Eq(2, r). In the same manner, this is generalized for any f ∈ Eq(2, r),

which completes the proof.

Lemma 4.1.2. Let a, b ∈ Fq and t be a positive integer. Then

1 1

(ax1 + bx2)
t (bx1 + ax2)

t

∈ Eq(2, r)

30

Proof. When t is odd, consider

1 1

(ax1 + bx2)
t (bx1 + ax2)

t

= (bx1 + ax2)

t (ax1 + bx2)
t

=

t

k=0

t

k

(bx1)

k(ax2)
t−k (ax1)

k(bx2)
t−k

=

t

k=0

t

k

bkat−k akbt−k

xk
1x

t−k
2

=

(t−1)2

k=0

t

k

bkat−k akbt−k

xk
1x

t−k
2 xt−k

1 xk
2

=

(t−1)2

k=0

t

k

bkat−k akbt−k

xk
1 xk

2

xt−k
1 xt−k

2

Clearly, the corresponding determinant is an element of Eq(2, r).

When t is even, similarly, we get that

1 1

(ax1 + bx2)
t (bx1 + ax2)

t

=

t

k=0

t

k

bkat−k akbt−k

xk
1x

t−k
2

=

t2−1

k=0

t

k

bkat−k akbt−k

xk
1x

t−k
2 xt−k

1 xk
2

In the above equation, when k = t2, the coefcient of the term x
t2
1 x

t2
2 is zero. Finally, as

in the odd case, the corresponding determinant is an element of Eq(2, r). Thus, the proof is

completed.

Proposition 4.1.3. Let a, b ∈ Fq and i, j be positive integers such that i < j. Then

(ax1 + bx2)
i (bx1 + ax2)

i

(ax1 + bx2)
j (bx1 + ax2)

j

∈ Eq(2, r)

31

Proof. The determinant can be written as:

(ax1 + bx2)
i (bx1 + ax2)

i

(ax1 + bx2)
j (bx1 + ax2)

j

= (ax1 + bx2)

i(bx1 + ax2)
i

1 1

(ax1 + bx2)
j−i (bx1 + ax2)

j−i

=

abx2

1 + (a2 + b2)x1x2 + abx2
2

i

1 1

(ax1 + bx2)
t (bx1 + ax2)

t

,

where t = j i. By utilizing Lemmas 4.1.1 and 4.1.2, the proof follows.

The following theorem gives a necessary and sufcient condition for SRMq[2, r] to be

invariant under which subgroup of GL(2, q).

Theorem 4.1.4. Let M be a set dened as

M =

a b

b a

 a, b ∈ Fq, a ̸= ±b

⊂ GL(2, q)

The automorphism group of the SRMq[2, r], where q ≥ r > 2 except q = r = 3, code family

contains a subgroup isomorphic toM , i.e., SRMq[2, r] is invariant under the transformations

of M .

Proof. Let A ∈ GL(2, q). Then take the transform T :

T :

x1

x2

 → A

x1

x2

 =

a b

c d

x1

x2

In the set Eq(2, r), there exist unique polynomials of degree 1 and 2, which are

f(x1, x2) =

1 1

x1 x2

= x2 x1

32

and

g(x1, x2) =

1 1

x2
1 x2

2

= x2

2 x2
1,

respectively. If Tf (A) and Tg(A) are elements of Eq(2, r), it is easy to see that Tf (A) and

Tg(A) must be scalar multiples of f(x1, x2) and g(x1, x2), respectively. In the light of this

fact, we have

Tf (A) = f(ax1 + bx2, cx1 + dx2) =

1 1

(ax1 + bx2) (cx1 + dx2)

= (d b)x2 (a c)x1

and

Tg(A) = g(ax1 + bx2, cx1 + dx2) =

1 1

(ax1 + bx2)
2 (cx1 + dx2)

2

= (cx1 + dx2)
2 (ax1 + bx2)

2

= (d2 b2)x2
2 (a2 c2)x2

1 + (2cd 2ab)x1x2

From the above, we obtain the following equations

a c = d b,

(a2 c2) = (b2 d2),

(2cd 2ab) = 0

If we solve the equations above together with the fact ad bc ̸= 0, then we will get a = d

and b = c. Combining this with Proposition 4.1.3, we obtain that SRMq[2, r] is invariant

under the transformations that come from the set M , which completes the proof.

Note that when q = r = 3, the set SRM3[2, 3] contains all vectors of length 3 so that

Aut(SRM3[2, 3]) = S3.

33

In the following subsection, we will focus on the SRMq(3, r) in the same manner.

4.2 The case n=3

Recall that the code family SRMq[3, r] with the length
q−2

i=1
(i)(i+1)

2
is an evaluated code

family whose evaluation polynomials come from the set Eq(3, r), where

Eq(3, r) =

0≤i<j<k≤q−1
i+j+k≤r

aijk

x1
i x2

i x3
i

x1
j x2

j x3
j

x1
k x2

k x3
k

 aijk ∈ Fq

Under the Tf (A) transformation in (1), where

A =

a b c

d e f

g h i

,

we investigate the coefcients a, b, c, d, e, f , g, h, i ∈ Fq to determine the transformation

that keeps the set Eq(3, r) invariant. We require the auxiliary lemmas for this aim.

The following lemma gives us a different interpretation of the set Eq(3, r).

Lemma 4.2.1. Let f(x1, x2, x3) ∈ Fq[x1, x2, x3] with a degree less than or equal to r, where

q is odd, such that for any π ∈ S3,

f(xπ(1), xπ(2), xπ(3)) =

f(x1, x2, x3), π is an odd permutation,

f(x1, x2, x3), π is an even permutation
(6)

Then f(x1, x2, x3) ∈ Eq(3, r).

Proof. Firstly, we may assume that we have a homogeneous nonzero multivariate polynomial

f(x1, x2, x3) of degree t ≤ r, with the property (6).

34

Since f is nonzero, we have a monomial term A0x
i
1x

j
2x

k
3 in f . Without loss of generality, we

may choose the powers 0 ≤ i ≤ j ≤ k, where i, j, k are integers such that i+ j + k = t. So

we write f as follows

f(x1, x2, x3) = A0x
i
1x

j
2x

k
3 + g0(x1, x2, x3), (7)

where A0 ∈ Fq and g0(x1, x2, x3) is a homogeneous polynomial of degree t such that the

coefcient of the xi
1x

j
2x

k
3 in g0(x1, x2, x3) is zero.

Consider the case i = j. Then by the property (6), we get

f(x2, x1, x3) = A0x
i
2x

i
1x

k
3 + g0(x2, x1, x3)

= f(x1, x2, x3) = A0x
i
1x

i
2x

k
3 g0(x1, x2, x3)

Equivalently, we have

2A0x
i
2x

i
1x

k
3 + g0(x2, x1, x3) + g0(x1, x2, x3) = 0

Since the coefcient of the monomial xi
1x

i
2x

k
3 in g0(x1, x2, x3) is zero, xi

2x
i
1x

k
3 must be

a monomial term of g0(x2, x1, x3), whose coefcient is 2A0. This is the contradiction.

Similarly, we get a contradiction for the cases i = k and j = k. Thus, there are no monomial

terms xi
1x

j
2x

k
3 such that at least two of i, j and k values are the same.

By the cases mentioned above, we may assume that in the monomial term xi
1x

j
2x

k
3 , i, j, k are

distinct, i.e., 0 ≤ i < j < k. Consider the relation (7). When π = (12), we have

f(x2, x1, x3) = A0x
i
2x

j
1x

k
3 + g0(x2, x1, x3)

= f(x1, x2, x3) = A0x
i
1x

j
2x

k
3 g0(x1, x2, x3)

35

By the above equation, the monomial term A0x
i
2x

j
1x

k
3 must be appeared in g0(x1, x2, x3).

Thus, the relation (7) can be rewritten as

f(x1, x2, x3) = A0x
i
1x

j
2x

k
3 A0x

j
1x

i
2x

k
3 + g1(x1, x2, x3)

Applying similar steps for the permutations π = (13) and π = (23), we get

f(x1, x2, x3) = A0x
i
1x

j
2x

k
3 A0x

j
1x

i
2x

k
3 A0x

k
1x

j
2x

i
3 A0x

i
1x

k
2x

j
3 + g3(x1, x2, x3)

Applying the permutation π = (123) to f(x1, x2, x3) in the above relation, we get

f(x2, x3, x1) = A0x
i
2x

j
3x

k
1 A0x

j
1x

i
2x

k
3 A0x

k
1x

j
2x

i
3 A0x

i
1x

k
2x

j
3 + g3(x2, x3, x1)

= f(x1, x2, x3) = A0x
i
1x

j
2x

k
3 A0x

j
1x

i
2x

k
3 A0x

k
1x

j
2x

i
3 A0x

i
1x

k
2x

j
3 + g3(x1, x2, x3),

which implies the monomial term A0x
i
2x

j
3x

k
1 must be appeared in g3(x1, x2, x3). Thus,

f(x1, x2, x3) = A0x
i
1x

j
2x

k
3+A0x

k
1x

i
2x

j
3A0x

j
1x

i
2x

k
3A0x

k
1x

j
2x

i
3A0x

i
1x

k
2x

j
3+g4(x1, x2, x3)

Finally, if we apply the permutation π = (132), the polynomial f(x1, x2, x3) will be of form

A0x
i
1x

j
2x

k
3 + A0x

k
1x

i
2x

j
3 + A0x

j
1x

k
2x

i
3 A0x

j
1x

i
2x

k
3 A0x

k
1x

j
2x

i
3 A0x

i
1x

k
2x

j
3 + g5(x1, x2, x3)

=A0

xi
1 xi

2 xi
3

xj
1 xj

2 xj
3

xk
1 xk

2 xk
3

+ g5(x1, x2, x3),

where g5(x1, x2, x3) is a homogeneous polynomial of degree t such that the coefcients of

the monomials xi
π(1)x

j
π(2)x

k
π(3), for any π ∈ S3, are zero.

36

Thereafter, if we apply what we did for f(x1, x2, x3) to g5(x1, x2, x3) by following the same

steps for the other possible triple partition, t = i1 + j1 + k1, we will get

f(x1, x2, x3) = A0

xi
1 xi

2 xi
3

xj
1 xj

2 xj
3

xk
1 xk

2 xk
3

+ A1

xi1
1 xi1

2 xi1
3

xj1
1 xj1

2 xj1
3

xk1
1 xk1

2 xk1
3

+ g6(x1, x2, x3),

where A0, A1 ∈ Fq and g6(x1, x2, x3) is a homogeneous polynomial of degree t.

Since the number of the triple partitions of t is nite, we may continue the above procedure

until all possible partitions are over. Finally, the polynomial f is of form

f(x1, x2, x3) = A0

xi
1 xi

2 xi
3

xj
1 xj

2 xj
3

xk
1 xk

2 xk
3

+ A1

xi1
1 xi1

2 xi1
3

xj1
1 xj1

2 xj1
3

xk1
1 xk1

2 xk1
3

+ · · ·+ Ad

xid
1 xid

2 xid
3

xjd
1 xjd

2 xjd
3

xkd
1 xkd

2 xkd
3

,

where Ai’s in Fq. Thus, f(x1, x2, x3) ∈ Eq(3, r) by the denition.

In general, for any polynomial F (x1, x2, x3) satisfying the condition (6), we may write

F (x1, x2, x3) = f3(x1, x2, x3) + f4(x1, x2, x3) + · · ·+ fr(x1, x2, x3),

where fi’s are homogeneous polynomials of degree i for i ∈ 3, 4, , r. Hence, for any
i ∈ 3, 4, , r, we get that fi ∈ Eq(3, r). Thus, F (x1, x2, x3) ∈ Eq(3, r), which completes

the proof.

Consider the subgroup

K =

P ∗

b a a

a b a

a a b

,

P ∈ P3, a, b ∈ Fq, a ̸= b, b ̸= 2a

(8)

37

of GL(3, q). We will show that K is a subgroup under which Eq(3, r) is invariant. First, we

need the following key lemma.

Lemma 4.2.2. Let A ∈ K and f(x1, x2, x3) ∈ Eq(3, r). Then the function g dened as

g(x1, x2, x3) = Tf (A) belongs the set Eq(3, r).

Proof. Firstly, assume that A =

b a a

a b a

a a b

. Let f(x1, x2, x3) ∈ Eq(3, r). Under the

transformation T (A) in (2), we have variables x1 → bx1+ax2+ax3, x2 → ax1+ bx2+ax3

and x3 → ax1 + ax2 + bx3.

Let g = Tf (A). Then

g(x1, x2, x3) = Tf (A) = f(bx1 + ax2 + ax3, ax1 + bx2 + ax3, ax1 + ax2 + bx3)

Now let π = (12) ∈ S3.

g(xπ(1), xπ(2), xπ(3)) = g(x2, x1, x3) = f(bx2 + ax1 + ax3, ax2 + bx1 + ax3, ax2 + ax1 + bx3)

= f(bx1 + ax2 + ax3, ax1 + bx2 + ax3, ax1 + ax2 + bx3)

= g(x1, x2, x3),

where second line comes from the fact that f(x1, x2, x3) ∈ Eq(3, r). Similarly, when π =

(13) or π = (23), we get that g(xπ(1), xπ(2), xπ(3)) = g(x1, x2, x3).

On the other hand, when π = (123) ∈ S3, we have that

g(xπ(1), xπ(2), xπ(3)) = g(x2, x3, x1) = f(bx2 + ax3 + ax1, ax2 + bx3 + ax1, ax2 + ax3 + bx1)

= f(ax2 + bx3 + ax1, bx2 + ax3 + ax1, ax2 + ax3 + bx1)

= f(bx1 + ax2 + ax3, ax1 + bx2 + ax3, ax1 + ax2 + bx3)

= g(x1, x2, x3)

38

Similarly, when π = (132), we obtain that g(xπ(1), xπ(2), xπ(3)) = g(x1, x2, x3).

Finally from above, we can characterize the multivariate polynomial g(x1, x2, x3) as follows

for any π ∈ S3:

g(xπ(1), xπ(2), xπ(3)) =

g(x1, x2, x3), π is an odd permutation,

g(x1, x2, x3), π is an even permutation

Hence, by Lemma 4.2.1, g = Tf (A) ∈ Eq(3, r).

Now let B ̸= A be an element of the set K. Then there exists I3 ̸= P ∈ P3 such that

B = PA, where P is the permutation matrix associated with a permutation σ. Under the

transformation T (B) = T (PA), we have

xσ(1) → bx1 + ax2 + ax3, xσ(2) → ax1 + bx2 + ax3 and xσ(3) → ax1 + ax2 + bx3

Equivalently, we get

x1 → bxσ−1(1) + axσ−1(2) + axσ−1(3), x2 → axσ−1(1) + bxσ−1(2) + axσ−1(3)

x3 → axσ−1(1) + axσ−1(2) + bxσ−1(3),

where σ−1 denotes the inverse of the permutation σ. Thus,

g(x1, x2, x3) = Tf (PA) =

f(bxσ−1(1)+axσ−1(2)+axσ−1(3), axσ−1(1)+bxσ−1(2)+axσ−1(3), axσ−1(1)+axσ−1(2)+bxσ−1(3)),

which gives

h(x1, x2, x3) = g(xσ(1), xσ(2), xσ(3)) = f(bx1+ax2+ax3, ax1+bx2+ax3, ax1+ax2+bx3)

We obtain h ∈ Eq(3, r) from the previous steps. Finally, g = Tf (PA) ∈ Eq(3, r), which

completes the proof.

39

Remark 4.2.3. Let

1 0 2

0 1 1

2 2 0

∈ GL(3, q) \K, q > 3 and

f(x1, x2, x3) = x3y2z + x3yz2 + x2y3z x2yz3 xy3z2 + xy2z3 ∈ Eq(3, r)

Consider the function g dened as :

g(x1, x2, x3) = Tf (A)

= f(x1 + 2x2, x2 + x3, 2x1 + 2x2)

= 4x5y 4x5z 10x4y2 12x4yz 2x4z2 26x3y2z 8x3yz2 + 18x3z3

+ 10x2z4 14x2y3z 18x2y2z2 + 14x2yz3 + 8x2z4 + 4xy5 + 12xy4z 28xy3z2

 4xy2z3 + 24xyz4 8xz5 + 8y5z 16y4z2 + 16y2z4 8yz5

By the denition of Eq(3, r) and the Remark 3.0.6, it is easily seen that g does not belong to

the set Eq(3, r).

As seen above, Lemma 4.2.2 is not valid for any element of GL(3, q). However,

Lemma 4.2.2 guarantees that the function g = Tf (A), where A ∈ K and f ∈ Eq(3, r),

remains in the set Eq(3, r). The following theorem also ensures that the setK is an exact set

in GL(3, r).

Theorem 4.2.4. The automorphism group of the SRMq[3, r], where q ≥ r > 3, code family

contains a subgroup isomorphic to K in the equation (8), i.e., SRMq[3, r] is invariant under

the transformations that come from K.

Proof. By the denition of Eq(3, r), the members of degrees 3 and 4 in Eq(3, r) are the sets

N =

a012

1 1 1

x1 x2 x3

x2
1 x2

2 x2
3

 a012 ∈ Fq

40

and

Q =

a013

1 1 1

x1 x2 x3

x3
1 x3

2 x3
3

 a013 ∈ Fq

,

respectively. Let B ∈ F3×3
q be an invertible matrix such that B =

a b c

d e f

g h i

. It is clear that

when f ∈ N and g ∈ Q, the following conditions must hold:

Tf (B) ∈ N and Tg(B) ∈ Q

By Equation 3, the transformations Tf (B) and Tg(B) are obtained as below:

Tf (B) =

1 1 1

(ax1 + bx2 + cx3) (dx1 + ex2 + fx3) (gx1 + hx2 + ix3)

(ax1 + bx2 + cx3)
2 (dx1 + ex2 + fx3)

2 (gx1 + hx2 + ix3)
2

and

Tg(B) =

1 1 1

(ax1 + bx2 + cx3) (dx1 + ex2 + fx3) (gx1 + hx2 + ix3)

(ax1 + bx2 + cx3)
3 (dx1 + ex2 + fx3)

3 (gx1 + hx2 + ix3)
3

.

If Tf (B), Tg(B) ∈ Eq(3, r), then we will have Tf (B) ∈ N and Tg(B) ∈ Q. By

Remark 3.0.8, we have the following 19 equations for the corresponding monomials:

41

[x1x2x
2
3]Tg(B) = 0

[x1x
2
2x3]Tg(B) = 0

[x1x2x3]Tf (B) = 0 [x2
1x2x3]Tg(B) = 0

[x3
1]Tf (B) = 0 [x2

1x
2
2]Tg(B) = 0

[x3
2]Tf (B) = 0 [x2

1x
2
3]Tg(B) = 0

[x3
3]Tf (B) = 0 [x2

2x
2
3]Tg(B) = 0

[x1x
2
2]Tf (B) + [x2

1x2]Tf (B) = 0 [x4
1]Tg(B) = 0

[x2x
2
3]Tf (B) + [x2

2x3]Tf (B) = 0 [x4
2]Tg(B) = 0

[x1x
2
3]Tf (B) + [x2

1x3]Tf (B) = 0 [x4
3]Tg(B) = 0

[x1x
3
2]Tg(B) + [x3

1x2]Tg(B) = 0

[x2x
3
3]Tg(B) + [x3

2x3]Tg(B) = 0

[x1x
3
3]Tg(B) + [x3

1x3]Tg(B) = 0

Here, [xi
1x

j
2x

k
3]h(x1, x2, x3) denotes the coefcient of the monomial xi

1x
j
2x

k
3 of the

polynomial h. The explicit equations that come from the above 19 constraints are provided
below in sequence:

2bcd2(accd)e2(abbdae)f+2(bcef)g+2(acdf(cf)g)h+2(abde(be)g(ad)h)i = 0

a2d+ ad2 (a d)g2 + (a2 d2)g = 0

b2e+ be2 (b e)h2 + (b2 e2)h = 0

c2f + cf2 (c f)i2 + (c2 f2)i = 0

42

 2abd b2d+ bd2 + ae2 (b e)g2 (a d)h2 (a2 2ad)e 2(ab bd)e

+ 2(ab de)g + (b2 e2)g + (a2 d2 2(a d)g)h+ 2(ab de (b e)g)h = 0

2bcec2e+ce2+bf2(cf)h2(be)i2(b22be)f2(bcce)f+2(bcef)h+(c2f2)h+(b2e22(be)h)i

+ 2(bc ef (c f)h)i = 0

2acdc2d+cd2+af2(cf)g2(ad)i2(a22ad)f2(accd)f2(acdf)g+(c2f2)g+

(a2 d2 2(a d)g)i+ 2(ac df (c f)g)i = 0

3bc2d3ac2e3(bd+ae)f23((be)g+(ad)h)i26(abccde)f+3(bc2ef2)g+3(ac2df2)h

+ 6(abc def (c f)gh)i = 0

 3b2cd 6abce+ 3cde2 3(c f)gh2 3(ab2 2bde ae2)f

+ 3(b2c e2f)g + 6(abc def)h+ 3(ab2 de2 2(b e)gh (a d)h2)i = 0

6abcd3(a2ccd2)e3(a2bbd22ade)f+6(abcdef)g+3(a2cd2f(cf)g2)h+3(a2bd2e

 2(b e)gh (a d)h2)i = 0

 3ab2d+ 3ade2 3(a d)gh2 3(a2b bd2)e+ 3(ab2 de2)g + 3(a2b d2e (b e)g2)h = 0

 3ac2d+ 3adf2 3(a d)gi2 3(a2c cd2)f + 3(ac2 df2)g + 3(a2c d2f (c f)g2)i = 0

43

 3bc2e+ 3bef2 3(b ed)hi2 3(b2c ce2)f + 3(bc2 ef2)h+ 3(b2c e2f (c f)h2)i = 0

 a3d+ ad3 (a d)g3 + (a3 d3)g = 0

 b3e+ be3 (b e)h3 + (b3 e3)h = 0

 c3f + cf3 (c f)i3 + (c3 f3)i = 0

3a2bdb3d+bd33ab2e+3bde2+ae3(be)g33(be)gh2(ad)h3(a33ad2)e+3(a2bd2e)g

+ (b3 e3)g + (a3 d3 3(a d)g2)h+ 3(ab2 de2)h = 0

3b2cec3e+ce33bc2f+3cef2+bf3(cf)h33(cf)hi2(be)i3(b33be2)f+3(bce2f)h

+ (c3 f3)h+ (b3 e3 3(b e)h2)i+ 3(bc2 ef2)i = 0

3a2cdc3d+cd33ac2f+3cdf2+af3(cf)g33(cf)gi2(ad)i3(a33ad2)f+3(a2cd2f)g

+ (c3 f3)g + (a3 d3 3(a d)g2)i+ 3(ac2 df2)i = 0

When these equations are solved by SageMath, we obtain the set of matrices K in (8).

If the transformations with coefcient matrices from the setK are applied to functions taken

from the sets N and Q, respectively, then the resulting new functions will remain within the

sets N and Q.

We solve these equations for the unknowns a, b, c, d, e, f, g, h, iwith the help of the computer

algebra system SageMath [35]. We refer the reader to the Appendix for a detailed

examination of the code, see Section 7.

We obtain the solution set S as follows, where a and b ∈ Fq:

44

a b b

b a b

b b a

,

a b b

b a b

b b a

,

a b b

b b a

b a b

,

b a b

a b b

b b a

,

b a b

b b a

a b b

,

b b a

b a b

a b b

,

b b a

a b b

b b a

In order all the matrices in S to be invertible, a, b ∈ Fq must satisfy the conditions a ̸= b

and a ̸= 2b. Hence, the solution set will be the set K in (8). By combining this with

Lemma 4.2.2, we obtain that the set K is the maximal set in GL(3, q) such that Eq(3, r) is

invariant under the transformations that come from GL(3, q).

We are not able to apply the same technique used in the case n = 2 when n = 3, because

we have some cumbersome identities to simplify and overcome. Instead, we prefer different

approaches for the proofs when n = 2 and n = 3. Furthermore, we believe that the approach

used for n = 3 may be adapted to the general n. Nevertheless, nding the exact set is still

challenging for the general n.

We give examples of SRMq[2, r] and SRMq[3, r] for some q, r values, respectively.

Example 4.2.5. Let q = 5, n = 2, r = 4 and (i1, i2) ∈ (0, 1), (0, 2), (0, 3),

(0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4). For a matrix

a c

b d

 ∈

1 0

0 1

 ,

0 1

1 0

 ,

0 2

2 0

 ,

2 0

0 2

 ,

0 3

3 0

 ,

3 0

0 3

 ,

4 0

0 4

 ,

0 4

4 0

 ,

1 2

2 1

 ,

2 1

1 2

 ,

1 3

3 1

 ,

3 1

1 3

 ,

2 4

4 2

 ,

4 2

2 4

 ,

3 4

4 3

 ,

4 3

3 4

and α ∈ F5, the following equation holds:

α

(xi1

1 x
i2
2) (xi2

1 x
i1
2)

= (ax1 + bx2)

i1(cx1 + dx2)
i2 (ax1 + bx2)

i2(cx1 + dx2)
i1

45

Example 4.2.6. Let q = 7, n = 3 and r = 5. Then (i1, i2, i3) ∈
(0, 1, 2), (0, 1, 3), (0, 1, 4), (0, 2, 3). Let

g1(x1, x2, x3) = x1x
2
2 + x2x

2
3 + x2

1x3 x2
1x2 x2

2x3 x1x
2
3,

g2(x1, x2, x3) = x1x
3
2 + x2x

3
3 + x3

1x3 x3
1x2 x3

2x3 x1x
3
3,

g3(x1, x2, x3) = x1x
4
2 + x2x

4
3 + x4

1x3 x4
1x2 x4

2x3 x1x
4
3,

g4(x1, x2, x3) = x2
1x

3
2 + x2

2x
3
3 + x3

1x
2
3 x3

1x
2
2 x3

2x
2
3 x2

1x
3
3,

and

A =

P

a b b

b a b

b b a

P ∈ P3, a, b ∈ F7, a ̸= b, a ̸= 2b

Then

E7(3, 5) = a1g1 + a2g2 + a3g3 + a4g4 a1, a2, a3, a4 ∈ F7

For the matrixK ∈ A and g ∈ E7(3, 5), the polynomial Tg(K) ∈ E7(3, 5) by Theorem 4.2.4.

Since the SRM7[3, 5] code is a type of polynomial evaluation codes, as in Example 2.5.2,

SRM7[3, 5] is invariant under the corresponding transformations in A.

Note that the determinants of matrices in solution set must be nonzero. For example, the

solution set on F5 for n = 2 does not include the element

1 4

4 1

 because its determinant

is zero. Moreover, as the parameter n increases, the values of q and r should be adjusted

accordingly.

4.3 The general case

Determining all transformations under GL(n, q) that leaves the SRM code invariant for a

general n is quite challenging. For this, there needs to be a general method to identify

such transformation. Nevertheless, we can predict the solution set that leaves the SRM code

46

invariant for a general n and is a subgroup of the afne linear group. However, we have not

established that this set may include all possible linear transformations under which SRM

codes are invariant. We leave the task of nding a generalized method for this problem for

future work.

47

5. CODES AND THEIR APPLICATIONS IN

INFORMATION SECURITY

Reed-Muller codes have been highly inuential in computational theory, playing a central

role in several key developments across various elds. For example, in cryptography,

they are utilized in computational integrity in zero-knowledge proofs, secret sharing

scheme, homomorphic encryption etc. Reed-Muller codes have also been applied in

error-resilient design, particularly in distributed computation, where they are employed in

information dissemination algorithms for networks. Importantly, they play a crucial role in

theoretical perspectives such as interpolation, linearity, partial derivatives, self-reducibility

of low-degree polynomials, as well as in list decoding, local testing, and decoding. Finally,

polynomials, which are fundamental objects in many computational aspects, interact closely

with the study of coding-theoretic questions related to RM codes.

We are aware that numerous studies have explored the use of Reed-Muller codes in

cryptography, with the volume of research in this area increasing steadily. We believe that by

leveraging the advantages of SRM codes over RM codes, more efcient and practical models

will emerge. Therefore, we aim to expand the scope of research in these areas and identify

new open problems for further investigation.

These cryptographic applications of coding theory, in particular RM codes, have become

indispensable for ensuring security in modern communication systems. The issues

mentioned above will be discussed in detail below.

5.1 Zero-knowledge Proofs in Industry

In cryptography, zero-knowledge (ZK) proofs enable a prover to demonstrate the truth of a

statement to a verier without revealing any information about the statement itself [36]. A

person who possesses condential information about a situation should be able to produce

48

evidence related to it with ease. On the other hand, a verier, even after being convinced of

the truth of the situation, should remain unable to provide proof of it to other third parties.

Zero-knowledge proofs require interaction between the prover and the verier [37]. This

interaction involves the verier selecting one or more random challenges. Despite this

randomness, the prover’s successful responses to these challenges convince the verier that

the prover possesses the claimed knowledge. If there is no interaction, the verier could

replay the protocol’s execution transcript to a third party, thus convincing the third party

that the verier also possesses the condential information. However, using the Fiat-Shamir

heuristic method, non-interactive zero-knowledge proofs can be constructed [38].

Zero-knowledge proofs have three important properties:

• Completeness: If the statement in question is true, an honest verier will be convinced

by an honest prover.

• Soundness: If the statement is false, no dishonest prover can convince an honest

verier that the statement is true, except with a very small probability.

• Zero-Knowledge: If the statement is true, the verier learns nothing other than the fact

that the statement is true. This can be formalized as follows: every verier has some

simulators such that, given only the statement being proved, the simulator can produce

a transcript that is indistinguishable from an interaction between an honest prover and

an honest verier.

With zero-knowledge proofs, the concept of computational integrity arises, which means the

output of a specic computation is correct. This necessitates the use of a proof mechanism.

Zero-knowledge proofs are a cryptographic solution that ensures both privacy and the

computational integrity of the data.

Privacy is the ability of an individual to maintain control over their personal information.

With the development of services such as e-voting, e-tax, and e-cash, and the widespread

use of social media, the need for personal privacy and condentiality has increased. In this

49

context, techniques exist to demonstrate that a secret element belongs to a public set. These

techniques are known as cryptographic primitives called set membership and range proofs.

Set membership proofs allow users to prove that their committed secrets belong to a public

set without revealing the secrets themselves. For instance, in an e-voting system, voters

can prove they have cast a valid vote without disclosing their choice. Range proofs, on the

other hand, are a special case of set membership where the public set is a large range of

integers. Typically, range proofs are used in conjunction with electronic identities to enforce

age restrictions [39].

KYC procedures can be performed using zk-set membership without revealing user

information. For example, an individual can prove that their country of residence is within

the European Union without disclosing the specic country. It will also be possible to verify

whether the individual is on the white or black lists established for anti-money laundering

(AML) purposes between countries.

In a resource-constrained environment, one of the use cases of zero-knowledge proofs is to

outsource computations to an external, powerful, but untrusted source. At this point, one

of the emerging technologies is layer 2 solutions in blockchain technology. Transactions

that take place on layer 2, outside the main chain, are proven on the main chain using

zero-knowledge proofs. This process is called zk-rollup, and the validity proof created after

off-chain transactions, along with the resulting state change, signicantly reduces transaction

costs on the main chain. In these transactions, zero-knowledge proofs are used to ensure that

the transactions are performed correctly and are valid, rather than to ensure privacy [40].

Zero-knowledge proofs are used to address privacy concerns in distributed systems [41–43].

For example, Zerocash was designed to prevent the traceability of transactions [43]. In

this system, both user and transaction information are anonymous. zk-SNARKs are used

to ensure anonymity. It is a privacy-focused cryptocurrency inspired by the 2014 work

Cryptonote [44]. In Monero [45], users are untraceable, and both the sender and receiver

are anonymous. To ensure the anonymity of transaction amounts, range proofs are used, and

or-proofs are employed to verify the correctness of the committed values.

50

In blockchain ecosystem, smart contracts are pieces of code executed by all participants in

the Ethereum network. All information in smart contracts can be viewed by other parties.

The lack of a privacy mechanism in the system is a major issue. This issue can be resolved

by using zk-SNARK or zk-STARK. Additionally, there is a special smart contract called

Hawk. However, each contract requires a new setup and a trusted manager who can access

the user’s information. In Bulletproofs, there is no need for a trusted setup, and the proof

sizes are smaller, making them suitable for use in private smart contracts. Zether [46] is

a decentralized, privacy-based payment mechanism compatible with Ethereum and other

smart contract platforms. For efciency and usability, an account-based approach similar to

Ethereum has been followed. In this mechanism, which keeps account balances encrypted

and controls deposit, transfer, and withdrawal operations based on encrypted balances,

Σ-protocols are used for zero-knowledge proofs. Ciphertexts encrypted with ElGamal

encryption are proven to be within a certain range using Bulletproofs.

Post-quantum zero-knowledge proofs are also being researched today. Benoı̂t Libert

et.al. [47] worked on a lattice-based zk-range proof structure; however, the proof size is very

large. Even if the secret is small, the proof does not reduce in size. Therefore, optimization

efforts have begun.

Stark FRI AG codes in FRI information security

Public trust demands transparency from ZK systems, meaning these systems must be

established without relying on any trusted party and ensure that powerful entities cannot

provide false testimony. For ZK systems to be used with big data, the public verication

process must scale sub-linearly with respect to the size of the data. In the 1990s, transparent

ZK proofs that could be veried exponentially faster than the size of the data were dened,

but no practical implementations were achieved. To date, no ZK system implemented in

code has managed to achieve both transparency and exponential verication speedup for

general computations simultaneously. In their work, Eli Ben-Sasson et al. [48] claim to have

realized for the rst time a transparent ZK system (ZK-STARK) where the verication scales

51

exponentially faster than the size of the data and exhibits exponential verication speed-up

for certain computations. Their system utilizes developments in interactive oracle proofs

(IOP), akin to fast (linear-time) IOP systems for error-correcting codes.

In their work, Eli Ben-Sasson et al. presented a scalable and transparent ZK system within

the IOP model. They improved the verication time and ensured that the communication

complexity is smaller than the witness size. The main source of innovation and performance

improvement in this system is the fast Reed-Solomon IOP (FRI) protocol. However, it

has been understood that some of the main components of such systems require long

verication times and work efciently only asymptotically for large computations. In the

original ZK-STARK algorithm, Reed-Solomon error-correcting codes were used as the

error-correcting codes for the verier. In their work, Eli Ben-Sasson et al. [49] suggested

using AG (algebraic geometry) codes instead of these codes.

Computational-integrity (CI) is a crucial aspect to be considered in terms of accountability.

However, scalability and privacy emerge as two major problems. This is because

scaling performance to meet continuously increasing demand will inevitably prevent

some participants from verifying integrity due to limited computational resources. On

the other hand, without cryptographically blinding information, making all blockchain

transactions publicly available is unacceptable for both businesses and individuals. Methods

to address these two problems have been studied for a long time. From the 1980s

to the 1990s, theoretical work on interactive proofs, zero-knowledge proofs (ZKP), and

probabilistically-checkable-proofs (PCP) has addressed how to tackle these two problems.

The rst theoretical work on zero-knowledge proofs began in the early 1990s with

discussions on PCP. The PCP theorem establishes a balance between the prover’s time to

generate the proof and the verier’s time to verify it. Zero-knowledge proofs based on PCP

have fundamental advantages regarding computational integrity.

The PCP theorem is one of the most important topics in complexity theory. PCP

(probabilistically-checkable-proof) is a proof system that allows the validity of a claim to

be checked by querying only a small portion of the proof [50]. The PCP theorem, in

52

computational complexity theory, is a type of probabilistically checkable proof. It checks

the proof by using a limited amount of randomness and reading a limited number of its

bits. The algorithm must accept correct proofs and reject incorrect proofs with very high

probability.

What makes PCP interesting is the existence of probabilistically checkable proofs, which can

be veried by reading only a few random bits of the proof. This theorem has provided lower

bounds for constraint satisfaction problems [51].

The PCP theorem states that every NP-proof can be encoded into another proof, known as

a probabilistically checkable proof (PCP), which can be tested by a verier querying only a

small portion of it. However, a signicant issue is the size of the overhead introduced by this

encoding. Specically, the problem is comparing the length of the encoded PCP with the

original NP-proof. Even with the additional overhead in PCP protocols, good performance

has been achieved using Reed-Solomon error-correcting codes [50].

In their work, Eli Ben-Sasson et al. [49] explored the idea of replacing low-degree

polynomials in PCP structures with tensors of transitive algebraic geometry (AG) codes,

where AG codes generalize Reed-Solomon and Reed-Muller codes. They demonstrated that

the automorphisms of an AG code can be used to simulate the role of afne transformations in

earlier algebraic PCP constructions. Using this observation, they concluded that any family

of transitive AG codes that is asymptotically good over a xed-size alphabet produces a

family of constant-rate PCPs with low query complexity in terms of polynomial degree.

In this study [49], AG codes were utilized because they share the multiplication property

used in the PCP arithmetization of Reed-Solomon and Reed-Muller codes. Although many

error-correcting codes exist, most of them lack other properties of Reed-Solomon codes, such

as systematicity and polynomial closure. Most importantly, the key feature of Reed-Solomon

and Reed-Muller codes is that they possess a transitive automorphism group. Therefore, the

idea of replacing Reed-Solomon codes with AG codes that have the same desirable properties

while also achieving a constant rate was considered. When integrating AG codes into the

53

PCP structure, it is sufcient to work with AG codes that have a transitive automorphism

group.

Here, we need to provide the denition of the doubly transitive property, which is a degree

of transitivity. A code C has an automorphism group Aut(C), which is the group of

permutations π ∈ Aut(C) that keeps the code invariant, i.e., for f ∈ C, it holds that

(f ◦ π) ∈ C. For each i ∈ D, the codeword (f ◦ π) is dened by w(i)
∆
= w(π(i)). If

for any two distinct pairs of elements (i, j), (i′, j ′) ∈ D2, there exists a π ∈ G that maps i to

i′ and j to j ′, then G acts doubly transitively on D.

RM codes are doubly transitive codes, since RM codes are afne-invariant. The RM

code family remains xed under any invertible afne transformation, and the degree of

the functions generating the codewords are also invariant under such transformations. One

motivation for studying the doubly transitive property is its impact on the code rate under

xed alphabet size and query complexity, which is relatively low. To date, there are no

known doubly transitive codes other than RM codes. Although certain code families have

highly rich automorphism groups, they do not exhibit this property. However, these codes can

be characterized by giving the degree to which they approach the doubly transitive property.

The query complexity of AG codes with a nearly doubly transitive automorphism group can

be reduced from D2 to D. In fact, the degree of the doubly transitive property of a code

family also indicates the degree of its locally correctable property. Doubly transitive AG

codes are also locally correctable. Locally correctable codes are error-correcting codes where

any symbol in the codeword can be veried using a few other randomly chosen symbols. The

doubly transitive property is used to demonstrate the local correctability of tensor codes [52].

At this point, we focused on families of AG codes that possess a transitive automorphism

group or doubly transitive automorphism group. Specically, we studied symmetric

Reed-Muller codes within the AG code family and attempted to increase the knowledge

on the automorphism group of symmetric Reed-Muller codes.

54

5.2 Homomorphic Encryption

Fully Homomorphic Encryption (FHE) is considered a solution for preserving privacy and

security in computations on encrypted data. In 2009, Gentry proposed the rst fully

homomorphic encryption (FHE) system [53]. Following this, extensive research has been

conducted on homomorphic encryption schemes based on lattice-based hard problems. One

of the most notable works is the Cheon-Kim-Kim-Song (CKKS) scheme, which allows

approximate homomorphic encryption. However, even in this scheme, the computational

complexity remains very high, such that performing homomorphic operations can take

days to complete. This emphasizes the need for further advancements to make FHE more

practical in real-world applications. Current FHE schemes are predominantly constructed

using lattice-based cryptography. However, homomorphic multiplications and refreshing the

ciphertext require a signicant amount of computational resources. Therefore, there is a need

for new methods that can reduce computational complexity in practical applications of FHE.

Various solutions have been proposed in the literature to address this challenge. One of these

approaches is to tackle the problem through a code-based homomorphic operation scheme.

While linear codes are closed under addition, they are not closed under homomorphic

multiplication. The proposed solution addresses this limitation by using Reed-Muller (RM)

codes, which support both addition and multiplication. With this method, it is crucial to

preserve the rank of RM codes after addition or multiplication operations. To achieve this,

a bootstrapping technique is suggested, which creates a one-to-one correspondence between

computations on messages and computations on RM codewords. This technique ensures

that the integrity of the RM codes is maintained during the homomorphic operations. The

potential of symmetric Reed-Muller codes to reduce noise in homomorphic encryption will

be explored in future studies.

5.3 Secret Sharing

For a protocol to be secure, the sensitive information it contains must be stored reliably

and condentially. Examples of such sensitive information include private keys in public

55

key systems. One of the primary motivations for secret sharing is the reconstruction of a

cryptographic key in case it is lost. In real-life scenarios, there are situations where a group

of people needs access to condential information. In such cases, only trusted members of

the group should have access to this secret information. Additionally, when storing highly

sensitive data, it may be necessary to split it into parts and store these parts in different

locations. Each piece of data should provide as little information as possible about the entire

set of data, and only when a minimum number of pieces are combined should the original

data be recoverable. This signicantly increases the effort required for an adversary to obtain

the full condential information.

A secret sharing scheme is a method for securely sharing a secret among a group of

participants. For a given secret, the so-called dealer calculates appropriate shares and

distributes them to the participants. The shares will only allow pre-dened subsets of

participants to reconstruct the secret from their shares. These subsets are called authorized,

and the set of all authorized subsets is referred to as the access structure. The remaining

subsets are unauthorized and should learn as little as possible about the secret from their

shares.

In 1979, Shamir [54] introduced a threshold signature scheme in which all participants

receive shares that represent parts of a secret as a polynomial. In this scheme, there is

no hierarchy among participants, meaning each participant’s share has equal importance in

reconstructing the secret. Independently of Shamir’s work, Blakley [55] conducted similar

research in the same year. The schemes developed in both works are referred to as threshold

access structures, where any subset of participants that meets the threshold value is capable

of reconstructing the secret. In 1991, Simon [56] employed a monotone access structure in

his study. In these access models, all supersets of authorized sets are also authorized. In the

following years, studies began on access models in which the pieces held by the participants

had different weightings as they came together to form the secret. These models are generally

referred to as hierarchical threshold schemes [57–59]

In the study [60], a novel secret sharing scheme based on binary error-correcting codes is

56

presented, which can implement arbitrary access structures. In this secret sharing scheme,

the secret is a codeword in a binary error-correcting code, and the shares are binary words of

the same length. When a group of participants wants to reconstruct the secret, they compute

the sum of their shares and apply Hamming decoding to the sum. The feature of the shares

is that when the group is authorized, the secret corresponds to the codeword closest to the

sum of the shares. Otherwise, the sum results in a different codeword through the Hamming

decoding process. The shares can be described as solutions to a system of linear equations

that is closely related to rst-order Reed-Muller codes. Additionally, the access structure

model in this study [60] was constructed through Reed-Muller codes. In another study [25],

multiplicative linear secret sharing schemes were examined. Such schemes can be dened

through linear codes. In this study, a more general class of Reed-Muller type codes, suitable

for multiparty computation, was presented.

There are many studies on error-correcting codes in the context of secret sharing. One of

the open problems we leave for future work is the advantages and disadvantages that the use

of SRM codes may bring to schemes inspired by these studies. This is because we believe

that codes with efcient encoding and decoding capabilities will lead to the development of

effective schemes and provide good privacy threshold for secret sharing.

57

6. CONCLUSION AND FUTUREWORK

Our work aims at determining the set of afne-invariant transformations. The linear

automorphism groups of SRM for n = 2 and n = 3 over the eld Fp, where p is any prime

number is proven in this study. For n = 2 and n = 3, we nd that the exact set generated

by transformations remaining SRM codes invariant is a subgroup of the afne linear group.

For different values of n, different techniques were used to determine this set. We give the

essential lemmas for our main theorem, which identies the group created by transformations

leaving the SRM code invariant.

This study has offered valuable insights into afne invariant transformations on SRM codes;

however, there exists an unresolved question that calls for further investigation in future

research. We could not give a general proof for an arbitrary n, and leave it an open problem

of the complete determination of the automorphism group Aut(SRM) for any n > 3. We

state the problem left for future researches as follows and include our prediction regarding

set M associated with the solution of this problem :

Let Jn be the n × n all one matrix, In be the n × n identity matrix and Pn be the

set of permutations of order n. Let M be a subset of GL(n, q) dened as M =

P ((b a)In + aJn) P ∈ Pn, a, b ∈ Fq, a ̸= b, a ̸= (1 n)b

⊂ GL(n, q). Then, the

automorphism group of the SRMq[n, r] for q > r > n(n−1)
2

contains a subgroup isomorphic

to M , i.e., SRMq[n, r] is invariant under the transformations in M .

The proof of the invariance of SRMq[n, r] codes under the transformations, which come from

the setM , may be similarly done to that of Lemma 4.2.2. Notwithstanding, in order to show

that the set M is the complete set in this manner is quite challenging to follow the same

techniques.

On the other hand, error correction codes have numerous applications across various

elds, some of which have been discussed above. In particular, Reed-Muller codes have

signicantly accelerated research in terms of efciency, speed, and accuracy by being

integrated into new technologies. Ongoing studies on these codes span a wide range

58

of applications, from data privacy to satellite technologies. Improvements made through

research on Reed-Muller codes are expected to enhance the technologies that utilize these

codes.

At this juncture, we anticipate obtaining better results in applications through the use of

SRM codes. It is well-known that employing codes with transitive automorphism groups in

proof systems will lead to more efcient proofs [49]. Therefore, we believe that SRM codes

will prove benecial in this context. To this end, we have investigated the automorphism

groups of SRM codes. This raises an open question regarding the transitivity of this group.

Once the transitivity of the automorphism group of SRM codes is established, we expect

that their application in proof systems will yield even greater efciency. Consequently, this

will lead to signicant advancements across all elds where proof systems are employed,

resulting in exponential improvements in areas such as e-voting, homomorphic encryption,

secret sharing, and other related domains.

59

REFERENCES

[1] W. C. Huffman and V. Pless. Fundamentals of error correcting codes. Cambridge

University Press, 2003.

[2] F. J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes,

volume 16. Elsevier, 1977.

[3] P. Delsarte, J. M. Goethals, and F. J. MacWilliams. On generalized reed-muller

codes and their relatives. Information and control, 16(5):403–442, 1970.

[4] V. Pless, R. A. Brualdi, and W. C. Huffman. Handbook of coding theory. Elsevier

Science Inc., 1998.

[5] W. Yan and S. J. Lin. Symmetric reed–muller codes. IEEE Transactions on

Communications, 68(7):3937–3947, 2020.

[6] T. Kasami, S. Lin, and W. Peterson. Some results on cyclic codes which are

invariant under the afne group and their applications. Information and Control,

11(5-6):475–496, 1967.

[7] P. Delsarte. On cyclic codes that are invariant under the general linear group.

IEEE Transactions on Information Theory, 16(6):760–769, 1970.

[8] A. Dür. The automorphism groups of reed-solomon codes. Journal of

Combinatorial Theory, Series A, 44(1):69–82, 1987.

[9] T. P. Berger and P. Charpin. The automorphism group of generalized reed-muller

codes. Discrete mathematics, 117(1-3):1–17, 1993.

[10] T. P. Berger and P. Charpin. The permutation group of afne-invariant extended

cyclic codes. IEEE transactions on Information theory, 42(6):2194–2209, 1996.

[11] T. P. Berger. Automorphism groups of homogeneous and projective reed-muller

codes. IEEE Transactions on Information Theory, 48(5):1035–1045, 2006.

60

[12] W. Yan and S. J. Lin. Local correctabilities and dual codes of symmetric

reed–muller codes. In 2021 IEEE Information Theory Workshop (ITW), pages

1–5. IEEE, 2021.

[13] D. E. Muller. Application of boolean algebra to switching circuit design and

to error detection. Transactions of the IRE professional group on electronic

computers, (3):6–12, 1954.

[14] I. S. Reed. A class of multiple-error-correcting codes and the decoding scheme.

IEEE Transactions on Information Theory, 4(4):38–49, 1954.

[15] E. Abbe, O. Sberlo, A. Shpilka, M. Ye, et al. Reed-muller codes. Foundations

and Trends® in Communications and Information Theory, 20(1–2):1–156, 2023.

[16] R. Knörr and W. Willems. The automorphism groups of generalized reed-muller

codes. Astérisque, 181:182, 1990.

[17] T. P. Berger. On the automorphism groups of afne-invariant codes. Designs,

codes and cryptography, 7:215–221, 1996.

[18] V. Lint and J. Hendricus. Introduction to coding theory, volume 86. Springer

Science & Business Media, 1998.

[19] I. S. Reed and G. Solomon. Polynomial codes over certain nite elds. Journal

of the society for industrial and applied mathematics, 8(2):300–304, 1960.

[20] Raj Chandra Bose and Dwijendra K Ray-Chaudhuri. On a class of error

correcting binary group codes. Information and control, 3(1):68–79, 1960.

[21] Alexis Hocquenghem. Codes correcteurs d’erreurs. Chiffers, 2:147–156, 1959.

[22] E. Abbe, A. Shpilka, and M. Ye. Reed–muller codes: Theory and algorithms.

IEEE Transactions on Information Theory, 67(6):3251–3277, 2020.

61

[23] T. Kasami, S. Lin, and W. Peterson. New generalizations of the reed-muller

codes–i: Primitive codes. IEEE Transactions on information theory,

14(2):189–199, 1968.

[24] J. Cho, Y.-S. Kim, and J. S. No. Homomorphic computation in reed-muller codes.

IEEE Access, 8:108622–108628, 2020.

[25] I. Duursma and J. Shen. Multiplicative secret sharing schemes from reed-muller

type codes. In 2012 IEEE International Symposium on Information Theory

Proceedings, pages 264–268. IEEE, 2012.

[26] R. Pellikaan and X. W. Wu. List decoding of q-ary reed-muller codes. IEEE

Transactions on Information Theory, 50(4):679–682, 2004.

[27] N. Alon, T. Kaufman, M. Krivelevich, S. Litsyn, and D. Ron. Testing reed-muller

codes. IEEE Transactions on Information Theory, 51(11):4032–4039, 2005.

[28] S. Yekhanin et al. Locally decodable codes. Foundations and Trends® in

Theoretical Computer Science, 6(3):139–255, 2012.

[29] E. F. Assmus and J. D. Key. Designs and their Codes. 103. Cambridge University

Press, 1992.

[30] A. B. Sorensen. Projective reed-muller codes. IEEE Transactions on Information

Theory, 37(6):1567–1576, 1991.

[31] P. Beelen, S. R. Ghorpade, and T. Hoholdt. Afne grassmann codes. IEEE

Transactions on Information theory, 56(7):3166–3176, 2010.

[32] A. M. Steane. Quantum reed-muller codes. IEEE Transactions on Information

Theory, 45(5):1701–1703, 1999.

[33] M. Bhaintwal and S. K. Wasan. Generalized reed–muller codes over. Designs,

Codes and Cryptography, 54(2):149–166, 2010.

62

[34] E. Weldon. New generalizations of the reed-muller codes–ii: Nonprimitive codes.

IEEE Transactions on Information Theory, 14(2):199–205, 1968.

[35] SageMath. The Sage Mathematics Software System (Version 9.3), 2021.

https://www.sagemath.org.

[36] V. Mulder, A. Mermoud, V. Lenders, and B. Tellenbach. Trends in Data

Protection and Encryption Technologies. Springer Nature, 2023.

[37] O. Goldreich. Foundations of Cryptography, Volume 2. Cambridge university

press Cambridge, 2004.

[38] M. Blum, P. Feldman, and S. Micali. Non-interactive zero-knowledge and its

applications. In Providing Sound Foundations for Cryptography: On the Work of

Sha Goldwasser and Silvio Micali, pages 329–349. 2019.

[39] Eduardo Morais, Tommy Koens, Cees Van Wijk, and Aleksei Koren. A survey

on zero knowledge range proofs and applications. SN Applied Sciences, 1:1–17,

2019.

[40] Jens Ernstberger, Stefanos Chaliasos, Liyi Zhou, Philipp Jovanovic, and Arthur

Gervais. Do you need a zero knowledge proof? Cryptology ePrint Archive, 2024.

[41] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin:

Anonymous distributed e-cash from bitcoin. In 2013 IEEE symposium on security

and privacy, pages 397–411. IEEE, 2013.

[42] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos

Papamanthou. Hawk: The blockchain model of cryptography and

privacy-preserving smart contracts. In 2016 IEEE symposium on security and

privacy (SP), pages 839–858. IEEE, 2016.

[43] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous

63

payments from bitcoin. In 2014 IEEE symposium on security and privacy, pages

459–474. IEEE, 2014.

[44] Nicolas Van Saberhagen. Cryptonote v 2.0. 2013.

[45] Malte Möser, Kyle Soska, Ethan Heilman, Kevin Lee, Henry Heffan, Shashvat

Srivastava, Kyle Hogan, Jason Hennessey, Andrew Miller, Arvind Narayanan,

et al. An empirical analysis of traceability in the monero blockchain. arXiv

preprint arXiv:1704.04299, 2017.

[46] Benedikt Bünz, Shashank Agrawal, Mahdi Zamani, and Dan Boneh. Zether:

Towards privacy in a smart contract world. In International Conference on

Financial Cryptography and Data Security, pages 423–443. Springer, 2020.

[47] Benoı̂t Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-based

zero-knowledge arguments for integer relations. In Annual International

Cryptology Conference, pages 700–732. Springer, 2018.

[48] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. Scalable, transparent, and

post-quantum secure computational integrity. Cryptology ePrint Archive, 2018.

[49] E. Ben-Sasson, Y. Kaplan, S. Kopparty, O. Meir, and H. Stichtenoth. Constant

rate pcps for circuit-sat with sublinear query complexity. Journal of the ACM

(JACM), 63(4):1–57, 2016.

[50] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof verication

and the hardness of approximation problems. Journal of the ACM (JACM),

45(3):501–555, 1998.

[51] S. Arora. How np got a new denition: a survey of probabilistically checkable

proofs. arXiv preprint cs/0304038, 2003.

[52] Y. Kaplan and E. Ben-Sasson. Multi-variate Abstractions of Algebraic Geometry

Codes, With Applications. Ph.D. thesis, Computer Science Department,

Technion, 2016.

64

[53] Craig Gentry. A fully homomorphic encryption scheme. Stanford university, 2009.

[54] Adi Shamir. How to share a secret. Communications of the ACM,

22(11):612–613, 1979.

[55] George Robert Blakley. Safeguarding cryptographic keys. In Managing

requirements knowledge, international workshop on, pages 313–313. IEEE

Computer Society, 1979.

[56] Gustavus J Simmons. Geometric shared secret and/or shared control schemes.

In Conference on the Theory and Application of Cryptography, pages 216–241.

Springer, 1990.

[57] Tamir Tassa. Hierarchical threshold secret sharing. Journal of cryptology,

20:237–264, 2007.

[58] Mihir Bellare, Alexandra Boldyreva, and Jessica Staddon. Randomness re-use in

multi-recipient encryption schemeas. In Public Key Cryptography—PKC 2003:

6th International Workshop on Practice and Theory in Public Key Cryptography

Miami, FL, USA, January 6–8, 2003 Proceedings 6, pages 85–99. Springer, 2002.

[59] Muhammed Ali Bingol, Sermin Kocaman, Ali Dogan, and Sibel Kurt Toplu.

Flexhi: A exible hierarchical threshold signature scheme. In Science and

Information Conference, pages 509–529. Springer, 2024.

[60] Claudia Kässer. Secret sharing schemes based on error-correcting codes. Ph.D.

thesis, Universität Tübingen, 2016.

65

7. Appendix

1 reset()

2 forget(assumptions())

3

4 # Define the variables

5 x,y,z = var('x y z')

6

7 # Define the expression T

8 a,b,c,d, e, f, g, h, i = var('a b c d e f g h i')

9

10 X = a*x+b*y+c*z

11 Y = d*x+e*y+f*z

12 Z = g*x+h*y+i*z

13

14 D1 = matrix([[1,1,1],[X,Y,Z],[Xˆ2,Yˆ2,Zˆ2]]).determinant()

15 D1s = (D1.full_simplify())

16

17 D2 = matrix([[1,1,1],[X,Y,Z],[Xˆ3,Yˆ3,Zˆ3]]).determinant()

18 D2s = (D2.full_simplify())

19 #print(D1s)

20

21 eqns1 =

[D1s.coefficient(x*y*z),D1s.coefficient(xˆ3),D1s.coefficient(yˆ3),

\\D1s.coefficient(zˆ3),D1s.coefficient(x*yˆ2)+ \\

D1s.coefficient(xˆ2*y),D1s.coefficient(z*yˆ2)+ \\

D1s.coefficient(zˆ2*y),D1s.coefficient(x*zˆ2)+ \\

D1s.coefficient(xˆ2*z)]

→

→

→

→

→

66

22 #show(eqns1)

23

24 eqns2 = [D2s.coefficient(x*y*zˆ2),D2s.coefficient(x*yˆ2*z),\\

D2s.coefficient(xˆ2*y*z), D2s.coefficient(xˆ2*yˆ2),\\

D2s.coefficient(xˆ2*zˆ2), D2s.coefficient(zˆ2*yˆ2),\\

D2s.coefficient(xˆ4),D2s.coefficient(yˆ4),D2s.coefficient(zˆ4),\\

D2s.coefficient(x*yˆ3)+D2s.coefficient(xˆ3*y),\\

D2s.coefficient(z*yˆ3)+D2s.coefficient(zˆ3*y),\\

D2s.coefficient(x*zˆ3)+D2s.coefficient(xˆ3*z)]

→

→

→

→

→

→

25 #show(eqns2)

26 eqns = eqns1+eqns2

27 print("------------------------------")

28 # for eq in eqns:

29 # show(eq)

30 # #print(eq(a=2,b=1,c=1,d=1,e=2,f=1,g=1,h=1,i=2))

31 # print("------------------------------")

32 det=matrix([[a,b,c],[d,e,f],[g,h,i]]).determinant()

33

34 sol =

solve([eqns[1]==0,eqns[2]==0,eqns[13]==0,eqns[14]==0,eqns[4]==0,→

35 eqns[16]==0],a,b,d,e,g,h)

36 #print(sol)

37 sol_dict =

solve([eqns[1]==0,eqns[2]==0,eqns[13]==0,eqns[14]==0,eqns[4]==0,→

38 eqns[16]==0],a,b,d,e,g,h,solution_dict=True)

39

40 # #sol=solve([eqns[1],eqns[13]],a,d,g)

41 # sol =

solve([eqns[1]==0,eqns[2]==0,eqns[3]==0,eqns[13]==0,eqns[14]==0,→

67

42 eqns[15]==0,eqns[4]==0,eqns[16]==0],a,b,c,d,e,f,g,h,i)

43 # sol_dict =

solve([eqns[1]==0,eqns[2]==0,eqns[3]==0,eqns[13]==0,eqns[14]==0,→

44 eqns[15]==0,eqns[4]==0,eqns[16]==0],a,b,c,d,e,f,g,h,i,

45 solution_dict=True)

46 # #sol= solve(eqns,a,b,c,d,e,f,g,h,i)

47 # #print(len(sol),sol)

48

49 eqns_ex = [eqns[0],eqns[3],eqns[15]]+eqns[5:13]+eqns[17:19]

50

51 for j in range(len(sol_dict)):

52 if ((det(sol_dict[j])).full_simplify())!=0:

53 print(j,sol_dict[j])

54 sol_g =

solve(eqns_ex+sol[j],a,b,c,d,e,f,g,h,i,solution_dict=True)→

55 #print(sol_g)

56 for k in range(len(sol_g)):

57 if ((det(sol_g[k])).full_simplify())!=0:

58 print(j,k,sol_g[k])

59 print("---------------------")

60

61 # #eqns_ex_subt=[eqns_ex[k](sol[j]) for k in

range(len(eqns_ex))]→

62 # #print(eqns_ex_subt[0])

63 # #print(solve(eqns_ex_subt,a,b,c,d,e,f,g,h,i))

64

65 # #sol_p = [e==a,i==a,c==b,d==b,f==b,g==b,h==b]

66 # #solve(eqns+sol_p,a,b,c,d,e,f,g,h,i)

68

